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Abstract The human ankle has a critical role in locomo-

tion and estimating its impedance is essential for human

gait rehabilitation. The ankle is the first major joint that

regulates the contact forces between the human body and

the environment, absorbing shocks during the stance, and

providing propulsion during walking. Its impedance varies

with the level of the muscle activation. Hence, character-

izing the complex relation between the ankle impedance

and the lower leg’s muscle activation levels may improve

our understanding of the neuromuscular characteristics of

the ankle. Most ankle–foot prostheses do not have a degree

of freedom in the transverse plane, which can cause high

amounts of shear stress to be applied to the socket and can

lead to secondary injuries. Quantifying the ankle impe-

dance in the transverse plane can guide the design for a

variable impedance ankle–foot prosthesis that can signifi-

cantly reduce the shear stress on the socket. This paper

presents the results of applying artificial neural networks

(ANN) to learn and estimate the relation between the ankle

impedance in the transverse plane under non-load bearing

condition using electromyography signals (EMG) from the

lower leg muscles. The Anklebot was used to apply pseu-

dorandom perturbations to the human ankle in the trans-

verse plane while the other degrees of freedom (DOF) in

the sagittal and frontal planes were constrained. The

mechanical impedance of the ankle was estimated using a

previously proposed stochastic identification method that

describes the ankle impedance as a function of the applied

disturbances torques and the ankle motion output. The

ankle impedance with relaxed muscles and with the lower

leg’s muscle activations at 10 and 20% of the maximum

voluntary contraction were estimated. The proposed ANN

effectively predicts the ankle impedance within 85%

accuracy (±5 Nm/rad absolute) for nine out of ten subjects

given the root-mean-squared (rms) of the EMG signals.

The main contribution of this paper is to quantify the

relationship between lower leg muscle EMG signals and

the ankle impedance in the transverse plane to pave the

way towards designing and controlling this degree of

freedom in a future ankle–foot prosthesis.
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1 Introduction

The ankle has a major role in transferring ground reaction

forces to the body during locomotion. Human locomotion

during activities of daily living (ADL) include walking on

a straight path, walking on inclined surfaces, climbing or

descending stairs, navigating among obstacles, turning

around corners and even more dynamic motion such as

jumping and running. The ankle is important during these

activities because it responds to ground reaction forces and

it keeps the body in a stable position. During ADL, the

lower extremity muscles contract to modulate the

mechanical impedance of the ankle and provide shock

absorption during heel-strike and propulsion during the

push-off phase. The mechanical impedance can be descri-

bed as the resulting torque caused by external motion

perturbations and can vary based on the effects of mass-

inertia, damping, and stiffness (Rastgaar et al. 2010;

Ficanha and Rastgaar 2014). To improve the understanding

of the neuromuscular properties of the ankle,
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characterization of the complex relationship between ankle

impedance and lower extremity muscle activation levels is

required.

Modulation of the ankle impedance occurs in the

sagittal, frontal, and transverse anatomical planes; resulting

in rotations of the foot in dorsiflexion-plantarflexion (DP),

inversion-eversion (IE), and external-internal (EI) degrees

of freedom (DOF), respectively, as shown in Fig. 1. The

ankle mechanical impedance in the sagittal plane has been

a main concern for many research efforts because of its

substantial rotation during straight walking. However,

during ADL locomotion is not restricted to straight path. In

fact, it was reported that on average turning steps account

for 35–45% of all the steps, ranging from 8 to 50% during

four representative daily activities (Glaister et al. 2007).

Studies have shown that ankle motion and ground reaction

forces in the transverse plane significantly change between

straight walking and various turning maneuvers (Glaister

et al. 2007, 2008; Taylor et al. 2005; Ficanha et al. 2015).

One of these studies found that the ankle range of motion in

the transverse plane was approximately 22� during straight

walking, but decreased by approximately 31% to 16�
during a step turn (Ficanha et al. 2015). This significant

difference between maneuvers implies that the dynamics of

the ankle varies to account for changing ankle angles and

ground reaction forces.

Most prostheses that are currently available to transtibial

amputees do not account for the ambulation requirements

in the transverse plane (Glaister et al. 2007). This limited

degree of freedom can cause additional shear stresses to be

added to the residual limb of the amputee, resulting in

discomfort, skin abrasions, and can lead to secondary

injuries. Traditional transverse rotation adaptors (TRA)

have been used to provide some compliance and reduce the

torques applied at the socket (Olson and Klute 2015),

however these devices typically only provide a fixed pas-

sive stiffness element. Recently, a variable stiffness torsion

adaptor was designed to be able to change stiffness and

allow for different levels of compliance in the transverse

plane. This device was shown to reduce the maximum

transverse plane moments applied to the socket while an

amputee performed a turning and twisting maneuver (Pew

and Klute 2015, 2017). One limitation to this work is that

the stiffness cannot vary based on the maneuver, the

amount of muscle activation, or the user’s intensions.

Additional research is required to quantify the ankle

impedance in the transverse plane to improve the design of

the variable impedance ankle–foot prosthesis that will be

able to significantly reduce the shear stress on the ampu-

tee’s residual limb.

Previous work determined the impedance of the ankle

with the use of a multivariable stochastic system identifi-

cation method. Used by numerous research groups, this

well-established method could estimate the quasi-static and

dynamic ankle impedance in all three anatomical planes

while at stationary conditions (Lee et al. 2011, 2014a, b, c;

Ficanha et al. 2015). In one study, the Anklebot, consisting

of two back-drivable linear actuators, was used to apply

pseudo-random position perturbations to the ankle and

measure the resulting position and torque response. Initial

studies determined the multivariable mechanical impe-

dance of the ankle in DP and IE during relaxed and active

muscle co-contraction (Lee et al. 2014). The experiments

were performed when the lower extremity muscle activa-

tions were relaxed and at 10% of the subject’s maximum

voluntary contraction (MVC) and a dynamic model to

represent the coupling between the DP and IE DOF was

developed. Using the same stochastic system identification

method, the impedance in the EI direction for both relaxed

and co-contracted muscles was determined by applying

perturbations in the transverse plane of the ankle (Ficanha

and Rastgaar 2014; Ficanha et al. 2015).

Furthermore, defining the relationship between elec-

tromyography (EMG) signals from a muscle group to its

corresponding joint movements can lead to advancements

in methods for controlling prostheses based on the ampu-

tee’s intensions (Gopura et al. 2013; Kearney and Hunter

1990). Previous work has used EMG to determine the

linear relation between upper extremity muscle activation

levels and joint stiffness for both static and dynamic con-

ditions (Osu and Hiroaki 1999). A few studies have used

neural networks to relate EMG signals to the upper

extremity joint stiffness, joint trajectories, and joint

moments required for human motor control tasks (Kim

et al. 2009; Schöllhorn 2004; Wang and Buchanan 2002;

Lester et al. 1997). For example, one group explored the

feasibility of using EMG to predict the dynamic arm

movements of the elbow and wrist joints with the use of a

neural network (Pulliam et al. 2011). However, there is a

gap in the literature to define the complex relationship

Fig. 1 The ankle anatomical planes and its coordinate system
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between the lower extremity joint impedance in the

transverse plane and the corresponding EMG signals.

The authors recently developed a method to use artificial

neural network (ANN) as a learning framework for defin-

ing the relationship between the lower extremity muscle

signals and the ankle impedance in the sagittal (DP) and

frontal (IE) planes (Dallali et al. 2017). From previously

described methods, the Anklebot was used to quantify the

ankle mechanical impedance of nine subjects. Each test

was performed at three different muscle co-contraction

levels, indicated by the magnitude of the lower leg’s

muscles EMG signal. The EMG root-mean-squared (rms)

was determined from four lower extremity muscles,

selected based on their contribution to ankle movement and

postural balance. The tibialis anterior (TA) was chosen as it

contributes to inversion and dorsiflexion of the ankle, the

peroneus longus (PL) is a dorsiflexor of the ankle, while the

soleus (SOL) and the gastrocnemius (GA) are plantarflex-

ors of the ankle joint (Basmajian 1979; Di Giulio et al.

2009). After training, the ANN could estimate the ankle

impedance with the EMG signals alone with approximately

89% mean accuracy in DP and 88% mean accuracy in IE

(Dallali et al. 2017).

However, the literature does not report the relationship

between lower extremity muscle activation and the

mechanical impedance in the transverse plane (EI). This

study is a continuation of an effort to estimate the

mechanical impedance of the ankle in all three planes of

rotation based on muscle activation levels in the lower

extremity. The mechanical impedance of the ankle with

relaxed, 10 and 20% muscle activation levels was deter-

mined for ten unimpaired subjects. Using an improved

method from previous work, the functional relationship

between the two variables was determined with the use of a

feedforward ANN. The results of this work not only con-

tribute to the understanding of ankle function in the

transverse plane, but also provides insight on a method for

defining the ankle dynamics from a musculoskeletal point

of view. This approach will be beneficial towards the

design and control of an ankle foot prosthesis that will

reduce the amount of shear stress applied to the socket,

provide for a more natural gait, and allow the user to have

control of their desired motions.

This paper is structured as follows. Section 2 describes

the methods, experimental protocol, and the ANN model-

ing approach used in this study. Section 3 presents the

results of the proposed ANN modeling approach. Section 4

provides discussion of the experimental results and how

they compare to previous studies. The conclusions are

given in Sect. 5.

2 Methods

This section describes the experimental setup and proce-

dure used to determine the functional relationship between

lower leg muscle activation and the mechanical impedance

of the ankle. This experiment used EMG sensors to mea-

sure the muscle activations of four lower leg muscles and

the Anklebot to estimate the ankle mechanical impedance.

An ANN was trained to find the relationship between the

measured EMG and estimated impedance.

2.1 Stochastic impedance identification

2.1.1 Experimental setup

Ten unimpaired subjects (five females, five males with

mean age of 25 ± 3 years, mean weight of 75 ± 15 kg

and mean BMI of 23.8 ± 4.3 kg/m2) with no self-reported

history of biomechanical or neuromuscular disorders par-

ticipated in the experiments. This research was approved

by the Michigan Technological University Institutional

Review Board and all the subjects provided the written

consent to participate in the experiments.

First, the Anklebot was used to determine the mechan-

ical impedance of the ankle in the EI direction. The applied

torque and angular displacement were recorded using

current sensors to measure the motor torque (Burr-Brown

1NA117P), with a nominal resolution of 2.59 9 10-6 Nm,

and two linear incremental encoders (Reinshaw�), with a

resolution of 5 9 10-6 m. To estimate the impedance in

the EI direction, the Anklebot actuators were placed par-

allel to the ground in order to apply a torque in the trans-

verse plane (Ficanha et al. 2015).

As shown in Fig. 2, the Anklebot (1) was mounted

below a custom-made chair to allow for the actuation of the

ankle in the transverse plane. The subjects were seated in

the chair with their feet above the ground. A modified shoe

(2), with an aluminum bracket attached to the sole, was

placed on the subject’s right foot. The moving ends of each

actuator were attached to the aluminum bracket, allowing

for rotation of the foot in the EI direction. To ensure an

accurate ankle position measurement, the laces of the shoe

were securely tied to avoid any slipping of the foot within

the shoe. The vertical position of the Anklebot was

adjusted for each subject by changing the height of the bar

which the Anklebot was mounted (3) so that the actuators

remained parallel to the ground. To maintain the horizontal

position of the Anklebot, a knee brace (4) and supporting

straps (5) were used to fix the subjects’ leg and isolate any

rotations by the hip and knee joints. The knee angle was

measured using a goniometer and was fixed at 90� with

respect to the shin. This brace was attached to a supporting

Using lower extremity muscle activity to obtain human ankle impedance in the external–… 31

123



frame using straps to suspend the leg, hold the weight of

the Anklebot system, and to prevent motion in other

anatomical planes, as described in Lee et al. (2014) and

Rastgaar et al. (2014). A shin brace (6) was also attached to

prevent motion in the sagittal plane. After positioning the

knee, the ankle angle was also placed at 90� in the sagittal

plane and the Anklebot actuators were calibrated to save

this position as the origin. This set up ensured that the

actuators remain parallel to the floor and that the ankle

would rotate only in the transverse plane.

Next, the Delsys� TrignoTM EMG system was config-

ured using the EMGWORKS� data acquisition software.

This system recorded EMG signals at 1925 Hz over a

wireless connection, bandpass filtered the signal between

DC-500 Hz, and used patent pending motion artifact sup-

pression to reduce low frequency noise. As shown in

Fig. 2, four EMG sensors were placed on the TA (6), PL

(7), SOL (8) and GA (9) muscles. Rubbing alcohol was

used to clean the subjects’ skin and remove any natural oil,

providing a good electrical connection. The sensors were

placed on the skin near the bellies of each muscle using

hypoallergenic tape. In addition, to prevent the sensor from

loosening during the experiment, an additional piece of

medical tape was wrapped around the leg to assure the

sensor remained in place. An initial test of each sensor was

performed to ensure that the sensor placement was correct

and the signal could be measured.

2.1.2 Experimental protocol

In this experiment, the Anklebot was controlled in active

impedance mode with active stiffness of 12.8 Nm/rad and

no damping. These values were selected based on the

previously used protocol to prevent drift and to hold the

foot near the center position (Ficanha et al. 2015). For each

test, pseudo-random command voltages with bandwidth of

100 Hz were applied to each actuator to produce maximum

torque perturbations of 15 Nm (Ficanha et al. 2015). The

command voltage to each actuator was identical in

magnitude and opposite in direction, resulting in a rotation

with an rms value of 0.065 rad about the ankle EI direction.

The Anklebot recorded the applied force and displacement

of each actuator at 200 Hz.

At the beginning of each experiment, the subjects were

asked to co-contract their lower leg muscles at the maxi-

mum level, without moving the ankle, to determine their

MVC. After several repetitions, the co-contraction of the

TA muscle with the highest EMG voltage was selected and

used for the following experiment. The subjects were

instructed to perform three tests that measured the ankle

impedance with three different TA muscle activation

levels.

As shown in Fig. 3, the Anklebot applied perturbations

to the ankle and measured the resulting angular displace-

ments while the subjects’ TA muscle was relaxed, at 10%

of the MVC level, or at 20% of the MVC level. These

measurements were fed into the stochastic system identi-

fication as described in Sect. 2.2.3. For the first test, the

subjects kept their TA muscle relaxed while the Anklebot

perturbations were applied to the ankle. During the tests

with 10% MVC and 20% MVC, the subjects were asked to

reach each level by adjusting the contraction of their TA

muscle, accordingly. Since the TA contributes to both

inversion and dorsiflexion of the foot, its contraction

assures muscle co-contraction of antagonistic muscles

responsible for eversion and plantarflexion. Because the

motion in DP, IE, and EI are a combination of rotations of

the ankle subtalar complex, monitoring the TA muscles

provides a level of voluntary co-contraction at the ankle in

all anatomical planes, and thus these were chosen as the

reference muscles for the subjects to maintain at either 10

or 20% MVC.

The length of each test was 70 s and the recorded data

were truncated to 60 s to remove transient data at the

beginning of each trial. The subjects were able to see their

muscle activation levels in real time using a computer

monitor, allowing them to follow and maintain their mus-

cle at 10 or 20% MVC for the entire duration of the test.

Fig. 2 The overall

experimental setup shown from

the side view and the isometric

view. Placement of the EMG

sensors on the lower leg

muscles as well details of the

experimental setup are shown
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The three tests were repeated five times for a total of 15

tests to ensure repeatability and consistency.

2.2 Artificial neural network

2.2.1 Overview of ANN

The goal of this study is to develop a continuous functional

mapping between the rms of the EMG signals and the

frequency dependent mechanical impedance of the human

ankle with different muscle activation levels. This function

can be defined as:

y ¼ gðx; f Þ ð1Þ

where y is the output ankle impedance in the EI direction;

x is the rms values of the four EMG signals across each test

and f is the frequency in which the impedance is defined. A

promising tool that can address this function approximation

problem is ANN because of its ability to estimate linear

and nonlinear functional relations (Funahashi 1989).

In this study, the Matlab� Neural Network Toolbox was

used to develop an ANN model with the varied muscle

activation levels (relaxed, 10% MVC, 20% MVC). As

shown in Fig. 4, each model consisted of a multilayered

feedforward neural network, with five inputs, a hidden

layer with 60 neurons, and an output layer with two neu-

rons. xij is the weight of the connection from the inputs i to

neuron j in the hidden layer and ejk is the weight of the

connection between neuron j in the hidden layer and the

output neuron k, where i ¼ 1; . . .; 5, j ¼ 1; . . .; 60 and

k ¼ 1; 2. In addition, each neuron of the hidden and output

layer had a constant offset (bias), shown as

b1 b2 � � � b62f g in Fig. 4. The weights and biases

were selected and tuned during the ANN training process.

Sixty neurons were chosen based on the prediction results

of the ANN model. A higher number of neurons can lead to

overfitting the data and a poor generalized ANN model

while a smaller number of neurons is not sufficient to fit the

experimental data. Further guidelines on selecting the

number of neurons in the hidden layer are provided in the

literature (Karsoliya 2012).

2.2.2 Design of input matrix

The input matrix had five inputs; four rms EMG signal

inputs, generated by the four muscles (TA, PL, SOL, and

GA), and one input for the impedance frequency range.

Before building the input matrix, the rms EMG values

across each round of experiments were normalized with

respect to the rms EMG value of the relaxed muscle test.

�xn ¼
�x

relaxed �x
ð2Þ

This was necessary because there was still a small EMG

signal during the relaxed muscle test, ranging in rms

magnitude between 0 to ± 20 lV, as shown in Fig. 5.

In addition, the input matrix included the frequency of

the ankle impedance that ranged between 0.7 to 4.1 Hz.

This range was selected to be less than the break frequency

Fig. 3 Block diagram of the signal processing performed to obtain impedance and to train the ANN, where p is the perturbation, h and s are

measured ankle angle and torque, Zðf Þ is the identified impedance, and ~Zðf Þ is the ANN estimated impedance

Fig. 4 A two-layered feed forward neural network, consisting of

input nodes, a hidden, and an output layer

Fig. 5 Bandpass filtered and rms EMG values of lower leg muscles

during relaxed muscle experiment
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of the estimated impedance. Based on previous work, we

can assume that this region is where the effects of stiffness

are dominant (Ficanha et al. 2015). This frequency data

from all the tests were fixed, resulting in a total of 18

frequency measurements within the range. The resulting

input submatrix for a single test was a 5 9 18 matrix that

took the form:

rmð Þ5�18¼ �xnðTAÞ �xnðPLÞ �xnðSOLÞ �xnðGAÞ f½ �T

ð3Þ

where rm is the input matrix from a single test with an

index m ¼ f1; . . .; 15g for the 15 performed tests. After 15

tests the total input matrix, R, for the ANN model is made

up of 15 submatrices from Eq. 3, where r1 is the first

relaxed muscle trial, r2 is the first 10% MVC trial, r3 is the

first 20% MVC trial, and so forth. The input matrix, R; to

the neural network is given in Eq. 4

R ¼ r1 r2 � � � r15½ �5�270: ð4Þ

2.2.3 Design of target matrix

Next, the impedance estimation was used to develop the

target matrix necessary to train the ANN model. The ankle

impedance was estimated for the three levels of muscle

activation: relaxed, 10% MVC, and 20% MVC. During

each of these tests, the Anklebot measured the total torque

output and the ankle rotation in the transverse plane. The

auto power spectral density of the input angular displace-

ment Phhðf Þ and the cross power spectral density between

the displacement and output torque measurement Pshðf Þ
were used to estimate the impedance of the system, Zðf Þ.
The estimated transfer function is the ratio of the two

spectrums as described in Eq. 5.

Zðf Þ ¼ Pshðf Þ
Phhðf Þ

ð5Þ

To estimate this transfer function the tfestimate function

in Matlab� was used. The method used in tfestimate

implements the Welch’s averaged modified periodogram

method, which is based on the quotient of the cross power

spectral density of the torque and angle, Pshðf Þ, and the

auto power spectral density of angles Phhðf Þ. A hamming

window with the size of 512 points, an overlap of 256

points, 1024 FFT points and a sampling frequency of

200 Hz were used in tfestimate. The size of the windows

and number of points were chosen to reduce both bias and

variance. A narrow window results in small bias but high

variance for the estimated transfer function and vice versa

(Ljung 1999). The coherence of the derived transfer

functions were also calculated using the mscohere in

Matlab� and were used to validate each impedance transfer

function. Equation 6 shows the coherence between the total

torque and ankle angles

Coherence ¼ Psh fð Þj j2

Pss fð ÞPhh fð Þ ; ð6Þ

where Pssðf Þ is the auto power spectral density of the

measured output torque. However, Eqs. 5 and 6 use the

torque measurement of the total system. This includes the

torque provided by the Anklebot, shoe, and the ankle, as

described in (Rastgaar et al. 2009). The motion of the

Anklebot, shoe, and ankle are the same; therefore, the

impedance is in parallel and the Anklebot and shoe can be

subtracted from the total estimated impedance. Using the

same estimation procedure, an additional test was per-

formed without the human subject, to determine the

impedance of only the Anklebot and shoe. The impedance

of the ankle is derived as

Zankle ¼ ZankleþAnklebotþshoe � ZAnklebotþshoe: ð7Þ

The advantage of stochastic methods over steady-state

procedures is that they provide a quantitative estimate

without requiring any a priori assumption about the order

or dynamic structure of mechanical impedance (Rastgaar

et al. 2009). The estimated real and imaginary coefficients

of the impedance transfer functions were used as the target

matrix for ANN modeling. Using the real and imaginary

impedance proved to be more numerically efficient than

using the impedance magnitude and phase. The impedance

transfer function for each subject was estimated over the

desired frequency range, resulting in 18 real and imaginary

impedance values with a frequency resolution of

0.1921 Hz. The target submatrix for a single trial was

modeled as

yi ¼
Reali fð Þ
Imagi fð Þ

� �
2�18

: ð8Þ

After the impedance transfer function was estimated for

all 15 trials, each submatrix was concatenated to create a

2 9 270 target matrix. This matrix will be used to train the

ANN model and is defined in Eq. 9

Y ¼ y1 y2 � � � y15½ �2�270: ð9Þ

2.2.4 Training the ANN

The final step in the experimental process was to train the

ANN model until a relationship between the input matrix

and the target matrix was derived. To endow robustness to

the ANN against EMG signal variations, the data were split

into training, validation, and testing data, using 70, 15, and

15% of the total data sets, respectively. The training data

set was used to train the ANN and determine the appro-

priate weights and biases. To derive the best impedance

34 H. Dallali et al.
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model ~Zðf Þ, as shown in Fig. 3, the training was repeated

until a desired regression and network output error were

achieved. For this study, the model for each subject was

trained between two to five times. The validation data set

was used to monitor the training performance to new

inputs. The training was completed by observing that the

validation error reached a minimum. Then, the testing data

set was used to evaluate the predictive quality of the

trained model. All of the ANN models were trained in

batches using the Levenberg–Marquardt algorithm (Mar-

quardt 1963).

3 Results

The results of the ankle mechanical impedance estimation,

using the recently proposed stochastic identification

method (Rastgaar et al. 2009), is presented in this sec-

tion. The recorded EMG signals and the estimated ankle

impedance were used as input and target data to train the

ANN network. It is shown that ANN can accurately

reconstruct the ankle impedance at the three levels of

muscle activation. To evaluate the quality of ANN model,

various performance metrics such as the mean squared

error, regression and histogram plots are presented.

3.1 Ankle impedance estimation using system

identification

The mean and standard errors of the dynamic impedance of

a representative subject in EI direction within frequency

range of 0.7–4.1 Hz is shown in Fig. 6. The standard error

is calculated using SE ¼ s=
ffiffiffi
n

p
where s is the standard

deviation computed over five repetitions of each test and n

is the number of samples. As expected the magnitude of the

ankle impedance is increasing with muscle activation, as

was reported for DP and IE directions in Lee et al. (2014).

The corresponding coherence function was computed

based on spectral analysis using Eq. 6 for the transfer

function estimates. The average coherence across all sub-

jects was greater than 0.88, and validated the system

identification linearity assumption (Fig. 6).

The averaged magnitude of the impedance for all the ten

subjects are presented in Fig. 7 for relaxed, 10 and 20%

MVC tests. The standard error of the overall impedance in

the frequency range of 0.7–4.1 Hz are shown in the bar

plots. In addition, the averaged impedance phase and

standard error for each subject are presented in Fig. 8.

Once the ankle impedance was estimated from the

stochastic identification method described in Sect. 2.2, the

target impedance values for training the ANN models were

obtained.

3.2 Ankle impedance estimation using ANN

After the ANN model was trained, the resulting impedance

predicted by the ANN were derived across 0.7–4.1 Hz. The

ANN predictions for a representative subject are shown in

Fig. 9 (solid line). These results were compared with the

mean impedance frequency plots derived using the system

identification method (dashed line). In addition, the train-

ing performance of the ANN is shown in Fig. 10 for the

same representative subject. It is shown that the network

for the representative subject converged to the best per-

formance (least amount of mean squared error) within four

epochs. Similar results were observed for the ANN training

performances of the other subjects who participated in the

experiment.

A few techniques were used to verify that the networks

were properly trained. During training and validation, the

Fig. 6 Average magnitude (a),
phase (b), and coherence

(c) plots of the ankle impedance

for a representative subject in

the EI rotation direction with

relaxed muscles, 10% MVC,

and 20% MVC. The shaded

areas are the standard errors

(SE)
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Fig. 7 Mean impedance

magnitudes for all the subjects

with: a relaxed muscle, b 10%

MVC, and c 20% MVC. The

bars indicate the mean value of

the magnitude across five trials.

The magnitudes are shown in

linear scale. The whiskers below

and above the bars indicate the

average standard error across

five trials

Fig. 8 Mean impedance phases

for all the subjects with:

a relaxed muscle, b 10% MVC,

and c 20% MVC. The bars

indicate the mean value of the

phase across five trials. The

whiskers below and above the

bars indicate the average

standard error across five trials

Fig. 9 Results of the ankle

impedance for a representative

subject derived from the

experimental approach and the

impedance modeled by the

proposed ANN in the EI

rotation direction with relaxed

muscle, 10% MVC, and 20%

MVC
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mean squared error (mse) between the output and target

impedance of the network was determined. The networks

continued to iterate until the mse converged to the best

performance. If the mse did not converge to a solution, it is

possible that the network overfit the data. For all ten sub-

jects, the networks converged to the smallest mse within 15

iterations (epochs) of the training and validation process,

showing that the networks did not overfit the training data.

3.3 ANN regression

The regression plots presented in Fig. 10 provide insight to

how well the ankle impedance was modeled and estimated

by the neural network. In these plots, the real and imagi-

nary impedance predictions from the neural network were

plotted against the experimental impedance data. The

regression plots for the training, validation, testing and

overall results for a representative subject are shown in

Fig. 10a–d, respectively. The overall trained ANN resulted

in regressions values of 0.98 and above. This trend was

consistent among all the subjects. As shown in Fig. 11, the

regressions values after training the ANN for all the ten

subjects were between 0.98 and 0.997 percent.

3.4 ANN error distribution

The relative errors for the trained ANN impedance mag-

nitudes were determined using the averaged curves across

5 trials for relaxed, 10% MVC, and 20% MVC. The his-

togram plots, presented in Fig. 12, show the distribution of

error. Each bin size has an interval of five percent error and

each bin height is normalized to the probability of selecting

a sample within the bin interval. The majority of data

points for all ten subjects have zero or negligible relative

errors resulting from the trained neural networks, espe-

cially for the 10% MVC and 20% MVC. It is evident that

all the errors for the magnitude from these trials are within

approximately 10% relative error. In addition, the relaxed

muscle trials are within 15% relative error, except for

Subject 1. For this subject, four samples have greater than

15% error because the average target impedance has a

small magnitude (\1 Nm/rad). Hence, any small error was

exaggerated for these particular samples. The absolute

error between the relaxed target and output impedance for

this subject is within ±3 Nm/rad.

Fig. 10 Overall regression

plots of the representative

subject derived for 15 trials

with: a training, b validation,

c testing, and d all data
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4 Discussion

Modeling the dynamic impedance of the human ankle is an

important step towards understanding how to properly

design and control active ankle–foot prostheses. To per-

form walking or other ADL with performance comparable

to humans, ankle–foot prostheses should behave similarly

to the human ankle; thus, they rely on the estimation of the

impedance values of the human ankle joint. In this study,

we used the Anklebot to estimate the ankle impedance in

EI for ten subjects across 150 trials. Each subject con-

trolled their lower extremity muscle co-contractions to be

relaxed, active with 10% MVC, or active with 20% MVC.

The resulting impedance magnitude in each case mono-

tonically increased, as expected, due to higher muscle

activation levels (Figs. 6, 7). These results were used to

verify that the ANN modeling approach could accurately

model the human ankle impedance purely based on surface

EMG experimental data, which is not trivial as muscle

contraction modulates the ankle impedance in a nonlinear

form. This study can provide initial impedance design

parameters to control ankle–foot prostheses.

The impedance plots shown in Fig. 9 compare the

impedance predicted by the ANN to the impedance

Fig. 11 Overall regression

values of all the trained ANN

models for ten subjects

Fig. 12 Average relative error distribution for ANN impedance magnitudes of ten subjects with relaxed muscle, 10% MVC, and 20% MVC
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estimated based on the ankle angles and torques. It is

interesting to note that the ANN impedance predictions

follow smoother curves, making them a suitable choice for

impedance modulation in practical prosthetic control. The

regression plots shown in Fig. 11 validate the developed

ANN models. Since the regression values for training,

validation, and testing datasets are between 0.98 and 0.997,

the models can predict new impedance values from the test

dataset that were not used during training. This also con-

firms that the developed network did not over fit the data.

In addition to the regressions, the relative errors of the

impedances, shown in the histogram plots of Fig. 12, are

less than 15% for nine out of ten subjects. To reduce these

errors further, a larger dataset could be used with more

levels of muscle activations. For all the subjects, the best

ANN performances were derived with less than 15 itera-

tions (epochs), pointing to a quick convergence of the mse

between the target and output impedance values.

One difference between the neural network design used

in previous work (Dallali et al. 2017) was that the target

impedance matrices were modified to use the real and

imaginary components of the impedance, as opposed to the

magnitude and phase. This approach proved to be more

accurate and allowed for a faster convergence during ANN

training. Across ten subjects, the minimum regression

value between the target and output impedance improved

from 0.955 to 0.98, while the maximum regression also

improved from 0.995 to 0.997. One possibility for this

difference is that the real and imaginary components pro-

vided a smaller range of values, resulting in better neural

network performance.

In addition, the impedance frequency range used to train

the neural networks was selected to be less than the break

frequency, where the stiffness properties of the ankle were

dominant. Across ten subjects, the estimated ankle stiffness

for the three muscle levels were between the average

minimum and maximum magnitudes of 2.2 and 35.0 Nm/

rad, respectively. This range is for the ankle under a non-

loaded and seated condition, and is expected to be less than

the stiffness range for standing or walking conditions.

Furthermore, it is interesting to note that the average phase

across ten subjects ranged between 4.9� and 45.2�, as

shown in Fig. 8. Since the phase does not remain constant,

this knowledge could be important towards future work in

designing prostheses with transverse plane control.

Few groups have studied the effects of adding a tor-

sional spring adapter to a transtibial prosthesis to reduce

the amount of shear stress added to the socket. Pew and

Klute (2017) and Su et al. (2010) both determined that a

torsional spring with a stiffness between the ranges of

17.2–52.1 Nm/rad could significantly reduce the forces

applied to the socket and provide more comfort to an

amputee. While these contributions provide insight towards

the minimum and maximum stiffness requirements for a

torsional spring adapter, these studies did not determine the

ankle dynamic properties as function of changing muscle

activity. To the authors’ knowledge, no other group has

determined the relationship between muscle activity and

the impedance of the ankle in the transverse plane. This

study provides the framework towards applying this

method to both standing and walking scenarios in the

future studies.

To further develop this work towards standing and

walking scenarios, the following concepts need to be

considered. First, as shown in Figs. 7 and 8 the impedance

determined at each muscle activation level varied among

subjects. Future work could consider creating a more ver-

satile ANN model, containing the impedance and EMG

data from multiple subjects. New subjects could then use

the model to determine the ankle impedance based on their

EMG data, without having to retrain the ANN. In addition,

the use of surface EMG may pose challenges such as

variation in the signals, caused by muscle fatigue or sensor

placement. To expand this method to standing or walking,

real-time control developments must be able to interpret

the EMG signal appropriately so that the impedance of the

ankle–foot prosthesis can adapt to different conditions. The

user should be able to improve and adjust the ankle–foot

prosthesis stiffness by training the ANN model using the

EMG signals from their muscles. The machine learning

methods are known to improve as more data are used in

training and real-time adaptation can lead to further

improvements in the ANN impedance prediction quality.

5 Conclusion

This paper addressed the problem of quantifying the human

ankle impedance in the transverse plane. A recently pro-

posed approach based on artificial neural network was used
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to estimate the complex relationship between the rms of

surface EMG signals of the lower extremity muscles and

the impedance of the ankle in the transverse plane (exter-

nal–internal DOF). Quantification of impedance in the

transverse plane has an immediate impact on natural

impedance control of ankle–foot prosthesis with an active

EI DOF that can reduce the shear stress on the amputee’s

socket and, as a result, reduce the secondary injuries caused

the large amounts of shear forces.

Ten subjects participated in the tests while seated. The

Anklebot was used to apply stochastic external perturba-

tions to the ankle while measuring its position and torque.

The ankle impedance in the external-internal DOF was

estimated using a stochastic system identification. The

resulting estimated impedance was used as a target for the

ANN training to reconstruct the impedance values without

requiring the position or the torque data of the ankle. The

estimation of the ankle impedance based on EMG reading

was within 15% relative error (±5 Nm/rad) when com-

pared to the stochastic impedance estimation for nine out of

ten subjects. These results showed a promising research

direction for use of neural networks.

In future work, the use of human ankle position data and

the surface EMG signals will be studied to investigate

potential improvements for predicting the ankle impedance

during activities such as standing and walking. These

estimated ankle impedances will be used to design and

control future variable ankle–foot prostheses for transtibial

amputees.

Acknowledgements This material is based upon work supported by

the National Science Foundation under CAREER Grant no. 1350154.

Appendix: Subjects data

The biometric data of the ten participants in the experi-

ments are given in Table 1.
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