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Abstract
This paper proposes twomethods for causal additivemodelswith unobserved variables
(CAM-UV). CAM-UV assumes that the causal functions take the form of generalized
additive models and that latent confounders are present. First, we propose a method
that leverages prior knowledge for efficient causal discovery. Then, we propose an
extension of this method for inferring causality in time series data. The original CAM-
UValgorithm differs from other existing causal functionmodels in that it does not seek
the causal order between observed variables, but rather aims to identify the causes for
each observed variable. Therefore, the first proposedmethod in this paper utilizes prior
knowledge, such as understanding that certain variables cannot be causes of specific
others. Moreover, by incorporating the prior knowledge that causes precedes their
effects in time, we extend the first algorithm to the secondmethod for causal discovery
in time series data. We validate the first proposed method by using simulated data to
demonstrate that the accuracy of causal discovery increases as more prior knowledge
is accumulated. Additionally, we test the second proposed method by comparing it
with existing time series causal discovery methods, using both simulated data and
real-world data.
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1 Introduction

Causal discovery refers to a special class of statistical and machine learning methods
that infer causal relationships. These studies propose inferential methods deductively
derived from assumptions about the data generation process, and the methods enable
us to create causal graphs between observed variables without additional experi-
ments. The assumptions of existing causalmethods include acyclicity of causal graphs,
absence of latent confounders, and independence and identical distribution of exoge-
nous variables (Spirtes and Glymour 1991; Shimizu et al. 2006, 2011; Peters et al.
2014; Zheng et al. 2018). The methods have been applied to various types of data
including economic data (Lai and Bessler 2015), meteorological data (Ebert-Uphoff
and Deng 2012), fMRI data (Smith et al. 2011).

This paper proposes a causal discovery method for time-series data assuming
the presence of latent confounders. Most existing methods for time-series data
assume the absence of a latent confounder (Chu and Glymour 2008; Hyvärinen
et al. 2010). However, most data do not satisfy such assumption. A causal discovery
method for time-series data, latent Peter-Clark momentary conditional independence
(LPCMCI) (Gerhardus and Runge 2020), assumes the presence of latent confounders.
However, since LPCMCI is a constraint-based method, it cannot distinguish causal
structures that entail the same set of conditional independence between variables. This
paper aims to propose a causal functional model-based method for time-series data
assuming the presence of latent confounders. We extend the causal additive models
with unobserved variables (CAM-UV) algorithm (Maeda and Shimizu 2021a, b) to
propose time-series CAM-UV (TS-CAM-UV), a method for causal discovery from
time-series data with latent confounders. The original CAM-UV algorithm assumes
that: (1) data are independently and identically distributed, (2) causal functions take
the form of a generalized additive model of nonlinear functions, and (3) latent con-
founders are present. TS-CAM-UV, being a causal function model-based method, can
identify causal relationships, provided the data fulfills its assumptions.

Causal discovery methods for time-series data represent the state of variable Xi at
time point t as Xt

i treating the states of Xi at different points such as Xt
i , X

t−1
i , . . . , Xs

i
as separate variables. This allows for representing causal relationships between vari-
ables at different time points.

Time series causal discovery methods can be described as causal discovery meth-
ods that utilize the prior knowledge that effects do not precede their causes in time.
Therefore, before proposing theTS-CAM-UValgorithm, this paper proposes amethod
calledCAM-UVwithprior knowledge (CAM-UV-PK),which applies prior knowledge
to CAM-UV. TS-CAM-UV is proposed as a method that introduces the knowledge
that variables representing future states cannot be the cause of variables representing
past states. To the best of our knowledge, this is the first method for time series causal
discovery that adopts a causal function model approach assuming the presence of
latent confounders.

The contributions of this paper are as follows:

– This paper proposes amethod called the CAM-UV-PK algorithm, which can intro-
duce prior knowledge in the form of statements such as Xi cannot be a cause of
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X j . The performance of the CAM-UV-PK algorithm is verified using simulation
data.

– We propose a time-series causal discovery method called the TS-CAM-UV algo-
rithm, which applies the prior knowledge that variables representing future states
cannot be causes of variables representing past states. The performance of the TS-
CAM-UV algorithm is verified using both simulation data and real-world data.

The remainder of this paper comprises the following. Section2 reviews previous
studies on causal discovery methods for i.i.d. data and time-series data. Section3
introduces the models of the data generation processes of CAM-UV and TS-CAM-
UV, followed by Sect. 4 which shows the identifiability of those models. Section5
introduces the two proposed methods, the CAM-UV-PK algorithm and the TS-CAM-
UV algorithm. Section6 shows and discusses the results of the experiments of the
proposed methods. Section7 brings the paper to a conclusion.

2 Related studies

Causal discoverymethods often assume that the causal structures form directed acyclic
graphs (DAGs), that there is no latent confounders, and that data are independently
and identically distributed (Chickering 2002; Peters et al. 2014; Shimizu et al. 2006,
2011; Spirtes andGlymour 1991). The constrained-basedmethods including the Peter-
Clark (PC) algorithm (Spirtes and Glymour 1991) and the fast causal inference (FCI)
algorithm (Spirtes et al. 1999) infer causal relationships on the basis of conditional
independence in the joint distribution. FCI identifies the presence of latent confounders
whereas PC assumes the absence of unobserved common causes. PC and FCI cannot
distinguish between the two causal graphs that entail exactly the same sets of con-
ditional independence. Compared to constrained-based methods, causal functional
model-based methods can identify the entire causal models under proper assump-
tions. Linear non-Gaussian acyclic models (LiNGAM) (Shimizu et al. 2006, 2011)
assume that causal relationships are linear and the external effects are non-Gaussian.
Additive noise models (ANMs) and causal additive models (Peters et al. 2014) assume
the causal relationships are nonlinear. Both LiNGAM and ANMs assume the absence
of unobserved variables. Causal additive models with unobserved variables (CAM-
UV) (Maeda and Shimizu 2021a) are extended models of causal additive models
(CAMs) (Bühlmann et al. 2014) and assume that the causal functions take the form
of generalized additive models (GAMs) (Hastie and Tibshirani 1990) and that unob-
served variables are present.

Time-series causal discovery methods have been proposed as extensions of the
above methods. The time-series FCI (tsFCI) algorithm (Entner and Hoyer 2010) and a
structural vector autoregression FCI (SVAR-FCI) (Malinsky and Spirtes 2018) adapt
FCI algorithm and use time order and stationarity to infer causal relationships. VAR-
LiNGAM (Hyvärinen et al. 2010) is based on LiNGAM and assumes the linearity
of causal relationships, non-Gaussianity of external effects, and the absence of unob-
served common causes. Time series models with independent noise (TiMINo) (Peters
et al. 2013) adapts ANMs, and it assumes the absence of latent confounders. The Peter-
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Clark momentary conditional independence (PCMCI) algorithm (Runge et al. 2019)
is an adaptation of the conditional independence-based PC algorithm that addresses
strong autocorrelations in time series via the use of a momentary conditional inde-
pendence (MCI) test. Latent PCMCI (LPCMCI) (Gerhardus and Runge 2020) is an
extension of PCMCI to include unobserved variables. However, to the best of our
knowledge, no causal functional model-based method has been proposed for time-
series data under the assumption that causal relationships are nonlinear and latent
confounders are present.

3 Models

3.1 CAM-UV: causal additive models with unobserved variables

Causal additive noise models with unobserved variables (CAM-UV) (Maeda and
Shimizu 2021a, b) are defined as the equation below:

Vi =
∑

X j∈opa(Vi )

fi, j (X j ) +
∑

Uj∈upa(Vi )

fi, j (Uj ) + Ni with i = 1, . . . ,m, (1)

where V = {Vi } is the set of observed or unobserved variables, X = {Xi } the set of
observed variables, U = {Ui } is the set of unobserved variables, Ni is the external
effect on Vi , opa(Vi ) ⊂ X is the set of observed direct causes (observed parents) of
Vi , upa(Vi ) ⊂ U is the set of unobserved direct causes (unobserved parents) of Vi ,
and fi, j is a nonlinear function. External effects and unobserved variables both refer to
variables that are not included in the data being analyzedwhile observed variables refer
to variables that are included in the data. External effect, denoted as Ni , is a variable that
directly influences only Vi , while unobserved variables, denoted as {Ui }, are variables
that affect multiple observed variables. The indices of the observed variables {Xi } and
the unobserved variables {Ui } are the same as the indices of {Vi }. For example, in the
form of {X1, X2,U3,U4,U5, X6, . . . ,Um}, the indices of {Xi } and {Ui } are mutually
exclusive, and when combined, they constitute all natural number sequences less than
or equal to m. If we rewrite all the observed variables {Xi } and unobserved variables
{Ui } as {Vi }, Eq. 1 becomes the following:

Vi =
∑

Vj∈pa(Vi )

fi, j (Vj ) + Ni with i = 1, . . . ,m, (2)

where pa(Vi ) = opa(Vi )∪ upa(Vi ) is the set of the direct causes of Vi . Additionally,
Assumption 1 is imposed on CAM-UV.

Assumption 1 All the causal functions and the external effects in CAM-UV satisfy
the following condition: If variables Vi and Vj have terms involving functions of the
same external effect Nk , then Vi and Vj are mutually dependent (i.e., (Nk ⊥/⊥ Vi ) ∧
(Nk ⊥/⊥ Vj ) ⇒ (Vi ⊥/⊥ Vj )).
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Assumption 1 is satisfied in most cases. To begin with, when Vi and Vj are inde-
pendent, Eq. 3 needs to be satisfied.

cov
(
Vi , Vj

) =
∑

Vk∈pa(Vi ),Vl∈pa(Vj )

cov
(
fi,k(Vk), f j,l(Vl)

) = 0 (3)

Since different external variables are independent of each other, this equation always
holds if Vi and Vj do not have terms with the same external variables. However, if
Vi and Vj have terms with the same external variables, in order for this equation to
be satisfied, all functions f containing that external variables inside must meet the
conditions that make Eq.3 equal to 0. Such conditions are only met in quite special
cases.

3.2 TS-CAM-UV: time series causal additive models with unobserved variables

Time-series causal additive noise models with unobserved variables (TS-CAM-UV)
are stationary discrete-time structural causal models that can be described as below:

V t
i =

∑

Xs
j∈opa(V t

i )

fi,t, j,s(X
s
j ) +

∑

Us
j ∈upa(V t

i )

fi,t, j,s(U
s
j ) + Nt

i with i = 1, . . . ,m,

(4)

where t and s are time indices, m is a natural number, V = {V t
i } is the set of observed

or unobserved variables, X = {Xt
i } is the set of observed variables, U = {Ut

i } is
the set of unobserved variables, fi,t, j,s is a nonlinear function, the noise variables Nt

i
are jointly independent, opa(V t

i ) ⊂ X is the set of observed direct causes of V t
i , and

upa(V t
i ) ⊂ U is the set of unobserved direct causes of V t

i . Similar to Eq.1, the indices
i of {Xt

i } and {Y t
i } do not overlap with each other, and when the indices of both are

combined, they form a sequence of natural numbers less than or equal to m.
The stationarity of time-series causal relationships is assumed as the following: The

causal relationship of the variable pair (V t−ε
i , V t

j ) is the same as that of all the time

shifted pairs (V t ′−ε
i , V t ′

j ). The causal effect of V s
j on V t

i is called a lagged effect if
s < t holds, and is called a contemporaneous effect if t = s holds. It is also assumed
that there is a natural number r as the maximum time lag such that the longest time lag
of the direct causal effects does not exceed r . While it is true that the cause precedes
the effect in time, if the time slice of the data analyzed are not sufficiently short, the
cause and effect may appear to occur simultaneously. This type of causal effect, where
the time difference between the cause and effect is shorter than the time slice of data,
is referred to as a contemporaneous effect.
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Fig. 1 Definitions of an unobserved causal path (UCP) and an unobserved backdoor path (UBP)

4 Identifiability

4.1 CAM-UV

The identifiability of CAM-UV is discussed inMaeda and Shimizu (2021a, b), and this
section briefly presents it. When the causal relationship is linear, an observed variable
X j being an indirect cause of an observed variable Xi , even if there is an unobserved
variable Uk in the causal path such that the causal relationship is X j → Uk → Xi ,
the residual when regressing Xi on X j becomes independent of X j . However, in
the case of a non-linear causal relationship, the residual when regressing Xi on X j

cannot be independent of X j . This is referred to as cascade additive noise models
(CANMs) (Cai et al. 2019). Therefore, in the case of non-linear causal relationships,
compared to linear ones, there are more instances where causal relationships cannot be
identified using only regression and independence tests. Before discussing the cases
where causal relationships cannot be identified in CAM-UV, we define unobserved
causal paths (UCPs) and unobserved backdoor paths (UBPs) which are illustrated in
Fig. 1 and used in the lemmas in this section.

Definition 1 A directed path from an observed variable to another is called a causal
path (CP). A CP from X j to Xi is called an unobserved causal path (UCP) if it ends
with the directed edge connecting Xi and its unobserved direct cause (i.e., X j →
· · · → Um → Xi where Um is an unobserved direct cause of Xi ).

Definition 2 Anundirected path between Xi and X j is called a backdoor path (BP) if it
consists of the two directed paths from a common ancestor of Xi and X j to Xi and X j

(i.e., Xi ← · · · ← Vk → · · · → X j ,whereVk is the commonancestor).ABPbetween
Xi and X j is called an unobserved backdoor path (UBP) if it starts with the edge
connecting Xi and its unobserved direct cause, and ends with the edge connecting X j

and its unobserved direct cause (i.e., Xi ← Um ← · · · ← Vk → · · · → Un → X j ,
where Vk is the common ancestor andUm andUn are the unobserved direct causes of
Xi and X j , respectively). The undirected path Xi ← Uk → X j is also a UBP, as Vk ,
Um , and Un can be the same variable.

The identifiability of CAM-UV is based on Lemmas 1–3 shown below. They show
that it is possible to identify the direct causal relationship between two variables if
they do not have a UCP or a UBP, otherwise it is impossible to identify the direct
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direct causal relationship but possible to identify the presence of a UCP or a UBP.
This is due to the fact that when the causal relationship is non-linear, if the parent of
an observed variable Xi is an unobserved variable Uj , the ancestral variables of Uj

cannot be removed from Xi by regression. Lemma 1 is about the condition of variable
pair (Xi , X j ) having a UCP or a UBP. Lemma 2 is about the condition of variable pair
(Xi , X j ) not having a UBP, a UCP, or a direct causal relationship. Lemma 3 is about
the condition that X j is a direct cause of Xi , and they do not have a UCP or a UBP.
Assumption 2, which is used in Lemmas 1–3, is presented first, followed by Lemmas
1–3. Please refer to Maeda and Shimizu (2021b) for the proofs of the lemmas.

Assumption 2 Let M1 and M2 denote sets satisfying M1 ⊆ X and M2 ⊆ X where
X is the set of all the observed variables in CAM-UV defined in Sect. 2. We assume
that functions Gi take the forms of generalized additive models (GAMs) (Hastie and
Tibshirani 1990) such that Gi (M1) = ∑

Xm∈M1
gi,m(Xm) where each gi,m(Xm) is

a nonlinear function of Xm . In addition, we assume that functions Gi satisfy the
following condition: When both (Xi − Gi (M1)) and (X j − G j (M2)) have terms
involving functions of the same external effect Nk , then (Xi − Gi (M1)) and (X j −
G j (M2)) aremutually dependent (i.e., (Nk ⊥/⊥ Xi −Gi (M1))∧(Nk ⊥/⊥ X j −G j (M2)) ⇒
((Xi − Gi (M1))⊥/⊥(X j − G j (M2)))).

Lemma 1 Assume the data generation process of the variables is CAM-UV as defined
in Sect.3.1. If and only if Eq.5 is satisfied, there is a UCP or UBP between Xi and X j

where G1 and G2 denote regression functions satisfying Assumption 2.

∀G1,G2, M1 ⊆ (X \ {Xi }), M2 ⊆ (X \ {X j }),[
(Xi − G1(M1))⊥/⊥ (

X j − G2(M2)
)] (5)

Equation5 indicates that the residual of Xi regressed on any subset of X \{Xi } and the
residual of X j regressed on any subset of X \ {X j } cannot be mutually independent.

Lemma 2 Assume the data generation process of the variables is CAM-UV as defined
in Sect.3.1. If and only if Eq.6 is satisfied, there is no direct causal relationship between
Xi and X j , and there is no UCP or UBP between Xi and X j where G1 and G2 denote
regression functions satisfying Assumption 2.

∃G1,G2, M ⊆ (X \ {Xi , X j }), N ⊆ (X \ {Xi , X j }),
[((Xi − G1(M))⊥⊥ (

X j − G2(N )
)
)] (6)

Equation6 indicates that there are regression functions such that the residuals of Xi

and X j regressed on subsets of X \ {Xi , X j } are mutually independent.

Lemma 3 Assume the data generation process of the variables is CAM-UV as defined
in Sect.3.1. If and only if Eqs.7 and 8 are satisfied, X j is a direct cause of Xi , and
there is no UCP or UBP between Xi and X j where G1 and G2 denote regression
functions satisfying Assumption 2.
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∀G1,G2, M ⊆ (X \ {Xi , X j }), N ⊆ (X \ {X j }),[
(Xi − G1(M))⊥/⊥ (

X j − G2(N )
)] (7)

∃G1,G2, M ⊆ (X \ {Xi }), N ⊆ (X \ {Xi , X j }),[
(Xi − G1(M))⊥⊥ (

X j − G2(N )
)] (8)

Equation7 indicates that the residual of Xi regressed on any subset of X \{Xi , X j } and
the residual of X j regressed on any subset of X \{X j } cannot bemutually independent.
Equation8 indicates that there are regression functions such that the residual of Xi

regressed on a subset of X \ {X j } and the residual of X j regressed on a subset of
X \ {Xi , X j } are mutually independent.

4.2 TS-CAM-UV

The identifiability of causality in TS-CAM-UV is the same as in CAM-UV. Lemmas
4–6 on identifiability in TS-CAM-UV correspond to Lemmas 1–3 on identifiability in
CAM-UV.

Lemma 4 Assume the data generation process of the variables is TS-CAM-UV as
defined in Sect.3.2. If and only if Eq.9 is satisfied, there is a UCP or UBP between Xt

i
and Xs

j where G1 and G2 denote regression functions satisfying Assumption 2.

∀G1,G2, M ⊆ (X \ {Xt
i }), N ⊆ (X \ {Xs

j }),[(
Xt
i − G1(M)

)⊥/⊥
(
Xs

j − G2(N )
)] (9)

Proof The relationships between Xt
i and Xs

j in TS-CAM-UV are the same as those
of Xi and X j in CAM-UV defined in Sect. 3.1. Therefore, Lemma 4 holds because of
Lemma 1. ��

Lemma 5 Assume the data generation process of the variables is TS-CAM-UV as
defined in Sect.3.2. If andonly if Eq.10 is satisfied, there is no direct causal relationship
between Xt

i and Xs
j , and there is no UCP or UBP between Xt

i and Xs
j where G1 and

G2 denote regression functions satisfying Assumption 2.

∃G1,G2, M ⊆ (X \ {Xt
i , X

s
j }), N ⊆ (X \ {Xt

i , X
s
j }),

[((Xt
i − G1(M)

)⊥⊥
(
Xs

j − G2(N )
)
)] (10)

Proof The relationships between Xt
i and Xs

j in TS-CAM-UV are the same as those
of Xi and X j in CAM-UV defined in Sect. 3.1. Therefore, Lemma 5 holds because of
Lemma 2. ��

Lemma 6 Assume the data generation process of the variables is TS-CAM-UV as
defined in Sect.3.2. If and only if Eqs.11 and 12 are satisfied, Xs

j is a direct cause
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Fig. 2 a True causal graph. b Causal graph generated by the CAM-UV algorithm

of Xt
i , and there is no UCP or UBP between Xt

i and Xs
j where G1 and G2 denote

regression functions satisfying Assumption 2.

∀G1,G2, M ⊆ (X \ {Xt
i , X

s
j }), N ⊆ (X \ {Xt

j }),[(
Xt
i − G1(M)

)⊥/⊥
(
Xs

j − G2(N )
)] (11)

∃G1,G2, M ⊆ (X \ {Xt
i }), N ⊆ (X \ {Xt

i , X
s
j }),[(

Xt
i − G1(M)

)⊥⊥
(
Xs

j − G2(N )
)] (12)

Proof The relationships between Xt
i and Xs

j in TS-CAM-UV are the same as those
of Xi and X j in CAM-UV defined in Sect. 3.1. Therefore, Lemma 6 holds because of
Lemma 3. ��

5 Methods

5.1 CAM-UV-PK: causal additive models with unobserved variables using prior
knowledge

This section proposes a method called CAM-UV using prior knowledge (CAM-UV-
PK). This method is for discovering causal additive models with unobserved models
defined in Sect. 3.1. In addition to the arguments of the CAM-UV algorithm, the CAM-
UV-PK algorithm requires an argument T that is a list of ordered variable pairs. If an
ordered variable pair (Xi , X j ) is included in T, it means that it is assumed that Xi

cannot be a direct or indirect cause of X j .
The CAM-UV algorithm and CAM-UV-PK algorithm output causal graphs with

directed edges and undirected dashed edges. Directed edges indicate variable pairs
having direct causal relationships, and undirected dashed edges indicate variable pairs
having UCPs or UBPs. For example, Fig. 2a shows a true causal graph, and Fig. 2b
shows the causal graph generated by the CAM-UV algorithm. X2 and X3 have a UBP
(X2 ← U1 → X3), so they are connected with an undirected dashed path in Fig. 2b.
X4 and X9 have a UCP (X4 → U7 → X9), so they are also connected with an
undirected dashed path in Fig. 2b.

The CAM-UV-PK algorithm incorporates restriction using prior knowledge T into
the process of causal inference in the CAM-UV algorithm. The CAM-UV algorithm
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Algorithm 1: Determine the directed edges
Input: X: Samples of p observed variables {X1, . . . , X p}, T: A list of ordered pairs of

variables where it is assumed that the first variable cannot be the direct or indirect cause
of the second variable, d: maximal number of variables to examine causality for each
step, significance level for independence test α.

Output: the sets of the parents {M1, . . . , Mp}.
1 function getDirectedEdges(X , d, α)
2 # PHASE 1: Extracting the candidates of the parents of each variable.
3 for i = 1 to p do
4 Initialize Mi ← ∅.
5 Initialize t ← 2.
6 while t ≤ d do
7 Initialize noChange ← True.
8 foreach K ∈ {K |K ⊆ X , |K | = t} do
9 # Finding the most endogenous variable Xb in K

10 foreach K ∈ {K |K ⊆ X , |K | = t} do
11 max Independence ← 0
12 max IndependenceVariable ← NULL
13 foreach Xi ∈ K do
14 # Checking whether there exists variable X j ∈ K \ {Xi } that cannot be a

cause of Xi according to prior knowledge T.
15 if ∃X j ∈ K \ {Xi }, [(X j , Xi ) ∈ T] then
16 continue

17 indepe ←∧p-HSIC(Xi −G1(Mi ∪K \{Xi }), {X j −G2(Mj )|X j ∈ K \{Xi }})
18 if max Independence < indepe then
19 max Independence ← indepe
20 max IndependenceVariable ← Xi

21 Xb ← max IndependenceVariable

22 # Computing the independence between the residuals
23 e ←∧p-HSIC(Xb − G1(Mb ∪ K \ {Xb}), {X j − G2(Mj )|X j ∈ K \ {Xb}})
24 h ← max

x j∈K\{Xb}
∧

p-HSIC(Xb − G1(Mb), X j − G2(Mj ))

25 # Checking whether Xb is really a sink of K
26 if (α < e) ∧ (α > h) then
27 # When Xb is a sink of K , add each variable in K \ {Xb} to Mb
28 Mb ← Mb ∪ (K \ {Xb})
29 noChange ← False

30 # If each Mi remains unchanged, increment t by one. If not, substitute 2 for t .
31 if noChange = True then
32 t ← t + 1
33 else
34 t ← 2

35 # PHASE 2: Determining the parents of each variable.
36 for i = 1 to p do
37 foreach X j ∈ Mi do
38 # Checking whether X j is parent of Xi

39 if α <
∧

p-HSIC(Xi − G1(Mi \ {X j }), X j − G2(Mj )) then
40 # When X j is not a parent, remove it from Mi
41 Mi ← Mi \ {X j }

42 return {M1, . . . , Mp}
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has two-step algorithm (Maeda and Shimizu 2021a, b). The first step determines the
directed edges, and the second one determines the undirected dashed edges. There
is no difference in the second step between the CAM-UV-PK algorithm and the
CAM-UV algorithm. The first step of the CAM-UV-PK algorithm is listed in Algo-
rithm 1. Lines 14–16 in Algorithm 1 are added to the CAM-UV algorithm. This
part of the algorithm refers to the prior knowledge T to avoid considering unnec-
essary causal candidates. The method extracts the candidates of the direct causes
(parents) of each variable (lines 2–34) and determines the direct causes of each
variables (lines 35–41). The method identifies the most endogenous variable Xb

in each K ∈ {K |K ⊆ X , |K | = t}. When Xi = Xb is satisfied, Xi maximizes
p-HSIC
∧

(Xi − G1(Mi ∪ K\{Xi }), {X j − G2(Mj )|X j ∈ K\{Xi }}). G1 and G2 are
determined by the GAM regression method proposed in Wood (2004). p-HSIC

∧

(A, B)

is the the p-value of Hilbert-Schmidt Independence Criteria (HSIC) (Gretton et al.
2008). HSIC is a metric that captures the nonlinear dependencies between variables,
and higher values of p-HSIC

∧

indicate a stronger level of independence between the
variables. In lines 14–16 which are newly added in CAM-UV-PK, the method checks
whether there exists X j ∈ K\{Xi } that cannot be a direct or indirect cause of Xi

according to the prior knowledge T. If (X j , Xi ) ∈ T is satisfied, the method stops
checking whether Xi is endogenous to K \ {Xi }. Therefore, this check prevents incor-
rect inference of causal relationships.

5.2 TS-CAM-UV: time series causal additive models with unobserved variables

This section proposes a method called the time-series CAM-UV (TS-CAM-UV) algo-
rithm. The TS-CAM-UV algorithm uses as prior knowledge the assumption, called
time priority, that effect does not precede its cause in time. The TS-CAM-UV algo-
rithm uses the CAM-UV-PK algorithm, and the prior knowledge of time priority is
used for the argument of the CAM-UV-PK, T.

The TS-CAM-UV algorithm first creates data with q × (r + 1) variables where
q is the number of the variables of original data, and r is the maximal consid-
ered time lag given as an argument. Let Xt = {Xt

1, . . . , X
t
q} denote the variables

in original data. The TS-CAM-UV algorithm creates data with variables Xnew =
{Xt

1, . . . , X
t
q , X

t−1
1 , . . . , Xt−1

q , . . . , Xt−r
1 , . . . , Xt−r

q }. Equations13 and 14 represent
the original data and the new data in matrix form, respectively. The matrix of the
original data is named Doriginal, and the matrix of the new data is named Dnew. Each
row of these matrices corresponds to an observation, and each column corresponds to
a variable. If the number of observations in the original data is n, the number of rows
in Dnew cannot exceed n − r . This is because each row stores the values of the same
variable from time point t to time point t − r . The TS-CAM-UV algorithm creates
data with n − r rows.
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Doriginal =
⎡

⎢⎣
x11 · · · x1q
...

...

xn1 · · · xnq

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
n rows (13)

Dnew =
⎡

⎢⎣
xr+1
1 · · · xr+1

q · · · x11 · · · x1q
...

...
...

...

xn1 · · · xnq · · · xn−r
1 · · · xn−r

q

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
n − r rows (14)

The TS-CAM-UV algorithm also creates a list of ordered variables K =
{(Xt

i , X
t ′
j )|t > t ′, 1 ≤ i ≤ q, 1 ≤ j ≤ q, }.

The TS-CAM-UV algorithm uses Xnew and K for the arguments of CAM-UV-PK
X and T, respectively. Then, CAM-UV-PK outputs a causal graph of the q variables
with r time lag.

6 Experiments

Weconducted experiments to examine the performance of theCAM-UV-PK algorithm
and the TS-CAM-UValgorithm. TheCAM-UV-PK algorithm is comparedwith that of
CAM-UV. The TS-CAM-UV algorithm is comparedwithVarLiNGAMand LPCMCI.
Here, we primarily compare the accuracy of directed edges. This is because, in other
methods, there are no approaches that consider the effects of unobserved intermediate
variables (unobserved variables on the causal paths between observed variables), and
also because CAM-UV aims to ensure that the inference of directed edges is not biased
due to latent confounders.

6.1 CAM-UV-PK: causal additive models with unobserved variables using prior
knowledge

We examined the performance of CAM-UV-PK compared to CAM-UV using simu-
lated data. We compared and evaluated the performance of CAM-UV-PK with prior
knowledge ranging from 0 to 4. The CAM-UV algorithm is the same as the CAM-UV-
PK algorithm with no input of prior knowledge. We performed 100 experiments using
artificial data with each sample size n ∈ {100, 200, . . . , 900, 1000} to compare our
method to existing methods. In each experiment, the samples are created as follows:

– The number of observed variables is 10.
– The number of the observed variable pairs having unobserved common causes is
4.

– The number of observed variable pairs having unobserved causal intermediate
variables is 2.

– The number of the observed variable pairs having direct causal effects is 10.
– Variable pairs having unobserved common causes, unobserved intermediate causal
variables, or direct causal relationships were randomly selected under the restric-
tion that the set of variable pairs with unobserved common causes, the set of
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Fig. 3 The performance of the CAM-UV-PK and CAM-UV algorithms: the CAM-UV algorithm is equiv-
alent to the CAM-UV-PK algorithm with no prior knowledge

variable pairs with unobserved intermediate causal variables, and the set of vari-
able pairs with direct causal relationships were mutually disjoint.

– The causal effect of Vj on Vi is determined as follows:

(
sin

(
a1

(
Vj + b1

)))3
c1 +

(
1

1 + exp(−a2(Vj + b2))
− 0.5

)
c2 (15)

where a1, a2, b1, b2, c1, and c1 are constants that take random value for each
(i, j). Constants a1 and a2 are taken from U (9, 11), b1 and b2 are taken from
U (−0.1, 0.1), and c1 and c2 are taken from U (3, 5). This function is also used
in experiments to validate the TS-CAM-UV algorithm in the next section so that
causal effects do not converge or diverge over time.

The arguments of TS-CAM-UV, α (significance level for independence test) and d
(maximal number of variables to examine causality for each step) are set to 0.01 and
2, respectively.

We compared the performance of the identification of direct causal relationships.
We used precision, recall, and F-measure as the evaluation measures. True positive
(TP) is the number of true directed edges that a method correctly infers in terms
of their positions and directions. Precision represents the TP divided by the number
of estimations, and recall represents the TP divided by the number of all the true
directed edges. Furthermore, F-measure is defined as F-measure = 2 · precision ·
recall/(precision + recall). In each experiment, out of the ten variable pairs with
direct causal relationships, four were excluded from the evaluation. These four causal
relationships were used as prior knowledge in CAM-UV-PK.

Figure 3 shows the results of the identification of direct causal relationships. The
figure plots the average of precision, recall, and F-measure. It can be seen that precision
and F-measure increase with the number of prior knowledge. The CAM-UV algorithm
is the CAM-UV-PK algorithm without prior knowledge, and this has the lowest pre-
cision and F-measure. The number of prior knowledge does not significantly affect
recall. When the sample size increases from 900 to 1000, all metric values decrease.
This may be attributed to reaching the upper limit of performance around this sample
size range.

The above experimental results of the CAM-UV-PK algorithm confirm that the
number of prior knowledge improves the precision and F-measure of the identification
of direct causal relationships.
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6.2 TS-CAM-UV: time series causal additive models with unobserved variables

We examined the performance of TS-CAM-UV compared to LPCMCI and Var-
LiNGAM using simulated data and real-world data. For LPCMCI, two methods of
conditional independence test were used for the comparison: Partial correlation test
(ParCorr) and Gaussian process regression and a distance correlation test on the resid-
uals (GPDC). ParCorr assumes linear additive noise models, and GPDC assumes
nonlinear additive noise models.

6.2.1 Simulated data

We performed 100 experiments using artificial data with each sample size n ∈
{100, 200, . . . , 1900, 2000} to compare ourmethod to existingmethods. In each exper-
iment, the samples are created as follows:

– The number of observed variables and the maximum time lag are 3 and 2, respec-
tively. Therefore, the number of the variables representing different time lags of
all the observed variables is 9 (e.g. |{Xt

i }| = 9).
– The number of observed variable pairs having unobserved common causes is 2.
– The number of observed variable pairs having unobserved intermediate variables
is 2.

– The number of observed variable pairs having direct causal relationships is 5.
– Variable pairs having unobserved common causes, unobserved intermediate causal
variables, or direct causal relationships were randomly selected under the restric-
tion that the set of variable pairs with unobserved common causes, the set of
variable pairs with unobserved intermediate causal variables, and the set of vari-
able pairs with direct causal relationships were mutually disjoint.

– The causal effect of V s
j on V t

i is determined as below:

(
sin

(
a1

(
V s
j + b1

)))3
c1 +

(
1

1 + exp(−a2(V s
j + b2))

− 0.5

)
c2 (16)

where a1, a2, b1, b2, c1, and c1 are constants that take random value for each
(i, j, t, t ′). Constants a1 and a2 are taken fromU (9, 11), b1 and b2 are taken from
U (−0.1, 0.1), and c1 and c2 are taken from U (3, 5).

In this experiment, we compared the performance of the identification of direct
causal relationships. That is, the edges with arrows in causal graphs (→).

The arguments of the TS-CAM-UV algorithm, VarLiNGAM, and LPCMCI were
set as follows:

– TS-CAM-UV

◦ Significance level for independence test: 0.01.
◦ Maximal number of causal variables to examine causality for each step: 2.
◦ Maximal number of time lags: 2.

– VarLiNGAM
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Fig. 4 The performance of the TS-CAM-UV compared to LPCMCI and VarLiNGAM

◦ Maximal number of time lags: 2.
◦ Threshold value for the strength of the causal effects (i.e. the absolute values
of coefficients): 0.01, 0.05, 0.1, and 0.5.

– LPCMCI

◦ Significance level for independence test: 0.01.
◦ Maximal number of time lags: 2.
◦ Methods of conditional independence test: GPDC and ParCorr.

The results are shown in Fig. 4. The figure plots the average of precision, recall, and
F-measure. The values in the brackets for VarLiNGAM indicate threshold values for
the strength of causal effects. TS-CAM-UV showed the highest precision for n ≥ 200,
the highest recall for n ≥ 1200, and the highest F-measure for n ≥ 600 compared to
other methods.

6.2.2 Real world data

We also conducted an experiment using official foreign exchange quotation data for
the Japanese yen at Mizuho Bank.1 The data consist of daily quotes for USD, GBP,
EUR, CHF, and CAD from the 26th October 2021 to the 8th November 2023. The
total sample size is 500.

We set the maximal lag length of every method to 1. The threshold value for causal
effects for VarLiNGAMwas set to 0.1 which gave the best result in experiments using
simulated data shown in Sect. 6.2.1. All other arguments were kept the same as in
Sect. 6.2.1.

Figure 5 shows the results: (a) the causal graph only with directed edges generated
fromTS-CAM-UV, (b) the causal graphwith edges other than directed edges generated
from TS-CAM-UV, (c) the causal graph only with directed edges generated from
LPCMCI using ParCorr, (d) the causal graph with edges other than directed edges
generated from LPCMCI using ParCorr, (e) the causal graph only with directed edges
generated from LPCMCI using GPDC, (f) the causal graph with edges other than
directed edges generated from LPCMCI using GPDC, and (g) the causal graph only
with directed edges generated from VarLiNGAM. The dashed lines in Fig. 5b show
the variable pairs estimated to have UBPs or UCPs. The bidirected edges in Fig. 5d,

1 Mizuho Bank: https://www.mizuhobank.co.jp/market/historical.html (in Japanese).
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Fig. 5 Causal graphs generated using foreign exchange data

g indicate the presence of unobserved common causes. The circles in Fig. 5f indicate
that they can be tails or arrows.

We do not compare the performance of the methods based on the results because
there is no ground truth for the relationships among the variables. Patton (2006) demon-
strated that exchange rates between currencies have an asymmetric structure, which
can change given a certain trigger. The structure may not satisfy the assumption of
time stationarity if such a trigger occurs within the period of the data. In this study,
we conduct experiments under the assumption that time stationarity holds. However,
if an extended method that incorporates non-stationarity models can be developed,
further experiments will be necessary when that extension is realized in the future.
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We compare TS-CAM-UV with other methods to see the types and number of vari-
able pairs that are connected. Figure5c shows that LPCMCI (ParCorr) draws an edge
from the variable representing the state at time t − 1 of each currency to the variable
representing the state at time t of the currency (e.g. Xt−1

i → Xt
i ), but does not draw

edges between variables of different currencies. Compared to this, Fig. 5a shows that
TS-CAM-UV connects the variables of different currencies with directed edges. This
may be due to the fact that ParCorr assumes linear causal relationships. The causal
relationship between the previous and current values of the same currency may be
linear, while other causal relationships may be nonlinear. Figure5e shows LPCMCI
(GPDC) connects the variables of different currencieswith directed edges. The number
of variable pairs connected by LPCMCI (GPDC) is less than the number of variable
pairs connected by TS-CAM-UV. This may be due to the fact that LPCMCI is a
constraint-based method and cannot distinguish between all graphs with the same set
of conditional independence between observed variables. Constraint-based methods
infer causal relationships from conditional independence. By their very nature, even if
all the tests conducted by these methods make accurate inferences, there may still be
pairs of variables with causal relationships that cannot be determined, depending on
the true underlying causal graph. Figure5g shows that VarLiNGAM connects more
variable pairs with directed edges than TS-CAM-UV. This may be due to the fact that
VarLiNGAM assumes the absence of latent confounders.

To summarize, the TS-CAM-UV algorithm is based on a causal functional model,
which enables it to identify the direction of causality in variable pairs that LPCMCI
could not orient. Furthermore, by assuming the presence of unobserved variables, it
can avoid incorrect orientations, similar to what occurs with VarLiNGAM.

7 Conclusion

In this paper, we propose two methods as extensions of CAM-UV: CAM-UV-PK
and TS-CAM-UV. The CAM-UV-PK algorithm employs a method that introduces
prior knowledge in the form that a certain variable is not a cause of a certain other
variable. This is based on the CAM-UV algorithm, which infers causal variables for
each observed variable. TS-CAM-UV uses time priority as prior knowledge for CAM-
UV-PK, indicating that variables occurring later in time cannot be the cause of earlier
variables. To the best of our knowledge, this is the first method for time series causal
discovery that adopts a causal function model approach assuming the presence of
latent confounders. If the data being analyzed satisfy the assumption that the causal
function takes the form of a generalized additive model, then this proposed method
can accurately infers causal relationships even in the presence of latent confounders.

Future research will extend our approach tomodels where the causal graph contains
cycles. If the time for the causal effect from the cause variable to the effect variable is
shorter than the time slice of the data being analyzed, this causal effect becomes a con-
temporaneous effect.When there is a causal relationship such as Xt−2

i → Xt−1
j → Xt

i ,
and the time slice of the data is longer than this causal effect, it results in a contempora-
neous effect with cycles. Therefore, future research explore causal discovery methods
that allow for cycles in contemporaneous effects. As a reviewer pointed out, TS-
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CAM-UV may also be able to be extended to handle time series data from multiple
subjects, i.e., longitudinal data. However, distinguishing between time-varying and
time-invariant hidden confounders would generally be difficult.
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