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Abstract
Based on a didactic historical review of the distributions using the Bessel function, 
some new extensions with unification are shown. Their probability density functions 
(pdf’s) are given by several integral representations of the Bessel function, whose 
distributions are called the basic Bessel (BB) ones, including the known Halphen 
type A. Power transformations of the BB (PBB) distributions are provided with their 
moments. The differential equations for the PBB distributions are shown and used to 
have their modes. A unified expression for unimodal extended distributions is also 
given with the differential equation.

Keywords Inverse Gaussian distribution · Basic Bessel distribution · Incomplete 
Bessel function · Halphen distribution type A · Differential equation

1 Introduction

This paper deals with distributions including the factor exp(−au − bu−1)g(u) 
(a > 0, b > 0) in the probability density function (pdf) denoted by fU(u) for a posi-
tive random variable U, where u can be a monotonic function of u. The factor g(u) 
typically takes a power of u, but not restricted to this as shown later. The normal-
izing constant generally includes a Bessel function, which will be didactically men-
tioned later. The history associated with this distribution can be traced back to an 
observation of pollen found by Robert Brown in 1828, which is currently known 
as a Brownian motion. This issue has been investigated by A. Einstein in 1905 and 
M. C. K. Tweedie in his 1941 thesis (see Tweedie 1945 for an essential result; and 
details in Tweedie 1957a, b). The distribution associated with Brownian motion, 
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a special case of the above pdf, was called the inverse Gaussian (IG) distribution 
by Tweedie in 1956 (for the history of the IG distribution, see Chhikara and Folks 
1989, Sect. 1.2; Seshadri 1999, Sect. 1.0). The IG distribution has been used in vari-
ous fields not only in the natural and physical sciences but also in the social and 
behavioral sciences, e.g., cardiology, hydrology, demography, linguistics, employ-
ment service, labor disputes and finance typically in lifetime researches in a broad 
sense as noted by Chhikara and Folks (1989, Sect. 1.4 and Chap. 10), and additional 
fields as ecology, entomology, health sciences, traffic noise intensity, management 
sciences, actuarial sciences, histomorphometry, electrical networks, meteorology, 
mental health, physiology, remote sensing, market research, slug lengths in pipelines 
and plutonium estimation as shown by Seshadri (1999, page. v and Part II) with real 
life examples. Note that in the IG distribution, the Bessel function does not seem to 
appear though it is implicitly used as will be explained later.

Use of the (modified) Bessel function in statistics dates back to Fisher (1928, p. 
663) for the multiple correlation coefficient followed by Pearson et al. (1929, pp. 165, 
187; for citing Fisher’s work see p. 193) and, Wishart and Bartlett (1932, Eq.  (12)) 
for the product distribution of two correlated normal variables. Note that the product 
distribution is a special case of the McKay Bessel distribution as noted by Wishart and 
Bartlett (1932, p. 459) as well as McKay (1932, p. 43) (for the product distribution, 
see Ogasawara 2023b). Apart from these developments using the Bessel functions in 
statistics, or in Brownian motion, explicit representations of the pdf fU(u) were inde-
pendently provided by Halphen (1941), a French mathematician as well as a hydrolo-
gist, which are currently summarized as the Halphen type A (HA) distribution, whose 
normalizing constant includes a Bessel function as noted by Halphen (1941, p. 635).

Halphen’s harmonic distribution or its generalized HA distribution has been 
mostly unnoted in the academic community other than in the French-speaking sta-
tistical hydrologists until the Halphen family of distributions including the HA was 
introduced as late as in the 1980’s and later (see Dvorák et  al. 1988; Barndorff-
Nielsen et al. 1992; Sect. 2; Perreault et al. 1994; Seshadri 1997, 1999, Part II, Sect. 
F; Perreault et al. 1999a, b). Recent textbooks by statistical hydrologists on the Hal-
phen family of distributions with extensions are, e.g., El Adlouni and Bobée (2017), 
and Singh and Zhang (2022).

On the other hand, the IG distribution, whose pdf (see, e.g., Chhikara and Folks 
1989, Eq. (2.1)) denoted by f (IG)

U
(u|�, �) (u > 0;𝜇 > 0, 𝜆 > 0)  is easily found to be a 

special case of fU(u):
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Without loss of generality, employ the reparametrization z = 𝜆∕𝜇 (z > 0) and con-
sider that u is given after change of variable as u∗ = u∕� with �−1 being the Jaco-
bian, where � is the scale parameter and u∗ corresponds to the unit scale variable U∗ . 
Then, it is seen that the normalizing constant is given by K−1∕2(z)

−1 , where 
Kv(z) (v ∈ R, z > 0) is the modified Bessel function of the second kind of order v 
(for K−1∕2(z) = K1∕2(z)T .C.:FRAXFORFUTURE = {�∕(2z)}1∕2e−z , see Watson 
1944/1995, Sect.  3.71, Eq.  (13), p. 80; Abramowitz and Stegun 1972, Formula 
10.2.17, p. 444; Zwillinger 2015, Formula 8.469-4, p. 934; DLMF 2023, http:// dlmf. 
nist. gov/ 10. 39. E2), which will be didactically introduced and repeatedly used later. 
For clarity, the pdf’s of the unit scale U∗ and scaled U , using parameter z, are shown:

where the Bessel function used in the pdf’s is scale-invariant in that as shown earlier 
and above, even when employing a scale parameter as u∗ = u∕� , the Bessel function 
is unchanged with the additional Jacobian �−1 being multiplied outside the Bessel. 
On the other hand, when using the most typical parametrization in the IG distribu-
tion with parameters � and � , the shape parameter �(= z�) is confounded with the 
scale parameter � . That is, a large value of the shape parameter � may simply be due 
to using a large scale parameter.

Tweedie (1957a, Eqs. (1a) to (1d)) provided three sets of reparametrization other 
than {�, � } for the IGs, where the second one is {�,�(= �∕� = z) } , which is equal 
to our expression. Chhikara and Folks (1989, p. 8) stated “Both � and � are of the 
same physical dimensions as the random variable…”. Seshadri (1999, p. 2) gave 
almost the same statement. It seems that inclusion of � has been a standard prac-
tice possibly due primarily to dealing with physical quantities whose scales are of 
relatively much importance. One of the advantages of using the Bessel function is 
its scale-invariance with its argument z as a scale-invariant shape parameter. This 
is a motivation of this didactic review concerning the distributions using the Bessel 
function applied to various fields, where the function may be unfamiliar to begin-
ning students/researchers in the statistical or data sciences.

The remainder of this paper is organized as follows. Section  2 introduces the 
modified Bessel function of the second kind and its integral representations includ-
ing known ones. Based on these expressions, five distributions are defined and called 
basic Bessel (BB) distributions. One of the BB’s is an extension of Halphen’s har-
monic distribution retaining harmonicity. Section 3 gives the power transformations 
of the BB (PBB) distributed variables, which are extensions of the BB distributions. 
In Sect. 4, moments and an associated moment generating function for the PBB’s 
are shown, where new incomplete Bessel functions are defined and used. Section 5 
provides the differential functions to derive the modes of the PBB’s, where quasi-
quadratic equations are also defined for iterative computation. In Sect. 6, some dis-
cussions including extensions with unification are given. Technical results are pro-
vided in the appendix.
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2  The basic Bessel distributions

The modified Bessel function of the second (or sometimes called “third”) kind 
of order v denoted by Kv(z) is given as a solution w∗(z) of the following modified 
Bessel equation:

where z and v are complex variable and parameter, respectively (Erdélyi 1953, 
Sect.  7.2.2, Eq.  (11); Abramowitz and Stegun 1972, Formula 9.6.1; DLMF 2023, 
https:// dlmf. nist. gov/ 10. 25. E1). A set of integral representations of Kv(z) is 

“the first integral expressions” Kv(z) =
(z∕2)v

2
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(Watson 1944/1995, Sect. 6.22, Eq.  (15); Agrest and Maksimov 1971, Eq.  (4.18); 
Zwillinger 2015, Formulas 3.471-12 and 8.432-6; DLMF 2023, https:// dlmf. nist. 
gov/ 10. 32. E10). In the above two representations, the first one has been exclusively 
used.

Alternative sets of integral expressions obtained by variable transformations 
with some historical backgrounds will be shown in the appendix, where the 
names of variables in the integral formulas with forms of transformations are 
summarized as follows:

“the second integral expressions with variable x ”: x = z∕(2w) and 
x# = 2∕(zw#) with x# = x−1;

“the modified second integral expression with variable x∗ ”: a function of x 
and x#;

“the third integral expressions with variable y ”: ey = x followed by reflec-
tion with a reduced support;

“the modified third integral expressions with variable y∗ ”: ey∗ = x = z∕(2w).
When w, x, x∗, y and y∗ are seen as realized values of random variables 

W,X,X∗, Y  and Y∗ in the integral expressions, respectively, their distributions are 
defined as follows.

Definition 1 (the BB pdf’s of the first to modified third kinds) Variables W, X, X∗, Y  
and Y∗ are defined to follow the basic Bessel (BB) distributions of the first, second, 
modified second, third and modified third kinds, respectively with the BB distribu-
tion for the generic expression of the five distributions with possible reparametriza-
tions when their pdf’s are

“the BB pdf of the first kind”

“the BB pdf of the second kind”

z2
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“the BB pdf of the modified second kind”

“the BB pdf of the third kind”

“the BB pdf of the modified third kind”

where Kv(z) = K−v(z).

The possible ranges for v and z common to the two-parameter distributions in 
Definition 1 are v ∈ R and z > 0 , which will be assumed unless otherwise speci-
fied. Note that while W,X, X∗ and Y  have the common support (0,∞) , that of Y∗ is 
(−∞,∞) . Recall that, W,X and Y∗ are related by variable transformations:

Variable X∗ is given by the two-point mixture of X using v and −v with equal 
weights. Similarly, Y  is obtained by reflection or the two-point mixture using the 
truncated Y∗ ’s with reduced support (0,∞) and equal weights as

It is to be noted that the equalities for W,X and Y∗ corresponding to 
fX∗ (x∗|v, z) = f1∕X∗ (x∗|v, z) , fX∗ (x∗|v, z) = fX∗ (x∗| − v, z) , fY (y|v, z) = f−Y (y|v, z) or 
fY (y|v, z) = fY (y| − v, z) do not generally hold unless v = 0 or the case of Halphen’s 
harmonic distribution, where the variable denoted by Xv=0 (a special case of X ) has 
the same distribution as 1∕Xv=0 . The property fX∗ (x∗|v, z) = f1∕X∗ (x∗|v, z) that holds 
with unconstrained v may be called as an extended harmonicity.

The word “basic” in the BB distribution is adopted to differentiate it from 
the Bessel function distributions, e.g., the McKay (1932, Eq.  (1)) Bessel func-
tion distribution (for other Bessel function distributions see Bose 1936, Eq. (6.6); 
Laha 1954; McNolty 1973). Note that a special case of the McKay Bessel func-
tion distribution can be seen as a mixture using the BB distribution for a mixing 
distribution. In other words, the BB distribution is implicitly used.
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An explicit use of the BB distribution is found in the harmonic distribution of 
Halphen (1941, p. 635). Let X follow this distribution, then the pdf of X at x is given 
by

where Halphen stated that Λ is a normalizing constant including a Bessel function. 
Halphen (1941, Remarque, p. 635) also gave a generalized version of the above 
distribution:

We derive the actual form of the normalizer Λ(�, a, b) in the above generalized dis-
tribution. Employing the scale parameter 𝛽 > 0 in the BB distribution of the second 
kind, we have its pdf using the same notations X and x for simplicity

which is the pdf of a 3-parameter or scaled BB distribution of the second 
kind. Halphen’s pdf fX{x|Λ(�, a, b), �, a, b} is given from fX(x|v, z, �) when 
v = �, z = 2(ab)1∕2 and x in the second scaled BB pdf is re-expressed by 2a�x∕z 
with d (2a�x∕z)∕dx = 2a�∕z as

It is found that the normalizer in Halphen’s pdf fX(x|Λ, a, b) is given by

After Halphen’s death in 1954, Morlat (1956, Sect. 2.3) investigated the 3-param-
eter scaled BB distribution of the second kind with the pdf fX(x|v, z, �) shown ear-
lier, and called the distribution as the Halphen type A (HA) distribution. Guillot 
(1964, pp. 64–66) gave the pdf of the logarithmic transformation of Halphen’s har-
monic-distributed variable, which is exactly the same as one of the BB pdf’s of the 
modified third kind with the unit scale parameter, that is

where ch x ≡ cosh u was used by Guillot. Perreault et al. (1999a, p. 190) introduced 
the work of Guillot as a power transformation of Halphen’s variable though the 
actual one is logarithmic as addressed earlier.
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(
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Good (1953) seems to be the first rediscovery of Halphen’s (1941) harmonic dis-
tribution as noted by Jørgensen (1982, p. 1). Perreault et  al. (1999a, p. 189) also 
stated that “The generalized inverse Gaussian distribution is commonly accredited 
to Good (1953)”, where the cited generalized distribution is the same as the repara-
metrized Halphen distribution as will be addressed later. Good (1953, Eq. (50)) gave 
an expression of the pdf  f (p) = sAp� exp(−�p − �p−1)

f (p) = sAp� exp(−�p − �p−1)(� > 0, � > 0) with ∫ 1

0
f (p) dp = s under possible 

truncation, where p is an argument of the pdf and sA is seen as a normalizing factor, 
i.e., a function of �, � and � . Note that Good’s pdf is the same as Halphen’s 
fX{x|Λ(�, a, b), �, a, b} with slight reparametrization and the removal of truncation, 
which is also a reparametrized scaled BB distribution of the second kind. Rukhin 
(1974/1978, Eq. (0.2)) rediscovered Halphen’s scaled and shifted harmonic distribu-
tion with the logarithmic change of variable or Guillot’s distribution using the pdf 
fX(x) =

�

2K0(�)
exp{−�ch(x − �0)} with ch(⋅) defined earlier. Rukhin’s distribution is 

a special case of the BB of the modified third kind when v = 0 in Kv(⋅) . The distribu-
tions using K0(⋅) including Halphen’s harmonic one are also called the hyperbola 
distributions (Barndorff-Nielsen 1978, Sect. 5; Jørgensen 1982, pp. 1–2; Perreault 
et al. 1999a, Eq. (1)). Sichel (1975, Eq. (2.1)) gave a reparametrized distribution of 
the Halphen distribution. Also, Barndorff-Nielsen (1977, Eq. (7.1)), and Barndorff-
Nielsen and Halgreen (1977, Eq. (1)) rediscovered the Halphen distribution with the 
pdf fX(x|�, a, b) when � = � , a = �∕2 and b = �∕2 as a member of “the family of 
the generalized inverse Gaussian (GIG) distributions”:

(for usages of this distribution as a mixing distribution for normal variance-mean 
mixtures or the class of generalized hyperbolic distributions, see also Barndorff-
Nielsen 1978, Eq. (4.1); Barndorff-Nielsen et al. 1982b, Eq. (2.4)).

3  Power basic‑Bessel (PBB) distributions

Power transformations of random variables of well-known distributions such 
as the normal distribution have been extensively investigated and used as the 
Box and Cox (1964) or power-normal (Goto and Inoue 1980) transformations. 
Recently, Ferrari and Fumes (2017) and Morán-Vásquez and Ferrari (2019) 
gave the Box–Cox transformations for symmetric and elliptical distributions, 
respectively. On the other hand, Takei and Matsunawa (2001, Eq. (1.6)) showed 
the power-gamma distribution as a prior one, where the variable is given when 
a power of the variable follows the gamma distribution. Independently, Ogasa-
wara (2022, Sect. 9.2) obtained the same distribution with a multivariate version 
(Ogasawara 2023a). Note that the power-gamma distribution is a reparametri-
zation of Stacy’s (1962, Eq.  (1)) generalized gamma with an extension of the 

fX(x|𝜆,𝜓 ,𝜒) = K𝜆{(𝜓𝜒)1∕2}−1
(𝜓∕𝜒)𝜆∕2

2
x𝜆−1 exp

(
−𝜓x −

𝜒

x

)

(x > 0; 𝜆 ∈ R,𝜓 > 0,𝜒 > 0)
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real-valued power over the positive one used by the generalized gamma. Stacy’s 
generalized gamma has been rediscovered or restated as, e.g., the three-parameter 
generalized gamma or the Krisky–Menkel distributions (TPGG; Singh and Zhang 
2022, Sect. 6.1). The power-gamma distribution is also seen as a special case of 
the Amoroso (1925) distribution (for this distribution see also Crooks 2015). For 
the Halphen type A distribution, whose special case is the IG distribution (Folks 
and Chhikara 1978; Chhikara and Folks 1989) with some reparametrization and 
variable transformation, Iwase and Hirano (1990, Eq. (10)) obtained the distribu-
tion of the power transformation of the IG called the power-IG (PIG) distribution. 
Furthermore, Takei and Matsunawa (2001, Eq.  (1.7)) presented the power-GIG 
(PGIG) distribution, where the GIG was mentioned earlier as a reparametrized 
Halphen type A distribution. For clarity, the pdf of Takei and Matsunawa’s PGIG 
is repeated without changing notations:

We consider the power transformations of the BB distributed variables, which 
are found to be given by the PGIG distributions using variable transformations, 
reparametrizations or mixtures.

Definition 2 (the power‑BB (PBB) pdf’s of the first to modified third kinds) The power-
BB distributions are defined when their pdf’s are given as follows:

“the PBB pdf of the first kind”

“the PBB pdf of the second kind”

“the PBB pdf of the modified second kind”

“the PBB pdf of the third kind”

and “the PBB pdf of the modified third kind”

q∗(x) =
�𝛾�x𝛾𝛽−1

2(ab)bK𝛽

�√
b∕a

� exp
�
−
1

2

�
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a
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b

x𝛾

��
,

�
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�
.
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−1 (z∕2)

v

2
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) |�|
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,

fX(x|v, z, �) = Kv(z)
−1 1

2
exp

{
−
z
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(
x� +

1
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)}
|�|x�v−1,

fX∗ (x∗|v, z, �) = Kv(z)
−1 1

4
exp

{
−
z

2

(
x∗� +

1

x∗�

)}
|�|(x∗�v−1 + x∗−�v−1),

fY (y|v, z, �) = Kv(z)
−1 exp{−z cosh (�y)} cosh(v�y)|�|

fY∗ (y∗|v, z, 𝛾) = Kv(z)
−1 1

2
exp{−z cosh (𝛾y∗) + v𝛾y∗}|𝛾|

(w > 0, x > 0, x∗ > 0, y > 0, y∗ ∈ R;

v ∈ R, z > 0, −∞ < 𝛾 < ∞, 𝛾 ≠ 0).
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The pdf’s in Definition 2 are given by variable transformations of w, x, x∗, y and 
y∗ by w� , x� , x∗� , �y and �y∗ with the Jacobians |�|w�−1, |�|x�−1, |�|x∗�−1 , |�| and |�| , 
respectively. Note that for the second last pdf, the form �y yielding the power trans-
formation of ey , i.e., ey� is used rather than y� considering practical use with similar 
results for �y∗ having the extended support.

Illustrations of the pdf’s of the PBB distributions are provided in Figs. 1 and 2 
for the three standard PBB variables of the first (W), second (X) and third (Y) kinds. 
Figures 1 and 2 give the pdf’s when z = 2 and 6 in Kv(z) , respectively. In each figure, 
the upper three plots are given when v = 0, while the lower three when v = 2. Each 
plot shows three pdf’s with � = 1/2, 1 and 2 for power transformations. Note that W 
and X in the upper plots in Fig. 1 are the same since X = z∕(2W) and X follows the 
harmonic distribution, i.e., the same distribution as X−1 when v = 0 with arbitrary z. 
It is easily found that the harmonicity holds irrespective of power transformations.

Recall that the variable Y is given by the logarithmic transformation of X fol-
lowed by the reflection about 0, which corresponds to X = 1. As will be shown 
later, W and X are unimodal whereas the pdf of Y is a decreasing or unimodal 
function depending on the values of z, v and � as illustrated in the plots. When 
z increases, the pdf of W tends to move to the right, while X and Y tend to have 
opposite tendencies. When v increases, the pdf’s of X and Y tend to move to the 
right while that of W to the left. Among � = 1/2, 1 and 2, the largest (smallest) 
variance is given by � = 1/2 (2, respectively).
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Fig. 1  Density plots of the power basic Bessel distributions (z = 2)
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4  Moments of the PBB distributions

In this section, the moments or the moment generating functions (mgf’s) are 
given except the mgf of Y  and the moments of eY , which will be shown later.

Lemma 1 Some moments of the PBB distributions of the first, second and modified 
third kinds of real-valued order k with MY∗ (k|v, z, �) being the mgf of  Y∗ are

E(Wk|v, z, �) = Kv−(k∕�)(z)

Kv(z)(z∕2)
−k∕�

,

E(Xk|v, z, �) = E{exp(kY∗)|v, z, �} = MY∗ (k|v, z, �) = Kv+(k∕�)(z)

Kv(z)
,
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Fig. 2  Density plots of the power basic Bessel distributions (z = 6)
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(−∞ < k < ∞) and

The proofs of Lemma 1 and some other results will be provided in 
the appendix. In Lemma 1, MY∗ (k|v, z, �) = E{exp(kY∗)|v, z, �} may also 
be called the kth order exponential moment of Y∗ . Note that generally 
E{exp(kY)|v, z, �} ≠ E{exp(kY∗)|v, z, �} . The two negative signs in the expression 
of E(Wk|v, z, �) become positive when we use W# ≡ W−1 before power transforma-
tion as

which is obtained by using the pdf of W#:

Though the variable W# seems to be unused in literatures, its additional advantage 
is the factor w#v−1(= (w#)v−1) of the same form as xv−1 in the BB pdf of the second 
kind. An indirect derivation of the expression of E(W#k|v, z, �) with positive signs 
is given by considering the moments of order −k for W , which are seen as those of 
order k for W# by definition.

Conversely, if we consider the variable  X# ≡ X−1 , we have

including a negative sign, which is found to hold by the indirect method mentioned 
earlier. The corresponding pdf for X# becomes

which seems to be comparable to the pdf of X whose factor corresponding to x#−v−1 
is xv−1 as addressed earlier (note the Jacobian | dx∕dx#| = x#−2 or | dx#∕dx| = x−2 ). 
Note that the pdf is also given by the second formula of the second integral 

E(X∗k|v, z, �) = 1

2

Kv+(k∕�)(z) + Kv−(k∕�)(z)

Kv(z)

=
1

2
{E(Xk|v, z, �) + E(Xk| − v, z, �)}

=
1

2

[
E{exp(kY∗)|v, z, �} + E{exp(kY∗)| − v, z, �}

]

=
1

2

{
MY∗ (k|v, z, �) +MY∗ (k| − v, z, �)

}

E(Y∗j|v, z, �) = djKv+(k∕�)(z)∕dk
j|k=0

Kv(z)
(j = 1, 2,…).

E(W#k|v, z, �) = Kv+(k∕�)(z)

Kv(z)(z∕2)
k∕�

,

fW#(w#|v, z) = Kv(z)
−1 (z∕2)

v

2
exp

(
−

1

w#
−

z2w#

4

)
w#v−1.

E(X#k|v, z, 𝛾) = Kv−(k∕𝛾)(z)

Kv(z)
(−∞ < k < ∞)

fX# (x#|v, z) = Kv(z)
−1 1

2
exp

{
−
z

2

(
x# +

1

x#

)}
x#−v−1,
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expressions of Kv(z) in the appendix. The pdf of X# was used by Song et al. (2014b, 
Definition 1-I) to derive Kv(z) = K−v(z) as addressed in Definition 1.

Now, we derive the mgf of Y  , which is relatively involved, using the pdf’s of Y∗ 
and X . Note that the pdf of Y∗ is not an even function or an odd one and that the sup-
port of  Y  is (0, ∞) corresponding to the truncated one (1, ∞) of X , while the sup-
port of Y∗ is (−∞, ∞) corresponding to the untruncated one (0, ∞)  for X . We also 
use upper incomplete functions of the modified Bessel of the second kind defined by 
Cicchetti and Faraone (2004, Eq. (2)), and Jones (2007, Eq. (2.4)):

Definition 3 (the types 1 to  m3 upper incomplete functions of  the  modified Bessell 
of the second kind) Recall the BB pdf of the third kind denoted by fY (y|v, z) and that 
fY (y|v, z) is the sum of two distributions of Y∗ with the reduced or truncated support 
(0, ∞).

“The types 3 and m3 upper incomplete Bessel functions”: The above equality 
for the definition of Kv(z,�) can be re-expressed as

The integrals K(3),v(z,�)(= Kv(z,�)) and K(m3),v(z,�) defined above are called 
the types 3 and m3 upper incomplete functions of the modified Bessell of the sec-
ond kind, respectively, where “3” and “m3” indicate the corresponding BB pdf’s 
of the un-modified and modified third kinds, respectively. Though in the above 
equation  0  ≤  ω is considered to have the relationship between K(3),v(z,�) and 
K(m3),v(z,�) , the range of � in K(m3),v(z,�) is � ∈ R . Furthermore, for later use and 
convenience, define

and

Kv(z,�) = ∫
∞

�

exp(−z cosh y) cosh(vy) dy.

Kv(z,�) ≡ K(3),v(z,�) = �
∞

�

exp(−z cosh y) cosh(vy) dy

=
1

2 �
∞

�

exp(−z cosh y + vy) dy +
1

2 �
∞

�

exp(−z cosh y − vy) dy

≡ K(m3),v(z,�) + K(m3),−v(z,�).

K(3),v(z,𝜔) = �
∞

𝜔

exp(−z cosh y) cosh(vy) dy

= �
∞

𝜔∕𝜆

exp{−z cosh(𝜆y)} cosh(v𝜆y) 𝜆dy

≡ K(3),v,𝜆(z,𝜔∕𝜆) (0 ≤ 𝜔, 0 < 𝜆)
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“The types 2 and m2 upper incomplete Bessel functions”: Using the variable 
transformation x = ey

∗ , and then replacing x by x� (� ∈ R, � ≠ 0) , we have

where K(2),v{z, exp (�)} is called the type 2 upper incomplete function of the 
modified Bessell of the second kind. The type m2 counterpart is given by 
K(2),v{z, exp (�)} as

“The type 1 upper incomplete Bessel function”: The remaining type 1 counter-
part K(1),v{z, (z∕2) exp (−�)} is defined by using z

2w
= x as

It is known that the integral formula corresponding to an incomplete Bessel func-
tion of the second kind dates back to Binet (1841) a century before Halphen (1941) 
(for Binet’s contribution, see Watson 1944/1999, Sect.  6.22, p. 183; Agrest and 
Maksimov 1971, p. 21), where the integral of the form ∫ b

a
y2r exp

(
−

p

y2
− qy2

)
dy 

K(m3),v(z,�) =
1

2 �
∞

�

exp(−z cosh y∗ + vy∗) dy∗

=
1

2 �
∞

�∕�

exp{−z cosh(�y∗) + v�y∗} |�|dy∗

≡ K(m3),v,�(z,�∕�) (� ∈ R, � ∈ R, � ≠ 0).

K(m3),v(z,�) = K(2),v{z, exp (�)} = �
∞

exp (�)

1

2
exp

{
−
z

2

(
x +

1

x

)}
xv−1dx

= �
∞

exp (�∕�)

1

2
exp

{
−
z

2

(
x� +

1

x�

)}
x�v−1|� |dx

≡ K(2),v,�{z, exp (�∕�)},

K(m2),v{z, exp (�)} = �
∞

exp (�)

1

4
exp

{
−
z

2

(
x∗ +

1

x∗

)}
(x∗v−1 + x∗−v−1)dx

=
1

2

[
K(2),v{z, exp (�)} + K(2),−v{z, exp (�)}

]

= �
∞

exp (�∕�)

1

4
exp

{
−
z

2

(
x∗� +

1

x∗�

)}
(x�v−1 + x−�v−1)|� |dx

=
1

2

[
K(2),v,�{z, exp (�∕�)} + K(2),−v,�{z, exp (�∕�)}

]

≡ K(m2),v,�{z, exp (�∕�)}.

K(m3),v(z,�) = K(2),v{z, exp (�)} = K(1),v{z, (z∕2) exp (−�)}

=
(z∕2)v

2 �
∞

(z∕2) exp (−�)

exp

(
−w −

z2

4w

)
1

wv+1
dw

=
(z∕2)v

2 �
∞

(z∕2)1∕� exp (−�∕�)

exp

(
−w� −

z2

4w�

) |�|
w�v+1

dw

≡ K(1),v,�{z, (z∕2)
1∕� exp (−�∕�)}.
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with a and b being unconstrained was focused on. It is found that this formula is 
obtained by a special case of the type 2 incomplete function K(2),v,�{z, exp (��)} in 
Definition 3 using the square transformation, i.e., � = 2.

In hydrology, based on Theis (1935) and, Hantush and Jacob (1955), the integral 
∫ ∞

1

1

tv+1
exp

(
−xt −

y

t

)
dt (v = 0, 1,… ;x > 0;y > 0) called “the leaky aquifer func-

tion” has been investigated. Currently, several algorithms for this integral are availa-
ble (see, e.g., Harris 2008; López et al. 2023) though they tend to be complicated. 
Note that the integral, when t is replaced by 1∕t with x = y = z∕2 , is also given by a 
special case of the type 2 incomplete Bessel function.

Lemma 2 The mgf of Y with the PBB pdf of the third kind is

In Lemma 2, Pr{Y∗ > 0|⋅} Pr{Y∗ > 0|⋅}(= Pr{X > 1|⋅}) is a value of a survival 
function. In the following lemma, we partially employ the scale parameter � for gen-
erality and didactic purposes. Define the partial (not conditional) expectation of 
(�−1 lnX)j over the range X > 𝜔∗ as

Then, we have the following results:

Lemma 3 
and

Remark 1 Penneault et al. (1999a, Eq. (65)) gave the derivation of the special case 
of Lemma 3 when  j = 1, v + (k∕�) = k and � = 1 . That is, using our notation, they 
gave

E{exp(kY)|v, z, �} = MY (k|v, z, �)
=

K(2),v+(k∕�), � (z, 1)

Kv(z)
+

K(2),−v+(k∕�), � (z, 1)

Kv(z)

≡ K(2),{±v}+(k∕�), � (z, 1)

Kv(z)
(k ∈ R).

E{(𝛾−1 lnX)j|v + (k∕𝛾), z;X > 𝜔∗}

= ∫
∞

𝜔∗

Kv+(k∕𝛾)(z)
−1(𝛾−1 ln x)j

1

2
exp

{
−
z

2

(
x +

1

x

)}
xv+(k∕𝛾)−1dx

(
= ∫

∞

𝜔∗(1 ∕𝛾)

Kv+(k∕𝛾)(z)
−1(ln x)j

1

2
exp

{
−
z

2

(
x𝛾 +

1

x𝛾

)}
x𝛾{v+(k∕𝛾)}−1|𝛾 |dx

)

(−∞ < k < ∞;j = 1, 2,…).

j∑
m=0

(
j

m

)
(�−1 ln �)m

1

Kv+(k∕�)(z)

dj−mKv+(k∕�)(z)

dkj−m
= E{(�−1 lnX)j|v + (k∕�), z, �}

j∑
m=0

(
j

m

)
(𝛾−1 ln 𝛽)m

1

Kv+(k∕𝛾)(z)

dj−mK(2),v+(k∕𝛾),𝛾 (z,𝜔
∗)

dkj−m

= E{(𝛾−1 lnX)j|v + (k∕𝛾), z, 𝛽;X > 𝜔∗} (−∞ < k < ∞;j = 1, 2,…).
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Note that in the case of unit scale, i.e., � = 1 , Lemma 3 becomes considerably 
simple:

The above formulas are integral representations. The closed-form expression seems 
to be available only when j = 1, i.e., dKk(z)∕dk using series expressions depend-
ing on whether k is an integer or a non-integer with the modified Bessel functions 
of the first kind in the latter case (Magnus et  al. 1966, Sects.  3.1.3 to 3.3.3, pp. 
69–75; Zwillinger 2015, Formulas 8.486 (1)-4, 5, 9, 11, pp. 938–939; DLMF 2023, 
Sect. 10.38).

Define E(Y∗j|v, z, �) = d
jKv+(k∕�)(z)∕dk

j|k=0
Kv(z)

≡ K
(j)
v,� (z)

Kv(z)
,

K
(j)

(2),{±v},�
(z, 1) ≡ K

(j)

(2),v,�
(z, 1) + K

(j)

(2),−v,�
(z, 1) , K

(j)m

(2),{±v},�
(z, 1) = {K

(j)

(2),{±v},�
(z, 1)}m(m = 2, 3, ...) 

and Kj
v(z) = {Kv(z)}

j (j = 1, 2, ...) for simplicity of notation. Then, we have the 

results for some moments and their functions of the PBB distributions, which 
will be given in Theorem 1 of the appendix. Relationships between two sets of 
variables “ W, W#(= W−1) ” and “ X,X#(= X−1) ” in the PBB variables are impor-
tant, which are summarized as.

Corollary 1 Some relationships between the raw moments, sk’s and kt’s of the PBB-
distributed variables of the first and second kinds are

ln � +
1

Kk(z)

dKk(z)

dk
= E(lnX|k, z, �).

1

Kv+(k∕𝛾)(z)

djKv+(k∕𝛾)(z)

dkj
= E{(𝛾−1 lnX)j|v + (k∕𝛾), z} and

1

Kv+(k∕𝛾)(z)

djKv+(k∕𝛾)(z,𝜔
∗)

dkj
= E{(𝛾−1 lnX)j|v + (k∕𝛾), z;X > 𝜔∗}.

E{(𝛾−1 lnX)j|v + (k∕𝛾), z; X > 𝜔∗} =
d
jK(2),v+(k∕𝛾),𝛾 (z,𝜔

∗)∕dkj|k=0
Kv(z)

≡ K
(j)

(2),v,𝛾
(z,𝜔∗)

Kv(z)
(−∞ < k < ∞),
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Proof The results are due to the proportionalities W = (z∕2)1∕�X# and 
W# = (z∕2)−1∕�X (z > 0, −∞ < 𝛾 < ∞, 𝛾 ≠ 0) .   □

5  Modes and quantiles of the PBB distributions

In this section, the modes and quantiles of the PBB distributions are considered. Dvoráket 
al. (1988, Eq. (4)) showed a unified expression of the differential equations or log-density 
derivatives for the Halphen type A and other two Halphen distributions as

where f (u) is the generic pdf of the Halphen distributions (see also Perreault et al. 
1999a, Eq. (8) and Table 1; El Adlouni and Bobée 2017, Eq. (2.1); Singh and Zhang 
2022, Eq. (3.16)). In the case of the unit scale Halphen type A or the BB distribution 
of the second kind, we have

yielding a0 = z∕2, a1 = v − 1 and a2 = −z∕2 with q = 2 . Recalling that by defini-
tion x > 0 as well as v ∈ R and z > 0 , and using d ln fX(x|v, z)∕dx = 0 , it is found 
that a single mode denoted by Mo(X|v, z) exists:

Note that among the PBB-distributed variables, those of the first, second and modi-
fied third kinds are given by power transformations of x as x� (� ∈ R, � ≠ 0) for the 
Halphen type A or BB distribution of the second kind, followed by changes of vari-
able: x� = z

2w�
= e�y

∗

.

Lemma 4 The differential equations for the PBB distributed variables W,X and Y∗ 
with the generic expression of their pdf’s denoted by f (t) are given by

E(Wk|v, z, �) = (z∕2)k∕�E(X#k|v, z, �),
E(Xk|v, z, �) = (z∕2)k∕�E(W#k|v, z, �) (k ∈ R),

sk(W) = sk(X#), sk(W#) = sk(X),

kt(W) = kt(X#), kt(W#) = kt(X).

1

f (u)

df (u)

du
=

a0 + a1u + a2u
2

uq
,

d ln fX(x|v, z)
dx

= −
z

2

(
1 −

1

x2

)
+

v − 1

x
=
{
−
z

2
x2 + (v − 1)x +

z

2

}
∕x2,

Mo(X|v, z) = 1

z

[
v − 1 + {(v − 1)2 + z2}1∕2

]
.

Table 1  Coefficients in the 
differential equations for the 
PBB distributions for W,X 
and Y∗

PBB distribution of a0 a1 a2

the 1st kind, W z2∕4 −v − 1 −1

the 2nd kind, X z∕2 v − 1 −z∕2

the modified 3rd kind,Y∗ z∕2 v − 1 −z∕2
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d ln f (t)

dt
=
{
a0 + (a1 + 1 − �−1)t� + a2t

2�
}
�t−�−1 for W and X,

and  d ln f (t)
dt

= {a0 + (a1 + 1) exp(t�) + a2 exp(2t�)}� exp(−t�) for Y∗,

where the coefficients a0, a1 and a2 are shown in Table 1. 

Theorem 2 PBB distributions of  W,X and Y∗ are unimodal with the modes

Proof The unimodalities of the distributions are given indirectly due to the mono-
tonic transformation of the Halphen type A or the BB distributions of the second 
kind having unimodality. The modes are obtained by the differential equations set to 
zero, which reduce to the quadratic equations for monotonic functions of t. A direct 
derivation of the unimodalities is found by the negative values of the product, i.e., 
a0∕a2 of the solutions of the quadratic equations (see Lemma 4), where only the 
single positive solutions give the modes after inverse transformation of associated 
monotonic functions of t.   □

The limiting values of Mo(W|v, z, �) , Mo(X|v, z, �) and Mo(Y∗|v, z, �) when the 
values of v and z become large or small will be shown in Property 1 of the appendix. 
For the modes of the remaining PBB distributed variables X∗ and Y  of the modified 
second and un-modified third kinds, respectively, the following results are provided.

Lemma 5 The differential equations for the PBB distributed variables X∗ and Y  with 
the generic expression of their pdf’s denoted by f (t) are given by

d ln f (t)

dt
=
[
a0 + {a1(t

� ) + 1 − �−1}t� + a2t
2�
]
�t−�−1 for X∗,

and  d ln f (t)
dt

=
[
a0 + a1{exp(t�)} exp(t�) + a2 exp(2t�)

]
� exp(−t�)  for Y  , 

where the coefficients/function a0, a1(⋅) (or a1{⋅} ) and a2 are shown in Table 2. 

Theorem 3 The PBB distributions of  X∗ and Y  are unimodal. Mo(X∗|v, z, �) is given 
by the converged value of t in the following iterative computation:

Mo(W|v, z, �) =
[
−(v + �−1) + {(v + �−1)2 + z2}1∕2

2

]1∕�
,

Mo(X|v, z, �) =
[
v − �−1 + {(v − �−1)2 + z2}1∕2

z

]1∕�
,

and Mo(Y∗|v, z, �) = ln
[{
v + (v2 + z2)1∕2

}
∕z
]

�
.

t|(j+1)−th =
(
a1(t

� ) + 1 − �−1 +
[
{a1(t

� ) + 1 − �−1}2 + z2
]1∕2

z

)1∕�

|j−th (j = 0, 1,…),
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where t|(j+1)−th indicates the revised value of t in the (j + 1)th (j = 0, 1,…) iteration. 
Similarly, Mo(Y|v, z, �) is obtained iteratively as:

where a1{⋅} is the function of the argument in braces.

Remark 2 The �-th ( 0 < 𝛼 < 1 ) quantiles denoted by QU(�) of the generic variable U 
for the PBB distributions are given by the upper incomplete BB functions satisfying

Since K(j),v,�{z,QU(�)} ’s are decreasing functions of QU(�) , the solutions of QU(�) 
given � are numerically obtained by, e.g., the bisection method. Note that as men-
tioned earlier, variables W,X and Y∗ have the relationships X� =

z

2W�
= e�Y

∗ , which 
gives

6  Discussion

6.1  (a) The symmetric reciprocal Bessel distributions

As mentioned earlier, Takei and Matsunawa (2001, p. 175) defined a fam-
ily of symmetric reciprocal (SR) distributions that includes the factor x�

a
+

b

x�
 

(x > 0, a > 0, b > 0, −∞ < 𝛾 < ∞) in the pdf with some associated regularity 
conditions, where x is the argument of the pdf of a random variable. It is found that 
the PBB distributions of the first and second kinds belong to the SR family, while 
those of the third and modified third kinds do not, though they belong to the fam-
ily by the logarithmic transformation. Due to this property, we have the following 
extension of the SR family based on a BB distribution.

t�(j+1)−th = 1

�
ln

⎛
⎜⎜⎜⎝

a1{exp(t�)} +
��
a1{exp(t�)}

�2
+ z2

�1∕2

z

⎞
⎟⎟⎟⎠
�j−th (j = 0, 1,…),

� = ∫
QU (�)

0

fU(u|v, z, �)du = 1 −
K(j),v,�{z,QU(�)}

Kv(z)

{(U, u, j) ∈ {(W,w, 1), (X, x, 2), (X∗, x∗, m2), (Y , y, 3), (Y∗, y∗, m3)}).

QX(�)
� =

z

2QW (1 − �)�
= e�QY∗ (�).

Table 2  Coefficients or 
functions in the differential 
equations for the PBB 
distributions for X∗ and Y

PBB distribution of a0 a1(u) or a1{u} a2

the modified 2nd kind,X∗ z∕2 (v−1)uv−1−(v+1)u−v−1

uv−1+u−v−1
−z∕2

the 3rd kind,Y z∕2 v(uv−u−v)

uv+u−v
−z∕2
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Definition 4 (the symmetric reciprocal Bessel (SRB) distributions) Suppose that h(U|�) 
is a positive and differentiable function of random U over the support U ∈ S , and 
that h(U|�) has the BB distribution of the second kind, where � is the vector of 
parameters of an appropriate dimension. Then, U is defined to follow the symmetric 
reciprocal Bessel (SRB) distribution, whose pdf is given by

It is found that the family of the SRB distributions includes the BB, PBB and 
some of the SR distributions.

6.2  (b) Unimodal symmetric reciprocal (USR) distributions and quasi‑quadratic 
equations

As found in Theorem 3, the differential equations set equal to zeroes take a form of 
the quasi-quadratic one in that the coefficient a1 is a function of the associated vari-
able. This suggests a pdf of a generalized (Bessel) distribution of the form similar to 
that of the SRB:

where z > 0 as before; �∗ is a vector of other parameters; C(z, �∗) is a nor-
malizing constant possibly including a Bessel function; g(u|𝛾∗) > 0 with 
g�(u|𝛾∗) ≡ dg(u|𝛾∗)∕du > 0 is a strictly increasing function of u without loss of gen-
erality in that a decreasing function g(u|�∗) , if desired, can be replaced by its recip-
rocal; h(u|𝛾∗) > 0 ; and the support, which can be negative, depends on cases. This 
distribution is called unimodal symmetric reciprocal (USR) distributions. Then, the 
corresponding differential equation becomes

The equation to have the mode is given by the numerator set equal to zero:

fU(u|v, z, �) = Kv(z)
−1 1

2
exp

[
−
z

2

{
h(u|�) + 1

h(u|�)
}]

h(u|�)v−1|dh(u|�)∕du|.

fU(u|z, �∗) = C(z, �∗) exp

[
−
z

2

{
g(u|�∗) + 1

g(u|�∗)
}]

h(u|�∗),

d

du
ln fU(u|z, �∗) = −

z

2

{
g�(u|�∗) − g�(u|�∗)

g(u|�∗)2
}

+
h�(u|�∗)
h(u|�∗)

=

z

2
g�(u|�∗) + h�(u|�∗)g(u|�∗)

h(u|�∗) g(u|�∗) − z

2
g�(u|�∗)g(u|�∗)2

g(u|�∗)2

=
c0(u|z, �∗) + c1(u|z, �∗)g(u|�∗) + c2(u|z, �∗)g(u|�∗)2

g(u|�∗)2 .
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which is seen as a quasi-quadratic equation in terms of g(u|�∗) with all the coeffi-
cients cj(u|z, �∗) (j = 0, 1, 2) being functions of u. The two solutions of the equation 
always consist of a positive one and a negative one since the product of the two solu-
tions is  c0(u|z, �∗)∕c2(u|z, �∗) = −1 as before. The solution to be employed becomes

which is found to be positive due to the conditions z > 0 and g�(u|𝛾∗) > 0 . The left-
hand side of the above equation is also seen as an updated value of g(u|�∗) . Then, 
the updated u is given by the inverse function g−1(u|�∗) with the assumption of the 
existence of its unique value addressed earlier. Then, using this u, the right-hand 
side of the above equation is updated. The iteration is repeated until convergence. It 
is easily found that the family of the SRB distributions in the previous Subsection is 
a sub-family of the USR distributions.

6.3  (c) Multivariate extensions

While the Halphen type A is defined for a family of univariate distributions, multi-
variate extensions of the IG and GIG are available (see Barndorff-Nielsen et al. 1982a, 
Example 4; Chhikara and Folks 1989, Sects. 11.1 and 11.2; Barndorff-Nielsen et al. 
1992, Sects. 3 and 4). It is expected that the multivariate extensions of the PBB dis-
tributions corresponding to the known multivariate GIG are similarly obtained using 
reparametrizations with change of variables.

6.4  (d) Other remaining issues

The problems of parameter estimation, hypothesis testing for parameters and goodness-
of-fit have not been dealt with due to the emphasis on the historical review and exten-
sions (for estimation in the Halphen type A, see Perreault et al. 1999b; El Adlouni and 
Bobée 2017, Chapter 4; Singh and Zhang 2022, Sect. 3.5). The parameters in the PBB 
except the scale one are v, z and 𝛾 (v ∈ R, z > 0, 𝛾 ∈ R, 𝛾 ≠ 0) . Among them, several 
candidate values may be chosen in practice for v and � rather than estimating them by, 
e.g., maximum likelihood. In Sect. 1, the IG was found to be a special case of the Hal-
phen type A or the PBB of the second kind with fixed v = −1∕2 and � = 1 . It is known 
that when v is a half integer, K−v(z)(= Kv(z)) is given by the following finite series:

(Watson 1944/1995, Sect. 3.71, Eq. (12), p. 80; Abramowitz and Stegun 1972, For-
mula 10.2.15–17, p. 444; Barndorff-Nielsen 1978, Eq. (3.1); Zwillinger 2015, For-
mula 8.468, p. 934; DLMF 2023, http:// dlmf. nist. gov/ 10. 39. E2, https:// dlmf. nist. 

c0(u|z, �∗) + c1(u|z, �∗)g(u|�∗) + c2(u|z, �∗)g(u|�∗)2 = 0,

g(u|�∗) = −c1(u|z, �∗) +
{
c1(u|z, �∗)2 + z2g�(u|�∗)2}−1

z g�(u|�∗) ,

Kk+(1∕2)(z) =

(
�

2z

)1∕2 k∑
j=0

(k + j)!

(k − j)!j!
(2z)−je−z (k = 0, 1,…)

http://dlmf.nist.gov/10.39.E2
https://dlmf.nist.gov/10.47#ii
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gov/ 10. 47# ii, https:// dlmf. nist. gov/ 10. 49# ii; Gaunt and Li 2023, Eq.  (24)). When 
k = 0, 1, 2 and 3, the above formula gives

As addressed earlier, in the IG, only the simplest one K1∕2(z) is used. This limitation 
has been relaxed using Kv(z) (v ∈ R) in the GIG and PBB distributions, where the 
subfamilies with Kk+(1∕2)(z) (k = 0, 1, ...) may be of practical use.

7  Appendix

Alternative integral expressions of Kv(z)

“The second integral expressions”

where the former expression is used in various aspects (Hurst 1995, Eq. (3.3); Per-
reault et al. 1999a, Eq. (45); Finlay and Seneta 2008, p. 170; Song et al. 2014b, Defi-
nition 1; Song et al. 2014a, Definition 1; Gaunt 2021, Appendix), and is easily given 
by the variable transformation x = z∕(2w) when z ∈ R in the first formula of the first 
integral expressions of Kv(z) whereas Song et al. (2014a, Lemma 1) derived the ear-
lier formula from the former expression of the second ones which they gave as the 
definition of Kv(z) . Note that the latter expression of the second ones is given by the 
variable transformation of the former by x# = x−1 . Watson (1944/1995, Sect. 6.22, 
Eq. (8) when � = 0 ) used the latter expression. The two second integral expressions 
give

“the modified second integral expression”

which may look redundant but is included for later use. Note that the above inte-
grand is unchanged by exchanging v by −v and/or the variable transformation from 
x∗ to x∗−1 . Though this expression is easily obtained by the earlier ones, to the 
author’s knowledge the modified expression is new.

Another set of integral representations is given by

K1∕2(z) =

(
�

2z

)1∕2

e−z,K3∕2(z) =

(
�

2z

)1∕2

e−z(1 + z−1),

K5∕2(z) =

(
�

2z

)1∕2

e−z(1 + 3z−1 + 3z−2) and

K7∕2(z) =

(
�

2z

)1∕2

e−z(1 + 6z−1 + 15z−2 + 15z−3).

Kv(z) =
1

2 ∫
∞

0

exp
{
−
z

2

(
x +

1

x

)}
xv−1dx

=
1

2 ∫
∞

0

exp
{
−
z

2

(
x# +

1

x#

)}
x#−v−1dx# = K−v(z) (v ∈ R, z > 0),

Kv(z) =
1

4 ∫
∞

0

exp
{
−
z

2

(
x∗ +

1

x∗

)}
(x∗v−1+x∗−v−1)dx∗ (v ∈ R, z > 0),

https://dlmf.nist.gov/10.47#ii
https://dlmf.nist.gov/10.49#ii
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“the third integral expressions”

with cosh(y) = (ey + e−y)∕2 (Watson 1944/1995, Sect.  6.22, Eq.  (5); Mag-
nus and Oberhettinger 1948, p. 39; Magnus et  al. 1966, p. 85; Abramow-
itz and Stegun 1972, Formula 9.6.24; a redundant expression using 
Kv(z) = (1∕2) ∫ ∞

−∞
exp(−z cosh y) cosh(vy) dy by Barndorff-Nielsen and Halgreen 

1977, p. 310; Zwillinger 2015, Formulas 8.432–1; DLMF 2023, https:// dlmf. nist. 
gov/ 10. 32. E9). The expressions are given from the second or modified second ones 
by the variable transformation ey = x or ey = x# followed by reflection about 0 with a 
reduced positive support.

Agrest and Maksimov (1971, Eq.  (4.17)) and Joarder (1995, p. 118) used the 
third expression with slight modification:

“the modified third integral expressions”

which are obtained from the first formula of the first expressions using the variable 
transformation ey∗ = 2w∕z as when Joarder (1995) first derived the closed-formula 
of the characteristic function (cf) of Student-t distribution using Kv(z) , where v cor-
responds to a half of the degrees of freedom. Note that in the third integral expres-
sion Zwillinger (2014, Formula 8.432-1) included a point for the possible area of z 
as ( | arg z| < 𝜋∕2 or Rez = 0 and v = 0) . Since the added point does not give a 
finite value of the integral, the point should be deleted as described earlier. However, 
a limiting value of  Kv(z) when z goes to  +0 as a function of z exists as 
lim
z→+0

Kv(z) = Γ(v)2v−1z−v (v > 0) which was used by Hurst (1995, Eq. (4.2)) without 
derivation though for this limiting value Abramowitz and Stegun (1972) was 
referred to. However, the latter editors do not seem to have provided their formula 
9.6.9 with its derivation as noted by Song et al. (2014b, Definition 1-II), who gave 
the proof. Using the formula, Hurst (1995) independently provided the same expres-
sion of the cf of the Student-t distribution.

Historically, the third expression seems to have been first derived as an integral 
representation of Kv(z) by L. Schläfli in 1873 followed by the modified third, second 
and first ones in this order though the first one has been most extensively investigated 
(Watson 1944/1995, Sect. 6.22, Eqs. (5), (7), (8) and (15)). Note that the second inte-
gral expressions are obtained from the modified third one’s using the variable trans-
formation  x = ey

∗ or x# = e−y
∗ . An advantage of the modified third expressions over 

Kv(z) = ∫
∞

0

exp(−z cosh y) cosh(vy) dy

= ∫
∞

0

exp(−z cosh y) cosh(−vy) dy ( | arg(z)| < 𝜋∕2)

Kv(z) =
1

2 ∫
∞

−∞

exp(−z cosh y∗ + vy∗) dy∗

=
1

2 ∫
∞

−∞

exp(−z cosh y∗ − vy∗) dy∗ = K−v(z),

https://dlmf.nist.gov/10.32.E9
https://dlmf.nist.gov/10.32.E9
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the remaining ones is y∗ ∈ R , i.e., two-sided, while w > 0 (w# > 0) , x > 0 (x# > 0 ) , 
x∗ > 0 and y > 0 for the first, second, modified second, and un-modified third 
expressions, respectively.

Proofs of Lemma 1 Proof 1. Using the definitions of the moments, we obtain

and

The above expressions with the property of the mgf of Y∗ yielding its raw moments 
give the required results.   □

E(Wk
|v, z, �) = ∫

∞

0
Kv(z)−1

(z∕2)v

2
exp

(

−w� − z2
4w�

)

|�|wk

w�v+1 dw

=
Kv−(k∕�)(z)(z∕2)v

Kv(z)(z∕2)v−(k∕�) ∫

∞

0
Kv−(k∕�)(z)−1

(z∕2)v−(k∕�)

2
exp

(

−w� − z2
4w�

)

|�|
w�{v−(k∕�)}+1 dw

=
Kv−(k∕�)(z)

Kv(z)(z∕2)−k∕�
,

E(Xk|v, z, �) = ∫
∞

0

Kv(z)
−1 1

2
exp

{
−
z

2

(
x� +

1

x�

)}
|�|x�v+k−1dx

=
Kv+(k∕�)(z)

Kv(z) ∫
∞

0

Kv+(k∕�)(z)
−1 1

2
exp

{
−
z

2

(
x� +

1

x�

)}
|�|x�{v+(k∕�)}−1dx

=
Kv+(k∕�)(z)

Kv(z)
,

E(X∗k|v, z, �) = �
∞

0

Kv(z)
−1 1

4
exp

{
−
z

2

(
x� +

1

x�

)}
|�|(x�v+k−1+x−�v+k−1)dx

=
1

2

Kv+(k∕�)(z)

Kv(z) �
∞

0

Kv+(k∕�)(z)
−1 1

2
exp

{
−
z

2

(
x� +

1

x�

)}
|�|x�{v+(k∕�)}−1dx

+
1

2

K−v+(k∕�)(z)

Kv(z) �
∞

0

K−v+(k∕�)(z)
−1 1

2
exp

{
−
z

2

(
x� +

1

x�

)}
|�|x�{−v+(k∕�)}−1dx

=
1

2

Kv+(k∕�)(z) + K−v+(k∕�)(z)

Kv(z)
≡ K{±v}+(k∕�)(z)

Kv(z)

=
1

2
{E(Xk|v, z, �) + E(Xk| − v, z, �)}

E{exp(kY∗)|v, z, �} = MY∗ (k|v, z, �)
= ∫

∞

−∞

Kv(z)
−1 1

2
exp{−z cosh (�y∗) + v�y∗}|�|eky∗dy∗

=
Kv+(k∕�)(z)

Kv(z) ∫
∞

−∞

Kv+(k∕�)(z)
−1 1

2
exp{−z cosh (�y∗) + {v + (k∕�)}�y∗}|�|dy∗

=
Kv+(k∕�)(z)

Kv(z)
.
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Proof 2. An alternative indirect proof of E(Xk|v, z, �) = MY∗ (k|v, z, �) is shown. By 
definition we have as before

Using the variable transformation x = ey
∗ , the above equation becomes

which gives the required result.   □

Proof of Lemma 2 Using the definition of the mgf, we obtain

where Kv−(k∕�)(z) = K−v+(k∕�)(z) is used. The last expression gives the required result.

Proof of Lemma 3 Since 1 = ∫ ∞

0
Kv(z)

−1 1

2
exp

{
−

z

2

(
x

�
+

�

x

)}
xv−1

�v
dx , we have

E(Xk|v, z, �) = ∫
∞

0

Kv(z)
−1 1

2
exp

{
−
z

2

(
x� +

1

x�

)}
|�|x�v+k−1dx.

E(Xk|v, z, �) = ∫
∞

−∞

Kv(z)
−1 1

2
exp

{
−
z

2

(
ey

∗� +
1

ey
∗�

)}
|�|ey∗(�v+k−1)ey∗dy∗

= ∫
∞

−∞

Kv(z)
−1 1

2
exp

{
−
z

2

(
ey

∗� +
1

ey
∗�

)}
|�|eky∗ey∗�vdy∗

= ∫
∞

−∞

Kv(z)
−1 1

2
exp{−z cosh(y∗�) + y∗�v}|�|eky∗dy∗

= E{exp(kY∗)|v, z, �},

E exp(kY)|v, z, �} = MY (k|v, z, �)

= ∫

∞

0
Kv(z)−1 exp{−z cosh (�y)} cosh (v�y)|�|ekydy

= ∫

∞

0
Kv(z)−1

1
2
exp

[

−z cosh (�y) + {v + (k∕�)}�y
]

|�|dy

+ ∫

∞

0
Kv(z)−1

1
2
exp

[

−z cosh (�y) − {v − (k∕�)}�y
]

|�|dy

=
Kv+(k∕�)(z)
Kv(z) ∫

∞

0
Kv+(k∕�)(z)−1

1
2
exp{−z cosh (�y∗) + {v + (k∕�)}�y∗}|�|dy∗

+
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Kv(z) ∫
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0
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1
2
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+
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=
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Kv(z)
,
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Using d
jg(k)h(k)

dkj
=
∑j

m=0

�
j

m

�
dmg(k)

dkm
dj−mh(k)

dkj−m
 , where g(k) and h(k) are differentiable 

functions of k, we obtain

Dividing both sides of the last equation by �v+(k∕�)Kv+(k∕�)(z) , the first result fol-
lows as

The second result is similarly obtained using the definition of the partial expecta-
tion instead of the full one, which gives the required result.

Some moments and their functions of the PBB distributions

Theorem 1 The expectations, variances, skewnesses (sk’s) and excess kurtoses (kt’s) 
of the power BB-distributed variables of the first, second, modified second, third and 
modified third kinds are

dj�vKv(z)

dvj
=

dj

dvj ∫
∞
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1

2
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−
z

2

(
x

�
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�

x

)}
xv−1dx (j = 1, 2,…).
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m
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kt(W|v, z, �)

=
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− 3
K4
v−(1∕�)

(z)

K4
v
(z)

)

×

(
Kv−(2∕�)(z)

Kv(z)
−

K2
v−(1∕�)

(z)

K2
v
(z)

)−2

− 3,

E(X|v, z, �) = Kv+(1∕�)(z)

Kv(z)
,

var(X|v, z, �) =
(
Kv+(2∕�)(z)

Kv(z)
−

K2
v+(1∕�)

(z)

K2
v
(z)

)
,

sk(X|v, z, �)

=

(
Kv+(3∕�)(z)

Kv(z)
− 3

Kv+(2∕�)(z)Kv+(1∕�)(z)

K2
v
(z)

+ 2
K3
v+(1∕�)

(z)

K3
v
(z)

)

×

(
Kv+(2∕�)(z)

Kv(z)
−

K2
v+(1∕�)

(z)

K2
v
(z)

)−3∕2

,

kt(X|v, z, �)

=

(
Kv+(4∕�)(z)

Kv(z)
− 4

Kv+(3∕�)(z)Kv+(1∕�)(z)

K2
v
(z)

+ 6
Kv+(2∕�)K

2
v+(1∕�)

(z)

K3
v
(z)

− 3
K4
v+(1∕�)

(z)

K4
v
(z)

)

×

(
Kv+(2∕�)(z)

Kv(z)
−

K2
v+(1∕�)

(z)

K2
v
(z)

)−2

− 3,

E(X∗|v, z, �) = K{±v}+(1∕�)(z)

Kv(z)
,

var(X∗�v, z, �) =
⎛⎜⎜⎝
K{±v}+(2∕�)(z)

Kv(z)
−

K
2

{±v}+(1∕�)
(z)

K2
v
(z)

⎞⎟⎟⎠
,



671

1 3

Behaviormetrika (2024) 51:645–680 

sk(X∗�v, z, �)

=

⎛
⎜⎜⎝
K{±v}+(3∕�)(z)

Kv(z)
− 3

K{±v}+(2∕�)(z)K{±v}+(1∕�)(z)

K2
v
(z)

+ 2
K

3

{±v}+(1∕�)
(z)

K3
v
(z)

⎞
⎟⎟⎠
,

×

⎛
⎜⎜⎝
K{±v}+(2∕�)(z)

Kv(z)
−

K
2

{±v}+(1∕�)
(z)

K2
v
(z)

⎞
⎟⎟⎠

−3∕2

,

kt(X∗�v, z, �)

=

⎛
⎜⎜⎝
K{±v}+(4∕�)(z)

Kv(z)
− 4

K{±v}+(3∕�)(z)K{±v}+(1∕�)(z)

K2
v
(z)

+ 6
K{±v}+(2∕�)(z)K

2

{±v}+(1∕�)
(z)

K3
v
(z)

−3
K

4

{±v}+(1∕�)
(z)

K4
v
(z)

⎞
⎟⎟⎠

⎛
⎜⎜⎝
K{±v}+(2∕�)(z)

Kv(z)
−

K
2

{±v}+(1∕�)
(z)

K2
v
(z)

⎞
⎟⎟⎠

−2

− 3,

E(Y|v, z, �) =
K

(1)

(2),{±v},�
(z, 1)

Kv(z)
,

var(Y�v, z, �) =
⎛⎜⎜⎝
K

(2)

(2),{±v},�
(z, 1)

Kv(z)
−

K
(1)2

(2),{±v},�
(z, 1)

K2
v
(z)

⎞⎟⎟⎠
,

sk(Y�v, z, �)

=

⎛⎜⎜⎝
K

(3)

(2),{±v},�
(z, 1)

Kv(z)
− 3

K
(2)

(2),{±v},�
(z, 1)K

(1)

(2),{±v},�
(z, 1)

K2
v
(z)

+ 2
K

(1)3

(2),{±v},�
(z, 1)

K3
v
(z)

⎞⎟⎟⎠

×

⎛⎜⎜⎝
K

(2)

(2),{±v},�
(z, 1)

Kv(z)
−

K
(1)2

(2),{±v},�
(z, 1)

K2
v
(z)

⎞⎟⎟⎠

−3∕2

,
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Proof The results are given by Lemmas 1 to 3.   □

Proof of Lemma 4 For W and X, the coefficients a0, a1 and a2 in Table 1 are given by 
definition. Then, we obtain

kt(Y�v, z, �) =
⎛
⎜⎜⎝
K

(4)

(2),{±v},�
(z, 1)

Kv(z)
− 4

K
(3)

(2),{±v},�
(z, 1)K

(1)

(2),{±v},�
(z, 1)

K2
v
(z)

+6
K

(2)

(2),{±v},�
(z, 1)K

(1)2

(2),{±v},�
(z, 1)

K3
v
(z)

− 3
K

(1)4

(2),{±v},�
(z, 1)

K4
v
(z)

⎞
⎟⎟⎠

×

⎛⎜⎜⎝
K

(2)

(2),{±v},�
(z, 1)

Kv(z)
−

K
(1)2

(2),{±v},�
(z, 1)

K2
v
(z)

⎞⎟⎟⎠

−2

− 3.

E(Y∗|v, z, �) =
K(1)
v,�
(z)

Kv(z)
,

var(Y∗|v, z, �) =
(
K(2)
v,�
(z)

Kv(z)
−

K(1)2
v,�

(z)

K2
v
(z)

)
,

sk(Y∗|v, z, �) =
(
K(3)
v,�
(z)

Kv(z)
− 3

K(2)
v,�
(z)K(1)

v,�
(z)

K2
v
(z)

+ 2
K(1)3
v,�

(z)

K3
v
(z)

)

×

(
K(2)
v,�
(z)

Kv(z)
−

K(1)2
v,�

(z)

K2
v
(z)

)−3∕2

,

kt(Y∗|v, z, �) =
(
K(4)
v,�
(z)

Kv(z)
− 4

K(3)
v,�
(z)K(1)

v,�
(z)

K2
v
(z)

+ 6
K(2)
v,�
(z)K(1)2

v,�
(z)

K3
v
(z)

− 3
K(1)4
v,�

(z)

K4
v
(z)

)

×

(
K(2)
v,�
(z)

Kv(z)
−

K(1)2
v,�

(z)

K2
v
(z)

)−2

− 3.
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For Y∗ , we have in a similar manner

The above expressions give the required results.

Some limiting values of Mo(W|v, z, �) , Mo(X|v, z, �) and Mo(Y∗|v, z, �)

Property 1 Consider the limiting values of Mo(W|v, z, �) , Mo(X|v, z, �) and 
Mo(Y∗|v, z, �) when the values of v and z become large or small.

 (i) When an arbitrary positive z and fixed � ∈ R (� ≠ 0) are given,

d ln f (t)

dt
=

d

dt

{
(−a0u

−1 + a1 ln u + a2u)|u=t� + ln |dt�∕dt|}

=
a0 + a1u + a2u

2

u2
|u=t� dt

�

dt
+ (� − 1)t−1

= (a0t
−2� + a1t

−� + a2)�t
�−1 + (� − 1)t−1

= a0�t
−�−1 + (a1� + � − 1)t−1 + a2�t

�−1

=
{
a0 + (a1 + 1 − �−1)t� + a2t

2�
}
�t−�−1.

d ln f (t)

dt
=

d

dt

{
(−a0u

−1 + a1 ln u + a2u)|u=exp(t�) + ln
||||
d exp(t�)

dt

||||
}

=
a0 + a1u + a2u

2

u2
|u=exp(t�) d exp(t�)dt

+ �

= {a0 exp(−2t�) + a1 exp(−t�) + a2}� exp(t�) + �

= {a0 + (a1 + 1) exp(t�) + a2 exp(2t�)}� exp(−t�).

lim
v→−∞

Mo(W|v, z, 𝛾 > 0) = ∞, lim
v→−∞

Mo(W|v, z, 𝛾 < 0) = 0;

lim
v→−∞

Mo(X|v, z, 𝛾 > 0) = lim
v→−∞

[
v − 𝛾−1 + {(v − 𝛾−1)2 + z2}1∕2

z

]1∕𝛾

= lim
v→−∞

[
z2

z[−(v − 𝛾−1) + {(v − 𝛾−1)2 + z2}1∕2]

]1∕𝛾
= 0,

lim
v→−∞

Mo(X|v, z, 𝛾 < 0) = ∞;

lim
v→−∞

Mo(Y∗|v, z, 𝛾 > 0) = lim
v→−∞

ln
[{
v + (v2 + z2)1∕2

}
∕z
]

𝛾
= −∞,

lim
v→−∞

Mo(Y∗|v, z, 𝛾 < 0) = ∞;
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with

and 𝜕Mo(Y∗|v,z,𝛾<0)
𝜕v

< 0, indicating that Mo(W|v, z, � ≠ 0) , Mo(X|v, z, � ≠ 0) 
and Mo(Y∗|v, z, � ≠ 0) are strictly decreasing or increasing functions of v.

 (ii) When v and � are given, the results are shown as follows

 (ii-a) v + 𝛾−1 > 0 , lim
z→+0

Mo(W|v, z, 𝛾 > 0) = 0  ,  lim
z→+0

Mo(W|v, z, 𝛾 < 0) = ∞ ; 
v − 𝛾−1 < 0,

lim
z→+0

Mo(X|v, z, 𝛾 > 0) =

(
lim
z→+0

𝜕[v−𝛾−1+{(v−𝛾−1)2+z2}1∕2]∕𝜕z
𝜕z∕𝜕z

)1∕𝛾

= 0  a n d 

lim
z→+0

Mo(X|v, z, 𝛾 < 0) = ∞ u s i n g  L’ H ô p i t a l ’s  r u l e ;  v < 0  , 
lim
z→+0

Mo(Y∗|v, z, 𝛾 > 0) = −∞ and lim
z→+0

Mo(Y∗|v, z, 𝛾 < 0) = ∞.
 (ii-b) v + �−1 = 0 , lim

z→+0
Mo(W|v, z, 𝛾 > 0) = 0 and lim

z→+0
Mo(W|v, z, 𝛾 < 0) = ∞ ; 

v = �−1 , lim
z→+0

Mo(X|v, z, � ≠ 0) = 1 ; v = 0 , lim
z→+0

Mo(Y∗|v, z, � ≠ 0) = 0.

lim
v→∞

Mo(W|v, z, 𝛾 > 0) = 0, lim
v→∞

Mo(W|v, z, 𝛾 < 0) = ∞;

lim
v→∞

Mo(X|v, z, 𝛾 > 0) = ∞, lim
v→∞

Mo(X|v, z, 𝛾 < 0) = 0;

lim
v→∞

Mo(Y∗|v, z, 𝛾 > 0) = ∞, lim
v→∞

Mo(Y∗|v, z, 𝛾 < 0) = −∞

𝜕Mo(W|v, z, 𝛾 > 0)

𝜕v

=
1∕𝛾

21∕𝛾

[
−(v + 𝛾−1) + {(v + 𝛾−1)2 + z2}1∕2

](1∕𝛾)−1 [
−1 + (v + 𝛾−1){(v + 𝛾−1)2 + z2}−1∕2

]
< 0,

𝜕Mo(W|v, z, 𝛾 < 0)

𝜕v
> 0;

𝜕Mo(X|v, z, 𝛾 > 0)

𝜕v

=
1∕𝛾

z1∕𝛾

[
v − 𝛾−1 + {(v − 𝛾−1)2 + z2}1∕2

](1∕𝛾)−1 [
1 + (v − 𝛾−1){(v − 𝛾−1)2 + z2}−1∕2

]
> 0,

𝜕Mo(X|v, z, 𝛾 < 0)

𝜕v
< 0;

𝜕Mo(Y∗|v, z, 𝛾 > 0)

𝜕v
=

𝜕

𝜕v

ln
[{
v + (v2 + z2)1∕2

}
∕z
]

𝛾
=

1 + v(v2 + z2)−1∕2

𝛾{v + (v2 + z2)1∕2}
> 0
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 (ii-c) v + 𝛾−1 < 0  ,  lim
z→+0

Mo(W|v, z, �) = {−(v + �−1)}1∕�  ;  v − 𝛾−1 > 0  , 
lim
z→+0

Mo(X|v, z, 𝛾 > 0) = ∞ and lim
z→+0

Mo(X|v, z, 𝛾 < 0) = 0  ;  v > 0  , 
lim
z→+0

Mo(Y∗|v, z, 𝛾 > 0) = ∞ and lim
z→+0

Mo(Y∗|v, z, 𝛾 < 0) = −∞.

 (iii) W h e n  a n  a r b i t r a r y  v  i s  g i ve n ,  lim
z→∞

Mo(W|v, z, 𝛾 > 0) = ∞ , 
lim
z→∞

Mo(W|v, z, 𝛾 < 0) = 0  ,  lim
z→∞

Mo(X|v, z, � ≠ 0) = 1  a n d 
lim
z→∞

Mo(Y∗|v, z, � ≠ 0) = 0.

In (ii) and (iii), note that

and

𝜕Mo(W|v, z, 𝛾 > 0)

𝜕z

=
1∕𝛾

21∕𝛾

[
−(v + 𝛾−1) + {(v + 𝛾−1)2 + z2}1∕2

](1∕𝛾)−1
z{(v + 𝛾−1)2 + z2}−1∕2 > 0,

𝜕Mo(W|v, z, 𝛾 < 0)

𝜕z
< 0;

𝜕Mo{X|v, z, 𝛾(v − 𝛾−1) < 0}

𝜕z
=

𝜕

𝜕z

[
v − 𝛾−1 + {(v − 𝛾−1)2 + z2}1∕2

z

]1∕𝛾

=
1

𝛾

(
1

z

[
v − 𝛾−1 + {(v − 𝛾−1)2 + z2}1∕2

])(1∕𝛾)−1

×

(
1

z
z{(v − 𝛾−1)2 + z2}−1∕2 −

1

z2

[
v − 𝛾−1 + {(v − 𝛾−1)2 + z2}1∕2

])

=
1

𝛾

(
1

z

[
v − 𝛾−1 + {(v − 𝛾−1)2 + z2}1∕2

])(1∕𝛾)−1

×

(
{(v − 𝛾−1)2 + z2}−1∕2 −

z2

z2
[
−(v − 𝛾−1) + {(v − 𝛾−1)2 + z2}1∕2

]
)

=
1

𝛾

(
1

z

[
v − 𝛾−1 + {(v − 𝛾−1)2 + z2}1∕2

])(1∕𝛾)−1

×
−(v − 𝛾−1){(v − 𝛾−1)2 + z2}−1∕2

−(v − 𝛾−1) + {(v − 𝛾−1)2 + z2}
> 0,

𝜕Mo(X|v, z, v = 𝛾−1)

𝜕z
= 0,

𝜕Mo{X|v, z, 𝛾(v − 𝛾−1) > 0}

𝜕z
< 0;
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�Mo(Y∗|v = 0, z, �)

�z
= 0 and 

𝜕Mo(Y∗|v, z, v𝛾 > 0)

𝜕z
< 0.

Then, it is found that Mo(W|v, z, �) , Mo(X|v, z, �) and Mo(Y∗|v, z, �) are strictly 
increasing or decreasing functions of z except that Mo(X|v, z, v = �−1) and 
Mo(Y∗|v = 0, z, �) are constant with respect to z.

Proof of Lemma 5 For X∗ , the coefficients/function a0, a1(⋅) and a2 in Table 2 are 
obtained by the corresponding pdf

as follows

where the following is used

For Y  , noting that fY (t|v, z, �) = Kv(z)
−1 exp

{
−

z

2

(
u +

1

u

)}
uv+u−v

2
|u=exp(�t)|d�t∕dt| 

(0 < t < ∞) , we have in a similar manner

𝜕Mo(Y∗|v, z, v𝛾 < 0)

𝜕z
=

𝜕

𝜕z

ln
[{
v + (v2 + z2)1∕2

}
∕z
]

𝛾

=
−z−1 +

{
v + (v2 + z2)1∕2

}−1
z(v2 + z2)−1∕2

𝛾

=
z2 −

{
v + (v2 + z2)1∕2

}
(v2 + z2)1∕2

z𝛾
{
v + (v2 + z2)1∕2

}
(v2 + z2)1∕2

=
−v

{
v + (v2 + z2)1∕2

}

z𝛾
{
v + (v2 + z2)1∕2

}
(v2 + z2)1∕2

> 0;

fX∗ (t|v, z, 𝛾) = Kv(z)
−1 1

4
exp

{
−
z

2

(
u +

1

u

)}
(uv−1 + u−v−1)|u=t𝛾 |dt𝛾∕dt| (0 < t < ∞)

d ln f (t)

dt
=

d

dt

{
(−a0u

−1 + a2u)|u=t� + ln(uv−1 + u−v−1) + ln |dt�∕dt|}

=
a0 + a1(u)u + a2u

2

u2
|u=t� dt

�

dt
+ (� − 1)t−1

= {a0t
−2� + a1(t

� )t−� + a2}�t
�−1 + (� − 1)t−1

= a0�t
−�−1 + {a1(t

� )� + � − 1}t−1 + a2�t
�−1

=
[
a0 + {a1(t

� ) + 1 − �−1}t� + a2t
2�
]
�t−�−1,

d ln(uv−1 + u−v−1)

dt
|u=t� = (v − 1)uv−2 − (v + 1)u−v−2

uv−1 + u−v−1
dt�

dt

=
(v − 1)uv−1 − (v + 1)u−v−1

uv−1 + u−v−1
1

u

dt�

dt

≡ a1(u)
1

u

dt�

dt
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where

is used. The above expressions give the required results.

Proof of Theorem 3 Lemma 5 provides the conditions for the modes of X∗ and Y  to 
satisfy:

a0 + a1{exp(t�)} exp(t�) + a2 exp(2t�) = 0 , respectively.
When a1(t� ) and a1{exp(t�)} are seen as fixed constants using the current values 

in iterative computation, the equations become usual quadratic ones with respect to 
t𝛾 > 0 and exp(t𝛾) > 0 . Since the products a0∕a2 = −1 of the two solutions are both 
negative, the positive solution is employed. In iterations, when converged, the solu-
tions satisfy the conditions of the single positive modes.
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