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Abstract
In observational studies, unmeasured covariates are an important problem. In the 
presence of some unmeasured covariates, some instrumental variable methods, such 
as the two-stage residual inclusion (2SRI) estimator or limited-information maxi-
mum likelihood (LIML) estimator, can still obtain an unbiased estimate for causal 
effects despite the existence of nonlinear models, such as logistic regression and 
probit models. However, not only a correct outcome model but also a correct treat-
ment model needs to be specified. Therefore, it is important to identify the correct 
models. In this paper, we consider model selection procedures for 2SRI and LIML, 
and confirm their properties through simulation and real datasets. Specifically, we 
confirm the model selection procedures can detect the correct treatment and out-
come models, and unbiased causal effects can be estimated. The model selection 
properties are confirmed through simulation datasets and GENEVA Diabetes Study 
datasets. From the simulation and data analysis results, we recommend that LIML 
with any model selection procedures is a good choice when there are binary out-
comes and any concerns about unmeasured covariates.
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1  Introduction

Observational studies are usually interested in estimating causal effects between 
treatments and outcomes. When all covariates or confounders (hereafter, referred 
to as “covariates”) are observed, the covariates can be adjusted and an unbiased 
estimator for causal effects can be obtained, as in the case of “no unmeasured 
confounding” (c.f. Hernán and Robins 2020). No unmeasured confounding is a 
sufficient assumption for the estimation of an unbiased estimator of causal effects. 
However, there are serious risks in estimating biased causal effects unless the 
covariates are adjusted appropriately. When some covariates are not observed, 
usually, an unbiased estimator cannot be obtained, as in the case of some unmeas-
ured covariates. Unmeasured covariates constitute an important problem in causal 
inference, since no unmeasured confounding is no longer applied. Therefore, dif-
ferent estimation methods should be applied.

In this study, the focus is on instrumental variable (IV) methods. A two-stage 
least squares (2SLS) estimator is one of the most important two-step procedures 
in the estimation of IV causal effects when there are unmeasured covariates 
(Wooldridge 2010). 2SLS is useful, but it requires the key assumption that there 
is a linear relationship between the treatment variable and outcome variable. If 
this assumption is violated, a biased estimate of the causal effect of interest may 
be obtained. Terza et al. (2008) introduced a two-stage residual inclusion (2SRI) 
estimator similar to the control function approach (Wooldridge 2010). 2SRI is 
another two-step procedure expanded to include nonlinear models, such as logis-
tic regression and probit models, whereby an unbiased estimate of the causal 
effect can be obtained even when there are nonlinear models. Although 2SRI 
overcomes the problem of 2SLS, it may derive biased causal effects, as men-
tioned in Basu et al. (2017) and Wan et al. (2018). According to the simulation 
results of Basu et al. (2017), a full-likelihood approach derives a more accurate 
estimate than 2SRI (see also Section 5 of Burgess et al. 2017). Therefore, in this 
manuscript, a limited-information maximum likelihood (LIML) estimator (Wool-
dridge 2014) is also considered. LIML estimator uses a full-likelihood approach, 
but has features similar to those of 2SRI and the control function approach. Both 
2SRI and LIML can be used for nonlinear models; however, not only the correct 
outcome model but also the correct treatment model needs to be specified (Basu 
et al. 2017). Therefore, detecting the correct models is an important process when 
using 2SRI and LIML.

In model selection, information criteria are commonly used to select the “cor-
rect” model. The Akaike information criterion (AIC; Akaike 1974) is the best-
known information criterion for selecting the best model in the prediction of 
future outcomes. The Bayesian information criterion (BIC) proposed by Schwarz 
(1978) is another well-known information criterion with model selection consist-
ency (i.e., it selects the correct model with probability 1) under certain assump-
tions (Nishii 1984, Shao 1997). In the field of causal inference, some previous 
studies exist (Brookhart and van der Laan 2006; Vansteelandt et  al. 2012) and 
Taguri et  al. (2014). Although the considered procedures varied among the 
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studies, motivation is the same: to estimate unbiased causal effects, a valid model 
needs to be considered. However, to best of our knowledge, there are no previous 
reports related to any model selection procedures for 2SRI and LIML.

In this paper, we consider model selection procedures for 2SRI and LIML, and 
confirm their properties through simulation and real datasets. Specifically, we confirm 
the model selection procedures can detect the correct treatment and outcome model, 
and unbiased causal effects can be estimated. Since previous studies have considered 
model selection procedures neither for 2SRI (the control function approach) nor for 
LIML in this context, the contribution of this study may be considered significant for 
these estimation procedures. In Sect. 2, a motivational example is introduced and the 
model considered in this study is presented. Two situations are considered: continuous 
and dichotomous treatments. In addition, we introduce AIC-type and BIC-type infor-
mation criteria. In Sect. 3, the properties of 2SRI and LIML with model selection are 
confirmed using simulation datasets. In the simulation, we consider a case in which the 
distribution of unmeasured covariates is correctly specified. In Sect. 4, data analysis 
is performed using the GENEVA Diabetes Study dataset. Supplementary information 
on simulations and the GENEVA Diabetes Study datasets are found in the Appendix. 
Some calculations and supplemental simulations are found in the Web Appendix.

2 � Motivation example and IV methods

First, a motivational example, the GENEVA Diabetes Study datasets which store sub-
jects’ demographic information (phenotype), genetic information (genotype), and out-
comes (presence or absence of diabetes), is introduced. In this study, the causal effect of 
body mass index (BMI) on the incidence of diabetes is investigated. As is well known, 
diabetes affects some parts of the body, such as eyes, kidney, and heart. There are more 
than 400 million diabetic patients worldwide (Cheng et al. 2019). In addition, BMI and 
the incidence of diabetes have a positive relationship such that high BMI increases the 
likelihood of developing diabetes. To estimate the causal effect correctly, the covari-
ates, regardless of whether they are observed or not, need to be adjusted when the data-
sets are derived from observational studies. Cheng et al. (2019) and Richardson et al. 
(2020) used an instrumental variable approach with the genetic information constitut-
ing the instrumental variables. This analysis strategy is called “Mendelian randomiza-
tion” (Burgess et al. 2017). In this study, Mendelian randomization was also conducted 
using the genetic information included in the GENEVA Diabetes Study datasets.

Herein, a more general formulation is considered. Let n be the sample size and 
assume that i = 1, 2,… , n are i.i.d. samples. X ∈ ℝ

p and Z ∈ ℝ
K denote vectors of 

covariates and IVs, respectively. The following relationship is assumed for the unmeas-
ured variables:

where � is a parameter of the joint distribution (V ,U) ∈ ℝ
2 , referred to as “unmeas-

ured covariates” in this study. These assumptions are similar to those of Wooldridge 

(2.1)
(
V

U

)
∼ F(v, u;�),

(
V

U

)
⟂⟂

(
X

Z

)
,
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(2014); (2.1) suggests a LIML estimation procedure. Next, the models considered in 
this paper are introduced.

–	 Treatment model (continuous treatment) 

–	 Treatment model (dichotomous treatment) 

–	 Outcome model 

 where �1 and �2 are twice differentiable predictors with respect to parameters 
� and � , respectively. For instance, �1 and �2 can be selected as a linear model: 

 In addition, the parameter spaces of � and � are denoted by Θ� and Θ� , 
respectively.

The explanation of the above variables by DAGs (c.f. Hernán and Robins 2020) is 
shown in the Web Appendix A.

The pair of models (2.2) and (2.3) is called the Rivers-Vuong model (RV model; 
Rivers and Vuong (1988)), where

Under the RV model, (2.3) becomes a probit model. Note that the following discus-
sions are not limited to the above treatment / outcome models but apply to other 
parametric models, as well. Note also that the IVs Z follow three IV features (see 
Baiocchi et  al. 2014): (1) causal association with the treatment variable T  , (2) no 
association with the unobserved variables ( V , U ), and (3) no direct causal associa-
tion with the outcome variable Y  . The first and third features are explained using the 
above treatment and outcome models, respectively. The second feature is explained 
by (2.1).

To estimate the parameters � =
(
�⊤, �⊤, �⊤

)⊤
∈ Θ = Θ� × Θ� × Θ� , two IV esti-

mators are introduced: a 2SRI estimator and a LIML estimator.

2.1 � Two‑stage residual inclusion

The 2SRI estimator estimates the causal effects in two steps. In the first step, the 
treatment variable is regressed onto the instrumental variables to construct the resid-
uals of the treatment variable. Specifically, (2.2) and (2.3) are considered. In particu-
lar, consider the ordinary least squares estimator of �:

(2.2)W = �1(Z,X;�) + V

W = 1
{
�1(Z,X;�) + V ≥ 0

}

(2.3)Y = 1
{
�2(W,X;�) + U ≥ 0

}
,

𝜑1(Z,X;�) = Z⊤
i
�z + X⊤

i
�x, 𝜑2(W,X;�) = W⊤

i
𝛽w + X⊤

i
�x.

F(v, u;𝜉) = N2

(
02,

(
𝜎2
v

𝜌𝜎v
𝜌𝜎v 1

))
, 𝜉 = (𝜎v, 𝜌)

⊤, 𝜎v > 0, 𝜌 ≠ 0.
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For each predictor 𝜑1(Zi,Xi;�̂) , the residuals are derived:

In the second step, the outcome variable is regressed not only onto the treatment 
variables but also onto the residuals of the treatment variables. In the following 
model, the residuals are plugged into (2.3). For instance, when U is a logistic distri-
bution, the outcome model becomes a logistic regression model:

In contrast, when U is a normal distribution, the above outcome model becomes a 
probit model:

Under (2.5) or (2.6), the maximum likelihood estimator of ( �, �) is considered:

Through the above procedures, a 2SRI estimator �̂ is obtained. Note that the residu-
als are more complicated than (2.4) for dichotomous treatment (Tchetgen et  al. 
2015); this is drawback of 2SRI. As mentioned below, LIML need not be considered 
the residual; a full-likelihood is only necessary.

In Section 3, to consider performance of model selection procedures, the fol-
lowing AIC and BIC are considered:

where | ⋅ | is the number of elements. Note that these are applied to select an out-
come model without considering v as the predicted residuals (i.e. the same handling 
as the other covariates).

2.2 � Limited‑information maximum likelihood

Let us consider the likelihood function LLIML(�) =
∏n

i=1
LLIML,i(�) conditioning on 

z and x:

�̂ = arg min
�

n∑

i=1

(
wi − 𝜑1(zi, xi;�)

)2
.

(2.4)vi(�̂) = wi − 𝜑1(zi, xi;�̂).

(2.5)pi(�, 𝛾) = expit
{
𝜑2(wi, xi;�) + vi(�̂)𝛾

}
.

(2.6)pi(�, 𝛾) = Φ
(
𝜑2(wi, xi;�) + vi(�̂)𝛾

)
.

(2.7)

(
�̂

𝛾̂

)
= arg max

�, 𝛾

log

[
n∏

i=1

pi(�, 𝛾)
yi
(
1 − pi(�, 𝛾)

)1−yi
]

= arg max
�, 𝛾

�2SRI(�, 𝛾).

AIC2SRI = −2�2SRI(�̂, 𝛾̂) + 2(|�̂| + 1)

BIC2SRI = −2�2SRI(�̂, 𝛾̂) + (|�̂| + 1) log(n),



246	 Behaviormetrika (2023) 50:241–262

1 3

In the following, the specific form of the likelihood for the two cases is explicitly 
defined. In the case of the Rivers-Vuong model, (2.8) becomes

(see Web Appendix B.1). Therefore, the log-likelihood �LIML(�) = log LLIML(�) 
becomes:

For dichotomous treatment, (2.8) becomes

Therefore, the log-likelihood becomes

(see Web Appendix B.2), where

By maximizing the likelihood (2.8), a limited-information maximum likelihood esti-
mator can be derived as

Note that the joint distribution F(v, u;�) has to be specified when using LIML. How-
ever, the distribution is somewhat flexible; for instance, some parametric copulas 
can be selected (e.g.,Biller and Corlu 2012; Fantazzini 2009). When the marginal 
distributions of V  and U are assumed to be the logistic distributions Flogis

V
(v) and 

(2.8)LLIML(�) =

n∏

i=1

f (yi,wi|zi, xi;�) =
n∏

i=1

P(yi|wi, zi, xi;�)f (wi|zi, xi;�).

(2.9)

LLIML(�) =

n�

i=1

Φ

�
�i2(�) + �vi(�)√

1 − �2

�yi
�
1 − Φ

�
�i2(�) + �vi(�)√

1 − �2

��1−yi
1

�
2��2

v

exp

�
−
v
2
i
(�)

2�2
v

�

�LIML(�) =

n�

i=1

�
yi logΦ

�
�i2(�) + �vi(�)√

1 − �2

�
+ (1 − yi) log

�
1 − Φ

�
�i2(�) + �vi(�)√

1 − �2

��

−
v2
i
(�)

2�2
v

− log

��
2��2

v

��
.

LLIML(�) =

n∏

i=1

P
(
yi = 1,wi = 1|zi, xi;�

)yiwiP
(
yi = 0,wi = 1|zi, xi;�

)(1−yi)wi

× P
(
yi = 1,wi = 0|zi, xi;�

)yi(1−wi)P
(
yi = 0,wi = 0|zi, xi;�

)(1−yi)(1−wi).

(2.10)

�
LIML

(�) =

n∑

i=1

{
y
i
w
i
log

{
1 − F(∞,−�

i2(�);�) − F(−�
i1(�),∞;�) + F(−�

i1(�),−�i2(�);�)
}

+ (1 − y
i
)w

i
log

{
F(∞,−�

i2(�);�) − F(−�
i1(�),−�i2(�);�)

}

+ y
i
(1 − w

i
) log

{
F(−�

i1(�),∞);�) − F(−�
i1(�),−�i2(�);�)

}

+ (1 − y
i
)(1 − w

i
) log

{
F(−�

i1(�),−�i2(�);�)
}}

F(v,∞;�) = lim
u→∞

F(v, u;�), F(∞, u;�) = lim
v→∞

F(v, u;�).

(2.11)�̂ = arg max
�∈Θ

�LIML(�).
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F
logis

U
(u) , respectively, and some parametric copulas, such as the t-copula or Clayton 

copula C(⋅, ⋅;�) are assumed, the joint distribution becomes

In Section 3, to consider performance of model selection procedures, the following 
AIC and BIC are considered:

2.3 � Interpretation under potential outcomes

The 2SRI and LIML can estimate the average treatment effects (ATE) (Rosenbaum 
and Rubin 1983). To estimate ATE by these methods, G-computation (e.g., Hernán 
and Robins, 2020)) can be applied: 

1.	 By solving (2.7) and (2.11), the 2SRI estimates or LIML estimates of � can be 
obtained.

2.	 To estimate a probability under the particular treatment value (written as w′ ), 
the average is calculated over all populations; for instance, U under the normal 
distribution and the probit model: 

 where Yw′ corresponds to the potential outcome under treatment w′ , and xi are 
the observed covariates. Regarding 2SRI, xi also includes the residual term of 
the 1st stage model.

From the above steps, ATE is estimated:

3 � Simulations

In this section, the properties of model selection procedures and parameter estimates 
of 2SRI and LIML are confirmed. Because no previous studies have considered 
model selection procedures for 2SRI (or the control function approach) and LIML, 
our simulation results may provide some guidance for using these estimation pro-
cedures. To confirm these properties, (1) the number of times the true model was 
selected for each procedure and the corresponding proportions were determined, and 

F(v, u;�) = C(F
logis

V
(v),F

logis

U
(u);�).

AICLIML = −2�LIML(�̂, 𝛾̂) + 2|�̂|
BICLIML = −2�LIML(�̂, 𝛾̂) + |�̂| log(n)

P̂
(
Yw� = 1

)
=

1

n

n∑

i=1

P̂
(
Y = 1|w�, xi

)
=

1

n

n∑

i=1

Φ
(
𝜑2

(
w�, xi;�̂

))
,

Ê[Yw� ] − Ê[Yw�� ] = P̂
(
Yw� = 1

)
− P̂

(
Yw�� = 1

)
.
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(2) descriptive statistics of estimates for each procedure were calculated. The num-
ber of iterations for the simulations was 1000.

3.1 � Continuous treatment and normal unmeasured covariates

The Rivers–Vuong model was considered. In this setting, it was confirmed that 
LIML and 2SRI estimator with model selection perform well. Since we can apply 
2SLS under this situation, the results of the 2SLS are summarized as well for refer-
ence. The simulation settings were as follows:

Covariates: X1 ∼ N(0, 1), X2 ∼ Ber(0.5), X3 ∼ N(0, 1)

An instrumental variable: Z ∼ Ber(0.5)

Unmeasured covariates: 
(
V

U

)
∼ N

(
02,

(
1 �

1

))

–	 Weak correlation: � = 0.3

–	 Strong correlation: � = 0.6

A treatment model: W = 1 + �zZ + X2 + X3 + V

–	 Weak instrumental variable: �z = 0.2 ⇒ The correlation between a treatment 
and IV is approximately 0.06.

–	 Strong instrumental variable: �z = 1 ⇒ The correlation between a treatment 
and an IV is approximately 0.3.

An outcome model: Y = 1
{
0.5 + 0.6W + 0.5X1 + 0.5X2 + U ≥ 0

}

To select a treatment model and outcome model, candidate models were prepared. 
The supplemental information is provided in Appendix A.

The simulation results are summarized in tables and supplemental figures. 
The results of model selection are summarized in Table 1, where 2SRI: AIC and 
2SRI: BIC are 2SRI with each model selection procedures, LIML: AIC and 
LIML: BIC are LIML with each model selection procedures. The column “True 
model” shows the number of times the selected method was the true model (i.e., 
the pair of models a4 and b2; see Appendix). The column “Including true model” 
shows the number of times each selected method was the true or larger models 
(i.e., not misspecified models; see Appendix). The column “Both true model” 
shows the number of times the 2SRI estimator selected the true model in the 
first step and the second step. Throughout the simulations, “(1) Weak correlation 
and Strong IV” were used as reference settings. In terms of selection probabili-
ties of the “True model,” BIC did not display high probability for small samples 
( N = 100 ); however, it was the best out of the three selection procedures in all 
cases of large samples ( N = 300 ). This result is the same as the previous theoreti-
cal results (the model selection consistency; see Nishii 1984 and Shao 1997). For 
selection probabilities of “Including true model,” both 2SRI and LIML displayed 
high probability even for small samples. This is also the same feature as that of 
AIC. Regarding 2SRI, the selection probabilities of “Both true models” were also 
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Table 1   Summary of the results of model selection for each estimator (continuous treatment and normal 
unmeasured covariates)

Samplesize Situation Method Step True model n (%) Including true 
model n (%)

Both true model 
n (%)

N = 100 (1) Weak 2SRI: AIC 1st 871 (87.1) 1000 (100) 840 (84.0)
correlation 2nd 450 (45.0) 840 (84.0)
and 2SRI: BIC 1st 989 (98.9) 996 (99.6) 438 (43.8)
Strong IV 2nd 355 (35.5) 440 (44.0)

LIML: AIC – 390 (39.0) 837 (83.7) –
LIML: BIC – 347 (34.7) 430 (43.0) –

(2) Weak 2SRI: AIC 1st 871 (87.1) 1000 (100) 883 (88.3)
correlation 2nd 486 (48.6) 883 (88.3)
and 2SRI: BIC 1st 989 (98.9) 996 (99.6) 492 (49.2)
Weak IV 2nd 424 (42.4) 493 (49.3)

LIML: AIC – 422 (42.2) 737 (73.7) –
LIML: BIC – 331 (33.1) 366 (36.6) –

(3) Strong 2SRI: AIC 1st 881 (88.1) 1000 (100) 894 (89.4)
correlation 2nd 493 (49.3) 894 (89.4)
and 2SRI: BIC 1st 992 (99.2) 997 (99.7) 532 (53.2)
Strong IV 2nd 444 (44.4) 533 (53.3)

LIML: AIC – 452 (45.2) 887 (88.7) –
LIML: BIC – 451 (45.1) 518 (51.8) –

Samplesize Situation Method Step True model n (%) Including true 
model n (%)

Both true model 
n (%)

N = 300 (1) Weak 2SRI: AIC 1st 872 (87.2) 1000 (100) 1000 (100)
correlation 2nd 672 (67.2) 1000 (100)
and 2SRI: BIC 1st 1000 (100) 1000 (100) 881 (88.1)
Strong IV 2nd 846 (84.6) 881 (88.1)

LIML: AIC – 588 (58.8) 1000 (100) –
LIML: BIC – 846 (84.6) 880 (88.0) –

(2) Weak 2SRI: AIC 1st 872 (87.2) 1000 (100) 998 (99.8)
correlation 2nd 675(67.5) 998 (99.8)
and 2SRI: BIC 1st 1000 (100) 1000 (100) 935 (93.5)
Weak IV 2nd 897 (89.7) 935 (93.5)

LIML: AIC – 582 (58.2) 987 (98.7) –
LIML: BIC – 881 (88.1) 921 (92.1) –

(3) Strong 2SRI: AIC 1st 876 (87.6) 1000 (100) 999 (99.9)
correlation 2nd 617 (61.7) 999 (99.9)
and 2SRI: BIC 1st 997 (99.7) 1000 (100) 953 (95.3)
Strong IV 2nd 894 (89.4) 953 (95.3)

LIML: AIC – 553 (55.3) 999 (99.9) –
LIML: BIC – 900 (90.0) 951 (95.1) –
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high. In (2) and (3), these correspond to the weak IV and the strongly correlated 
unmeasured covariate situations, and labelled as “(2) Weak correlation and Weak 
IV” and “(3) Strong correlation and Strong IV” respectively. The selection prob-
abilities of both “True model” and “Including true model” are somewhat different 
from (1); however, these are no remarkable difference from the results of model 
selection only. Therefore, it can be seen that model selections have stable results 
regardless of the situation and model selection procedure.

The estimated coefficients of treatment W in the outcome model are summarized 
in Table 2, Figs. 1, and 2, where 2SLS is 2SLS (without model selection), 2SRI: 
Full model is 2SRI with the largest model among the candidates, and LIML: Full 
model is LIML with the largest model among the candidates in the table; the red 
line denotes the true value in the figure.

–	 With model selection vs. without model selection Comparing the results with 
and without model selection procedures, it is appeared that the estimates with 
model selection procedures are more efficient and more unbiased; especially 
when there are large samples. In particular, the results of 2SRI without model 
selection is unstable. From the results, using model selection procedure is impor-
tant to estimate the causal effects correctly.

–	 2SRI vs. LIML In (1), for both the small sample and large sample cases, the 
LIML estimator with BIC was the most efficient result among the three results 
with model selection procedures. The LIML estimator with AIC also worked 
well in the sense of the unbiased result. The 2SRI estimator displayed a large 
bias and low efficiency; however, both results improved for large samples. In (2), 
surprisingly the LIML estimator yielded more accurate and unbiased results than 
(1) when there are only small samples. As mentioned in Burgess et al. (2017), 
the LIML estimator is more robust than any other well-known IV methods under 
weak IV situations. However, the simulation result is notable since the weak IV 
results are more accurate than (1). Table 1 shows that the model selection prob-
abilities of both “True model” and “Including true model” are smaller than the 
other situations; more simple and accurate models tend to be selected over the 
true model. Therefore, the LIML estimator can derive the causal effects correctly 
using model selection procedures. Whereas, the 2SRI estimator suffers from the 
weak IV problems (c.f. Burgess et al. 2017). In (3), the LIML estimator yielded 
results similar to (1). However, the 2SRI estimator with and without model selec-
tion displayed a large bias and low efficiency for small samples. In the large 
samples, the efficiency somewhat improved; however, one important point is 
that 2SRI is still biased. These results are similar to those reported by Basu et al. 
(2017) and Wan et al. (2018). It is derived from the model construction of 2SRI 
that the residual term included in 2nd step is assumed as fixed covariate (see 
section 2.2 also). Actually, the bias is included in the all results of 2SRI. In par-
ticular, the situation where there are strongly correlated unmeasured covariates 
derives large bias (c.f. Wan et al. 2018).

–	 2SLS vs. 2SRI & LIML The 2SLS method had some bias and instability com-
pared with other methods. As there is no linear relationship between treatment 
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and outcome, the results are natural. Therefore, we need to pay attention care-
fully when using 2SLS.

Thus, a good choice is to consider using LIML with model selection procedures; 
however, the best model selection procedure depends on the specific case, as men-
tioned in the Introduction. Whereas, overcoming weak IV problems is an advan-
tage of LIML with model selection because other well-known IV methods do not 
have this feature. 2SRI with model selection can be selected for “valid" causal rela-
tionships, however, biased or unstable estimates may be obtained when there are 
only weak IVs, or there are strong unobserved relationships between treatments and 
outcomes.

4 � Data analysis

In this section, the real data analysis is performed using 2SRI and LIML with model 
selection procedures. From the simulation results, the difference between the AIC 
and BIC is a little under large samples. Therefore, the AIC is used to select the valid 
model.

4.1 � Analysis plan

The analysis follows the flow outlined below: 

1.	 Detecting the genetic information used as instrumental variables. According to 
Cheng et al. (2019), there are 52 SNPs related to BMI; however, only 19 SNPs 
are included in the GENEVA Diabetes Study datasets. Since SNP is a weak 
instrument variable (weak correlation with a treatment variable), as many SNPs 
as possible should be used to increase the efficiency of the estimation.

2.	 Detecting the risk factors related to incidence of diabetes. According to Chen et al. 
(2018) and Narayan et al. (2007), age and sex are two important risk factors. In 
addition, both factors may have interaction effects on the incidence of diabetes. 
Therefore, a candidate model with interaction terms must be included.

3.	 Detecting the “valid” model using the AIC and estimating the causal effect. To 
select a treatment model and an outcome model, candidate models were prepared 
and the AIC was used to select the model. The supplemental information is pro-
vided in the Appendix B.

Age categorization was considered as follows:
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–	 Age categories If Age < 50 , then age was coded as }}0�� ; otherwise, if 
50 ≤ Age < 60 , then age was coded as }}1�� ; otherwise, if 60 ≤ Age < 70 , then 
age was coded as “2"; otherwise, age was coded as }}3��.

There were 5481 subjects with either demographic or genetic data. In this study, a 
complete case analysis was conducted; subjects who had no missing data in the sex, 
age, BMI, and genetic data categories, were included in the analysis. Consequently, 
5,036 subjects ( 100 × 5036∕5481 = 91.9% ) were included in the analysis. Note that 
BMI and SNPs are treated as continuous variables in the following analysis.

4.2 � Analysis results

First, the participants’ demographic data were confirmed. Table 3 summarizes the 
mean (SD) for continuous parameters and the number of subjects (%) for categorical 
parameters.

Regarding demographic data, there were some differences between the BMI cat-
egories. Therefore, there are concerns regarding the confounding effects of age and 
sex. In addition, the incidence of diabetes is different.

Table  4 summarizes the correlations between the two parameters. The correla-
tion of SNP (instrumental variable) with BMI (a treatment variable) was quite small, 
raising a concern about the weak IV problem, as expected.

The estimated causal effects are summarized in Table 5. The result of the logistic 
regression (“Naive,” without using SNPs) has some obvious biases. The 2SRI estima-
tion may provide a somewhat questionable result compared with the results of Hu et al. 
(2001) (risk ratio: 2.67). This is from the results that the 2SRI estimates are unstable 
similar to the simulation results. Regarding LIML, however, this result may be more 

Table 3   Demographic data

Parameters Category Group Total

BMI < 30 BMI ≥ 30

N = 3909 N = 1127 N = 5036

BMI (continuous) – – – 26.98 (4.88)
BMI (category) BMI < 30 – – 3909 (77.6)

BMI ≥ 30 – – 1127 (22.4)
Age (continuous) – 57.85 (7.83) 55.78(7.28) 57.39 (7.76)
Age (category) Age < 50 776 (19.9) 289 (25.6) 1065 (21.1)

50 ≤ Age < 60 1454 (37.2) 476 (42.2) 1930 (38.3)
60 ≤ Age < 70 1464 (37.5) 338 (30.0) 1802 (35.8)
70 ≤Age 215 (5.5) 24 (2.1) 239 (4.7)

Sex Male 2007 (51.3) 359 (31.9) 2366 (47.0)
Female 1902 (48.7) 768 (68.1) 2670(53.0)

Diabetes Yes 1496 (38.3) 833 (73.9) 2329(46.2)
No 2413 (61.7) 294 (26.1) 2707 (53.8)
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Table 4   Association of genetic variants with BMI and diabetes

Note 1: Relationship between BMI/Diabetes and SNPs is summarized as regression coefficients (SE).
Note 2: For BMI, the ordinary linear model is applied. For Diabetes, the logistic regression model is 
applied

SNP Chr Gene BMI beta 
(SE)

Diabetesbeta(SE) Effect/
Other 
allele

Effect allele 
frequency 
(%)

p-value 
of HW-
test

rs543874 1 SEC16B, 
LINC01741

0.129 
(0.123)

0.002 (0.013) G/A 18.9 0.698

rs2820292 1 NAV1, IPO9-
AS1

−0.030 
(0.098)

0.000 (0.010) C/A 53.9 0.319

rs10182181 2 ADCY3, 
DNAJC27

0.072 
(0.098)

0.003 (0.010) G/A 46.7 0.424

rs2121279 2 TMEM163 0.147 
(0.148)

0.018 (0.015) T/C 12.5 0.750

rs7599312 2 ERBB4 0.131 
(0.110)

0.013 (0.011) G/A 73.9 0.740

rs492400 2 USP37 −0.054 
(0.098)

−0.011 (0.010) C/T 43.0 0.498

rs13107325 4 SLC39A8 −0.038 
(0.186)

0.006 (0.019) T/C 7.6 0.963

rs11727676 4 HHIP 0.028 
(0.167)

−0.013 (0.017) T/C 90.4 0.895

rs13191362 6 PRKN 0.052 
(0.149)

0.009 (0.015) A/G 88.3 0.976

rs1167827 7 HIP1 0.028 
(0.097)

−0.007 (0.010) G/A 57.5 0.830

rs6477694 9 EPB41L4B, 
FRRS1L

0.133 
(0.103)

−0.010 (0.010) C/T 34.4 0.797

rs1928295 9 TRPL35AP22 0.171 
(0.097)

0.006 (0.010) T/C 54.5 0.276

rs10733682 9 LMX1B 0.119 
(0.096)

0.011 (0.010) A/G 49.0 0.865

rs7899106 10 GRID1 0.254 
(0.223)

−0.017 (0.023) G/A 5.0 0.189

rs11030104 11 BDNF, 
BDNF-AS

0.292 
(0.120)

−0.005 (0.012) A/G 79.1 0.133

rs12286929 11 CADM1 0.185 
(0.097)

0.014 (0.010) G/A 53.7 0.769

rs3736485 15 DMXL2 0.169 
(0.098)

0.016 (0.010) A/G 46.4 0.389

rs7239883 18 LINC00907 −0.061 
(0.100)

0.011 (0.010) G/A 39.6 0.237

rs2836754 21 LINC01700, 
RPSAP64

0.146 
(0.102)

−0.008 (0.010) C/T 62.8 0.975
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plausible since it is less sensitive to weak IV problems as shown in the simulation results. 
The estimated causal effects for each sex are also summarized in Table  5. Since the 
cohorts of males and females are different, a supplemental analysis was planned. Unfor-
tunately, the estimates become more unstable since there are only small sample size 
(male: 2366 and female: 2670). Regarding 2SRI, the results are also unstable. Whereas, 
the results are the same direction of the causal effect as the main result. From the results 
in Table 6, the main result (Table 5) is quite reasonable.

From the viewpoint of model selection, “Model 51” was selected for 2SRI 
and LIML (see also Appendix). According to Chen (2018), there are interactions 
between age and BMI; however, the interaction model was not selected. From the 
results of Chen (2018), younger subjects may display stronger interaction effects 
than older subjects, whereas our data included only subjects aged 40 years or older. 
Therefore, the interaction term may not be selected.

The above analyses have some limitations. First, as mentioned previously, only 
19 SNPs were used in our data analysis; thus, there may be some concerns about the 
weak IV problem. Cheng et al. (2019) used 52 SNPs; however, a critical limitation 
of this study is that only 19 SNPs were used in the analysis. Second, the sample size 
was limited for the dbGaP data. To overcome the weak IV problem, a large sample 
size is necessary for Mendelian randomization (Burgess et al. 2017). Therefore, the 
derived result may be inefficient and requires care when interpreting the results.

5 � Conclusion and future work

In this study, a binary outcome model with unmeasured covariates was considered. 
Two-stage residual inclusion (2SRI) is applied in this situation; however, some 
biased estimates may be derived (Basu et al. 2017). Therefore, limited-information 

Table 5   Summary of estimates of the causal effects (point estimates (95%CI))

Note1: Causal effects are estimated by G-computation (e.g., Hernán and Robins 2020).
Note2: The results are derived as difference from BMI = 18.5 to BMI = 25.Note3: 95%CI is derived 
from a bootstrap method. The sample size of bootstrap sample is 500, and the number of iteration is 
1,000

2SRI LIML Naive

Risk ratio 0.989 (0.907, 8.486) 1.896 (1.027, 2.407) 2.634 (1.948, 3.907)

Table 6   Summary of estimates of the causal effects by each sex (point estimates (95%CI))

Note1: The results are derived as difference from BMI = 18.5 to BMI = 25

Note2: 95%CI is derived from a normal approximation

Male Female

2SRI LIML 2SRI LIML

Risk ratio 2.952 (0.062, 139.543) 2.969 (2.921, 3.017) 2.397 (0.239, 24.006) 1.574 (1.552, 1.596)
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maximum likelihood (LIML), which has features similar to those of 2SRI, was also 
considered in this study. Since model selections are important to estimate unbiased 
causal effects, the AIC and BIC for 2SRI and LIML are considered in this study. 
From the simulation results, LIML with the AIC or BIC works well compared 
with using full models when an unmeasured covariate distribution is specified cor-
rectly, especially, overcoming the weak IV problem is an advantage of LIML. In 
contrast, 2SRI may derive biased or unstable estimates when there are only weak 
IVs or strong unobserved relationships between treatments and outcomes. 2SRI 
and LIML with the AIC were applied to the GENEVA Diabetes Study as Mende-
lian randomization. The results show that the causal effects are similar to those of 
previous research; however, there may be some concern about weak IV problems. 
From the above, we recommend that LIML with any model selection procedures is 
a good choice when there are binary outcomes and any concerns about unmeasured 
covariates.

As mentioned, the results are significant contributions in cases of unmeasured 
covariates and nonlinear outcomes because there has been no research on model 
selection procedures when both the true treatment model and the true outcome 
model need to be specified. However, several future studies should be conducted. 
First, only a binary outcome was considered in this study. Because 2SRI considers 
a likelihood in the 2nd step and LIML considers a full-likelihood, the method can 
be expanded to more complex models, for instance, a more general outcome of an 
exponential family or a time-to-event outcome (Kianian et al. 2019 and Martínez-
Camblor et al. 2019). In particular, LIML needs to consider likelihoods of both the 
outcome and treatment variables; however, the other restrictions are limited. For 
instance, LIML is not restricted to binary instrumental variables (Wang and Tchet-
gen 2018 and Kianian et al. 2019) or continuous treatment (Martínez-Camblor et al. 
2019). Therefore, LIML with any model selection procedures has great potential 
expandability. Next, the impact of the misspecification of an unmeasured covari-
ate distribution needs to be carefully confirmed. As the simulation results in Web 
Appendix C show, the impact may be limited; however, the estimation behavior in 
other cases is not clear. Therefore, it is necessary to continue with simulations to 
consider more varied situations.

A Supplementary information for simulations

Data generating programs, simulation datasets, simulation programs, simulation 
results, and programs for deriving tables and figures are available at the following 
URL:

•	 https://​drive.​google.​com/​file/d/​17nZl​a3cQD​YTvka-​260Ib​2Qc9X​Ujn3B​5o/​view?​
usp=​shari​ng

https://drive.google.com/file/d/17nZla3cQDYTvka-260Ib2Qc9XUjn3B5o/view?usp=sharing
https://drive.google.com/file/d/17nZla3cQDYTvka-260Ib2Qc9XUjn3B5o/view?usp=sharing
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A.1 Candidates of models

To select a treatment model and outcome model, the following candidate models are 
presented (Table 7):

Candidates for treatment models

W = �0 + z�1 + x2�2 + x3�3 +
(
z × x2

)
�4 +

(
z × x3

)
�5 +

(
x2 × x3

)
�6 + V

2SLS
2SRI:
AIC

2SRI:
BIC

LIMLE:
AIC

LIMLE:
BIC

2SRI:
Full model

LIML:
Full model
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Fig. 1   Boxplots of descriptive statistics for each estimator (continuous treatment and normal unmeasured 
covariates) 1/2
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Fig. 2   Boxplots of descriptive statistics for each estimator (continuous treatment and normal unmeasured 
covariates) 2/2
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Candidates for outcome models

A.2 Supplemental figures for continuous treatment and normal unmeasured 
covariates

B. Supplementary information for data analysis

B.1 Descriptions of GENEVA diabetes study datasets

The details of the GENEVA Diabetes Study are available at the following URL:

–	 https://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​
0091.​v2.​p1

There are two main genotype datasets and one phenotype dataset, named 
“phg000036v1,” “phg000048v1,” and “phenotype,” respectively. Note that the 
genotype datasets constitute one dataset per subject, and the data and subject IDs 
are connected through annotation files. The GENEVA Diabetes Study datasets are 
encrypted using the NCBI data encryption algorithm. To decode the encryption, the 
“SRA Toolkit” is required. The details of the data encryption are found at the fol-
lowing URL:

–	 https://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK57​0250/

B.2 Candidate models

See Table 8.

Candidates for treatment models

Candidates for outcome models

Y = 1
{
�0 + w�1 + x1�2 + x2�3 + x3�4 +

(
x1 × x2

)
�5 +

(
x1 × x3

)
�6 +

(
x2 × x3

)
�7 + U ≥ 0

}

BMI = �0 + SNPs �1 + age �2 + sex �3 + (age × sex)�4 + V

Diabetes = 1
{
�0 + BMI�11 + BMI2�12 + age �2 + sex �3 + (BMI × age)�4

+(BMI × sex)�5 + (age × sex)�6 + U ≥ 0
}

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000091.v2.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000091.v2.p1
https://www.ncbi.nlm.nih.gov/books/NBK570250/


261

1 3

Behaviormetrika (2023) 50:241–262	

Supplementary Information  The online version contains supplementary material available at https://​doi.​
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