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Abstract
This study introduces an innovative meta-analytic approach, two-stage multilevel 
meta-analysis that considers the hierarchical structure of single-case experimental 
design (SCED) data. This approach is unique as it is suitable to include moderators 
at the intervention level, participant level, and study level, and is therefore espe-
cially recommended for the meta-analyst interested in moving beyond estimating the 
overall intervention effectiveness. Using this approach, the between-participant vari-
ability and between-study variability in intervention effectiveness can be evaluated 
in addition to obtaining a generalized effect size estimate across studies. This is a 
timely contribution to the SCED field, as the source(s) of variability in effect size can 
be identified, and moderators at the corresponding level(s) (participant level and/or 
study level) can be added to explain the variability. The two-stage multilevel meta-
analytic approach, with the inclusion of moderators, can provide evidence-based 
recommendations about the effectiveness of an intervention taking into account 
intervention, participant, and study characteristics. First, a conceptual introduction 
to two-stage multilevel meta-analysis is given to provide a good understanding of 
its full potentials and modeling options. Second, the usage of this approach will be 
demonstrated by applying it to a published meta-analytic data set. The goal of this 
study is to disseminate the two-stage multilevel meta-analysis approach in the hope 
that SCED meta-analyst will consider this methodology in future meta-analyses.
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1 Introduction

Meta-analysis was first introduced in the Social and Behavior Sciences by Gene 
Glass at the Annual meeting of the American Educational Research Association 
in 1976 (Glass 1976). Since its introduction, meta-analysis has been widely recog-
nized as a powerful statistical analytic technique to summarize research evidence 
across studies (Borenstein et al. 2009a, b; Card 2016; Cooper 2017; Hedges and 
Olkin 1985; Lipsey and Wilson 2001; Sutton et  al. 2000). Meta-analysis is one 
subtype of research synthesis and should not be confused with the other subtypes 
such as narrative research review, informal vote counting (tallying significance), 
and formal vote counting (statistical analysis of significance) (Card 2016). Meta-
analysis is the statistical analysis of effect sizes (see Card 2016 for an in-depth 
discussion of the distinction between research synthesis subtypes). The goal of 
conducting a meta-analysis is to provide a complete overview of (published and 
unpublished) research evidence, meeting specific inclusion and exclusion criteria, 
related to a specific topic. In contrast to decision-making at the primary study 
level, meta-analysis can be used to provide more generalizable, precise, valid, and 
unbiased conclusions across all identified studies, and can provide explanations 
for variability in research evidence between studies through inclusion of mod-
erators (Borenstein et  al. 2009a, b; Van den Noortgate and Onghena 2008). It 
is informative to identify under which specific study design conditions an inter-
vention is proven effective. As the number of research reports, publications, con-
ference presentations, dissertations, etc. keeps on increasing exponentially, it is 
practically impossible for practitioners (e.g., politicians, clinicians, intervention-
ists, teachers, and researchers) to read all available evidence, and as such, meta-
analysis is needed and will continue playing a crucial role.

Current study introduces a promising and innovative meta-analytic approach that 
can be used to synthesize effect sizes obtained from primary studies using a single-
case experimental design (SCEDs). SCEDs are unique as these designs repeatedly 
gather observations for each study participant prior to the start of an intervention 
(i.e., baseline condition), and during/after the intervention (i.e., intervention condi-
tion). In that way, each participant serves as its own control (i.e., no matched com-
parison group is needed), and individualized data patterns can be observed (Lobo 
et al. 2017; Moeyaert et al. 2014). An example of typical SCED data is graphically 
displayed in Fig. 1. The raw data to create the graphical display were retrieved from 
a published SCED study (Saddler et al. 2017). The software program WebPlotDigi-
tizer was used to retrieve the raw data from the graph displayed in Saddler et  al. 
(2017) and the Shiny tool scdhlm (Pustejovsky et al. 2021) was used to recreate the 
graph. Saddler and colleagues examined the effects of a summarizing strategy inter-
vention on the quality of written summaries of children with emotional and behav-
ior disorders. The six study participants were repeatedly measured during a baseline 
condition (i.e., prior to the intervention) and during the intervention condition. This 
demonstrates the multilayered data structure of SCED studies; repeated observations 
(i.e., Level 1 = observation or measurement level) are nested within participants (i.e., 
Level 2 = case or participant level).
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Because of its unique features, the usage of SCEDs to investigate interven-
tion effectiveness is increasing exponentially (see Fig. 2a) in a variety of different 
fields such as rehabilitation, neurosciences, clinical psychology, and special edu-
cation (see Fig. 2b). As such, there is a need to quantitatively synthesize the find-
ings across primary SCED studies to identify evidence-based interventions, and 
make recommendations to the field. Together with the exponential growth, there 
is a growing demand for methodological sound meta-analytic techniques that can 
summarize findings from these type of studies. This allows to make inferences 
and decisions that are based on scientific evidence, which in turn informs prac-
tice, theory, and policy.

Fig. 1  Graphical display of data from a typical single-case experimental design study (Saddler et  al. 
2017)
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As the synthesis of SCED effect sizes is relatively new ground, we will first pro-
vide a brief introduction into SCED statistics. Then, we will transition into discuss-
ing an innovative meta-analytic technique, two-stage multilevel meta-analysis that 
can be used to summarize SCED statistics across studies. This technique considers 
the multilayered SCED meta-analytic data structure. Multilevel meta-analysis is the 
recommended meta-analytic technique as moderators related to the intervention, the 
participant, and study can be modeled.

1.1  Single‑case statistics

In preparation to run a meta-analysis, two summary statistics need to be retrieved 
or calculated from primary study information: (1) a summary statistic reflecting 
the size of the effect (preferably expressed on a standardized scale) and (2) a sum-
mary statistic reflecting the precision (Borenstein et al. 2009a, b; Card 2016; Cooper 
2017; Hedges and Olkin 1985; Lipsey and Wilson 2001; Sutton et al. 2000). These 

Fig. 2  a Overview of the Number of Published SCED Articles over Time (1983–2020) using the Web of 
Sciences, Keywords: TOPIC = (single-case experiment* OR single-subject experiment). b Overview of 
the number of published SCED articles for the 10 most popular fields, using the Web of Sciences, Key-
words: TOPIC = (single-case experiment* OR single-subject experiment)
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summary statistics can be directly retrieved if reported in the primary study or can 
be calculated by plugging in information into algebraic formulas (e.g., means, stand-
ard deviation, and standard deviations) programmed into specialized online calcula-
tors (e.g., web-based effect sizes calculator by Wilson: https:// www. campb ellco llabo 
ration. org/ resea rch- resou rces/ effect- size- calcu lator. html) or software programs (e.g., 
Review Manager 5, RevMan 5). In a next step, the effect sizes (i.e., summary sta-
tistics) can be combined using a fixed or random effects meta-analysis in which the 
precision (e.g., the inverse of the squared sampling variability) is traditionally used a 
weight (i.e., the lower the precision, the lower the weight assigned to the study, Lip-
sey and Wilson 2001). The effect sizes can take on a variety of different forms and 
are dependent on the primary study designs, the measurement scale of the dependent 
variable, and the available information reported in the primary studies. Guidelines 
and tutorials (e.g., Cochrane Handbook for Systematic Reviews of Interventions by 
Higgins et al. 2021; What Works Clearinghouse Procedures Handbook 2020), online 
calculators (e.g., Meta-Analysis Effect Size Calculator by Wilson), and specialized 
software programs (e.g., Review Manager 2020 and Borenstein et  al. 2013) have 
been developed to assist in selecting, calculating, and reporting effect sizes and their 
precision for a variety of different design types including group-comparison studies 
and observational studies. These resources, however, do not include the option to 
select the design: single-case experiment. In addition, major organizations such as 
the Cochrane and the Campbell collaboration provide specific trainings and materi-
als to calculate effect sizes and precision for designs other than single-case experi-
mental designs. Therefore, a brief overview of SCED statistics is provided first as 
this is needed to transition to meta-analysis of SCED effect sizes.

1.2  Non‑overlap statistics

Traditionally, intervention effectiveness is expressed in the form of the amount 
of overlap between baseline and intervention data, expressed as a percentage. 
The most popular one is the percentage of non-overlapping data (PND; Parker 
et  al. 2011; Scruggs et  al. 1987). The minimum (or maximum) baseline data-
point is extrapolated into the intervention phase, and the number of data points 
in the intervention condition below (or above) this extrapolated point is counted. 
The proportion of intervention data points below the extrapolated baseline point 
reflects the effectiveness of the intervention. Variations of this non-overlap sta-
tistic have been developed over the years to improve this non-overlap statistic. 
For instance, the percentage of data exceeding the median (PEM; Ma 2006; 
Parker et  al. 2011) extrapolates the median of all baseline data points into the 
intervention condition. Other non-overlap indices, such as the percentage of 
all non-overlapping data (PAND; Parker et  al. 2007, 2011), the percentage of 
non-overlap of all pairs (NAP; Alresheed et al. 2013; Parker and Vannest 2009; 
Parker et  al. 2011), and TauU (Fingerhut et  al. 2021; Parker et  al. 2011), have 
been developed to avoid relying on just one extrapolated data-point to make 
decisions about intervention effectiveness. Instead, all data points from the base-
line phase and the intervention phase are in a specific matter pairwise compared. 

https://www.campbellcollaboration.org/research-resources/effect-size-calculator.html
https://www.campbellcollaboration.org/research-resources/effect-size-calculator.html
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An in-depth overview and discussion of non-overlap statistics can be found in 
Parker et al. (2011). These non-overlap statistics do not reflect the sizes of the 
effect (only percentages are listed), and were not developed with respect to a 
sampling distribution that has desirable statistical properties. Previous meta-
analyses using non-overlap indices traditionally calculate the unweighted mean 
or median non-overlap statistic across all studies and report the range and quar-
tiles (Jamshidi et  al. 2021). For that reason, non-overlap statistics are not the 
best choice to be combined in a meta-analysis as appropriate weighting is lack-
ing. In addition, the magnitude of the size of the intervention effect is missing 
and as such it is challenging to infer clinical significance.

1.3  Regression‑based statistics

In contrast to the non-overlap statistics, regression-based statistics are consid-
ered to be “true” effect sizes (APA, 7th edition). The regression-based statis-
tics express the magnitude of the intervention effect, and have a well-established 
sampling distribution with desirable statistical properties. As such, a measure 
of precision is obtained which is needed to appropriately weight the contribu-
tion of individual effect sizes to the overall effect sizes estimate across studies. 
The appropriate statistical model to quantify the difference in baseline mean and 
intervention mean can be expressed as follows:

where  et is an independent Gaussian error term with mean 0 and variance �2
e
 . 

Let  Phaset be an indicator variable for the phase of the experiment, with 0 denot-
ing the baseline and 1 denoting the intervention. Let t = 1, 2, …, T be index time, 
and  Yt be the outcome variable observed at time t. By running this regression 
model, �1 represents the unstandardized mean difference between baseline and 
intervention outcome level. As such, �1 reflects the effect size, and the inverse 
of its standard error reflects the precision. These summary statistics can be 
obtained for each of the participants and used as input for the meta-analysis. The 
simple OLS regression model (Eq. 1) can be extended to a piecewise regression 
model. This allows to model a trend line in the baseline condition, which can be 
extrapolated into the intervention. A different time trend can be modeled in the 
intervention phase (interaction between time and phase). The intervention effect 
can be conceptualized as the expected difference in outcomes using the extrapo-
lated baseline trend and the actual estimated intervention trend at a chosen point 
in the intervention phase: �1,t = E(Y|T = t, Phase = 1) − E(Y|T = t, Phase = 0). 
The estimated effect size at intervention session 1, 2, and 3 is graphically dis-
played in Fig. 3, using the data from Participant 6 (see Fig. 1) from Saddler et al. 
(2017). Similarly, the regression coefficient estimate at a particular point into the 
intervention phase and its precision can be used as input in the meta-analysis.

(1)Yi = �0 + �1 Phaset + et,
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1.4  Multilevel meta‑analysis of single‑case experimental data

When meta-analyzing SCED studies including multiple participants, three hierarchi-
cal levels can be distinguished: repeated measurements are nested within partici-
pants, which are nested within studies (Van den Noortgate and Onghena, 2003a, b, 
2007, 2008). Traditional meta-analytic techniques in which a summary statistic and 
precision at the study level are used as input of the meta-analysis are not appropriate 
as dependency between effect sizes within a study is ignored. Previous methodologi-
cal research by Van den Noortgate et al. (2005) indicated that ignoring a level (and 
as such ignoring a source of dependency) results in too small standard errors (i.e., 
over estimating the precision) of the estimated effect size across studies and as such 
inflated Type I errors are obtained (i.e., false positive: falsely concluding that an 
intervention is statistically significant). Therefore, Van den Noortgate and Onghena 
(2008) introduced the three-level meta-analytic model. To prepare for the SCED 
meta-analysis, an effect size (together with its standard error/precision) for each of 
the participants within a primary SCED study needs to be calculated. A standard-
ized mean difference as effect size for each of the participants (which is different 
from Glass’ Δ , Cohen’s d, and Hedges’ g from group design studies) can be obtained 
from a regression coefficient ( �1 in Eq. 1). This is possible as raw data for each of 
the participants can be retrieved from the time-series graphs traditionally displayed 
in SCED studies (see Fig. 1 for an example). Specialized data retrieval software pro-
grams (e.g., WebPlotDigitizer, Ungraph, DataThief, and XYit) can be used for this 
purpose (see Moeyaert et  al. 2016 for details about these programs and the data 
retrieval process). The raw SCED data can be used as input to run the regression 
model per participant (Eq.  1) and obtain an estimate of the regression coefficient 
reflecting the difference in means between baseline and intervention outcome level. 
However, the obtained regression coefficient is not on a standardized scale, which is 
recommended, as the scale of the outcome is unlikely to be the same across partici-
pants and studies being aggregated. Van den Noortgate and Onghena (2008) intro-
duced a standardization method which was later empirically validated by Ugille 
et al. (2012) and Moeyaert et al. (2013a). The standardized effect size is obtained by 
dividing the estimated regression coefficient, �̂1 by the estimated within-participant 
residual standard error, �̂e : b1 =

�̂1
�̂e

 . Subsequently, the estimated standardized mean 
difference and standard error for each of the participants can be used as input to run 
a three-level meta-analysis. Because this approach involves (1) a pre-processing 
stage and (2) a meta-analytic stage, it can be best understood as a two-stage 

Fig. 3  Graphical display intervention effect size using the piecewise regression model. Data are dis-
played for one participant from Saddler et al. (2017)
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multilevel meta-analysis (2-Stage MLM) or SCED data. For a detailed introduction 
to 2-Stage MLM, we refer the reader to Declercq et al. (2020). The possibility of 
including moderators to explain heterogeneity in effect sizes was not discussed by 
Declercq et al. (2020), and will be introduced in this study. Before transitioning to 
2-Stage MLM with the inclusion of moderators, we will provide a discussion of 
moderators typically encountered in context of SCED meta-analyses in the social 
and behavior sciences.

1.5  Single‑case meta‑analyses and moderators

Previous systematic reviews of SCED meta-analyses (Moeyaert et  al. 2021a, b; 
Jamshidi et al. 2021) indicate that there is an interested in explaining heterogeneity 
in SCED effect sizes estimates between participants and between studies through 
exploring moderators. SCED meta-analyses commonly report moderators related to 
the intervention (e.g., dosage if the intervention), participants (e.g., disability sta-
tus), and/or primary SCED studies (e.g., study quality). A complete overview and 
description of moderator characteristics can be found in Moeyaert et al. (2021a, b). 
The systematic review (Moeyaert et al. 2021a, b) report that the most commonly dis-
cussed intervention-level moderator is intervention program (e.g., video modeling 
program versus visual cueing program), the most frequently used participant-level 
moderator is participant’s age, and the most commonly encountered study-level 
moderator is study design (e.g., multiple baseline design, reversal design, and alter-
nating treatment design). The most frequently used measurement scale of modera-
tors at all three levels is nominal.

As moderator characteristics are commonly reported in primary studies, there is 
an opportunity to run moderator analyses at the meta-analytic level. The systematic 
review of Jamshidi et  al. (2021) found that 73% of the 178 SCED meta-analyses 
they reviewed (published between 1985 and 2015) did a moderator analysis. The 
majority of these meta-analyses simply reported the average effect size per level of 
the moderator. For instance, the average PND is calculated for male and female par-
ticipants separately. Only 10% of the SCED meta-analyses applied multilevel analy-
sis to synthesize raw SCED data with the inclusion of moderators. None of these 
studies used two-stage MLM which is the approach recommended in current study. 
A subsequent systematic search (Moeyaert et al. 2021a, b) was conducted by repli-
cating the process by Jamshidi et al. (2021) to investigate SCED meta-analysis pub-
lished after 2015 (until 2020). The search found that 41 meta-analyses of SCEDs 
discussed and analyzed moderators, while only five SCED meta-analysis used multi-
level modeling to summarize the SCEDs including moderators.

Taken together, the importance of analyzing moderators in meta-analyses of 
SCEDs has been largely recognized. However, most of the existing SCED meta-
analyses examined the moderators by aggregating moderators, and reporting aver-
age effect sizes per moderator level. Consequently, heterogeneity in effect sizes 
between participants and between studies remains unexplored. To address this issue, 
a meta-analytic approach is needed that accounts for the hierarchical SCED meta-
analytic data structure, with the option to include moderators. As such, moderators 
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at their appropriate level (observation level, participant level, and study level) can 
be modeled accordingly. The three-level modeling approach, as introduced by Van 
den Noortgate and Onghena (2008) and empirically validated by Moeyaert et  al. 
(2013a, b), is recommended. For a detailed systematic introduction to the basics of 
three-level multilevel modeling of SCED studies, we refer the reader to Moeyaert 
et al. (2014). For an extension of the basic model in which one-stage versus two-
stage multilevel meta-analysis of SCED studies is discussed, we refer to Declercq 
et  al. (2020). In this study, we will extend the two-stage multilevel meta-analysis 
to accommodate moderators at the observation (i.e., intervention), participant, and 
study levels.

2  Methodology

2.1  Two‑stage multilevel meta‑analysis: unconditional model

The unconditional model is also known as the baseline model, intercepts only 
model or the model not including any moderators (Raudenbush and Bryk 2002). 
This model estimates the total amount of variability in effect size estimates, and the 
amount of variability at the participant and study level. This informs whether there 
is a need to explore moderators, and at which level of the model the moderators are 
needed. The moderators might be able to explain variability in obtained effect sizes 
at the participant and/or study level. The pre-processing step (stage 1 of the 2-stage 
MLM) provides an estimate of the participant-specific standardized regression coef-
ficient reflecting the effect sizes, b1jk , and the within-participant residual standard 
deviation, �r1jk . The following simple ordinary least square regression model can be 
used for this purpose:

Pre-processing model:

yijk indicates the outcome score at measurement occasion i for participant j who 
is nested within study k. Phaseijk is a dummy variable indicating whether yijk is an 
intervention observation ( Phaseijk = 1) or intervention observation ( Phaseijk = 1). 
Therefore, b1jk indicates the intervention effect. Next, b1jk is a function of the true 
participant-specific effect size �1jk and the residual standard deviation is assumed to 
be known (obtained from the pre-processing step in Eq. 2):

Level 1—observation level:

Next, the participant-specific population effect sizes, �1jk’s, are assumed to vary 
between participants as it is unlikely that the intervention effect is identical across 
participants. The participant-specific effect sizes are a function of the study-specific 
effect sizes ( �10k’s) and a participant-specific deviation ( u1jk) from the study-specific 
effect size. With other words, the effect size for participant j within study k depends 
on the overall effect size across all participants nested within study k ( �10k ), and the 

(2)yijk = b0jk + b1jkPhaseijk + r1jk with rijk ∼ N(0, �2

r
);

(3)b1jk = �1jk + r1jk.
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deviation of participant j from the overall effect size ( u1jk) . The deviations are 
assumed to be normally distributed with a variance of  �2

u1jk
 (i.e., the between-partici-

pant variance in effect sizes).
Level 2—participant level:

Similarly, the study-specific effect sizes are likely to vary between studies and 
therefore a third level is needed. �100 is the overall effect sizes across all studies. 
Study-specific effect sizes, �10k’s, are a function of this overall effect sizes and a 
study-specific deviation (v10k) . The deviations are assumed to be normally distrib-
uted with a variance of  �2

v10k
 (i.e., the between-study variance in effect sizes).

Level 3—study level:

The research synthesis is interested in the estimate of (1) �100 , reflecting the effec-
tiveness of the intervention across all participants and all studies, and (2) �2

v10k
  and 

�2
u1jk

 indicating the amount of variability in intervention effectiveness between stud-
ies and participants, respectively.

2.2  Two‑stage multilevel meta‑analysis: conditional model

A conditional two-stage multilevel meta-analytic model can be built in an effort to 
explain heterogeneity in intervention effectiveness. The multilevel meta-analytic 
approach is recommended for the synthesis of SCED studies as this approach con-
siders the uniqueness of SCED studies: observations are nested within participants 
and participants are nested within studies. This allows to estimate heterogeneity in 
effect sizes between participants, and to model participant moderators instead of 
using aggregated moderators at the study level (e.g., Zelinsky and Shadish 2018). 
It is important to differentiate between the different levels, as an intervention can 
be large and statistically significant at the study level, but highly variable at the par-
ticipant level. This indicates that the intervention is not effective for all participants, 
and making inferences and recommendations about intervention effectiveness while 
ignoring individual differences is problematic. There is a need to identify for whom 
is this intervention working, and under which conditions. If the unconditional model 
provides evidence for heterogeneity at the participant and/or study level, promising 
moderators (based on previous research/practice) can be considered at the appropri-
ate level. The level-2 equation can be extended to model a participant moderator in 
an effort to explain variability in intervention effectiveness between participants. For 
instance, a researcher might add the moderator gender to the participant level as pre-
vious research evidence suggests that the intervention is more successful for female 
compared to male participants:

Level 2—participant level:

(4)�1jk = �10k + u1jk with u1jk ∼ N
(
0, �2

u1jk

)
.

(5)�10k = �100 + v10k with v10k ∼ N
(
0, �2

v10k

)
.
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Gender can be coded as a dichotomous variable, Female in Eq. (5), equaling 0 for 
male and 1 for female study participants. �10k indicates the intervention effect for 
male participants in study k, �11k reflects the difference in intervention effectiveness 
between male and female study participants in study k, and �10k+�11k is the interven-
tion effect for female participants in study k. The estimated between-participant vari-
ance, �2

u1jk
 , obtained by the unconditional model and the conditional model can be 

compared to evaluate whether the moderator gender decreased the amount of hetero-
geneity at the participant level. Similarly, moderators at the third level can be con-
sidered to explain heterogeneity in effect sizes between studies. For instance, a 
researcher might be interested in adding study quality as a study-level moderator 
(based on previous evidence in the field, it is assumed that lower quality report 
higher effect sizes):

Level 3—study level:

Following the recommendations by the What Works Clearinghouse standards 
(WWC 2020) for SCEDs, study quality can be coded as (1) not meeting the quality 
standards, (2) meeting the standards with reservations, and (3) fully meeting the 
standards. According to the WWC standards, only SCED studies meeting the stand-
ards with reservations and fully meeting the standards should be considered for 
inclusion in the meta-analysis. Instead of excluding the studies not meeting the 
standards, a dummy-coded study-level moderator can be added with 0 indicating not 
meeting the standards and 1 reflecting studies meeting the standards (with or with-
out reservation). �100 indicates the intervention effect across all studies for low-qual-
ity studies, �101 reflects the difference in intervention effectiveness between low- and 
high-quality studies, and �100+�101 is the intervention effect for high-quality studies. 
The estimated between-study variance, �2

v1jk
 , between the unconditional model and 

the conditional model can be compared to evaluate whether the moderator, study 
quality, decreases the amount of heterogeneity at the study level. The combined 
three-level multilevel meta-analytic model can be obtained by inserting equations 
[Eqs. (6) and (7)] in Eq. (3)

Besides the two main effects ( �100, �101) , cross-level interaction effects of the mod-
erators can be looked at ( �110, �111 ). Note that we only discussed coding and modeling 
of dichotomous moderators as a previous systematic review of moderators for SCED 
meta-analysis indicates that these are the most commonly used measurement scale 
moderators (Moeyaert et  al. 2021a, b). However, if a nominal moderator with more 
than two categories is of interest, then this moderator can be recoded into a number of 
dummy-coded moderators (= total number of categories -1). If a continuous moderator 
is of interest, then it is recommended to center participant moderators around the study 

(6)�1jk = �10k + �11kFemale11k + u1jk with u1jk ∼ N
(
0, �2

u1jk

)
.

(7)�10k = �100 + �101Quality101 + v10k with v10k ∼ N
(
0, �2

v10k

)
.

(8)
b1jk = �100 + �101Quality101 + (�110 + �111Quality111 + v11k)Gender11k + v10k + u1jk + r1jk.
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mean, and to center study-level moderators around the grand mean. For more informa-
tion about coding moderators, see Raudenbush and Bryk (2002).

For simplicity and didactic purposes, only one intervention effect size of interest is 
combined across participants and across studies and one moderator at the higher lev-
els is modeled. The level-1, level-2, and level-3 equations can easily be extended by 
including additional effect sizes. For instance, using a piecewise regression model in 
the pre-processing stage results in multiple effect sizes (see graphical display in Fig. 3) 
that can be combined across participants and studies (see Ugille et al. 2012). In addi-
tion, more than one moderator at the higher levels can be included. In the current study, 
we focus on combining one intervention effect size (regression-based standardized 
mean difference), and we consider multiple moderators at level-2 and one moderator at 
level-3. The model can easily be extended by modeling P number of participant-level 
moderators at level-2 and Q number of study level moderators at level-3. Equations (8) 
and (9) reflect the general equations that can be used to model P number of Z and B 
refer to the level-2 and level-3 moderators, respectively.

Level 2—participant level:

Level 3—study level:

The combined model as a combination of the level-1, level-2, and level-3 equations 
can easily become very complex. In this study, we provide a demonstration of the usage 
of the two-stage multilevel meta-analytic approach by including one moderator at each 
of the higher levels. A published meta-analytic data set will be used for this purpose. 
The goal of this paper is to provide a conceptual introduction to this meta-analytic 
approach, so that meta-analysts fully understand its potentials.

(9)�1jk = �10k +

P∑

p=1

�1pkZ1pk + u1jk with u1jk ∼ N
(
0, �2

u1jk

)
.

(10)�10k = �100 +

Q∑

q=1

�10qB10q + v10k with v10k ∼ N
(
0, �2

v10k

)

�11k = �110 +
Q∑
q=1

�11qB11q + v11k with v11k ∼ N
�
0, �2

v10k

�

�12k = �120 +
Q∑
q=1

�12qB12q + v12k with v12k ∼ N
�
0, �2

v10k

�

⋯

�1pq = �1p0 +
Q∑
q=1

�1pqB1pq + v1pk with v1pk ∼ N
�
0, �2

v10k

�
.
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3  Demonstration and application: usage of two‑stage multilevel 
modeling

The three steps involved in two-stage multilevel meta-analysis of SCED studies are 
demonstrated using a published meta-analytic data set (Moeyaert et al. 2019). These 
three steps involve (1) pre-processing, (2) unconditional model, and (3) conditional 
model. An overview of the obtained parameter estimates together with interpreta-
tions in context of the study is provided.

3.1  Introduction of empirical example

Moeyaert et  al. (2019) synthesized SCED studies to examine the effectiveness of 
peer-tutoring interventions on both academic and social-behavior performance 
for at-risk students and students with disabilities. The study authors used a three-
level hierarchical linear model to evaluate the effectiveness of peer-tutoring, and to 
explain heterogeneity in effect sizes at the participant and study level by including 
moderators. In their study, the authors combined raw data from primary SCEDs 
instead of combining effect sizes and as such ran a one-stage multilevel meta-
analysis (i.e., the pre-processing step is not included). Declercq et  al. (2020) rec-
ommend two-stage multilevel meta-analysis to reduce model complexity and avoid 
convergence issues is multiple moderators are considered. This was not considered 
by Moeyaert et  al. (2019). The participant-level moderators include age and gen-
der, and the study-level moderator is study quality. Moeyaert et  al. (2019) found 
that peer-tutoring interventions have a statistical significant effect on academic ( � = 
4.18, SE = 1.74, p = 0.02) and social-behavior performance ( � = 1.84, SE = 0.47, 
p = 0.001) for at-risk students and students with disabilities; and the authors also 
uncovered that participant-level and study-level moderators can reduce some of the 
between-participant and between-study variance in the effectiveness of peer-tutor-
ing interventions, although the effects of moderators were not statistically signifi-
cant (all ps > 0.05). The authors acknowledge that lack of statistical significance can 
be due to lack of statistical power. By combining effect sizes instead of raw data, 
the meta-analytic model is simplified and as such has more power to identify true 
moderator effects. We will demonstrate the two-stage multilevel modeling approach 
using solely the academic outcome scores. Some of the primary studies did not 
include information related to the moderators’ age or gender and as such needed to 
be excluded from the analysis. The study quality was rated for each of the primary 
studies by Moeyaert et al. (2019), so all information was available for that modera-
tor. This results in 26 primary studies, with a total of 222 participants, available for 
the empirical demonstration.

3.2  Pre‑processing

As explained in Methods section, a simple OLS regression model is run for 
each of the 222 study participants separately. The regression coefficients and 
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the precision are standardized and saved in a separate data set, and are used as 
input of the multilevel meta-analysis. Figure  4 displays a visualization of the 
structure of the obtained data set; each row represents the participant-specific 
effect size, and precision, and a study ID and Case ID (i.e., participant ID) are 
also assigned. In a next step, the moderators’ age, gender, and study quality 
are merged to this data set. The full data set, including the moderators, can be 
requested by contacting the first author.

To obtain a better understanding of the magnitude and distribution of the 
effect sizes, a boxplot is created, which is displayed in Fig. 5. The unweighted 
mean and median effect size across all studies is 1.46 and 1.20, respectively. The 
skewness and Kurtosis statistics are 0.67 and 0.90, respectively, which indicates 
that the distribution of effect sizes does not deviate significantly from normality. 
The range is 14.52 (min = − 4.53, max = 9.99), and the SD is 2.62.

In addition, the distribution of effect size estimates per study is visualized 
in Fig. 6. This provides preliminary evidence that heterogeneity in effect sizes 
between studies is to be anticipated as the mean effect size per study varies 
tremendously. In addition, there is a lot of variability in effect size estimates 
observed within the studies. This can be deduced by analyzing each of the box-
plots displayed in Fig. 6 separately.

3.3  Unconditional model

First, the unconditional multilevel meta-analytic model is run (i.e., baseline or 
intercepts only model) to investigate (1) the effectiveness of peer-tutoring inter-
ventions to increase academic outcomes (i.e., estimate of �100 ) and (2) variability 
in effect size estimates between participants and/or studies (i.e., estimate of �2

u1jk
 

and �2
v10k

 , respectively). The following unconditional model is ran in SAS 9.4 
(SAS Institute Inc. 2014) using the PROC MIXED statement:  
b1jk = �100+v10k + u

1jk with u1jk ∼ N
(
0, �2

u1jk

)
 and v10k ∼ N

(
0, �2

v10k

)
 . Based on pre-

vious methodologic work in context of multilevel meta-analysis of SCEDs, the 
Restricted Maximum-Likelihood estimation procedure is specified, and the 
degrees of freedom are estimated using the Kenward–Roger approach (Ferron 
et  al. 2010). The estimated standardized intervention effect across all studies 
equals 1.67 [ ̂�100 = 1.67, SE = 0.49, t(24.5) = 3.41, p = 0.0022]. This indicates 
that, in general, peer-tutoring increases the academic performance by 1.67 
standardized units. However, the effectiveness of the peer-tutoring intervention 
varies between studies [ ̂�2

v10k
 = 5.58, SE = 1.75, Z = 3.18, p = 0.0007] and between 

participants within studies [ ̂�2
u1jk

 = 1.72, SE = 0.28, Z = 6.13, p < 0.00001]. This 
indicates that some participants might benefit from the intervention, whereas 
others’ academic performance does not increase, or even decreases (which is 
problematic). Before recommending the peer-tutoring intervention to the broader 
field, it is important to have a good understanding of who is benefitting from the 
intervention. This will be explored in the next section.
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Fig. 4  Results pre-processing step of the two-stage multilevel meta-analysis
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3.4  Conditional model

Similar to the unconditional model, the conditional models are run in SAS 9.4 (SAS 
Institute Inc., 2014) using the PROC MIXED statement. The restricted maximum 
likelihood is specified, and the Kenward–Roger method for estimating the degrees of 
freedom is used.

Fig. 5  Distribution of effect size estimates

Fig. 6  Distribution of effect size estimates per study
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3.4.1  Participant moderator

Based on the previous research (Moeyaert et  al. 2019), it can be assumed that 
peer-tutoring interventions are likely to be more effective for older children. The 
average and median age across all 222 participants is 9 and 8, respectively, and 
the age ranges from 5 to 20. A graphical display of the distribution of age is pro-
vided in Fig. 7a. Because some of the age groups have a limited amount of partic-
ipants and some ages are not included, we first dichotomized the moderator age. 
Participants younger than 9 are categorized as “young” (age = 0) and participants 

Fig. 7  a Distribution of age across the 222 participants. b Distribution of effect sizes for younger versus 
older children
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ages 9 or older are categorized as “old” (age = 1). The “young” age group has 113 
participants and the “old” age group has 109 participants. Figure 7b provides a 
graphical display of the distribution of the effects sizes per age group.

For the older age group, the average and median intervention effect equals 1.51 
and 1.26, respectively, and varies from − 4.30 to 9.99. For the younger age group, 
the average and median intervention effect equals 1.40 and 0.88, respectively, and 
varies from − 4.53 to 8.55. This provides preliminary evidence in support of the 
hypothesis that peer-tutoring interventions are more effective for older children. 
However, this preliminary explorative analysis at the primary study level can be 
misleading as variability within and between studies is not taken into considera-
tion. Unfortunately, this is what has been traditionally done in the previous SCED 
meta-analyses (Jamshidi et  al. 2021). To investigate whether the peer-tutoring 
intervention has a differential impact on academic outcomes for older versus 
younger students at the meta-analytic level, age is added as a level-2 moderator, 
and the following combined meta-analytic model is run: 
b1jk = �100+�200Age11k+v10k + u

1jk + r1jk . �100 reflects the intervention effect for 
young children, and �200 indicates the difference in intervention effectiveness 
between younger and older children. In addition, it can be evaluated whether the 
estimated between-participant variability in intervention effectiveness, �̂2

u1jk
 , 

decreases with the addition of the moderator. The results indicate that the inter-
vention has a significant impact on academic outcomes for young children [ ̂�100 = 
2.06, SE = 0.61, t(40.6) = 3.37, p = 0.0016], and there is no statistically significant 
difference in intervention effectiveness between younger versus older participants 
[ ̂�200 = −  0.67, SE = 0.63, t(143) = −  1.05, p = 0.29]. The effectiveness of the 
intervention for older children is estimated to be 2.06–0.67 = 1.39. By adding the 
moderator age as a dichotomous variable, the estimated between-participant vari-
ability ( ̂�2

u1jk
 ) is not reduced and remains around 1.72.

Dichotomizing a continuous variable is not recommended as this changes the 
measurement scale of the variable, and omits information. Therefore, we re-ran 
the meta-analysis by including age as a continuous variable. Because age is con-
tinuous variable (expressed in years), it is centered around the study average age 
(per recommendation of Raudenbush and Bryk 2002). Therefore, �100 reflects the 
intervention effect for students at the average study age, and �200 indicates the 
change in effectiveness of the intervention between students being one year apart 
in age. In addition, it can be evaluated whether the estimated between-partici-
pant variability in intervention effectiveness, �̂2

u1jk
 , decreases with the addition of 

the moderator age as a continuous variable. The results indicate that the inter-
vention has a significant impact on academic outcomes for students at the aver-
age study age [ ̂�100 = 1.52, SE = 0.50, t(26.7) = 3.04, p = 0.0053], and that the 
intervention is more effective for older participants, although this is not statisti-
cally significant [ ̂�200 = 0.14, SE = 0.08, t(220) = 1.74, p = 0.08]. The effective-
ness of the intervention for students 1 year older compared to the study average 
is estimated to be 1.52 + 0.14 = 1.66. By adding the moderator age as a continu-
ous variable, the estimated between-participant variability ( ̂�2

u1jk
 ) becomes 

almost 20 times smaller compared to the baseline model. In the baseline model, 
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�̂2
u1jk

 was 1.72 and statistically significant, whereas in the conditional model, the 
�̂2
u1jk

 is reduced to 0.089. The between-participant variability is small and is not 
statistically significant (�̂2

u1jk
 = 0.089, SE = 0.07, Z = 1.35, p = 0.09). Therefore, no 

additional participant-level moderators will be added to the conditional model. 
Although the moderator is not significant, it explains a significant amount of 
between-participant variability. This empirical illustration highlights that coding 
selected moderators need to be carefully considered as they influence the inter-
pretation of the estimated parameters.

3.4.2  Study and participant moderator

By including age as a participant-level moderator, heterogeneity in effect sizes 
between studies does not change and remains to be explored. In an attempt 
to explain variability at the study level, study quality seems to be a prom-
ising variable and is added to the model. Study quality is coded as a dummy 
variable with 0 indicating low-quality studies (i.e., not meeting the WWC 
design standards) and   1 indicating moderate/high-quality studies (i.e., meet-
ing the WWC design standards with or without reservation). The multi-
level meta-analytic model with age as a second-level continuous modera-
tor and quality as a third level dichotomous moderator looks as follows: 
b1jk = �100+�101Quality101 + �

200
Age11k+v10k + u

1jk + r1jk . �100 indicates the inter-
vention effect for low-quality studies, and participants at the study average age; 
�101 reflects the difference between low- and moderate/high-quality studies (con-
trolling for age), and �200 indicates the influence of participant’s age on the inter-
vention effectiveness (controlling for study quality). The estimated interven-
tion effect for low-quality studies, and students at the average study age equals 
1.74 and remains statistically significant [ ̂�100 = 1.74, SE = 0.57, t(41.7) = 3.06, 
p = 0.0038]. Controlling for study quality, the influence of age on intervention 
effectiveness remains 0.14. As anticipated, the higher the quality of the study, the 
lower the intervention effectiveness (controlling for participant’s age). However, 
this moderator effect is not statistically significant [ ̂�101 = −  0.27, SE = 0.35, 
t(219) = −0.78, p = 0.43]. Therefore, it is not surprising that the between-study 
variance in intervention effectiveness is not reduced by including quality as a 
study moderator. It is recommended to explore alternative promising study mod-
erators. Unfortunately, Moeyaert et al. (2019) did not report information about 
other study-level moderators, and therefore, we could not furtherexplore this. 
In addition, meta-analysts dependent on information reported by primary study 
authors. Unfortunately, information related to moderators can be missing in pri-
mary SCED studies, or not reported in a useful way. Therefore, Moeyaert et al. 
(2019) could not code additional moderators. Specific guidelines to report mod-
erators in primary SCED studies can help addressing this issue. For instance, 
SCED researchers could be encouraged to report specific moderator information 
by including this as a quality criterion in checklists. SCED primary studies can 
receive a higher quality ratings if moderator information is reported.
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4  Discussion

There is an increased interest in using single-case experimental design studies to 
evaluate and quantify intervention effectiveness. This results in increased opportuni-
ties to summarize intervention effects across studies and help identifying effective 
evidence-based interventions. The multilevel meta-analytic technique is promising 
and has been empirically validated (Declercq et al. 2020; Moeyaert et al. 2013a, b; 
Ugille et al. 2012). However, one complexity that has not been studied is the use of 
two-stage multilevel meta-analysis to estimate the influence of participant and study-
level moderators on intervention effectiveness. This is of crucial importance to make 
appropriate inferences about intervention effectiveness (for whom is the interven-
tion working, and under which conditions?). This study was designed to provide an 
introduction to two-stage multilevel meta-analysis, and demonstrate its usefulness 
to explain intervention heterogeneity by adding moderators. The uniqueness of this 
model is that the multilayered SCED meta-analytic structure is taken into account 
and as such moderators at the appropriate participant and study level can be added.

Future methodological research is needed to investigate the statistical properties 
of the model under a variety of complex design conditions (i.e., non-linear trends, 
autocorrelation, cross-level interactions, etc.). Additional research is needed to 
investigate whether there is a limit to the number of participant-level and study-level 
moderators that can be added to the model, taking the specific small-n characteris-
tics of SCED meta-analyses into account. Further methodological research is needed 
to investigate the power to estimate intervention and moderator effects, given repre-
sentative conditions for the field of SCED meta-analyses. Recently, Moeyaert et al. 
(2021a, b) published a study discussing these conditions and this can be used to 
design a future Monte Caro simulation study. Moeyaert et al. (2021b) conducted a 
large-scale Monte Carlo simulation study to investigate the power of the two-level 
hierarchical linear model to estimate moderators and intervention effects for primary 
SCED studies. The sizes of the intervention and moderator effects in Moeyaert et al. 
(2021b) are comparable to the values found in the current study. They found that 
the more moderators added to the model, the more participants needed to detect the 
effects of intervention and moderators with sufficient power. If studies include one 
moderator (nominal with two categories), at least 12 participants are needed to have 
enough power to capture the intervention effect, while the same studies not only 
need at least 12 participants but also require a large moderator effect to detect the 
moderator effect with sufficient power. If including more moderators, at least 20 par-
ticipants are needed to have sufficient power to detect the intervention and/or mod-
erator effects. The study of Moeyaert et al. (2021b) can be further expanded upon by 
adding an additional level. A user-friendly tool to pre-process the data, and run the 
unconditional and conditional two-stage multilevel models is another idea for future 
research. Xu et  al. (2021) developed a user-friendly Shiny tool “PowerSCED” to 
estimate the power of the two-level model to estimate study-level intervention effect 
and participant moderators. This tool can be further expanded for meta-analytic 
purposes.
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