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Abstract
Incorrect options for multiple-choice questions are often intentionally included so 
that they may be selected by an examinee who possesses a misconception. Deter-
mining whether an examinee possess a misconception is useful for educational pur-
poses. In the present paper, two statistical models that can estimate examinees’ pos-
session of misconceptions by analyzing multiple-choice data, which are unscored 
data were developed. By converting multiple-choice data to binary data, which are 
scored data ( 1 = correct, 0 = incorrect), the Bug-DINO model can estimate exami-
nees’ possession of misconceptions. However, converting multiple-choice data to 
binary data causes a loss in information, because which incorrect option an exami-
nee chooses is important information for an examinee’s knowledge state. The three 
models (two developed models and the Bug-DINO model) are compared in a simu-
lation study, and the developed models are applied to the Reading Skill Test data.

Keywords  Multiple-choice item · Cognitive diagnosis model · Misconception · 
DINO model

1  Introduction

To date, a number of cognitive diagnosis models (CDMs) have been developed, 
including the deterministic input noisy output “AND” gate (DINA; Junker and 
Sijtsma 2001) model, the reduced reparameterized unified model (R-RUM; Hartz 
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2002), the deterministic input noisy output “OR” gate (DINO; Templin and Hen-
son 2006) model, the noisy input deterministic output “AND” gate model (NIDA; 
Maris 1999), the additive CDM (A-CDM; de la Torre 2011), the linear logistic 
model (LLM; de la Torre and Douglas 2004), and the CDM for continuous response 
(Minchen et al. 2017). These models estimate examinees’ mastery or non-mastery of 
skills (referred to as “attributes”) that are needed to answer items correctly.

A Q-matrix plays an important role in CDMs. The number of rows of the matrix 
is the number of items in a test, and the number of columns is the total number of 
skills needed to correctly answer the items in a test. The elements of a Q-matrix ( qjk ) 
are 0 or 1. If the element is 1, item j needs skill k to answer correctly, otherwise it 
is 0. The observed variable in usual CDMs is Yij , which is 1 if examinee i correctly 
answers item j, otherwise Yij is 0. Cognitive diagnosis models use a Q-matrix and 
analyze Yij and then output whether examinee i has each skill, by 1 or 0.

Recent studies (DiBello et al. 2015; Kuo et al. 2016, 2018) have focused on not 
only skills but also misconceptions, which means that examinees have acquired 
incorrect knowledge. For example, consider the item shown in Fig.  1. This item 
examines the skill of recognizing the dependency relations between words and 
phrases in a given sentence (Arai et al. 2017). This item is one of the example items 
in the Reading Skill Test in Japan (https​://www.s4e.jp/). When two clauses are 
related to each other in one sentence to create the meaning of a sentence, such as the 
relation between a subject and a predicate, and a modifier and a modified word, the 
preceding clause is related to the latter. The item shown in Fig. 1 examines whether 
an examinee has the skill of recognizing such relations. More specifically, this item 
asks whether an examinee correctly recognizes the relations between “Christianity” 
and “Oceania”.

The correct option is B (Christianity). If an examinee selects C (Islam), he/she 
may possess the misconception that the nearest word is the subject, which means 
that the examinee misunderstands the relations between words such that the sub-
ject is the nearest word in the sentence to the word being asked about the relation 
(in this case Oceania). Moreover, if an examinee selects D (Buddhism), he/she 
may possess the misconception that the word at the beginning of a sentence is the 
subject. Since Japanese sentences usually start with a subject, there may be exam-
inees who think that the word at the beginning of a sentence is always the subject 

Fig. 1   Example of a dependency item

https://www.s4e.jp/
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of any sentence. This is a type of error analysis (Richards and Schmidt 2002) 
that examines the types and causes of errors on test items. Error analysis is very 
useful for teachers because the results of the analysis reveal why each student is 
stumbling in learning. Actually, as shown in Fig. 2, the item content is written in 
Japanese. However, Buddhism is the beginning of the sentence, and Islam is the 
nearest word to Oceania in the Japanese version as well. Note that if an examinee 
selects A (Hinduism), because “Hinduism” does not appear in the text, such an 
examinee appears to be not seriously working on the item and might select the 
option by chance.

Misconceptions have also been analyzed by CDMs. For example, Kuo et  al. 
(2018) presented a fraction multiplication test in which students were required to 
write down their problem-solving process. This test measures four skills and three 
misconceptions, namely, turning the second fraction upside down when multiply-
ing a fraction by a fraction, solving only the first step of a two-step problem, 
and performing incorrect arithmetic operations when confused about the rela-
tional terms. Moreover, DiBello et al. (2015) presented the Diagnostic Geometry 
Assessment for Geometric Measurement, which measures two facets using multi-
ple-choice items: (a) a conceptual understanding of area measure and (b) a prob-
lematic facet of thinking about an area, which corresponds to a misconception.

In the present paper, two statistical models that can estimate examinees’ pos-
session of misconceptions by analyzing multiple-choice data, which are unscored 
data, were developed based on the multiple-choice DINA models developed by 
Ozaki (2015). The Bug-DINO model can estimate examinees’ possession of mis-
conceptions as well (Kuo et  al. 2016, 2018) by converting multiple-choice data 
to binary data, which are scored data ( 1 = correct, 0 = incorrect). However, con-
verting multiple-choice data to binary data causes a loss in information, because 
which incorrect option an examinee chooses is important information for an 
examinee’s knowledge state. The developed model is expected to tell why each 
student is stumbling with greater accuracy than Bug-DINO. The three models 
will be compared in a simulation study, and the developed models will be applied 
to the Reading Skill Test (Arai et al. 2017) data.

Fig. 2   Example of a dependency item (Japanese version)
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1.1 � The DINO and Bug‑DINO models

In all of the discussed models, let j be an item, i be an examinee, and �∗
i
 be the 

knowledge state vector of examinee i. The kth element of �∗
i
 is expressed as �∗

ik
 , 

which is 1 when examinee i possesses a skill k = (1, 2,… ,K) and is 0 otherwise.
The probability that examinee i correctly answers item j ( Yij = 1 ) is expressed 

in the DINO model as follows:

where

In this case, �∗
ik
= 1 means that examinee i has a skill k. Here, s∗

j
 is the slip parameter 

of item j in the DINO model, which is the probability that an examinee who has at 
least one of the skills needed to answer the item correctly fails to answer the item 
correctly, and g∗

j
 is the guessing parameter for item j in the DINO model, which is 

the probability that an examinee who has none of the skills needed to correctly 
answer the item nevertheless does correctly answer the item. Then, qjk is the element 
of the Q-matrix for item j. If skill k is needed to answer item j, then qjk = 1 , and oth-
erwise qjk = 0.

In order to apply the DINO model to multiple-choice items and estimate exam-
inees’ misconceptions, multiple-choice data must be converted to binary data. If 
an examinee has selected one of the options coded by misconceptions, Yij = 1 , 
otherwise Yij = 0 . For example, for the item shown in Fig. 1, if an examinee has 
selected either C (Islam) or D (Buddhism), then Yij = 1 because they are coded 
by misconceptions, and if an examinee has selected either A (Hinduism) or B 
(Christianity), then Yij = 0.

Replace �∗
i
 with �i , �∗

ik
 with �ik , s∗j  with sj , and g∗

j
 with gj . Here, �i is the mis-

conception knowledge state vector of examinee i. The kth element of �i is 
expressed as �ik , which is 1 when examinee i possesses misconception 
k(= 1, 2,… ,K) and is 0 otherwise. Then, sj is the slip parameter of item j, which 
is the probability that an examinee who possesses at least one of the misconcep-
tions that lead to the selection of one of the options coded by misconceptions fails 
to select one of these options, and gj is the guessing parameter for item j, which is 
the probability that an examinee who possesses none of the misconceptions that 
lead to the selection of one of the options coded by misconceptions does select 
one of these options. Kuo et al. (2016) referred to the model as Bug-DINO. In the 
present paper, the model shown in Eq. (1) replacing �∗

i
 with �i , �∗

ik
 with �ik , s∗j  

with sj , and g∗
j
 with gj is referred to as the Bug-DINO model.

However, as noted previously, converting multiple-choice data into binary data 
loses information about the examinee’s possession of misconceptions. Therefore, 

(1)P(Yij = 1|�∗
i
) = (1 − s∗

j
)wijg∗

j

1−wij ,

(2)wij = 1 −

K∏
k=1

(1 − �∗
ik
)qjk .
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a statistical model is needed that estimates examinee’s misconceptions by analyz-
ing multiple-choice data.

1.2 � Multiple‑choice DINA models

Table 1 shows an example of multiple-choice items with four options, two of which 
are coded by misconceptions �1 and �2 . Options 1, 2, and 3 are incorrect, and option 
4 is correct. Note that options 3 and 4 (the correct option) are both coded by none 
of the misconceptions. Option 1 is coded by both �1 and �2 , which means that an 
examinee who has both �1 and �2 is likely to select this option. Option 2 is coded by 
�1 , which means that an examinee who has only �1 is likely to select this option.

Since incorrect options are coded by two misconceptions ( �1 and �2 ), there are 
22 = 4 patterns of the misconception knowledge state, which are expressed as �1 , 
�2 , �3 , and �4 . Therefore, P(1|�1) = p(Yij = 1|�1) is the probability that an exami-
nee with �1 selects the first option, and P(1|�2) is the probability that an examinee 
with �2 selects the first option. Here, �1 = (�1, �2) = (1, 1) , �2 = (�1, �2) = (1, 0) , 
�3 = (�1, �2) = (0, 1) , and �4 = (�1, �2) = (0, 0).

In order to analyze multiple-choice data, the incorrect options of which are coded 
by misconceptions, and to estimate �i , a statistical model that provides selection 
probabilities P(Yij = k|�i) is needed. This is the probability that examinee i, the mis-
conception knowledge state of which is �i , selects option k of item j. de la Torre 
(2009), DiBello et al. (2015), and Ozaki (2015) proposed models that can analyze 
multiple-choice data in the framework of CDMs. Among these three models, only 
the model proposed by DiBello et al. (2015) is a model for both skills and miscon-
ceptions, whereas the models proposed by de la Torre (2009) and Ozaki (2015) are 
models for skills. The model of the present paper is based on the model proposed by 
Ozaki (2015).

The reason why the model of the present paper is based on Ozaki (2015) is as fol-
lows. One of the features of de la Torre’s (2009) model is that it uses multiple-choice 
items that can distinguish examinees into one of the C∗

j
+ 1 groups by means of the 

coded options. Here, C∗
j
 is the number of options of item j coded with different 

attribute patterns. The term “group” here has the same meaning as a class of knowl-
edge state. Therefore, in Table 1, if option 1 is coded by the second misconception 
as (0, 1), i.e., an examinee who possesses only the second misconception attribute is 
likely to select this option, then the item cannot be analyzed using de la Torre 

Table 1   Selection probabilities 
for an item with four options

�k is misconception k, and �
1
,… ,�

4
 are misconception knowledge 

states, e.g., �
1
= (�

1
, �

2
) = (1, 1)

�
1

1 1 0 0
�
2

1 0 1 0

Option 1 (1, 1) P(1|�
1
) P(1|�

2
) P(1|�

3
) P(1|�

4
)

Option 2 (1, 0) P(2|�
1
) P(2|�

2
) P(2|�

3
) P(2|�

4
)

Option 3 (0, 0) P(3|�
1
) P(3|�

2
) P(3|�

3
) P(3|�

4
)

Option 4 (0, 0) P(4|�
1
) P(4|�

2
) P(4|�

3
) P(4|�

4
)
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(2009), because examinees who have both �1 and �2 can be classified into both 
groups, namely, the (1, 0) and (0, 1) groups. The item shown in Fig. 1 is of this type. 
On the other hand, Ozaki (2015) overcame this limitation. DiBello et  al. (2015) 
developed a generalized diagnostic classification model for multiple-choice data that 
can estimate examinees’ possession of skills and misconceptions at the same time. 
However, the model requires a large number of parameters, because the model 
imposes a cognitive diagnostic model for each P(Yij = k|�i) . On the other hand, 
Ozaki (2015) requires few parameters and therefore is parsimonious. For example, 
Ozaki’s (2015) first model requires one item parameter for each item. Therefore, in 
the present paper, a model is developed based on Ozaki (2015).

Ozaki’s (2015) first model (referred to as MC-S-DINA1) is as follows:

Here,

where Cj is the number of options of item j, c is the option, �i is the knowledge state 
of examinee i, Kj is the number of required attributes for item j, and the attributes 
are ordered such that the required attributes for item j are the first Kj attributes (de la 
Torre 2011). In other words, the last K − Kj attributes are the attributes that are not 
needed to answer item j correctly. In addition, qjkc = 1 indicates that attribute k is 
needed in order to select option c of item j. If attribute k is not needed, then qjkc = 0 . 
In Eq. (4), �ijc = 1 when examinee i has exactly the attributes needed for option c of 
item j, and �ijc = 0 otherwise. In other words, �ijc = 1 when examinee i’s knowledge 
state perfectly matches the attribute vector of option c of item j.

In Eq. (5), �∗
ij
= 1 when 1 −

∏Kj

k=1
(1 − �∗

ik
) = 1 (examinee i has at least one attrib-

ute needed to correctly answer item j) and 
∑C

c=1
�ijc = 1 , and otherwise �∗

ij
= 0 . In 

MC-S-DINA1, when �∗
ij
= 1 , the first term determines the selection probability, and 

when �∗
ij
= 0 , the second term (1 − �∗

ij
)∕Cj determines the selection probability. 

Here, (1 − �∗
ij
)∕Cj is the guessing part of the model for an examinee with �ij = 0 , 

which means that examinee i’s knowledge state vector matches none of the attribute 
vectors of options of item j.

Then, �∗
j
 is the probability that examinee i with �∗

i
 selects an option other than the 

most likely option, given his/her knowledge state. Therefore, 1 − �∗
j
 is the probability 

that an examinee whose �∗
i
 matches a required attribute pattern for an option of item 

j actually selects that option.

(3)P(Yij = c|�∗
i
) = �∗

ij
(1 − �∗

j
)�ijc

�∗
j

Cj − 1

1−�ijc

+
(1 − �∗

ij
)

Cj

.

(4)�ijc =

Kj∏
k=1

(2 − 2(�
∗
ik
−qjkc)

2

),

(5)�∗
ij
=

Cj�
c=1

�ijc

⎛⎜⎜⎝
1 −

Kj�
k=1

(1 − �∗
ik
)

⎞⎟⎟⎠
,
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The selection probabilities of MC-S-DINA1 are shown in Table 2 for �∗
j
= 0.15 . 

As the table shows, an examinee who has both of the attributes selects options 1 
through 4 with probabilities 0.85, 0.05, 0.05, and 0.05, respectively.

The second model (referred to as MC-S-DINA2; Ozaki 2015) relaxed the con-
straint on MC-S-DINA1 whereby �∗

j
 is the same for all options of item j. The MC-S-

DINA 2 model is then expressed as follows:

where

In MC-S-DINA2, �∗
jc
 takes different parameters according to the attribute vector of 

option c. Then, �∗
ij
 is the probability that examinee i with �∗

i
 selects an option other 

than the option for which the attribute pattern matches �∗
i
 . The selection probabili-

ties of MC-S-DINA2 are shown in Table 3 for �∗
1
= 0.15 and �∗

2
= 0.3.

In both MC-S-DINA1 and MC-S-DINA2, the selection probabilities for options 
other than the option that examinee i is most likely to select are the same for each 
�
∗
i
 , as shown in Tables 2 and 3. In MC-S-DINA3, this restriction is relaxed by set-

ting the selection probabilities according to the closeness between �∗
i
 and the attrib-

ute vector for option c of item j. Closeness is measured by r∗
ijc

 , which is the inner 

(6)P(Yijc = 1|�∗
i
) = �∗

ij
(1 − �∗

jc
)�ijc

(
�∗
ij

Cj − 1

)1−�ijc

+
(1 − �∗

ij
)

Cj

.

(7)�∗
ij
=

Cj∑
c=1

�∗
jc
�ijc.

Table 2   Selection probabilities 
for MC-S-DINA1

�∗
1
 and �∗

2
 are skills

�∗
1

1 1 0 0
�∗
2

1 0 1 0

Option 1 (1, 1) 0.85 0.05 0.25 0.25
Option 2 (1, 0) 0.05 0.85 0.25 0.25
Option 3 (0, 0) 0.05 0.05 0.25 0.25
Option 4 (0, 0) 0.05 0.05 0.25 0.25

Table 3   Selection probabilities 
for MC-S-DINA2

�∗
1
 and �∗

2
 are skills

�∗
1

1 1 0 0
�∗
2

1 0 1 0

Option 1 (1, 1) 0.85 0.10 0.25 0.25
Option 2 (1, 0) 0.05 0.70 0.25 0.25
Option 3 (0, 0) 0.05 0.10 0.25 0.25
Option 4 (0, 0) 0.05 0.10 0.25 0.25
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product of �∗
i
 and the attribute vector for option c of item j. If r∗

ijc
= �

∗
i
q
�
jc
 is large, 

examinee i is expected to select option c of item j with high probability. On the other 
hand, if r∗

ijc
 is small, examinee i is not expected to select option c of item j.

The MC-S-DINA3 model (Ozaki 2015) is expressed as follows:

where �∗
ijc

 is

Equation (9) shows that �∗
ij
 is distributed to �∗

ijc
 according to the closeness between 

�
∗
i
 and the attribute vector for option c of item j, where the probability is expressed 

as �∗
ijc

 . If �∗
ij
= 0 , Eq. (9) shows that the number 1 is distributed to �∗

ijc
 according to 

the closeness. The selection probabilities of MC-S-DINA3 are shown in Table 4 for 
�∗
1
= 0.15 and �∗

2
= 0.3.

2 � Multiple‑choice models to estimate misconceptions

Let us consider � as a misconception here. Ozaki’s (2015) three models shown 
above cannot be used for misconception cases. The reason is that when examinee i’s 
misconception knowledge state �i is 0 , namely, when the examinee possesses none 
of the misconceptions, all of Ozaki’s (2015) models provide the probability 1∕Cj 
for all of the options. However, when �i is the misconception knowledge state of 
an examinee i and �i = 0 , this examinee is likely to select the correct option or the 
option coded by none of the misconceptions. Therefore, Ozaki’s (2015) models must 
be modified to accommodate the error analysis situation. Two models, referred to 
as DINO models for multiple-choice items to estimate misconceptions and denoted 
MC-M-DINO1 and MC-M-DINO2 are developed. In these models, “MC” refers to 

(8)P(Yijc = 1��∗
i
) =

⎛
⎜⎜⎝
1 −

Kj�
k=1

(1 − �∗
ik
)

⎞
⎟⎟⎠
(1 − �∗

jc
)�ijc

�
�∗
ijc

�1−�ijc
+

∏Kj

k=1
(1 − �∗

ik
)

Cj

,

(9)�∗
ijc

=

⎧
⎪⎨⎪⎩

�∗
ij

(1−�ijc)(1+r
∗
ijc
)

∑C

c=1
(1−�ijc)(1+r

∗
ijc
)

if �∗
ij
= 1

(1−�ijc)(1+r
∗
ijc
)

∑C

c=1
(1−�ijc)(1+r

∗
ijc
)

if �∗
ij
= 0.

Table 4   Selection probabilities 
for MC-S-DINA3

�∗
1
 and �∗

2
 are skills

�∗
1

1 1 0 0
�∗
2

1 0 1 0

Option 1 (1, 1) 0.85 0.15 0.4 0.25
Option 2 (1, 0) 0.075 0.70 0.2 0.25
Option 3 (0, 0) 0.0375 0.075 0.2 0.25
Option 4 (0, 0) 0.0375 0.075 0.2 0.25
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multiple choice, and “M” refers to misconception. The MC-M-DINO1 and MC-M-
DINO2 models are based on MC-S-DINA1 and MC-S-DINA3, respectively.

2.1 � The MC‑M‑DINO1 model

The MC-M-DINO1 model is expressed as follows:

where

and �ijc is expressed as in Eq. (4). Note that in Eq. (4), �∗
ik

 has to be replaced with �ik 
in the MC-M-DINO models. Therefore, �ijc = 1 when examinee i’s misconception 
knowledge state perfectly matches the misconception attribute vector of option c of 
item j, and �ijc = 0 otherwise. Table 5 shows �ijc and �ij for the item shown in Table 1. 
Then, �ij = 1 when at least one of �ij1, �ij2,… , �ijCj

 is 1, and �ij = 0 when �ijc = 0 for 
all c = (1, 2,… ,Cj) . In other words, when examinee i’s misconception knowledge 
state perfectly matches one or more of the misconception attribute vectors of options 
of item j, �ij = 1 , and �ij = 0 otherwise. When �ij = 1 , the first term of Eq. (10) deter-
mines the selection probability, and when �ij = 0 , the second term (1 − �ij)∕Cj deter-
mines the selection probability. Here, (1 − �ij)∕Cj is the guessing part of the model 
for an examinee with �ij = 0 , which indicates that examinee i’s misconception 
knowledge state vector matches none of the misconception attribute vectors of 
options of item j.

(10)P(Yij = c��i) = �ij

⎛⎜⎜⎝
1 − �j

∑Cj

c=1
�ijc

⎞⎟⎟⎠

�ijc⎛⎜⎜⎝
�j

Cj −
∑Cj

c=1
�ijc

⎞⎟⎟⎠

1−�ijc

+
1 − �ij

Cj

,

(11)�ij = 1 − 0
∑Cj

c=1
�ijc ,

Table 5   Terms �ijc , �ij , and �ij for 
the item shown in Table 1

�
1
 and �

2
 are misconceptions, �ijc is expressed in Eq. (4), �ij is 

expressed in Eq. (11), �∗
ij
 is expressed in Eq. (5), and �ij is expressed 

in Eq. (13)

�
1

1 1 0 0
�
2

1 0 1 0

�ijc for option 1 (1, 1) 1 0 0 0
�ijc for option 2 (1, 0) 0 1 0 0
�ijc for option 3 (0, 0) 0 0 0 1
�ijc for option 4 (0, 0) 0 0 0 1
�ij 1 1 0 1
�∗
ij

1 1 0 0∑
�ijc 1 1 0 2

Cj −
∑

�ijc 3 3 4 2
�ij �j1 �j2 0 (�j3 + �j4)∕2
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Then, �j is the probability that examinee i with �i selects options other than the 
most likely options, given his/her misconception knowledge state. Therefore, 1 − �j 
is the probability that an examinee whose �i matches a misconception attribute pat-
tern for an option of item j actually selects these options. Table 5 also shows 

∑Cj

c=1
�ijc 

and Cj −
∑Cj

c=1
�ijc . Here, 

∑Cj

c=1
�ijc is the number of options that examinee i with �i is 

most likely to select. Therefore, 1 − �j must be divided by 
∑Cj

c=1
�ijc . In Table 5, the 

examinee with (�1, �2) = (1, 1) is most likely to select only the first option. There-
fore, ( 1 − �j)∕1 = 1 − �j is the selection probability. In Table 5, the examinee with 
(�1, �2) = (0, 0) is most likely to select the third or fourth option (which is why ∑Cj

c=1
�ijc = 2 ). Therefore, (1 − �j)∕2 is the selection probability for both options. 

Then, �j must be divided by Cj −
∑Cj

c=1
�ijc , which is the number of options that 

examinee i with �i is not most likely to select. Note that, when (�1, �2) = (0, 1) , the 
second term of Eq. (10) determines the selection probability, because �ij = 0 . Note, 
moreover, that in Eq. (10), when 

∑Cj

c=1
�ijc = 0 , the first bracketed term cannot be 

calculated. However, in this case �ij = 0 . Therefore, the first term can be ignored.
The selection probabilities of MC-M-DINO1 are shown in Table 6 for �j = 0.15 . 

Compared with Table 2, which shows the selection probabilities for MC-S-DINA1 
for �∗

j
= 0.15 , only the selection probabilities for examinee i with (�1, �2) = (0, 0) 

are different. For the MC-S-DINA1 case, (�1, �2) = (0, 0) means that such an exami-
nee has none of the required attributes to correctly answer the item. Therefore, such 
an examinee is thought to randomly select an option resulting in selection probabili-
ties of 0.25 for all options in Table  2. However, for the MC-M-DINO1 case, 
(�1, �2) = (0, 0) means that such an examinee has none of the misconception attrib-
utes to select one of the incorrect options. Therefore, such an examinee is thought to 
select a correct option or one of the incorrect options that are not coded by miscon-
ception attributes, resulting in the selection probabilities shown in Table 6.

The differences between MC-S-DINA1 and MC-M-DINO1 are as follows: (1) for 
MC-S-DINA1 in Eq. (3), 1 − �∗

j
 is divided by 1 and �∗

j
 is divided by Cj − 1 . However, 

for MC-M-DINO1 in Eq. (10), 1 − �j is divided by 
∑Cj

c=1
�ijc and �j is divided by 

Cj −
∑Cj

c=1
�ijc ; (2) for MC-S-DINA1, �∗

ij
 in Eq. (5) is 1 for the case in which exami-

nee i has at least one attribute needed to correctly answer item j and 
∑Cj

c=1
�ijc is 1. 

However, for MC-M-DINO1, �ij in Eq. (11) is 1 for the case in which at least one of 
�ij1, �ij2,… , �ijCj

 is 1. The point is that the number of correct options must be 1 for 
multiple-choice items. Therefore, the correct option is coded by a unique attribute 
vector. However, the number of incorrect options coded by the same misconception 

Table 6   Selection probabilities 
for MC-M-DINO1

�
1
 and �

2
 are misconceptions

�
1

1 1 0 0
�
2

1 0 1 0

Option 1 (1, 1) 0.85 0.05 0.25 0.075
Option 2 (1, 0) 0.05 0.85 0.25 0.075
Option 3 (0, 0) 0.05 0.05 0.25 0.425
Option 4 (0, 0) 0.05 0.05 0.25 0.425
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attribute vector may be more than two for multiple-choice items. Therefore, for MC-
S-DINA1, 1 − �∗

j
 , which is the probability that an examinee who has the required 

attribute pattern for an option of item j actually selects that option is divided by 1 
and �∗

j
 is divided by Cj − 1 . On the other hand, for MC-M-DINO1, 1 − �j is divided 

by 
∑Cj

c=1
�ijc and �j is divided by Cj −

∑Cj

c=1
�ijc . Table 5 shows �∗

ij
 . Note that �∗

ij
 and �ij 

are not the same. Therefore, redefining misconception as conception and analyzing 
the data by MC-S-DINA1 cannot estimate misconceptions for multiple-choice 
items. The same is true for the differences between MC-S-DINA3 and 
MC-M-DINO2.

2.2 � The MC‑M‑DINO2 model

The second model (MC-M-DINO2) has two features. The first feature is such that 
the model relaxes the constraint on MC-M-DINO1, whereby �j is the same for 
all options of item j. The second model is such that the selection probabilities for 
options other than the option that examinee i is most likely to select are different for 
each �i , which are constrained to be the same for each �i in MC-M-DINO1.

The MC-M-DINO2 model is expressed as follows:

where

and

In MC-M-DINO2, �jc takes different parameters for each option. Table 5 shows �ij , 
which is the sum of the probabilities that examinee i with �i selects an option other 
than the option having a misconception attribute vector that matches �i.

For the second feature of MC-M-DINO2, the restriction that the selection prob-
abilities for options other than the option that examinee i is most likely to select are 
the same for each �i is relaxed by setting the selection probabilities according to 
the closeness between �i and the attribute vector for option c of item j. Closeness is 
measured by rijc , as in the case of MC-S-DINA3.

Equation (14) shows that �ij is distributed to �ijc according to the closeness 
between �i and the misconception attribute vector for option c of item j, where the 

(12)P(Yij = c��i) =

⎛⎜⎜⎝
1 − �jc
∑Cj

c=1
�ijc

⎞⎟⎟⎠

�ijc

�
1−�ijc

ijc
,

(13)�ij =

∑Cj

c=1
�jc�ijc

∑Cj

c=1
�ijc

,

(14)�ijc =

⎧⎪⎨⎪⎩

�ij
(1−�ijc)(1+rijc)∑C

c=1
(1−�ijc)(1+rijc)

if �ij = 1

(1−�ijc)(1+rijc)∑C

c=1
(1−�ijc)(1+rijc)

if �ij = 0.
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probability is expressed as �ijc . If �ij = 0 , then Eq. (14) shows that the number 1 is 
distributed to �ijc according to the closeness. The selection probabilities of MC-M-
DINO2 are shown in Table 7 for �j1 = 0.15 , �j2 = 0.30 , and �j3 = �j4 = 0.4 . Unlike 
Table 4, which shows the selection probabilities for MC-S-DINA3 for �∗

1
= 0.15 and 

�∗
2
= 0.3 , only the selection probabilities for examinee i with (�1, �2) = (0, 0) are 

different. This is the same relationship as that between MC-S-DINA1 and MC-M-
DINO1. Therefore, it can be said that the major difference between MC-S-DINA 
and MC-M-DINO is in the selection probabilities in the case of � = 0 . Table  8 
shows the purposes, parameters, and the meanings of parts indicated by Greek let-
ters for MC-S-DINA1, MC-S-DINA3, MC-M-DINO1, and MC-M-DINO2.

In practical application of the models, some goodness-of-fit indices are neces-
sary in order to determine the best-fit model and to examine the absolute fit of the 
model. Appendix A of the supplemental file shows a method of model comparison 
and examining the absolute fit, and Appendix B of the supplemental file shows the 
reason why a model based on MC-S-DINA2 is not developed herein.

2.3 � Parameter estimation

In estimating the parameters of the developed models, an MCMC method with the 
Metropolis–Hastings (M–H) algorithm (Hastings 1970) is adopted. Appendix C of 
the supplemental file shows the MCMC algorithms. Note that, in order to estimate 
parameters using the same method, the MCMC method with the M–H algorithm 
was also used to estimate parameters for Bug-DINO in the simulation study.

3 � Simulation study

The purposes of the simulation study were the following: (1) to compare the accu-
racy of the estimates and the fit to data of Bug-DINO, MC-M-DINO1, and MC-M-
DINO2 when data are generated from MC-M-DINO1 and MC-M-DINO2; and (2) 
to examine the effect of the number of items (which directly corresponds to the total 
number of coded options for each misconception), the number of examinees, and 
the rates of examinees who possess misconceptions on the estimates of the exami-
nee parameters and item parameters. In the simulations, the estimation program was 

Table 7   Selection probabilities 
for MC-M-DINO2

�
1
 and �

2
 are misconceptions

�
1

1 1 0 0
�
2

1 0 1 0

Option 1 (1, 1) 0.85 0.15 0.4 0.20
Option 2 (1, 0) 0.075 0.70 0.2 0.20
Option 3 (0, 0) 0.0375 0.075 0.2 0.30
Option 4 (0, 0) 0.0375 0.075 0.2 0.30
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written in R version 3.5.2, which can be downloaded from http://www01​0.upp.so-
net.ne.jp/koken​/cdm.html.

3.1 � Simulation settings

The Q-vectors shown in Table 9 were used in the simulation study. The 1s and 2s 
in other than the “NC” columns indicate that the items were coded based on mis-
conception once and twice, respectively. In the table, NC indicates the number of 
options coded by misconceptions. The number of options is four for all items. There-
fore, for example, only one option is coded by the first attribute in item 1. The items 
shown in Tables 1 through 7 refer to item 16 in Table 9, because NC = 2 means that 
the number of coded options is two, and the first and second misconceptions appear 
twice and once, respectively. The Q-vectors are generated so that the total number of 
coded options for each misconception is the same, which is 14 in Table 9.

In the simulation study, three conditions for the number of items were examined: 10, 
20, and 30 items. Items 7, 8, 11, 12, 14, and 16 through 20 were used for the 10-item 
case. Items 1 through 6, 9, 10, 13, 15, and 21 through 30 were used for the 20-item 
case. In addition, all of the items were used for the 30-item case. The reason for using 
these Q-vectors is that, within these conditions, the total number of coded options for 
each misconception for each number of items was the same: five for the 10-item case, 
nine for the 20-item case, and 14 for 30-item case. Furthermore, three conditions for 
the number of examinees were examined: 250, 500, and 1000 examinees. Then, two 

Table 9   Q-vectors for the 
simulated data

NC is the number of coded options. The 1s and 2s in the “NC” col-
umns indicate that the items were coded based on misconception 
once and twice, respectively

Item Misconception Item Misconception NC

1 2 3 4 5 NC 1 2 3 4 5

1 1 0 0 0 0 1 16 2 1 0 0 0 2
2 0 1 0 0 0 1 17 0 2 1 0 0 2
3 0 0 1 0 0 1 18 0 0 2 1 0 2
4 0 0 0 1 0 1 19 0 0 0 2 1 2
5 0 0 0 0 1 1 20 1 0 0 0 2 2
6 1 1 0 0 0 2 21 1 1 1 0 0 3
7 1 0 1 0 0 2 22 1 1 0 1 0 3
8 1 0 0 1 0 2 23 1 1 0 0 1 3
9 1 0 0 0 1 2 24 1 0 1 1 0 3
10 0 1 1 0 0 2 25 1 0 1 0 1 3
11 0 1 0 1 0 2 26 1 0 0 1 1 3
12 0 1 0 0 1 2 27 0 1 1 1 0 3
13 0 0 1 1 0 2 28 0 1 1 0 1 3
14 0 0 1 0 1 2 29 0 1 0 1 1 3
15 0 0 0 1 1 2 30 0 0 1 1 1 3

http://www010.upp.so-net.ne.jp/koken/cdm.html
http://www010.upp.so-net.ne.jp/koken/cdm.html
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conditions for the rates of examinees who possess each of the five misconceptions were 
examined: 0.2 and 0.4 (no difference between the five misconceptions). Finally, two 
conditions for the true models (MC-M-DINO1 and MC-M-DINO2) were examined. 
Therefore, the total number of conditions was 36 (= 3 × 3 × 2 × 2).

These simulation conditions were decided with reference to those of de la Torre 
(2009), where the number of items was 30, the number of examinees was 1000, and the 
number of attributes was five, and with reference to Ozaki (2015), where the number of 
items was 10, 20 or 30, the number of examinees was 1000, and the number of attrib-
utes was five. Both de la Torre (2009) and Ozaki (2015) used Q-vectors, in which some 
items are coded by a small number of attributes and other items are coded by a large 
number of attributes. However, the total number of coded options for each misconcep-
tion was the same. Since Ozaki (2015) estimated attributes well in the 1000-examinee 
case, in the present paper, 250 and 500 cases were also examined.

The number of MCMC samples was 1500, and the burn-in was 500 for the two 
developed models and Bug-DINO. These numbers were determined using the conver-
gence criterion of Gelman and Rubin (1992). By running five parallel chains, the crite-
rion ( ̂R < 1.1 ) was satisfied for all item parameters.

In both simulations, 50 repetitions were performed for each of the 36 conditions. 
When the true structure was MC-M-DINO1, the true �j were generated from Uniform 
(0,0.2). When the true structures were MC-M-DINO2, the true �j1 were generated 
from Uniform (0,0.2), the true �j2 were generated from Uniform (0.2,0.3), the true �j3 
were generated from Uniform (0.2,0.3), and the true �j4 were generated from Uniform 
(0.2,0.3). For the purpose of model comparisons, the �2 values were calculated for 
MC-M-DINO using the method described in Appendix A1. When the number of coded 
options was 1, the other three options were pooled and two categories (selected or did 
not select the coded option) were used to calculate the �2 value (using 2 × 2 cross-
tables comparing the observed and expected numbers of examinees) and the AIC. Sim-
ilarly, when the numbers of coded options were three and four, three categories (using 2 
× 3 cross-tables) and four categories (using 2 × 4 cross-tables) were used, respectively.

The results for the item parameters were examined using bias and root mean square 
error. Equation (15) shows the expression used to calculate Biast

jc
 , which is the bias for 

item parameter � of item j of category c in the tth repetition, where 𝛿t
jc
 is the estimate.

Equation (16) shows the RMSE
t
j
 , which is the root mean square error of the item 

parameters of item j in the tth repetition.

(15)Bias
t
jc
= 𝛿t

jc
− 𝛿t

jc

(16)RMSE
t
j
=

√√√√ 1

Cj

Cj∑
c=1

(𝛿t
jc
− 𝛿t

jc
)2.
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3.2 � Results

The results of simulation study 1 are shown in Tables 10 through 13. In Table 10, 
the average correct recovery rate of �ik is shown. For example, when MC-M-
DINO1 was the true model, MC-M-DINO2 was fit to 10 items, and the number of 
examinees was 250, the average rate was 0.955. The table illustrates that, gener-
ally, the two multiple-choice models can estimate �ik much more accurately than 
Bug-DINO. Therefore, using the information from the incorrect coded options 
is extremely useful for estimating �ik . However, note that in this simulation, the 
true models were MC-M-DINO1 or MC-M-DINO2, and it therefore is reasonable 

Table 10   Average recovery rate of examinee parameters for three analysis models

MC1 and MC2 indicate MC-M-DINO1 and MC-M-DINO2, respectively. The numbers (0.2 or 0.4) in 
parentheses are the rates of examinees who possess each of the five misconceptions

True model Bug-DINO MC1 MC2 True model Bug-DINO MC1 MC2
250 examinees 10 items (0.2) 10 items (0.4)

MC1 0.275 0.970 0.955 MC1 0.412 0.972 0.970
MC2 0.303 0.879 0.855 MC2 0.444 0.892 0.905

20 items (0.2) 20 items (0.4)
MC1 0.627 0.998 0.998 MC1 0.716 0.992 0.992
MC2 0.618 0.970 0.982 MC2 0.701 0.953 0.968

30 items (0.2) 30 items (0.4)
MC1 0.834 1.000 1.000 MC1 0.757 0.999 0.999
MC2 0.612 0.990 0.994 MC2 0.660 0.985 0.991

500 examinees 10 items (0.2) 10 items (0.4)

MC1 0.507 0.983 0.974 MC1 0.521 0.978 0.976
MC2 0.357 0.878 0.854 MC2 0.465 0.891 0.905

20 items (0.2) 20 items (0.4)
MC1 0.623 0.999 0.999 MC1 0.751 0.995 0.995
MC2 0.611 0.969 0.981 MC2 0.662 0.953 0.969

30 items (0.2) 30 items (0.4)
MC1 0.779 1.000 1.000 MC1 0.768 0.999 0.999
MC2 0.594 0.989 0.995 MC2 0.644 0.984 0.992

1000 examinees 10 items (0.2) 10 items (0.4)

MC1 0.614 0.979 0.968 MC1 0.551 0.968 0.966
MC2 0.490 0.880 0.857 MC2 0.490 0.894 0.907

20 items (0.2) 20 items (0.4)
MC1 0.629 0.999 0.998 MC1 0.698 0.991 0.991
MC2 0.586 0.969 0.983 MC2 0.646 0.952 0.969

30 items (0.2) 30 items (0.4)
MC1 0.831 1.000 1.000 MC1 0.768 0.999 0.999
MC2 0.581 0.990 0.996 MC2 0.637 0.985 0.992
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that rather than the non-true model (Bug-DINO), the true models provided higher 
recovery rates.

When the analysis models were MC-M-DINO1 or MC-M-DINO2, the number 
of examinees had little effect on the recovery rate. Therefore, for MC-M-DINO1 
and MC-M-DINO2, 250 examinees was sufficient for these settings. However, 
when the analysis model was Bug-DINO, as the number of examinees decreased, 
the recovery rate decreased. In particular, when the number of items was 10, 
Bug-DINO often provided recovery rates lower than 0.5. In these cases, although 
not shown here, the estimates of the slip and guessing parameters were both large. 
Therefore, Bug-DINO inversely estimated 0 and 1 for �ik , which is illustrated in 
Table 13. This is the reason for such poor recovery rates for Bug-DINO for cases 
in which the number of items was 10.

The number of items and the two conditions for the rates of examinees who 
possess each of the five misconceptions also had little effect on the recovery rate, 
when the analysis models were MC-M-DINO1 or MC-M-DINO2. Therefore, 
although a larger number of examinees, a larger number of items, and/or larger 
misconception rates provide higher recovery rates, the combination of 10 items, 
250 examinees, and a misconception rate of 0.2 was sufficient (the recovery rate 
was more than 0.85) to estimate �ik by MC-M-DINO1 or MC-M-DINO2.

In general, the average recovery rate for the three models decreased as the true 
model became more complicated. However, the decrement of the rate is larger for 
Bug-DINO than for the two developed models.

In general, when the true model was MC-M-DINO1, the average recovery rate 
for the true model is greater than or equal to that for MC-M-DINO2. When the 
true model was MC-M-DINO2, in most cases, the average correct recovery rate 
for the true model was also larger than that for MC-M-DINO1. However, when 
the number of items was 10 and the misconception rate was 0.2, MC-M-DINO1, 
which has fewer item parameters, provided higher recovery rates, even when the 
true model was MC-M-DINO2.

Table 11 shows the results for the item parameters. The bias shown in Table 11 
is the average of Biast

jc
 in Eq. (15) for all cases. The RMSE shown in Table 11 is 

the average of RMSEj in Eq. (16) for all cases.
Table 11 illustrates that, for all cases, the biases are close to 0. In addition, the 

RMSEs are small when the number of examinees is large. However, when the 
number of items was 10, the true misconception rate was 0.2, and MC-M-DINO2 
was fit, the biases and RMSEs were relatively large. Therefore, the item param-
eters can be estimated well except for this case.

Table  12 shows the results of the model comparisons. The numbers in the 
tables are the average number of items that fit best for each model, based on the 
AIC (the best-fit model was taken to be the model that gives the smallest AIC). If 
a model is often selected using the AIC, this means that the model is parsimoni-
ous when describing data. Generally, the AIC prefers the true model. However, 
although not shown in Table 11, when the BIC was used, the parsimonious MC-
M-DINO1 was preferred more frequently. A better fitting model should be used 
to interpret the results of �ik in the real-data analysis. Furthermore, the absolute 
fit of the best-fit model should be examined, because the best-fit model does not 



36	 Behaviormetrika (2020) 47:19–41

1 3

necessarily fit the data absolutely. The absolute fit was calculated in the real-data 
study.

Table 13 shows two-way classified tables of examinees for the first misconception 
by the three models when the number of examinees was 250, the number of items 
was 10, the true misconception rate was 0.2, and the true model was MC-M-DINO1. 
For example, when the true � = 1 , an average of 45.78 examinees were classified as 
� = 0 by Bug-DINO and as � = 1 by MC-M-DINO1. For the second example, when 
the true � = 0 , an average of 190.08 examinees were classified as � = 0 by MC-M-
DINO1 and � = 0 by MC-M-DINO2. Since the true misconception rate was 0.2, 
250 × 0.2 = 50 examinees should be classified as � = 1 and 200 examinees should 

Table 11   Biases and RMSEs of item parameters for two analysis models

MC1 and MC2 indicate MC-M-DINO1 and MC-M-DINO2, respectively. The numbers (0.2 or 0.4) in 
parentheses are the rates of examinees who possess each of the five misconceptions

Model Bias RMSE Model Bias RMSE
250 examinees 10 items (0.2) 10 items (0.4)

MC1 − 0.010 0.028 MC1 0.008 0.029
MC2 0.017 0.222 MC2 − 0.005 0.091

20 items (0.2) 20 items (0.4)
MC1 − 0.004 0.024 MC1 0.009 0.028
MC2 0.004 0.077 MC2 − 0.006 0.067

30 items (0.2) 30 items (0.4)
MC1 0.015 0.025 MC1 − 0.008 0.027
MC2 0.005 0.079 MC2 0.017 0.064

500 examinees 10 items (0.2) 10 items (0.4)

MC1 0.008 0.017 MC1 0.009 0.019
MC2 − 0.015 0.228 MC2 0.008 0.073

20 items (0.2) 20 items (0.4)
MC1 0.008 0.015 MC1 − 0.008 0.017
MC2 0.010 0.052 MC2 0.012 0.045

30 items (0.2) 30 items (0.4)
MC1 − 0.007 0.016 MC1 0.009 0.018
MC2 0.016 0.055 MC2 0.011 0.042

1000 examinees 10 items (0.2) 10 items (0.4)

MC1 0.004 0.012 MC1 − 0.004 0.014
MC2 0.016 0.234 MC2 0.002 0.062

20 items (0.2) 20 items (0.4)
MC1 − 0.003 0.010 MC1 0.003 0.012
MC2 0.012 0.034 MC2 0.007 0.030

30 items (0.2) 30 items (0.4)
MC1 0.004 0.010 MC1 0.004 0.011
MC2 0.004 0.036 MC2 − 0.009 0.029
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be classified as � = 0 . The table shows that, as shown in Table 10, the two devel-
oped models estimate � well. However, as noted previously, Bug-DINO tends to 
inversely estimate 0 and 1 for �.

4 � Real‑data study

In the real-data study, eight items, all of which examine the skill of recognizing the 
dependency relations between words and phrases in a given sentence (Arai et  al. 
2017), were used. These items are used in the Reading Skill Test in Japan and were 

Table 12   Number of items each model fit best using the AIC

MC1 and MC2 indicate MC-M-DINO1 and MC-M-DINO2, respectively. The numbers (0.2 or 0.4) in 
parentheses are the rates of examinees who possess each of the five misconceptions

True model MC1 MC2 True model MC1 MC2
250 examinees 10 items (0.2) 10 items (0.4)

MC1 8.96 1.04 MC1 9.68 0.32
MC2 6.98 3.02 MC2 7.82 2.18

20 items (0.2) 20 items (0.4)
MC1 18.84 1.16 MC1 19.16 0.84
MC2 15.80 4.20 MC2 12.16 7.84

30 items (0.2) 30 items (0.4)
MC1 28.78 1.22 MC1 28.84 1.16
MC2 23.48 6.52 MC2 17.58 12.42

500 examinees 10 items (0.2) 10 items (0.4)

MC1 9.46 0.54 MC1 9.84 0.16
MC2 5.44 4.56 MC2 6.30 3.70

20 items (0.2) 20 items (0.4)
MC1 19.36 0.64 MC1 19.50 0.50
MC2 13.82 6.18 MC2 9.14 10.86

30 items (0.2) 30 items (0.4)
MC1 28.78 1.22 MC1 29.28 0.72
MC2 19.42 10.58 MC2 11.38 18.62

1000 examinees 10 items (0.2) 10 items (0.4)

MC1 9.34 0.66 MC1 9.66 0.34
MC2 3.84 6.16 MC2 4.24 5.76

20 items (0.2) 20 items (0.4)
MC1 19.30 0.70 MC1 19.28 0.72
MC2 10.56 9.44 MC2 4.56 15.44

30 items (0.2) 30 items (0.4)
MC1 28.78 1.22 MC1 29.36 0.64
MC2 13.98 16.02 MC2 5.22 24.78
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not originally made for the purpose of estimating misconceptions. However, estimat-
ing examinees’ misconceptions is useful for knowing why each student is stumbling 
in learning, and illustrating that the models can also be used for items not originally 
constructed for the purpose of estimating misconceptions demonstrates the versatil-
ity of the models.

The number of examinees was 281 (40 junior high school students and 241 sen-
ior high school students). Two misconceptions, A, in which the nearest word is the 
subject, and B, in which the word beginning a sentence is the subject, were used. 
An example of an item that measures both misconceptions is shown in Fig. 1. The 
Q-vectors for the eight items are shown in Table 14, which indicates that three items 
measure only misconception A, three items measure only misconception B, one item 
measures both misconceptions A and B by the same option, and one item measures 
both misconceptions A and B by different options. Although the number of options 

Table 13   Two-way classified tables of examinees for the first misconception

MC1 and MC2 indicate MC-M-DINO1 and MC-M-DINO2, respectively. � = 1 and � = 0 indicate 
whether the true � is 1 or 0. The numbers (0 or 1) in parentheses indicate the cases in which examinees 
are estimated as not possessing a misconception (0) or as possessing a misconception (1)

� = 1 MC1(0) MC1(1) � = 0 MC1(0) MC1(1)

DINO(0) 0.56 45.78 DINO(0) 25.92 3.28
DINO(1) 0.46 3.28 DINO(1) 168.66 1.76

� = 1 MC2(0) MC2(1) � = 0 MC2(0) MC2(1)

DINO(0) 0.48 45.86 DINO(0) 23.68 5.82
DINO(1) 0.48 3.26 DINO(1) 167.38 3.04
MC1(0) 0.74 0.28 MC1(0) 190.08 4.5
MC1(1) 0.22 48.84 MC1(1) 0.98 4.36

Table 14   Q-vectors, item 
parameters, and �2 tests for the 
real-data study

NC is the number of coded options, � is the estimated item param-
eter, �2 is the �2 value for each item, df is the degree of freedom 
for each item, and p is the p value of the �2 test for each item. 
∗∗∗p < 0.001

Item Miscon-
ception

NC � �2 df p

1 0 1 1 0.076 1.336 3 0.721
2 1 0 1 0.060 19.376 3 0.000∗∗∗
3 0 1 1 0.084 3.386 3 0.336
4 1 0 1 0.069 26.481 3 0.000∗∗∗
5 0 1 1 0.047 37.589 3 0.000∗∗∗
6 1 1 1 0.177 1.452 3 0.693
7 1 0 1 0.372 0.807 3 0.848
8 1 1 2 0.138 11.908 11 0.371
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was four for all of the items, options that were not coded by misconception attributes 
were summed in the same option.

If the mean of MCMC samples for �ik was greater than 0.5, examinee i was 
judged to possess misconception k; otherwise, the examinee was judged not to 
possess the misconception. The AIC and BIC for MC-M-DINO1 were 49.481 and 
79.003, respectively, and those for MC-M-DINO2 were 73.550 and 136.287, respec-
tively. Therefore, MC-M-DINO1 was the best-fit model. Furthermore, the absolute 
fit of MC-M-DINO1 was examined for each item using the method described in 
Appendix A2. Table 14 shows the �2 value, the degree of freedom, and the p-value 
for each item. The table indicates that items 2, 4, and 5 do not fit the data. However, 
the estimated misconception rate for misconception A was 0.027, and that for B was 
0.030. The number of examinees was 281, and the expected and observed numbers 
of examinees for some cells were less than 5. Thus, the approximation to the chi-
squared distribution was not good. Therefore, a large sample size is needed in order 
to examine whether items 2, 4, and 5 truly fit poorly.

The results for the item parameters ( � ) for MC-M-DINO1 are shown in Table 14, 
which indicates that an examinee who possesses misconception A or B selects the 
coded options with a probability of more than 90% for items 1 through 5. The prob-
ability is more than 60% for items 6 through 8. These high probabilities show that 
the items can detect examinees’ possession of misconceptions very well.

As stated in Appendixes A1 and A2, �2 tests require large sample sizes. However, 
the sample size of the real data is not large. Therefore, other model-fit indices may 
be needed, which is a subject for future study.

5 � Discussion

One of the difficulties with the CDM is that it is difficult to appropriately specify 
the Q-matrix. Although we now have ways to examine the validation of a Q-matrix 
(de la Torre and Chiu 2016; Chen 2017) or its completeness, which means that the 
Q-matrix allows for the identification of all possible proficiency classes among 
examinees (Köhn and Chiu 2017), de la Torre and Chiu (2016) noted that the pro-
cess of establishing the Q-matrix for a given test tends to be subjective in nature. 
Therefore, in Rupp and Templin (2008) and Im and Corter (2011), the effects of 
misspecification of the Q-matrix were examined. The difficulty in specifying the 
Q-matrix when possession of � is required in order to answer items correctly lies in 
breaking up the way of reaching the correct answer into several appropriate skills. 
However, if � is a misconception, specification of the Q-matrix is easier, because 
incorrect options are usually or sometimes intentionally designed using misconcep-
tions. Therefore, the developed models that can detect misconceptions of examinees 
using data from multiple-choice items may broaden the use of the CDM. However, 
if the Q-matrix is misspecified in the misconception case, then the estimation accu-
racy for � decreases.

Although two models were developed to be used for multiple-choice items, 
these models can be used for tests in which examinees write how they arrive 
at their answers. Based on their answers, examinees’ can be classified into two 
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groups: individuals who arrive or do not arrive at incorrect answers for an item 
because of a misconception. If an examinee frequently falls for a misconception 
option, he/she probably possesses the misconception. This judgment can be per-
formed using the two developed models.

Recently Kuo et  al. (2018) developed a model that can estimate examinees’ 
skills and misconceptions at the same time by analyzing binary data. Providing 
each examinee’s possession state of skills and misconceptions at the same time is 
useful because this is the information of the entire knowledge state of each exam-
inee. However, as de la Torre (2009) and Ozaki (2015), and the present paper 
revealed, in the case of multiple-choice data, models for multiple-choice data 
can provide more accurate estimation of � . Therefore, a model that can estimate 
examinees’ skills and misconceptions at the same time for multiple-choice data is 
needed.

In MC-S-DINA1 and MC-S-DINA2, two options that have the same misconcep-
tion attributes provide the same selection probabilities. For example, Table 6 shows 
that the selection probabilities for options 3 and 4 (the correct option) are the same, 
because both options are coded by none of the misconceptions. However, an exami-
nee who has the required skills and lacks the misconceptions would normally select 
option 4. To treat the options that are coded by the same misconception attributes 
differently, not only misconception attributes but also skills have to be included in 
the models. A model that can estimate the examinee’s skills and misconceptions at 
the same time for multiple-choice data is needed in this sense as well.

As stated previously, DiBello et  al. (2015) developed a generalized diagnostic 
classification model for multiple-choice items that can estimate examinees’ posses-
sion of skills and misconceptions at the same time with a large number of param-
eters. A large number of parameters is not necessarily a bad thing. Models that have 
larger numbers of parameters can capture the response behavior in detail. Moreover, 
if the sample size is large, these parameters may be estimated accurately. Therefore, 
comparing the estimation accuracy of misconceptions between the developed parsi-
monious models and the model of DiBello et al. (2015) by a simulation study may 
be interesting.

The simulation studies showed that using the information from the incorrectly 
coded options is extremely useful for estimating �ik . However, in this simulation, 
in which the true models were MC-M-DINO1 or MC-M-DINO2, it would be rea-
sonable that rather than the non-true model (Bug-DINO), the true models provided 
higher recovery rates. To examine the robustness of this model, an additional simu-
lation study that examines the recovery rate when the true models and the analysis 
models are totally different would be necessary. Furthermore, some overall model fit 
indices (at the model-level rather than the item-level), such as the posterior predic-
tive model check under a Bayesian framework, are also necessary.

In the real-data study, due to the small number of examinees and very low esti-
mated misconception rates, the �2 approximation was not good. Other fit indices 
that can overcome this problem are needed.

The results of the model comparisons indicate that the best-fit model tends to dif-
fer according to the number of coded options. Therefore, when analyzing multiple-
choice items, the best-fit model should be examined item by item. Although this 
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requires significant time, this can be achieved by performing analysis 2number of items 
times.
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