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Abstract
Generalized structured component analysis (GSCA) and partial least squares path 
modeling (PLSPM) are component-based, or also called variance-based, structural 
equation modeling (SEM). They define latent variables as components or weighted 
composites of indicators, attempting to maximize the explained variances of indica-
tors or endogenous components or both. Despite this common conceptualization of 
latent variables, GSCA and PLSPM involve distinct model specifications and esti-
mation procedures. This paper focuses on comparing four modeling approaches—
GSCA with reflective indicators, GSCA with formative indicators, PLSPM with 
mode A, and PLSPM with mode B—regarding their capability of parameter recovery 
and statistical power via Monte Carlo simulation. For comparison, we propose a new 
data generating process for variance-based SEM, appropriate to handle all possible 
modeling approaches for both GSCA and PLSPM. It was found that although every 
approach produced consistent estimators, GSCA with reflective indicators yielded 
the most efficient estimators under variance-based structural equation models.
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1 Introduction

Generalized structured component analysis (GSCA) and partial least squares path 
modeling (PLSPM) are two full-fledged approaches to component-based struc-
tural equation modeling (SEM) (Hwang and Takane 2014; Tenenhaus 2008). In 
component-based SEM, latent variables are conceptualized as components or 
weighted composites of indicators. These components are constructed to maximize 
the explained variances of either their indicators or endogenous components, as in 
principal component or canonical correlation analysis, or both. This is a key differ-
ence from factor-based SEM (i.e. covariance structural analysis (CSA) proposed by 
Jöreskog 1970, 1978), where latent variables are defined as factors to best explain 
the covariances of their indicators. Accordingly, component-based SEM are also 
called variance-based SEM, whereas factor-based SEM are called covariance-based 
SEM at times (Reinartz et al. 2009; Roldán and Sánchez-Franco 2012).

Although both GSCA and PLSPM fall within variance-based SEM, they involve 
different model specifications and estimation procedures. GSCA specifies three 
sub-models—weighted relation, structural, and measurement models—and derives 
a single optimization function unifying the sub-models. It allows for construct-
ing two different modeling approaches, (i.e., GSCA with reflective indicators and 
GSCA with formative indicators) within one general modeling framework. On the 
other hand, PLSPM does not utilize a single objective function: each of the possible 
two modeling approaches (i.e., PLSPM with mode A and mode B) just modifies the 
specification of measurement model at a time.1 Accordingly, unlike GSCA that uses 
a full information method with a global optimization function, PLSPM employs a 
limited information estimation method (Tenenhaus 2008). Despite such differences 
in model specification and estimation procedure, conceptually, PLSPM with mode 
A is compatible with GSCA with reflective indicators, in which the weight param-
eters are estimated to maximize the explained variances of indicators, as in princi-
pal component analysis (Hwang et al. 2015; Reinartz et al. 2009), as well as those 
of endogenous components. PLSPM with mode B is regarded as a counterpart of 
GSCA with formative indicators, explaining the variances of endogenous compo-
nents only as much as possible, like canonical correlation analysis (Dijkstra 2017; 
Hwang et al. 2015).

In the literature, several simulation studies have assessed relative performances 
of GSCA and PLSPM under various simulation conditions. In Hwang et al. (2010), 
a simulation study was conducted  to investigate the performance of GSCA with 
reflective indicators and PLSPM with mode A, varying sample sizes, data distri-
butions, and model specifications. They found that the performance between the 
two approaches was similar when a model was specified without any cross-load-
ings. In other conditions where cross-loadings were specified, on average, GSCA 

1 Both GSCA and PLSPM may take different modeling approaches in which their two modeling 
approaches are combined (i.e. GSCA with both reflective indicators and formative indicators and 
PLSPM with mode C), but, for simplicity, we do not handle those mixed types of modeling approaches in 
this study.
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with reflective indicators outperformed PLSPM with mode A (also see Hwang and 
Takane 2014, Chapter 2). However, the data used for this simulation study were gen-
erated under the assumption of covariance-based structural equation models, ren-
dering it difficult to evaluate the comparative performance of variance-based SEM 
approaches (Hwang et al. 2010; Reinartz et al. 2009). Hence, it becomes necessary 
to develop a new data generating process (DGP) appropriate for variance-based 
SEM approaches.

Recently, a team of PLSPM researchers suggested a DGP for variance-based 
SEM (Becker et al. 2013; Dijkstra 2017) and evaluated the relative performance of 
GSCA with formative indicators, PLSPM with mode B, and sum-scores regression 
(i.e. a component’s scores are calculated by simply summing scores of its indicators) 
in terms of parameter recovery and statistical power (Hair et al. 2017). In Hair et al. 
(2017)’s study, GSCA with formative indicators and PLSPM with mode B turned 
out to produce consistent estimators under their DGP and performed better than the 
sum-scores regression. Between the two variance-based SEM approaches, GSCA 
with formative indicators provided more accurate estimates for the weight param-
eters than PLSPM with mode B, whereas they performed similarly in estimating path 
coefficients except for small sample sizes (N = 100). For small sample sizes, PLSPM 
with mode B was slightly better than GSCA with formative indicators, and the power 
of PLSPM with mode B was larger than that of GSCA with formative indicators.

Hair et al. (2017) made a meaningful contribution to variance-based SEM in that 
they initially evaluated the comparative performance of GSCA and PLSPM under 
structural equation models with components. Nevertheless, their study had limita-
tions in (1) the range of the modeling approaches of GSCA and PLSPM consid-
ered and (2) the DGP they used for their simulation. First, Hair et al. (2017), com-
pared GSCA with formative indicators and PLSPM with mode B only, although 
both GSCA and PLSPM could take other modeling approaches, as discussed ear-
lier. Second, as will be explicated in Sect. 3, the components under their DGP were 
constructed with a set of arbitrarily chosen values for the weight parameters, rather 
than deriving the weight parameter values while considering the covariances of their 
indicators. Accordingly, these components may not capture the variances of both 
indicators and endogenous components well, and thus their DGP is hard to serve 
as a standard for evaluating all the variance-based SEM approaches. It is, therefore, 
required to develop a new DGP suited for variance-based SEM and to further assess 
the relative performance of all possible modeling approaches for both GSCA and 
PLSPM.

In this paper, we propose a new DGP for variance-based structural equation mod-
els with components that maximize the explained variances of their indicators and 
endogenous components. Under these structural equation models, all of the repre-
sentatives for variance-based SEM—GSCA with reflective indicators, GSCA with 
formative indicators, PLSPM with mode A, and PLSPM with mode B—are evalu-
ated using a Monte Carlo simulation.

The remainder of this article is organized as follows: In Sect. 2, we briefly review 
GSCA and PLSPM with respect to model specification and estimation process. In 
Sect. 3, a new data generating process for variance-based structural equation models 
is proposed. Its characteristics relative to that of the previous DGP are also discussed 
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in detail. In Sect. 4, we report the design and results of our simulation. In the final 
section, the simulation results are summarized and their implications are discussed.

2  Overview of GSCA and PLSPM

GSCA and PLSPM have distinct model specifications. GSCA specifies three 
sub-models—weighted relation, structural, and measurement models. Let 
� =

[
zj
]
∈ ℝ

J×1 denote the vector of observed variables or indicators where  zj is the 
jth indicator and J is the number of indicators. Let � =

[
γp
]
∈ ℝ

P×1 denote the vec-
tor of latent variable or component, where γp is the pth component and P is the 
number of components. Both indicators and components are assumed to be stand-
ardized (i.e. Var(zj) = Var(γp) = 1). Let � =

[
wj,p

]
∈ ℝ

J×P denote the component 
weight matrix, where  wj,p is the weight assigned to the jth indicator to construct the 
pth component. Let � =

[
cp,j

]
∈ ℝ

P×J denote the loading matrix where  cp,j relates 
the pth component to the jth indicator. Let � =

[
bp∗,p

]
∈ ℝ

P×P denote the path coef-
ficient matrix where  bp*,p denotes the effect of the p*th component on the pth com-
ponent. Let � = [εp] ∈ ℝ

P×1 denote a residual vector where εp is the residual for the 
pth component. Let � =

[
ej
]
∈ ℝ

J×1 denote a residual vector where  ej is the residual 
for the jth indicator. The weighted relation, measurement, and structural models can 
be generally expressed as

In the weighted relation model (1), each latent variable or component is defined 
as a weighted composite of some observed variables, and the observed variables 
are considered indicators of the component. This sub-model identifies GSCA as a 
component-based SEM. The weight assigned to each indicator is determined for its 
component(s) to well explain the relations among the variables specified in the other 
two sub-models, (2) and (3). The structural model (2) specifies a series of directional 
relations among the components, whereas the relations between the components and 
their indicators are specified in the measurement model (3). Specifically, the meas-
urement model (3) sets some indicators to be explained by their components, which, 
in effect, may allow the components to capture variances of the indicators better in 
estimation process of weight parameter. This type of indicator is called ‘reflective 
indicator’, whereas the indicator whose relation with its component is specified in 
the weighted relation model (1) only is called ‘formative indicator’. We named the 
GSCA modeling approach with reflective indicators only GSCA with reflective indi-
cators and the one with formative indicators only GSCA with formative indicators 
for the sake of comparison between PLSPM with mode A and PLSPM with mode B. 
Note that GSCA with formative indicators virtually specifies two sub-models—(1) 
the weighted relation model and (2) the structural model.

(1)� = ���

(2)� = B
�� + �

(3)� = ��� + �.
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Unlike GSCA, PLSPM specifies two sub-models only—structural (or inner) 
and measurement (or outer) model, the latter of which are differently specified 
in PLSPM with mode A and PLSPM with mode B (Tenenhaus et al. 2005).  In the 
PLSPM with mode A, two sub-models can be written as follows:

where Pp is the number of the independent components for the pth component, γp 
is the pth component, and γp∗,p is the p*th independent component for the pth com-
ponents. The measurement model used in PLSPM with mode A is called ‘reflective 
measurement model’ or ‘outwards directed model’. As in the GSCA sub-models, the 
structural and reflective measurement models of PLSPM with mode A specify the 
relations among components and between components and their indicators, respec-
tively. They can also be re-expressed with the matrix notations for GSCA structural 
and measurement models in the same way. In this case, however, the path coeffi-
cient matrix, B, is a triangular matrix, implying that PLSPM does not allow recipro-
cal relations among components unless an additional statistical technique such as 
instrumental variables are utilized. For the loading matrix, C, zero constraints are 
imposed on all the off-diagonal blocks of its entries, which means that indicators can 
be explained by one component only in PLSPM with mode A. When cross-loadings 
and reciprocal relations are not specified, the structural and measurement models of 
PLSPM with mode A are equivalent to those of GSCA with reflective indicators.

On the other hand, while specifying the same structural model, PLSPM with 
mode B specifies different measurement model, called ‘formative measurement 
model’ or ‘inwards directed model.’ The formative measurement model can be 
expressed as

where Jp is the number of indicators for the pth component, wj,p∗ is the formative 
weight assigned to the jth indicator for the pth component, and ζp denote a residual 
for the pth component in formative measurement model. It implies that each com-
ponent is defined by the weighted sum of its indicators as in (1) but with additional 
formative measurement errors: ζp.

PLSPM is distinct from GSCA in that, regardless of its mode, PLSPM does not 
define latent variables as weighted composites of their indicators in model speci-
fication (Hwang et al. 2019; Lohmöller 1989). In the estimation process, however, 
PLSPM always computes component scores as if they specified the weight relation 
model (3) of GSCA. More specifically, in PLSPM with mode A, a score for a compo-
nent is computed as a weighted sum of scores for the indicators which are specified 
to be affected by the component in the reflective measurement model (5). PLSPM 

(4)γp =

Pp∑
p∗=1,p∗≠p

bp∗,pγp∗,p + εp ∀p ∈ {1, 2,… ,P}

(5)zj = cp,jγp + ej ∀j ∈ {1, 2, … , J},

(6)γp =

Jp∑
j=1

wj,p∗zj + ζp ∀p ∈ {1, 2, … ,P},
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with mode B computes component scores based on the specified formative measure-
ment model (6) but with the values of formative measurement errors excluded. Con-
sequently, it is reasonable to think that both PLSPM with mode A and PLSPM with 
mode B implicitly assume the same type of sub-model as the weight relation model 
(3) of GSCA, as follows:

where wj,p corresponds to cp,j for PLSPM with mode A and to wj,p∗ for PLSPM with 
mode B. In this respect, PLSPM has been classified as a component-based SEM with 
GSCA, and the models of PLSPM with mode A corresponds to those of GSCA with 
reflective indicators, while those of PLSPM with mode B does to those of GSCA 
with formative indicators.

Another distinction lies in the unification of model equations. Combining models 
from (1) to (3), GSCA builds a unified model as follows:

where �� =

[
�

��

]
, �� =

[
��

��

]
, and � =

[
�

�

]
 . In contrast, PLSPM does not inte-

grate its sub-model equations (i.e. (4), (5) for PLSPM with mode A and (4), (6) for 
PLSPM with mode B) into one single equation and just leaves them as they are spec-
ified for each dependent variable. As will be explained below, this difference leads 
to the selection of different estimation process for each approach.

For parameter estimation, GSCA employs the full information estimation method 
owing to its global optimization function. The unification of sub-model Eqs.  (8) 
allows GSCA to use the following global optimization function:

where �i denote a J by 1 vector of indicators for the ith observations (i = 1, 2, …, N), 
and ri denote the residuals for the ith observations. This function is equivalent to 
the sum of squared residuals for all the equations in GSCA model. Finding the val-
ues that minimize this function amounts to estimating parameters that maximize the 
explained variances of indicators and endogenous components. GSCA estimates the 
entire entries of A (i.e. loadings and path coefficients for GSCA with reflective indi-
cators and path coefficients only for GSCA with formative indicators) and W (i.e. 
weights) alternatively and concurrently to minimize the optimization function using 

(7)γp =

Jp∑
j=1

wj,pzj ∀p ∈ {1, 2, … ,P},

(8)

[
�

�

]
=

[
��

��

]
� +

[
�

�

]

[
�

��

]
� =

[
��

��

]
��� +

[
�

�

]

��� = ����� + �

(9)� =

N∑
i=1

��
i
�i =

N∑
i=1

(���i − �����i)
�(���i − �����i),
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alternative least squares (ALS) algorithm. The alternating procedure continues until 
the value of the optimization function does not decrease more than the pre-deter-
mined convergence criterion. A detailed description of this algorithm can be found 
in Hwang and Takane (2014). In the full information method, estimation proceeds 
for the entire system of equations, thereby utilizing all the information from every 
equation. Accordingly, estimators of full information methods can be more efficient 
under correct model specification with sufficient sample (Bollen 1996; Fomby et al. 
2011; Gerbing and Hamilton 1994).

Conversely, PLSPM does not have a single optimization criterion to be mini-
mized and consequently relies on the limited information estimation method 
whereby parameters for each equation are estimated separately based solely on 
the information specific to the equation (Fomby et al. 2011, Chapter 22). In addi-
tion, the estimation process of PLSPM is utterly segregated and sequential. At 
the first stage, weights are estimated by the iterative process of two steps. Given 
the random initial values of component scores, component scores are updated 
at the first step as the weighted sum of the other components specified in (4), 
which is called inner estimates for components. With these inner estimates for 
components, weights are estimated at the second step in two different manners—
mode A and mode B (Lohmöller 1989). Under mode A, weights are estimated 
to regress indicators on a component with the specified relations in (5), while 
the loading relating the pth component to the jth indicator, cp,j, is considered 
equivalent to the weight of the jth indicator to construct the pth component, wj,p . 
Because of the basic design setting that each indictor is explained by one com-
ponent only, weights become the correlation between a component and its indi-
cators. On the other hand, Mode B estimates weights by regressing a component 
on its indicators using the formative relations specified in (6). Then, using the 
weight estimates obtained from either mode A or mode B, component scores are 
computed as weighted sums of each set of indicators and standardized so that the 
variance of each component is equivalent to 1. These component score estimates 
are called outer estimates. Given the outer estimates for components, the 1st step 
proceeds again. These two steps iterate and stop when the estimates do not alter 
more than the convergence criterion. With the final component score estimates 
and specified relations in (4) and (5), path coefficients and loadings are esti-
mated by ordinary least squares at the second stage. Note that, even in PLSPM 
with mode B, loadings are estimated at this stage by regressing indicators on 
their components as if they assumed the reflective measurement model (5). You 
may see more detailed explanation on this algorithm in Tenenhaus et al. (2005). 
It is known that limited information methods may render estimators more robust 
to model misspecification in general (Bollen 1996; Fomby et al. 2011; Gerbing 
and Hamilton 1994).

There is no distributional assumption on the data for both GSCA and PLSPM, 
so they estimate standard error or confidence interval of the estimates via the 
bootstrap method (Efron 1979).
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3  Data generating process for variance‑based structural equation 
models

We first explain how data have been generated from a structural equation model with 
several layers of endogenous components in a recursive structural model but without 
cross-loadings and cross-weights in the measurement and weight relation models. 
This extant DGP is an expansion of the ones proposed by Becker et al. (2013) and 
Cho et al. (2019) and corresponds to the one specified in Dijkstra (2017), which has 
been used in Sarstedt et  al. (2016)’s and Hair et  al. (2017)’s simulation study. In 
the DGP, weight parameter values are arbitrarily manipulated by an experimenter, 
thereby not reflecting information on covariances of indicators. We discuss the 
intrinsic limitations of this DGP as a standard for evaluating all the variance-based 
SEM techniques and propose a new DGP tailored to variance-based SEM.

The general variance-based structural equation model can be defined as a class of 
(1) the weighted relation model, (2) the structural model and (3) the measurement 
model. Without cross-loadings and cross-weights specified, the variance-based 
structural equation model can be seen as a set of (7) the weight relation model, (4) 
the structural model and (5) the reflective measurement models as well, from which 
we generated data for our simulation study. To facilitate the explanations on the 
DGP for this model, we initially re-express the general variance-based structural 
equation model while splitting components into the exogenous and endogenous 
components, and specify additional restrictions imposed on the model where cross-
loadings and cross-weights are not specified. The notations used in Sect.  2 still 

retain. In addition, let � =
[
�X
�Y

]
 , where �X is a JX by 1 vector of indicators for exog-

enous components, JX is the number of the indicators for exogenous components, �Y 
is a JY by 1 vector of indicators for endogenous components, and JY is the number 
of the indicators for endogenous components. Let 

�z =

�
�zX �zXzY

�zXz
�
Y

�zY

�
=

⎡
⎢⎢⎢⎢⎢⎣

�z1 ⋯ �z1zp ⋯ �z1zP
⋮ ⋱ ⋱ ⋱ ⋮

�z1z
�
p
⋱ �zp ⋱ �zpzP

⋮ ⋱ ⋱ ⋱ ⋮

�z1z
�
P
⋯ �zpz

�
P
⋯ �zP

⎤
⎥⎥⎥⎥⎥⎦

∈ ℝ
J×J denote a J by J 

covariance matrix of indicators, where �zX is a JX by JX covariance matrix of indi-
cators for exogenous components, �zY is a JY by JY covariance matrix of indicators 
for endogenous components, �zXzY is a JX by JY cross-covariance matrix of indica-
tors for exogenous and endogenous components, �zp is a Jp by Jp covariance matrix 
of indicators for the pth component, Jp is the number of the indicators for the pth 
component and �zpzp∗ is a cross-covariance matrix of indicators for the pth and p*th 
components. �z is assumed to be positive definite, implying that all the indicators 

are linearly independent. Let � =

[
�X
�Y

]
 , where �X is a PX by 1 vector of exogenous 

components and �Y is a PY by 1 vector of endogenous components. Let �γX denote 
a PX by PX covariance matrix of exogenous components and �γY denote a PY by PY 

covariance matrix of endogenous components. Let � =
[
�X
�Y

]
= [��

1
,… , ��

p
,… ��

P
]� , 
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where �X is a JX by 1 vector of residuals for the indicators forming exogenous com-
ponents, �Y is a JY by 1 vector of residuals for the indicators forming endogenous 
components, and �p denote a Jp by 1 vector of residuals for the indicators forming 

the pth components. Let �e =
[
�eX �

� �eY

]
∈ ℝ

J×J denote a J by J covariance 

matrix of residuals, where �eX is a JX by JX covariance matrix of residuals for the 
indicators related to exogenous components and �eY is a JY by JY covariance matrix 

of residuals for the indicators related to exogenous components. Let � =
[
�

�∗

]
 , 

where �∗ is a PY by 1 vector of errors for the endogenous components. Let 
�ε∗ = diag

(
[�1,… , �k … , �PY

]
)
 denote the PY by PY covariance matrix of errors for 

the endogenous components, where δk is the variance of the error for the kth endog-
enous component and diag() is an operator to convert a vector or matrix argument 

into a block-diagonal matrix. Let � =

[
�X �

� �Y

]
 , where �X is a JX by PX matrix 

of weights of the indicators for exogenous components, and �Y is a JY by PY matrix 

of weights of the indicators for endogenous components. Let � =

[
� �X

� �Y

]
 , where 

�X is a PX by PX matrix of path coefficients relating exogenous components to 
endogenous components and �Y is a PY by PY upper triangular matrix of path coef-

ficients relating endogenous components among themselves. Let � =

[
�X �

� �Y

]
 , 

where �X is a PX by JX matrix of loading relating exogenous components to their 
indicators, and �Y is a PY by JY matrix of loadings relating endogenous components 
to their indicators. Then, the general variance-based structural equation model is re-
written as

where Cov(�p, �p) = 0 , and Cov(�X, �∗) = 0 . When the model does not include 
cross-loadings and cross-weights, we can impose additional zero constraints on 
the off-diagonal submatrix of W, C and �e , so that � = diag

(
[�1,… , �p … , �P]

)
 , 

� = diag([�1,… ,�p,… ,�P]) , and �e = diag
(
[�e1,… ,�ep,… ,�eP]

)
 , where cp 

is a vector of loadings relating the pth component to its indicators, wp is a vector 
of weights of the indicators for the pth component, and �ep is a Jp by Jp covariance 
matrix of residuals for the indicators forming the pth component. Also, it can be 
additionally postulated that Cov(�p, �p∗ ) = 0∀p, p∗ ∈ {1, 2,… ,P} , p ≠ p∗ , followed 
by Cov(�, �) = �.

A covariance matrix of �z , a matrix needed for data generation, would be 
obtained by the following steps:

(10)�X = ��
X
�X

(11)�Y = ��
Y
�Y,

(12)�Y = B
�
X
�X + B

�
Y
�Y + �∗.

(13)�X = ��
X
�X + �X

(14)�Y = ��
Y
�Y + �Y
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Step 1: For each p, prescribe the values of �zp , BX, BY, �γX , and unstandardized 
weight vectors for the pth components, denoted as �̃p . With the pre-determined values 
of �̃p , wp would be re-calculated as �̃p√

�̃′
p
�zp�̃p

 , because the variance of γp is expressed 

as

where E(X) is the expectation of a random variable, X. As an alternative to prescrib-
ing �̃p , wp satisfying ��

p
�zp�p = 1 can be directly chosen as well.

Step 2: Given the values of either �̃p and wp, calculate cp as follows:

This Eq. (16) is derived from Cov(γp, �p) = � , because

Step 3: Calculate �ep . As Var(�p)= Var(�p − ��
p
��

p
�p) , this becomes equivalent to 

�ep = (� − ��
p
��

p
)�zp(� − �p�p),

Step 4: Construct matrices of CX, CY, WX, WY, ΣeX and ΣeY from the determined 
values of cp, wp and �ep in earlier steps.

Step 5: Determine �γY . From (12), γY becomes �
Y
= (� − ��

Y
)−1��

X
�
X
+

(� − ��
Y
)−1e∗ . Thus, the covariance matrix of γY can be expressed as

From (17), the diagonal entries of �ε∗ are numerically determined such that the 
diagonal entries of �γY are equal to one, since �ε∗ cannot be expressed as a function of 
other matrices like (17) for �γY . A nonlinear optimization function or package devel-
oped for various programming software can be utilized to find a numerical solution for 
�ε∗ , for instance, fminsearch function in MATLAB or optimr package in R.

Step 6: Determine �zX , �zY and �zXzY . Inserting the prescribed or determined 
values in earlier steps, �zX = ��

X
�γX�X + �eX and �zY = ��

Y
�γY�Y + �eY . After-

wards, �zXzY is obtained by �zXzY = ��
X
�γX�X(� − �Y)

−1�Y . It follows from

(15)Var(γp) =
1

N
E(��

p
��
p
�p�p) = ��

p

1

N
E(��

p
�p)�p = ��

p
�zp�p,

(16)�p = ��
p
�zp

Cov(γp, �p)

= Cov(γp, �p − ��
p
��

p
�p) = Cov(��

p
�p, (� − ��

p
��

p
)�p)

= ��
p
�zp(� − ��

p
��

p
)� = ��

p
�zp − ��

p
�zp�p�p

= ��
p
�zp − �p.

(17)�γY = (� − ��
Y
)−1(��

X
�γX�X + �ε∗)(� − �Y)

−1.

Cov(�X,�Y)

= Cov(��
X
�X + �X,�

�
Y
�Y + �Y)

= ��
X
Cov(�X, �Y)�Y

= ��
X
Cov(�X, (� − ��

Y
)−1��

X
�X + (� − ��

Y
)−1�∗)�Y

= ��
X
�γX�X(� − �Y)

−1�Y.
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Now, we have �z =
[

�zX �zXzY
�zXz

�
Y

�zY

]
 and can generate data from a multivariate 

distribution with the zero mean vector and the �z . By generating data based on the 
above steps of DGP with the structural equation model specified in Hair et al. (2017), 
the equivalent results on the relative performance of GSCA with formative indicators 
and PLSPM with mode B were obtained (see the Table  1 in the Supplementary 
material).

This extant DGP is of significance as an initial proposal for variance-based structural 
equation models. Dijkstra (2017) analytically showed that the components in this DGP 
are canonical variables, implying that the components are constructed to maximize the 
explained variances of the endogenous components, and it was empirically verified in 
Hair et al. (2017)’s simulation study: the estimators of GSCA with formative indictors 
and PLS with mode B were consistent. In the abovementioned DGP, however, values 
of the weight parameters were arbitrarily chosen regardless of covariances of indica-
tors in Step 1. Except for scaling constraint of weights, no functional relations between 
weights and covariances of indicators are considered in the DGP. Simply put, the extant 
DGP has no mechanism of accounting for the variances of indicators when forming the 
components. This result may be against many researchers’ expectation that the compo-
nents would also reflect the information about indicators and adequately explain their 
variances. Consequently, the extant DGP is not concordant with GSCA with reflective 
indicators and PLSPM with mode A, which aim to form components that explain the 
variances of indicators as well as those of endogenous components. When applied to 
the data generated from the extant DGP, GSCA with reflective indicators and PLSPM 
with mode A are expected to produce biased estimates (see the Table 2 in Supplemen-
tary material).

Addressing this concern, we propose a new DGP specifying the functional rela-
tion between weights of indicators for components and their covariance matrix. In this 
DGP, weights of indicators for a component are initially determined to well explain the 
variances of the indicators given the covariances of the indicators. Set the values of �zp 
for p = 1, 2, …, P. Then, wp is obtained by,

where (�zp)
−

1

2 = �p(�p)
−

1

2��
p
 , �p = diag

(
[d1, d2,… , dJp]

)
 is a Jp by Jp 

diagonal matrix of eigenvalues of �zp arranged in a descending order, 
�p = [�1,p, �2,p,… , �Jp,p] is a Jp by Jp matrix of eigenvectors corresponding to the 
eigenvalues, and �1,p is the eigenvector corresponding to the largest eigenvalue, d1 . 
The rest of the procedures are the same as in the previous DGP.

We delineate the procedure to derive (18). The first step is to find the deterministic 
relation between the weights of indicators and the amount of explained variances of the 
indicators by their weighted composites. Let Rp

2 denote a Jp by 1 vector of the explained 
variances of indicators forming the pth components relative to the entire variances of 
indicators. The average Rp

2 is the mean of the elements of Rp
2. Since the model does not 

(18)�p = (�zp)
−

1

2 �1,p
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involve cross-loadings and cross-weights and every indicator and component is stand-
ardized, those relations can be expressed as follows:

Then, finding the weights with which the composite of indicators maximizes its 
capability to explain the variances of the indicators amounts to solving the following 
optimization problem,

This is the constrained quadratic optimization problem on the ellipsoid (Gallier 
and Quaintance 2019, Chapter 37.3). Since �zp is positive definite, it can be orthog-
onally diagonalized as

Let (�zp)
1

2 and (�zp)
−

1

2 be defined by

They are the inverse matrix of each other so that

By (21) and (22), the reparameterization of �p as �p = (�zp)
−

1

2
⌢

�p transforms 
(20) into well-known constrained quadratic optimization problem on the unit sphere,

The solution for (24) is ⌢

�p = �1,p , that is, �p = (�zp)
−

1

2 �1,p , at which the larg-
est value of the objective function, ��

p
(�zp)

2�p , is attained as  d1. You may see the 
detailed explanation for (24) from Chapter 7 in Lay et al. (2015) or Chapter 18.4 in 
Gallier and Quaintance (2019).

(19)

average�2
p

= J−1
p
trace(Cov(��

p
γp))

= J−1
p
trace(��

p
�γp�p)

= J−1
p
trace((��

p
�zp)

���
p
�zp)

= J−1
p
trace(��

p
(�zp)

2�p)

= J−1
p
��

p
(�zp)

2�p

(20)Max
�p

��
p
(�zp)

2�p subject to ��
p
�zp�p = 1.

(21)�zp = �p�p�
�
p
.

(22)
(�zp)

1

2 = �p(�p)
1

2��
p

(�zp)
−

1

2 = �p(�p)
−

1

2��
p
.

(23)(�zp)
1

2 (�zp)
−

1

2 = �p(�p)
1

2��
p
�p(�p)

−
1

2��
p
= �

(24)Max
⌢
�p

⌢

�
�

p
�zp

⌢

�p subject to
⌢

�
�

p

⌢

�p = 1.
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The components constructed from this new DGP can be interpreted in three dif-
ferent ways. Firstly, they can be seen as principal components because the vector of 
weights for each component is determined in the same manner as for the first prin-
cipal component in the principal component analysis. Secondly, those components 
can be also classified as canonical components, as they still satisfy all the relations 
among the parameters specified in the previous DGP. The new DGP just addition-
ally specifies the relations between the weights of indicators and their covariances. 
Lastly, the components in the new DGP can be regarded as the one constructed 
to explain the variances of all the dependent variables specified in both measure-
ment and structural models concurrently as much as possible. We name this type of 
components nomological components in that they can correspond to the concepts 
defined by the entire nomological network including both observed and latent vari-
ables (Cronbach and Meehl 1955). Accordingly, all the variance-based SEM tech-
niques, whether to consider maximizing explained variances of either indicators or 
endogenous components only or both in constructing components  (i.e. whether to 
construct principal, canonical or nomological components), can be adopted to ana-
lyze data from this new DGP, and thus, we can call this DGP a DGP for variance-
based structural equation models. This is the condition where PLSPM with mode A 
and PLSPM with mode B are perfectly matched with each other and may work well 
asymptotically according to Dijkstra (2017). We employed this DGP for empirically 
evaluating the relative performance of both PLSPM with mode A and PLSPM with 
mode B and their counterparts, GSCA with reflective indicators and GSCA with 
formative indicators in our simulation study.

Fig. 1  A variance-based structural equation model with two exogenous components and five endogenous 
components specified for the simulation study. Note that measurement models are omitted for a simpler 
depiction
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4  Simulation

We undertook a comprehensive examination of four SEM approaches—GSCA with 
reflective, GSCA with formative indicators, PLSPM with mode A, and PLSPM with 
mode B in parameter recovery and hypothesis testing under variance-based struc-
tural equation models. For simplicity, GSCA with reflective indicators and GSCA 
with formative indicators are abbreviated to  GSCAR and  GSCAF, while PLSPM 
with mode A and PLSPM with mode B to  PLSA and  PLSB, respectively. We con-
sidered three simulation design factors: sample size (N = 100, 250, 500, 1000), the 
number of indicators per component (Nind = 2, 4, 6, 8), and the average correlation 
within the indicators for a component (r = 0.2, 0.4, 0.6). In total, our experiment 
was comprised of 48 simulation conditions (4 sample sizes × 4 indicator numbers × 3 
average correlations).

We specified a variance-based structural equation model with two exogenous and 
five endogenous components, as in Hair et al. (2017) (Fig. 1). This model reflects the 
American Customer Satisfaction Index model (ACSI; Fornell et al. 1996) which is one 
of the most influential variance-based structural equation models in studying the behav-
ior of consumer satisfaction (e.g. Anderson and Fornell 2002; Eklöf and Westlund 
2002; Rego et al. 2013). To mirror the reality, we assigned various values of different 
signs to path coefficients: two  null values (i.e.  b2 = b6 = 0), two small  values (i.e. 
 b3 = b12 = 0.15), two medium values (i.e.  b5 = 0.3,  b8 = −0.3), and six large values (i.e. 
 b1 = b9 = b11 = 0.5,  b4 = b7 = b10 = −0.5). Two exogenous components were correlated to 

each other by 0.3 (i.e. �γX = 
[
1 .3

.3 1

]
).

Given the number of indicators per component and the value of the average correla-
tion among the indicators for a component, individual correlations among the indica-
tors for a component are randomly chosen to construct their covariance matrix, �zp . 
Once �zp is determined, we applied this matrix to every block of indicators. The range 
of individual correlations for each condition was [0.1, 0.3] for r = 0.2, [0.2, 0.6] for 
r = 0.4, [0.4 0.8] for r = 0.6. For each experimental condition, we have �zp , BX, BY, 
and �γX , from which we derived the covariance matrix of entire indicators with all 
the true parameter values via the DGP for variance-based structural equation mod-
els (see Tables 4–7 in Supplementary materials). We generated 500 random samples 
from the multivariate normal distribution with a zero vector of mean and Σz obtained 
under each condition, to which, in turn, the four variance-based SEM approaches 
were applied. Based on their estimates, we evaluated three properties of estimators of 
each approach—bias, consistency, and relative efficiency—, and their performance 
in hypothesis testing—type I error and statistical power. Note that, in  GSCAF, load-
ings were additionally estimated as in  PLSB, though  GSCAF does not estimate loading 
parameters in general. As explained in Sect. 2, the post examination on directional rela-
tions between components and their indicators are always conducted in  PLSB. With the 
component scores computed on the final weight estimates, indicators are regressed on 
their components by OLS to obtain loading estimates. We applied the same procedure 
to  GSCAF and computed loading estimates. These loading estimates have the same 
meaning as those in  GSCAR and  PLSF—how strongly correlated the components are 
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with its indicators, but their absolute values may be smaller on average since variances 
of indicators are not considered in the estimation of weight parameters.

For bias and consistency, we calculated the relative bias (RB) of an estimator ( ̂θ):

where θ is the parameter to be estimated by θ̂ , Nrep is the number of replications 
in an experiment, and θ̂i is an estimate for θ given the ith sample. Estimators whose 
absolute value of the relative bias was larger than 10% were treated as unaccept-
ably biased ones (e.g. Bollen et al. 2007; Hwang et al. 2010). If the relative bias of 
an estimator becomes close to zero with larger sample size and the value is below 
10% with the largest sample size, the estimator was regarded as being empirically 
consistent. On the other hand, to assess the relative efficiency of the estimators, we 
computed root mean squared error (RMSE). Root mean squared error (RMSE),

is a metric to quantify errors of an estimator. An estimator with lower RMSE can 
be said to be more efficient than the others with higher RMSE. RMSE may serve as 
a better criterion in estimating expected errors of an estimator than mean absolute 
error (MAE) when errors are expected to follow normal distribution rather than uni-
form distribution (Chai and Draxler 2014).

Table 1 depicts the average RB values of the estimators for each sub-model (i.e. 
averaged over the entire weights in the weighted relation model), for each approach, 
given the simulation condition. The average RBs were calculated with the absolute 
RB values of estimators and did not consider the estimators for the parameter of 
zero value. As shown in Table 1,  GSCAR and  PLSA provided unbiased and consist-
ent estimators across all the simulation conditions. Their average RBs were less than 
10% across the sample sizes, irrespective of the level of r and Nind, and became close 
to zero as N increased.  GSCAF and  PLSB also produced unbiased and consistent 
estimators in general. Their average RBs were less than 10% except for that N was 
small (i.e. 100) and Nind was large (i.e. 8), and tended to zero value as N increased. 
In those exceptional cases, average RBs of  GSCAF and  PLSB estimators for weights 
and loadings were more than 10% (e.g. 12.39 and 10.18 for weights and loadings 
of  GSCAF, and 15.60 and 13.42 for weights and loadings of  PLSB when N = 100, 
Nind = 8, and r = 0.6), whereas only GSCAF estimators had the average RBs greater 
than 10% for path coefficients (e.g. 28.46 for path coefficients of  GSCAF, and 8.99 
for path coefficients of  PLSB when N = 100, Nind = 8, and r = 0.6). Overall,  GSCAR 
and  PLSA estimators yielded smaller RBs than  GSCAF and  PLSB, and the difference 
was enlarged as r and Nind got larger and N got smaller.

Table  2 presents the average RMSE values of the estimators for each sub-
model, for each approach, given the simulation condition. The average RMSE was 

(25)
RB(θ̂) =

E(θ̂) − θ

θ
≈

1

Nrep

Nrep∑
i=1

(θ̂i) − θ

θ
,

(26)RMSE(θ̂) =

√
E((θ̂ − θ)2) ≈

√√√√ 1

Nrep

Nrep∑
i=1

(θ̂i−θ)
2
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1 3

computed as the mean of the absolute values of estimators in the same sub-models. 
As Table 2 exhibits, estimators of  GSCAR and  PLSA were more efficient than those 
of GSCAF and  PLSB in general. Specifically,  GSCAF and  PLSB estimators yielded 
larger RMSE  values than  GSCAR and  PLSA estimators for weights and loadings, 
and this gap did not disappear even with the large size of sample (i.e. N = 1000), 
across every condition. With respect to path coefficients, the RMSEs of  GSCAF 
and  PLSB estimators were still larger than those of  GSCAR and  PLSA estimators 
when N = 100 or 250, but the difference in RMSEs became smaller as N increased. 
Between the  GSCAR and  PLSA, the estimators of  GSCAR were at least equivalent 
to or more efficient than those of  PLSA in general. Aside from the four conditions 
(i.e. r = 0.6, Nind = 6 or 8, and N = 100 or 250) of the 48 conditions, the RMSEs of 
 GSCAR estimators for weights were less than or equal to those of  PLSA estimators. 
For loading parameters,  GSCAR estimators led to equivalent or smaller RMSEs on 
average than  PLSA estimators across all the conditions. On the other hand,  GSCAR 
and  PLSA showed no substantial difference in the RMSEs of the estimators for path 
coefficients.

For the purpose of testing the utility of each approach as a tool for hypothesis 
testing, we calculated their type I error and statistical power. We constructed a 
95% confidence interval for each estimate via 100 bootstrap sampling and calcu-
lated the relative frequency of the cases where the confidence interval failed to con-
tain a zero value. That frequency can be interpreted as  empirical type I error for 
the parameter of zero value and as statistical power for the parameter of nonzero 
value. Table 3 shows the average type I errors over the two null path coefficients for 
each approach in all the experimental conditions. Overall, every approach succeeded 
in controlling type I error around at 0.05 level (i.e. deviated from 0.05 by 0.02 or 
less), except  GSCAF.  GSCAF controlled type I error too strictly when N = 100 and 
Nind = 6 or 8 so that its value was 0.01 or even 0.00. Table 4 depicts the average sta-
tistical power for the parameters in each sub-model, varying N, Nind, and r.  GSCAR 
and  PLSA tended to have power equal to or higher than  GSCAF and  PLSB across 
all the simulation conditions. In particular, inequality between the two groups (i.e. 
 GSCAR and  PLSA versus  GSCAF and  PLSB) was observed to a greater degree when 
weight and path coefficients were estimated with a small size of sample relative to 
the large number of indicators (e.g. N = 100 and Nind  ≥  6). In comparison of  GSCAR 
with  PLSA,  GSCAR showed better performance in power than  PLSA given a small or 
medium size of sample (i.e. N  ≤  250) in general, but the difference was negligible. 

5  Summary and discussions

In this paper, we uncovered the limitation of previous DGPs for variance-based SEM 
and proposed a new DGP where components are constructed to well explain the 
variances of their indicators as well as those of endogenous components. Along with 
the development of the DGP for variance-based structural equation models, GSCA 
with reflective indicators and PLSPM with mode A were properly evaluated. Our 
simulation study showed that all modeling approaches of variance-based SEM were 
able to provide consistent and acceptably unbiased estimators for the parameters of 
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variance-based structural equation models. This result not only serves as empirical 
evidence to substantiate the appropriateness of the DGP proposed in this paper, but 
also cements GSCA’s and PLSPM’s positions as variance-based SEM approaches.

GSCA with reflective indicators and PLSPM with mode A turned out to recover 
parameters in a more efficient manner than GSCA with formative indicators and 
PLSPM with mode B under variance-based structural equation models. It would 
be attributed from the fact that the former approaches estimate weights while con-
sidering the variances of indicators as well as those of endogenous components. 
In addition, we found that compared to PLSPM with mode A, GSCA with reflec-
tive indicators provided more efficient estimators for weights and loadings. For the 
path coefficients, though, there were no substantial differences between PLSPM 
with mode A and GSCA with reflective indicators. These patterns were the same for 
GSCA with formative indicators and PLSPM with mode B, which is in accord with 
the simulation result of Hair et al. (2017).

In terms of hypothesis testing, GSCA with reflective indicators and PLSPM with 
mode A outperformed GSCA with formative indicators and PLSPM with mode B as 
well. While GSCA with reflective indicators and PLSPM with mode A controlled type 
I error at the pre-specified significance level (i.e. 0.05) equally well, GSCA with reflec-
tive indicators showed slightly higher power than PLSPM with mode A. Notably, GSCA 
with formative indicators outperformed PLSPM with mode B in statistical power. This 
tendency became more salient when the true path coefficient was prescribed to be low 
(i.e., b = 0.15; see Table 3 in Supplementary materials). This result is in contrast to the 
one reported by Hair et al. (2017) that PLSPM with mode B was better than GSCA with 
formative indicators in statistical power. The different results between the  two studies 
may be due to the differences in prescribed signs of the path coefficients in a given struc-
tural model: given that standard errors are fixed, a statistical power is likely to be affected 
by the magnitude of biases, which are further dependent upon the signs of path coef-
ficients in the structural model. We observed that a change in the sign of a path coef-
ficient in DGP also influenced patterns of biases for all the other path coefficients in both 
GSCA and PLSPM. The effect was rather arbitrary so that some changes were advanta-
geous to GSCA and the other to PLSPM. In this sense, higher power of PLSPM with 
mode B or GSCA with formative indicators in each study could stem from the prescribed 
values of path coefficients being advantageous to either of them.

Lastly, our simulation showed that the effects of the number of indicators per 
component and correlation between indicators for each component were different 
across modeling approaches of variance-based SEM. GSCA with reflective indica-
tors and PLSPM with mode A benefited from the large number of indicators per 
component and the high level of average correlation between indicators for a com-
ponent, as in factor analysis (Marsh et  al. 1998), whereas those conditions rather 
had negative impacts on GSCA with formative indicators and PLSPM with mode B. 
This finding is consistent with Becker et al. (2013), in which an increase in correla-
tion between indicators was found to be associated with lower RMSE for PLSPM 
with mode A but higher RMSE for PLSPM with mode B. According to their explica-
tion, high correlations between indicators can lead to multicollinearity, subsequently 
aggravating stability of weight estimation, especially for PLSPM with mode B. With 
indicators for a component being more correlated to each other, the multicollinearity 
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problem is expected to be worse. Conversely, PLSPM with mode A is relatively free 
from this issue as it estimates weights by correlation (Becker et  al. 2013; Rigdon 
2012). However, it cannot be a sufficient reason why PLSPM with mode A or GSCA 
with reflective indicators performs better, despite of the risk of multicollinearity. 
It may be reasonable to conjecture that including additional indicators leads to an 
increase in the number of equations to be considered in estimating weight param-
eters for GSCA with reflective indicators and PLSPM with mode A, which in turn, 
would make their estimation process more stable.

Based on our findings, we provide a couple of recommendations for practition-
ers to utilize variance-based SEM approaches. First, if you want to construct nomo-
logical components in SEM framework or  run SEM using the measures based on 
principal component analysis, you should select GSCA with reflective indicators or 
PLSPM with mode A. Without the prior preference on the two approaches, we sug-
gest using GSCA with reflective indicators since it can help construct components 
more precisely. Using GSCA with formative indicators or PLSPM with mode B is 
recommended in particular case when the construction of components is specifically 
aimed at explaining the variances of endogenous components only.

Second, if you use GSCA with reflective indicators or PLSPM with mode A, it 
would be acceptable to increase the number of indicators with high correlation if pos-
sible. On the other hand, when drawing on GSCA with formative indicators or PLSPM 
with mode B, you should sift a few indicators with low correlation through a set of 
candidate indicators. However, you need to be cautious to add or remove indicators 
because such change may alter the conceptual meaning of components (Bollen 2017; 
Jarvis et al. 2003).

In spite of our comprehensive investigation on relative performances of the four 
SEM approaches, we overlooked two important criteria to evaluate their performance. 
The first one is another important property of an estimator—robustness to model-
misspecification. As mentioned in Sect. 2, the limited estimation method adopted in 
PLSPM might allow PLSPM to be robust to model-misspecification, even though, in 
Hwang et al. (2010) and Hwang and Takane (2014)’s simulation study, the evidence to 
support this hypothesis was not found under factor-based structural equation models. 
On the other hand, GSCA with reflective indicators and PLSPM with mode A could 
be practically more robust to model-misspecification. SEM techniques are typically 
applied after all measurements are sufficiently validated (Bollen 1989; Chin 1998). In 
other words, SEM techniques are generally utilized in the situation where researchers 
are unsure of the true structural model but with validated measurement tools. In this 
case, GSCA with formative indicators and PLSPM with mode B would be subject to 
biased estimates for path coefficients, because their estimation of weights is contingent 
solely on allegedly specified paths among components. In contrast, GSCA with reflec-
tive indicators and PLSPM with mode A consider the variances of indicators as well in 
weights estimation, which may allow their estimators to be more robust against model-
misspecification. Further research is required to test these hypotheses on the relative 
robustness under the various model constellations with components.

The second missing criteria is the one in the utterly different framework from param-
eter recovery—predictability. GSCA and PLSPM are essentially “prediction-oriented” 
approaches to SEM in that they can predict individual scores of every endogenous 
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variable specified in the model, beyond simply estimating parameters (Cho et al. 2019; 
Sharma et  al. 2018; Wold 1982). However, their relative predictive performance has 
never been properly evaluated even though its importance was acknowledged in the vari-
ance-based SEM scholarly community (Shmueli et al. 2016). Thus, the future research to 
compare the two variance-based SEM approaches needs to consider their performance 
on predictability. The DGP proposed in this paper may facilitate this future research.
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