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Abstract
Partial least squares path modeling (PLSPM) and generalized structural component 
analysis (GSCA) constitute composite-based structural equation modeling (SEM) 
methods, which have attracted considerable interest among methodological and 
applied researchers alike. Methodological extensions of PLSPM and GSCA have 
appeared at rapid pace, producing different research streams with different foci and 
understandings of the methods and their merits. Based on a theoretical comparison 
of PLSPM and GSCA in terms of model specification, parameter estimation, and 
results evaluation, we apply a text analytics technique to identify links between 
dominant topics in methodological research on both methods. We find that research-
ers have put effort on clearly distinguishing factor and composite models and their 
implications for the methods’ performance. We also identify an increasing interest 
in more complex model specifications such as mediating effects and higher-order 
models. The evidence of converging and diverging PLSPM and GSCA streams of 
research points out opportunities for advancing the evolution of composite-based 
SEM.
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1 Introduction

Structural equation modeling (SEM) has become a quasi-standard tool for analyzing 
complex inter-relationships between observed and latent variables (Kaplan 2002). Two 
conceptually different approaches to SEM have been proposed: factor- and compos-
ite-based SEM (Jöreskog and Wold 1982; Rigdon et al. 2017). In factor-based SEM, 
as strongly influenced by the psychometric or psychological measurement tradition, 
unobservable conceptual variables are approximated by common factors under the 
assumption that each latent variable exists as an entity independent of observed vari-
ables, but serves as the sole source of the associations among the observed variables. 
On the contrary, composite-based SEM—influenced by traditional multivariate statis-
tical techniques such as principal component analysis and canonical correlation analy-
sis (e.g., Horst 1936, 1961; Hotelling 1933, 1936; Pearson 1901; Spearman 1913)—
represents a latent variable by a weighted composite (or component) of observed 
variables, assuming that it is a deterministic aggregation of observed variables.1

Partial least squares path modeling (PLSPM; Wold 1966, 1973, 1982; Lohmöller 
1989) and generalized structured component analysis (GSCA; Hwang and Takane 
2004, 2014) are full-fledged approaches to composite-based SEM and are compa-
rable in scope and capability, although many multivariate methods can also be con-
sidered to fall into the domain of composite-based SEM (Hwang and Takane 2014, 
see Chapter  2). Particularly PLSPM has gained massive dissemination during the 
last decade, especially in the social sciences (e.g., Ali et al. 2018; Hair et al. 2012; 
Ringle et al. 2019), but also in other fields of scientific inquiry such as agricultural 
science, engineering, environmental science, and medicine (e.g., Avkiran 2018; 
Sarstedt 2019; Willaby et al. 2015).

Reflecting on the increasing prominence of the method, Khan et  al. (2019) 
recently presented a social network analysis of methodological PLSPM research. 
Specifically, using 84 methodological studies published in 39 journals by 145 
authors from 106 universities as input, their results show that the PLSPM knowl-
edge network is rather fragmented, with authors working in partly isolated silos. 
An additional burst detection analysis indicates that method comparisons and 
extensions, for example, to estimate common factor model data (e.g., Dijkstra and 
Henseler 2015) or to leverage PLSPM’s predictive capabilities (e.g., Shmueli et al. 
2016), feature prominently in recent research. While Khan et al. (2019) outline the 
PLSPM’s domain knowledge infrastructure and identify prominent topics via simple 
word counts in the studies’ titles and abstracts, their study offers no insights into 
the semantic relationships among key topics covered in prior research. However, 
recognizing these relationships is important for understanding the domain’s current 
state of research and identifying future research opportunities. Furthermore, Khan 
et al.’s (2019) analysis focuses on PLSPM and did not investigate methodological 
research on GSCA, which has attracted considerable research attention among users 
of composite-based SEM and methodologists alike (e.g., Hwang et al. 2017; Jung 
et al. 2018; Suk and Hwang 2016).

1 Throughout the manuscript, we use the terms composites and components interchangeably.
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Addressing these concerns, this study sets out to identify dominant topics that 
characterize the joint PLSPM and GSCA research domain. For this purpose, we 
apply a two-stage approach to uncover the structure in text corpora by identifying 
links between dominant topics via the co-occurrence of words within their textual 
contexts (Smith and Humphreys 2006). This approach differs from co-citation anal-
ysis, which investigates the subject similarity among central articles in a research 
stream by counting the number of joint citations (White and Griffith 1981). It also 
extends the social network and burst detection analyses employed by Khan et  al. 
(2019), which focus on analyzing relationships among authors, institutions, and 
countries in the form of co-authorships and simple word pairs to identify salient top-
ics in the field. Instead, our analysis identifies semantic patterns from lexical co-
occurrence information extracted from methodological publications on PLSPM and 
GSCA.

In what follows, we first discuss similarities and differences between PLSPM and 
GSCA in model specification, parameter estimation, and results evaluation. Describ-
ing and contrasting the foundations of PLSPM and GSCA allows establishing the 
grounds for a unified view on composite-based modeling, which is important to path 
the way for future method developments and application practices in studies. We 
then introduce the method and the data used in our concept analysis of methodo-
logical research on PLSPM and GSCA. The next section depicts the dominant topics 
derived from the analysis and puts these into relationship with recent research on 
related topics. In doing so, we differentiate between two periods, 1979–2013 and 
2014–2017, to disclose trending and fading topics.

2  PLSPM and GSCA: similarities and differences

While PLSPM and GSCA share the same objective of analyzing complex inter-
relationships between observed and latent variables, both methods differ in the way 
they achieve this aim. In the following, we highlight several similarities and differ-
ences, focusing on aspects related to model specification, estimation, and results 
evaluation.

2.1  Model specification

Model specification in PLSPM and GSCA involves two sub-models—the measure-
ment (or outer) models and the structural (or inner) model. The measurement model 
is used to specify the relationships between indicators and latent variables, whereas 
the structural model expresses the relationships between latent variables.

Let z and γ denote vectors of all indicators and latent variables, respectively. 
PLSPM and GSCA contemplate the following measurement model:

where C is a matrix of loadings relating the indicators (z) and the latent variables 
(γ), and ε is the disturbance term of the indicators. The loading is the zero-order 
correlation between a latent variable and an indicator.

(1)� = �� + �,
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PLSPM additionally considers another measurement model, where a latent variable 
(γ) is modeled as a linear function of its associated indicators (z):

where H is a matrix of indicator weights derived from a regression of each latent 
variable on the indicators of its measurement model, and θ is the disturbance term of 
the latent variables.

The measurement model specification in Eq. (1) is typically associated with the term 
“reflective measurement model”, where the indicators are viewed as imperfect reflec-
tions of the underlying construct (MacKenzie et al. 2011). However, this can be mis-
leading in composite-based SEM, because it is typically used in the context of common 
factor models to indicate that a latent variable “causes” the indicators to covary. In other 
words, when controlling for the impact of the latent variable, the indicator correlations 
are zero, also known as the axiom of local independence (Lazarsfeld 1959). Similarly, 
in PLSPM, researchers typically associate the measurement model specification in 
Eq. (2) with the term “formative measurement model”, where the indicators combine 
to form the construct (MacKenzie et  al. 2011). However, the terms “reflective” and 
“formative” refer to the theoretical specification of a construct, which is different from 
how PLSPM and GSCA statistically estimate the models. No matter if one specifies the 
measurement model according to Eqs. (1) or (2), composite-based SEM methods such 
as PLSPM and GSCA always compute weighted composites of indicators to represent 
the latent variables in the statistical model (Rigdon et al. 2017; Sarstedt et al. 2016).

In PLSPM and GSCA, the structural model of the relationships between the latent 
variables (γ) can be generally expressed as:

where B is a matrix of path coefficients and ζ is the disturbance term of the depend-
ent latent variables. In addition to the measurement and structural models, GSCA 
has another sub-model, called the weighted relation model, which explicitly defines 
latent variables (γ) as weighted composites of indicators (z), as follows:

where W is a matrix of (component) weights assigned to indicators. A key differ-
ence in model specification is whether the aforementioned sub-models are com-
bined into a single formulation for specifying an entire structural equation model. 
GSCA integrates its sub-models into a unified formulation (i.e., a single equation), 
as follows:

(2)� = �� + �,

(3)� = �� + �,

(4)� = ��,

(5)

[

�

�

]

=

[

�

�

]

� +

[

�

�

]

[

�

��

]

=

[

�

�

]

�� +

[

�

�

]

[

�

�

]

� =

[

�

�

]

�� +

[

�

�

]

�� = ��� + � ,



223

1 3

Behaviormetrika (2020) 47:219–241 

where I is an identity matrix, V = 
[

�

�

]

 , and A = 
[

�

�

]

 . This is called the GSCA 

model. Note that this model can also be expressed as:

where u = 
[

�

�

]

� and T = 
[

� �

� �

]

 . This model is essentially of the same form as the 

reticular action model (RAM; McArdle and McDonald 1984), which is mathemati-
cally the most compact one amongst several formulations for factor-based SEM, 
including the LISREL (Jöreskog 1970; Jöreskog 1973) and the Bentler–Weeks 
(Bentler and Weeks 1980) models. The difference between GSCA and RAM is that 
GSCA defines latent variables as composites; that is, γ = Wz in Eq. (4), whereas the 
RAM defines it as a (common) factor. On the other hand, PLSPM does not combine 
its sub-models into a single equation as GSCA does based on Eq. (5). This dissimi-
larity in the number of equations needed for the entire model specification in turn 
leads to differences in the set-up of the parameter estimation algorithms used by the 
two approaches.

2.2  Model estimation

Model estimation in PLSPM—as implemented in most software programs—draws 
on Lohmöller’s (1989) extension of Wold’s (1982) original PLSPM algorithm, 
which belongs to the family of (alternating) least squares algorithms (Mateos-
Aparicio 2011). PLSPM estimates model parameters such that the model’s residual 
variances are minimized (Jöreskog and Wold 1982). To achieve this aim, PLSPM 
carries out two computational stages sequentially. The first stage returns the latent 
variable scores as weighted sums of their associated indicators by either using cor-
relation weights (Mode A) or regression weights (Mode B) per measurement model. 
Correlation weights are technically equivalent to zero-order correlations between a 
latent variable and each of its assigned indicators. Regression weights result from 
regressing a latent variable on its associated indicators. In this first stage, an iterative 
four-step algorithm is used to estimate the weights per measurement model. After 
convergence (i.e., between iterations, the sum of weights changes becomes very 
small; e.g., < 0.0000001), the weights are used to compute the latent variable scores 
as linear combinations of their indicators. The second stage uses the latent variable 
scores as input in a series of ordinary least squares regressions to estimate the final 
outer loadings (Eq. 1), outer weights (Eq. 2), the structural model path coefficients 
(Eq.  3), and the R2 values of the dependent latent variables. The second stage is, 
thus, non-iterative and simply based on the latent variable scores obtained from 
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the first stage. Consequently, the first stage is the most crucial in PLSPM (Hanafi 
2007).2

GSCA has the goal to minimize a single optimization criterion of the model. Let 
zi denote a vector of indicators measured on a single observation of a sample of N 
observations (i = 1, …, N). To estimate weights (W) and path coefficients and load-
ings (A) in Eq. (5), GSCA seeks to minimize the sum of all squared residuals (ei) 
over N observations. This is equivalent to minimizing the following least squares 
criterion:

with respect to W and A.
For this purpose, GSCA estimates all parameters in one stage by using an itera-

tive algorithm with two steps named alternating least squares (ALS; De Leeuw et al. 
1976). The ALS algorithm divides the entire set of parameters into two subsets—
W and A. The algorithm begins by assigning arbitrary initial values to W and A, 
and subsequently carries out two steps per iteration. The first step obtains the least 
squares estimates of W by minimizing Eq. (7) only with respect to W, considering 
A fixed temporarily. The second step obtains the least squares estimates of A by 
minimizing the same criterion only with respect to A, while considering W con-
stant. The two steps are repeated until convergence; for example, the change of the 
criterion value between iterations becomes smaller than a pre-determined thresh-
old value (e.g., 0.0001). We refer to Hwang and Takane (2014, Appendix 2.1) for a 
detailed description of the ALS algorithm.

A main difference in parameter estimation is that GSCA optimizes a single cri-
terion to estimate all parameters concurrently and utilizes all information availa-
ble from the entire system of equations. On the contrary, PLSPM does not involve 
a single criterion, but rather splits its parameters into two sets and estimates each 
set iteratively by using a subset of equations at a time, which uses the results of 
the other subset as input. For these reasons, GSCA is a full-information method, 
whereas PLSPM is a limited-information method (Tenenhaus 2008). In general, 
full-information methods are known to be more efficient under correct model 
specification (Antonakis et al. 2010; Fomby et al. 2012, see Chapter 22), whereas 
limited-information methods tend to be robust to model misspecification (Bollen 
et  al. 2007; Gerbing and Hamilton 1994). In addition, the estimation procedure 
of GSCA via ALS appears technically more straightforward and easier to under-
stand than the procedure of PLSPM, which has been criticized for its complexity 
(e.g., McDonald 1996; Tenenhaus 2008). When using the PLSPM algorithm, for 
instance, researchers must choose to either use correlations weights (Mode A) 

(7)� =

N
∑

i=1

��
i
�i =

N
∑

i=1

(��i − ���i)
�(��i − ���i),

2 Note that the original presentation of the PLSPM algorithm also considers a third stage, which deals 
with the estimation of location parameters of the indicators and latent variables. We refer to Lohmöller 
et  al. (1989) and Tenenhaus et  al. (2005) for a detailed description of the PLSPM algorithm (also see 
Hair et al. 2017b; Hwang et al. 2015; Wold 1982).
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or regression weights (Mode B) per measurement model. However, which choice 
best supports certain model estimation objectives is subject of further research 
(Dijkstra 2017). Primary results in this direction by Becker et al. (2013a) substan-
tiate that correlation weights (Mode A) produce a higher out-of-sample predic-
tive power under a broad range of conditions and better parameter accuracy when 
sample sizes are small and the model’s effect sizes are moderate to strong. But 
most importantly, the absence of a single optimization criterion in PLSPM makes 
it difficult to impose certain constraints (e.g., equality constraints) on parameters 
or to fix specific parameters (Tenenhaus 2008). On the contrary, GSCA allows 
to impose parameter constraints in its estimation procedure (e.g., Hwang and 
Takane 2014, Chapter 3).

PLSPM and GSCA have recently been extended to address the most common 
criticism of composite-based SEM that it has no formal way of modeling errors 
in indicators (e.g., Bentler and Huang 2014; Takane and Hwang 2018), although 
extracting a weighted composite from a set of indicators contributes to account-
ing for measurement error (Gleason and Staelin 1973; Henseler et al. 2014; Rig-
don 2012). For example, recent research has brought forward consistent partial 
least squares (PLSc; Dijkstra 2010; Dijkstra and Henseler 2015). The method fol-
lows a composite modeling logic but mimics a common factor model (Sarstedt 
et al. 2016). To do so, the method first computes the model parameters using the 
standard PLSPM algorithm and correlation weights to obtain the results for the 
outer loadings, outer weights, path coefficients, and R2 values. Then, PLSc cor-
rects these estimates for attenuation by using the constructs’ reliability coeffi-
cients ρA (Dijkstra and Henseler 2015):

whereby h represents the estimated outer weights vector of the latent variable and 
S is the empirical covariance matrix of the latent variable’s indicators. PLSc also 
employs ρA to compute adjusted outer loadings ĉ as follows:

In the structural model, PLSc adjusts the PLSPM correlations corr
(

�i, �j
)

 
between all pairs of latent variables �i and �j as follows:

Then, PLSc utilizes the matrix of the changed correlations corr
(

�̃�i, �̃�j
)

 to esti-
mate the adjusted path coefficients for each dependent latent variable and its R2 
values by means of ordinary least squares regressions.

To mimic common factor model results in a GSCA context, Hwang et  al. 
(2017) proposed  GSCAM that includes both common and unique parts of each 
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indicator, under the assumption that the unique parts are equivalent to measure-
ment errors, as postulated in common factor analysis or factor-based SEM. Like 
GSCA,  GSCAM estimates all parameters simultaneously, taking into account 
measurement errors.

Both PLSc and  GSCAM provide parameter estimates comparable to those of fac-
tor-based SEM. Thus, researchers may use these extensions when factor-based SEM 
does not converge or converges to improper solutions and small sample sizes or 
complex model specifications permit addressing these issues. Nonetheless, a main 
difference between PLSc and  GSCAM is that  GSCAM does not require the basic 
design in model specification and parameter estimation. The basic design can often 
be restrictive in practice, leading to the exclusion of multidimensional latent vari-
ables that have been well studied in the literature (Asparouhov and Muthén 2009). 
For instance, multitrait–multimethod models (Campbell and Fiske 1959) and latent 
growth curve models (Meredith and Tisak 1990; Duncan et al. 2013) include mul-
tidimensional latent variables. In this regard,  GSCAM seems to be more flexible 
than PLSc. Irrespective of this, rather than mimicking factor-based SEM results, 
researchers should generally revert to the much more widely recognized and vali-
dated factor-based SEM method when estimating factor models (Hair et al. 2017a).

2.3  Results evaluation

Differences in model estimation entail distinct model evaluation criteria to be used 
in PLSPM and GSCA, which are well documented in the extant literature (e.g., Hair 
et al. 2017b; Hwang and Takane 2014; see Table 1).

For PLSPM, the first step in results evaluation involves examining the measure-
ment models. For reflective measurement models, researchers need to assess the 
indicator and construct reliabilities, convergent validity, and discriminant validity. 
Formative measurement models need to be assessed with regard to convergent valid-
ity, multicollinearity, and the significance and relevance of the indicator weights 
(Sarstedt et al. 2017). The second step in PLSPM-based results evaluation considers 
the structural model. This step focuses on the significance and relevance of the path 
coefficients and the model’s explanatory power (i.e., the R2) as well as its predictive 
power (e.g., using PLSpredict; Shmueli et  al. 2016, 2019). Researchers have also 
proposed various criteria for assessing a PLS path model’s goodness-of-fit (e.g., GFI 
and SRMR; Lohmöller 1989; Henseler et al. 2014). However, recent research calls 
the appropriateness of these metrics and their proposed thresholds into question as 

Table 1  Results assessment

PLSPM GSCA

Assessment 
types

- Measurement model/local (e.g., significance 
testing, construct reliability and validity)

- Structural model/local (e.g., significance 
testing, explanatory and predictive power)

- (Predictive) model comparisons

- Measurement model/local (e.g., compos-
ite reliability,  FITM)

- Structural model/local (e.g., R2 and  FITS)
- Overall/global (model fit such as FIT, 

AFIT, GFI, and SRMR)
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the metrics don’t align with the functional principles of the PLSPM algorithm (Hair 
et  al. 2019b). Instead, researchers should focus on predictive model evaluation, 
which conforms to PLSPM’s causal-predictive nature (Jöreskog and Wold 1982). 
Researchers should also consider different model configurations and engage in (pre-
dictive) model comparisons (Sharma et al. 2019a, b).

The assessment of GSCA results (see Hwang and Takane 2014) can be carried 
out based on global fit criteria such as FIT and AFIT. These criteria represent a 
form of average R2 value of both the indicators in the measurement model and the 
dependent latent variables in the structural model. Moreover, the GFI and SRMR 
are global fit measures that consider the difference between the sample covariance 
matrix and the model-implied covariance matrix. Similarly to the FIT and AFIT 
criteria, the indices  FITM and  FITS separately indicate how much the variance of 
indicators (and latent variables) is on average accounted for by a measurement (and 
the  structural) model. GSCA also supports the assessment of each measurement 
model’s composite reliability (Ryoo and Hwang 2017), as well as predictability of 
the entire model or sub-models via cross-validation (Cho et al. 2019). Furthermore, 
various aforementioned local fit criteria that PLSPM adopts can also be used for 
GSCA (Hwang and Takane 2014, Chapter 2).

Since PLSPM and GSCA are non-parametric, both methods rely on resampling 
methods, such as bootstrapping (Efron 1979, 1982), to obtain the parameters’ stand-
ard errors (e.g., Chin 2001; Hwang and Takane 2004). These allow for computing 
test statistics or confidence intervals, which facilitate testing the significance of path 
coefficients and other model parameters of interest (most notably indicator weights).

Even though the criteria differ, results evaluation in PLSPM and GSCA put 
strong emphasis on the explained variance of the model’s dependent constructs. In 
addition, while GSCA emphasizes goodness-of-fit testing, researchers using PLSPM 
have recently put greater emphasis on prediction-oriented model assessment (Shmu-
eli et  al. 2019). We expect that these views will converge in order to exploit the 
composite-based SEM’s causal-predictive capabilities in the future.

3  Concept analysis

3.1  Methodology

To identify dominant topics that characterize the joint PLSPM and GSCA research 
domain, we apply a combination of semantic and relational extraction from text, 
referred to as Leximancer (Smith and Humphreys 2006). The approach has been 
used in various fields including communication studies (Chevalier et al. 2018), mar-
keting (e.g., Babin and Sarstedt 2019; Fritze et al. 2018; Wilden et al. 2017), and 
different areas of life sciences (e.g., Day et al. 2018; Kilgour et al. 2019; Rigo et al. 
2018) to identify dominant themes in research streams.

In its first stage (semantic extraction), the method uses word frequencies and co-
occurrences to produce a ranked list of lexical terms. This list seeds a bootstrapping 
algorithm, which extracts a set of classifiers from the text by iteratively extending 
the seed word definitions. The resulting weighted term classifiers are referred to as 
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concepts and represent words that carry related meanings (Smith and Humphreys 
2006). In its second stage (relational extraction), the method uses the concepts iden-
tified in the previous stage to classify text segments (typically every two or three 
sentences; Leximancer 2018). Specifically, using the relative concept co-occurrence 
frequency as input, the method generates a two-dimensional concept map based on 
a variant of the spring-force model for the many-body problem (Chalmers and Chit-
son 1992). The connectedness of each concept in the underlying network is used 
to group the concepts into higher-level themes, which aid interpretation of the net-
work’s structure. Themes typically consist of several highly connected concepts, 
which can be used to characterize the corresponding region of the network—as visu-
alized in the concept map. When themes comprise only a single concept, they usu-
ally appear as isolates in the border region of the concept map.

3.2  Data

For the analysis, we first included all 84 articles used in Khan et al.’s (2019) net-
work analysis of the PLSPM research domain. In the next step, we used the Web 
of Science (WoS) to retrieve additional articles that deal with GSCA and other 
composite-based SEM methods. Specifically, we entered the following search query 
into the WoS search engine to find publications across all the databases: “compos-
ite-based SEM” OR “composite-based structural equation modeling” OR “GSCA” 
OR “GESCA” OR “generalized structure component analysis”. To remain consist-
ent with Khan et al.’s (2019) list, we considered all publications from 1965 to early 
2017. This second search retrieved an initial number of 24 articles, which three pro-
fessors proficient in SEM then independently classified. Relevant articles identified 
in the second search primarily deal with generalized canonical correlation analy-
sis (e.g., Tenenhaus and Tenenhaus 2014; Tenenhaus et al. 2015), GSCA (Hwang 
and Takane 2004) and its various extensions (e.g., Hwang and Takane 2004; Hwang 
et al. 2007, 2010).

As a result, our analysis considers 108 papers published between 1979 and 2017. 
Most of these articles were published in Journal of Business Research (10 articles, 
9.26%), Long Range Planning (8 articles, 7.41%), Psychometrika (7 articles, 6.48%), 
Computational Statistics & Data Analysis, and Ind Manag Data Syst (both 6 arti-
cles, 5.56%), showing that composite-based SEM methods have a strong standing 
in both, prominent applied and renowned statistics journals. A detailed breakdown 
of the publication years shows that the field experienced a sharp increase in publica-
tions in 2014 and later. Specifically, 64 of the 108 articles (59.26%) stem from this 
time period. Therefore, we performed (1) an analysis of all papers, and (2) separate 
analyses of the time periods 1979–2013 and 2014–2017. We first performed sev-
eral training runs on the overall data separated by time periods to identify generic 
concepts that do not offer any insights into the research domain. As a result of these 
training runs, we excluded concepts such as “article”, “number”, “paper”, “table”, 
and “use” from the subsequent analyses. In addition, we removed all name-like con-
cepts such as “Chin” and “Wold”.
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4  Results

Table 2 shows the extracted themes (i.e., groups of concepts) from the analysis of 
all papers and by time periods, including each theme’s number of hits per analysis. 
The two most dominant themes are latent and analysis. Also, from 1979 to 2013, the 
theme model played a particularly important role, while from 2014 to 2017 effects 
and value represent became relevant themes.

Table 3 presents the breakdown of the themes and corresponding concepts, show-
ing all themes with more than one concept per theme (i.e., other than the theme 
itself) in any of the analyses, sorted by overall hits. Figure 1 shows the concept map 
resulting from the analyses showing all the derived concepts and their groupings 
into themes. Finally, Fig. 2 displays the concept map from 1979 to 2013 while Fig. 3 
shows the concept map from 2014 to 2017. The dots in each of the maps represent 
the concepts, while the circles represent the themes. The size of each circle indicates 
the number of concepts belonging to each theme, thereby also defining the bound-
aries to neighboring themes. The themes are heat-mapped to indicate importance. 
That is, a theme comprising many concepts that are mentioned frequently within 
the textual data is considered important and appears in red in the map. The second 
most important theme appears in orange, and so on according to the color wheel. 
Similarly, the size of a concept’s dot reflects its connectivity in the concept map. The 
larger the dot, the more often the concept is coded in the text along with the other 
concepts in the map. In addition, distances between the dots indicate how closely the 
concepts are related. For example, concepts that appear together often in the same 
text element tend to settle near one another in the map space (e.g., empirical and 
theory in the effects theme) .

Table 2  Themes

Because of Leximancer’s functional principle, the overall number of hits is not necessarily equivalent to 
the sum of hits across periods

All 1979–2013 2014–2017

Theme Hits Percentage Theme Hits Percentage Theme Hits Percentage

Latent 5,567 59.1 Model 1347 28.2 Latent 2435 42.2
Analysis 1,567 16.6 Latent 1113 23.3 Analysis 837 14.5
Effects 683 7.3 Analysis 692 14.5 Effects 746 12.9
Matrix 422 4.5 Indicators 455 9.5 Value 651 11.3
Validity 302 3.2 Effects 350 7.3 Factor 409 7.1
Customer 280 3.0 Data 251 5.2 Matrix 199 3.4
Performance 267 2.8 Sample 156 3.3 Performance 184 3.2
Items 147 1.6 Indicator 118 2.5 Bootstrap 169 2.9
Software 98 1.0 Algorithm 111 2.3 Test 141 2.4
Management 79 0.8 Satisfaction 106 2.2

Quality 64 1.3
Software 22 0.5
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The analysis yields the dominant theme latent, which comprises a multitude of con-
cepts related to measurement models (Table 3; Fig. 1). Contrasting the two time peri-
ods shows that earlier research has put greater emphasis on the distinction between 
reflective and formative measurement models (Table  3; Figs.  2, 3). In fact, recent 
research in psychometrics has witnessed considerable debates regarding the nature 
and applicability of formative measurement (e.g., Aguirre-Urreta et al. 2016; Bentler 
2016; Howell and Breivik 2016), which have also impacted the way methodological 
research on composite-based SEM uses these concepts and related terminologies. For 
example, Rigdon (2016, p. 601) notes that “the terms ‘formative’ and ‘reflective’ only 
obscure the statistical reality” and that researchers should rather distinguish between 
common factor proxies and composite proxies, and between regression weighted 
composites and correlation weighted composites (Ryoo and Hwang 2017). Similarly, 
Henseler et  al. (2016a, p. 6) avoid the distinction between reflective and formative 
measurement, instead noting that “the specification of the measurement model entails 
decisions for composite or factor models”. Sarstedt et al. (2016) however argue that 
the distinction is still relevant in the context of measurement conceptualization, which 
needs to be distinguished from how SEM methods treat the measures statistically.

Fig. 1  Concept map (all papers)
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Another prominent theme is analysis, which strongly relates to method com-
parisons, spanning across both time periods (Table  3; Fig.  1). Research in the 
field has a long-standing tradition of comparing composite-based with factor-
based SEM methods on the grounds of simulated data. The vast majority of these 
studies used factor model populations as the benchmark against which the param-
eter estimates from composite-based SEM methods were evaluated (e.g., Good-
hue et al. 2012; Rönkkö and Evermann 2013). Researchers have long warned that 
such comparisons are akin to “comparing apples with oranges” (Marcoulides 
et al. 2012, p. 725) and only more recent studies have evaluated composite-based 
SEM methods on the grounds of correctly specified population (i.e., composite) 
models (Hair et  al. 2017c; Sarstedt et  al. 2016). This strand of research is also 
reflected in the emergence of the theme performance in more recent studies.

The third most prominent theme labeled effects shows a divergent develop-
ment over time. Earlier research related to this theme had a stronger focus on the 
analysis of interaction effects as evidenced in several prominent publications on 
this topic (e.g., Chin et al. 2003; Henseler and Chin 2010; Henseler et al. 2012). 
More recent research, however, focuses on other model specification types such 

Fig. 2  Concept map (1979–2013)
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as mediating effects (e.g., Nitzl et al. 2016) and hierarchical component models 
(e.g., Cheah et al. 2019; Ciavolino et al. 2015; Sarstedt et al. 2019a).

The analysis with regard to the theme model shows that the assessment of 
unobserved heterogeneity was a dominant concept in earlier research (Table  3; 
Fig.  2). In this time period, research has brought forward several latent class 
approaches for capturing unobserved heterogeneity, including FIMIX-PLS (e.g., 
Hair et  al. 2016; Sarstedt et  al. 2019b), fuzzy clusterwise GSCA (Hwang et  al. 

Fig. 3  Concept map (2014–2017)
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2007), and PLS-POS (Becker et al. 2013b). More recently proposed latent class 
procedures in PLSPM—PLS-GAS (Ringle et al. 2014) and PLS-IRRS (Schlittgen 
et  al. 2016)—have not reinforced the heterogeneity concept in current research 
(Table  3; Fig.  3), despite ongoing research in related fields such a multigroup 
comparisons (Henseler et al. 2016b). A potential reason for this surprising find-
ing could be that new guidelines for PLSPM analyses (Henseler et  al. 2016a; 
Henseler 2017) neglect the concept of unobserved heterogeneity, despite its obvi-
ous importance to ensure the validity of results (Becker et al. 2013b; Hair et al. 
2019b; Jedidi et al. 1997).

The analysis also produced the theme value, which, in recent research, relates to 
the concepts of customer and satisfaction. A more detailed analysis shows that many 
of the studies in the field use customer or job satisfaction data to illustrate methodo-
logical extensions such as quantile composite-based SEM (Davino and Vinzi 2016), 
GSCA with uniqueness terms (Hwang et  al. 2017), or cross-validation in PLSPM 
(Reguera-Alvarado et al. 2016).

Several of the themes identified in the analysis only appear as isolates in either of 
the time periods (Table 3). For example, the theme bootstrapping relates to the stud-
ies by Kock (2016), Rönkkö et al. (2015), and Streukens and Leroi-Werelds (2016) 
on statistical inference in PLSPM. The theme test refers goodness-of-fit testing in 
PLSPM, which has experienced renewed interest in recent research. For example, 
while Henseler et al. (2016a) and Henseler (2017) call for the routine use of model 
fit measures such as SRMR, Sarstedt et al. (2016) comment critically on the appli-
cability of measures grounded in a comparison of empirical and model-implied cor-
relation matrices in a PLSPM context (also see Hair et al. 2019a). Finally, the theme 
validity appears in the overall analysis, pointing to researchers’ ongoing interest in 
related concepts such as discriminant validity (Henseler et al. 2015), which extends 
to very recent research (Franke and Sarstedt 2019).

5  Discussion

Fostered by recent methodological advances and the availability of easy-to-use soft-
ware programs, composite-based SEM methods—particularly PLSPM and GSCA—
have gained massive traction in recent years (Hair et al. 2019a, Ringle 2019). Meth-
odological research has constantly advanced PLSPM and GSCA to accommodate a 
broad range of data and model constellations. Recent examples include methods for 
assessing a model’s predictive power (Shmueli et al. 2016, 2019), addressing endo-
geneity (Hult et  al. 2018; Sarstedt et  al. 2019a), and model comparisons (Sharma 
et al. 2019a, b). At the same time, conceptual considerations have given composite-
based SEM methods significant tailwind. Specifically, researchers have started ques-
tioning the reflex-like applicability of factor-based methods, calling for a broader 
scope, which also considers composites as an integral element of measurement. For 
example, Bentler and Huang (2014, p. 138) note that “composite variable models are 
probably far more prevalent overall than latent variable models”. Similarly, Grace 
and Bollen (2008, p. 210) note that “composites have, we believe, great potential 
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to facilitate our ability to create models that are empirically meaningful and also of 
theoretical relevance”. Rhemtulla et al. (2019) have recently echoed these observa-
tions, noting that latent variable models have been over-applied in psychiatry, clin-
ical psychology, and various other fields of life sciences (also see Henseler et  al. 
2014). These observations certainly pave the way for composite-based SEM meth-
ods, which we expect to play an increasingly important role in all fields of science.

Composite-based SEM methods’ prominence is fostered by increasing doubts 
on long-held beliefs regarding the factors that differentiate composite- from factor-
based SEM methods. For example, researchers have relativized PLSPM’s small sam-
ple size capabilities by identifying concrete situations in which the method performs 
well vis-á-vis other SEM methods when limited data are available (e.g., Goodhue 
et  al. 2012;  Hair et  al. 2017c, 2019b). More importantly, many researchers have 
criticized composite-based SEM methods for not being able to reduce measurement 
error (Rönkkö and Evermann 2013), which has been debunked as wrong (Henseler 
et al. 2014). More importantly, however, Rigdon et al. (2019) show that factor-based 
SEM methods induce a significant degree of measurement uncertainty, which is a 
“parameter, associated with the result of a measurement, that characterizes the dis-
persion of the values that could reasonably be attributed to the measurand” (JCGM/
WG1 2008, Sect.  2.2.3). Uncertainty quantifies a researcher’s lack of knowledge 
about the value of the measurand and directly blurs the relationship between latent 
variables and the concepts that they seek to represent. By acknowledging uncer-
tainty as an integral part of any measurement, “researchers would derive substan-
tial benefit from a full accounting, and a fresh debate, relating to the compromises 
involved in using either common factors or weighted composites as stand-ins or 
proxies for conceptual variables” (Rigdon et al. 2019, p. 440). We expect that this 
perspective will change the nature of the debate regarding the relative merits of fac-
tor- vs. composite-based SEM methods in the long-run (also see Rigdon et al. 2017).

Our concept mapping of composite-based SEM research illustrates the field’s 
maturation. The results suggest that researchers have become aware of the concep-
tual differences between composite and factor models and their implications for the 
methods’ performance. Specifically, researchers have started evaluating composite-
based methods under (composite) models that are consistent with what the meth-
ods assume, finding support for their consistency (Hair et al. 2017c). Sarstedt et al. 
(2016) investigated the robustness of covariance structure analysis and PLSPM when 
incorrectly applied to the composite-based and factor-based models, respectively. 
These authors found that in this situation, PLSPM yields more accurate parameter 
estimates on average than covariance structure analysis, indicating that PLSPM is 
more robust against being used for models with its incomparable latent variables 
(i.e., factors). We expect that future studies will build on this research and further 
examine the methods’ performance under (in)consistent model specifications.

Furthermore, our analysis documents an increased interest in model evaluation 
metrics such as for the assessment of discriminant validity testing (Henseler et  al. 
2015) and internal consistency reliability (Dijkstra and Henseler 2015). Researchers 
have also developed methods for assessing a model’s out-of-sample predictive power 
(Shmueli et  al. 2016, 2019; Cho et  al. 2019) or measures for comparing different 
models in this respect (Sharma et al. 2019b). We expect this development to prevail 
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as composite-based methods do not follow a strict confirmatory perspective, like fac-
tor-based SEM, but adhere to a causal-predictive paradigm. As Hair et  al. (2019a, 
p. 3) note in the context of business research applications, PLSPM “overcomes the 
apparent dichotomy between explanation—as typically emphasized in academic 
research—and prediction, which is the basis for developing managerial implications”.

Finally, we would like to envision what we believe are the most pressing chal-
lenges in composite-based SEM research. With regard to PLSPM, future research 
should extend the method’s modeling capabilities to permit relating a manifest vari-
able to multiple constructs simultaneously. GSCA already supports this modeling 
option, which paves the way for running an explorative composite analysis. In the 
structural model, modeling advances in PLSPM may support non-recursive models 
(i.e., circular path relationships), bidirectional relationships, and constraining paths. 
Also, the PLSPM method developments should follow calls to facilitate longitudi-
nal and panel data analyses (Richter et al. 2016). Current treatments of longitudinal 
data (Roemer 2016) are rather ad hoc and do not truly take time variant effects into 
account. Similarly, multilevel modeling in PLSPM is a concern for future methodo-
logical developments. Often, the assessment of common methods variance repre-
sents an issue that researchers must address in their PLSPM analysis. Even though 
prior research tackled this question (Chin et al. 2013), PLSPM lacks methodological 
support and a straightforward procedure on how to assess and treat common methods 
variance. The same call holds for GSCA. Finally, in the social sciences, researchers 
usually only focus on confirmatory tests and results evaluations but often neglect the 
relevance of their models’ predictive power (Shmueli and Koppius 2011). Future 
research also need to complement recent efforts to establish predictive model assess-
ment criteria (Shmueli et al. 2016; Sharma et al. 2019b), for example, by developing 
a test for predictive model comparisons. Similar needs hold for GSCA.

In GSCA, it would be fruitful to also extend the modeling capabilities and to con-
sider alternative objective criteria of the algorithm. For example, GSCA should fol-
low recent developments in PLSPM (Hult et al. 2018) and identify means for dealing 
with endogeneity that generally refers to situations where independent variables are 
correlated with residual terms in either the measurement or structural model. One 
may consider replacing the current ordinary least squares estimator with the instru-
mental variable estimator in each step of the ALS algorithm. In practice, auxiliary 
covariates (e.g., gender, age, ethnicity, etc.) often lead to heterogeneous subgroups 
of observations. GSCA can be extended to consider such covariate-dependent heter-
ogeneity to examine whether the relationships among indicators and latent variables 
vary across subgroups differentiated by covariates. It may be combined with recur-
sive partitioning (e.g., Strobl et al. 2009) to capture this heterogeneity. In addition, 
it would be desirable to develop an integrated approach to GSCA and  GSCAM in 
order to simultaneously accommodate two statistical representations of latent vari-
ables—common factors and composites. Such an integrated framework can contrib-
ute to bridging the two SEM approaches. The same holds for PLSPM. Lastly, future 
endeavors are needed to provide a combined view of PLSPM and GSCA, for exam-
ple, by developing a unified model formulation and/or estimation procedure for both 
composite-based SEM approaches.
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