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Abstract A family of the estimators adjusting the maximum likelihood estimator

by a higher-order term maximizing the asymptotic predictive expected log-likeli-

hood is introduced under possible model misspecification. The negative predictive

expected log-likelihood is seen as the Kullback–Leibler distance plus a constant

between the adjusted estimator and the population counterpart. The vector of

coefficients in the correction term for the adjusted estimator is given explicitly by

maximizing a quadratic form. Examples using typical distributions in statistics are

shown.

Keywords Expected log-likelihood � Kullback–Leibler distance � Mean square

error � Asymptotic expectation � Shrinkage � Asymptotic bias

1 Introduction

It is known that the maximum likelihood estimator (MLE) does not necessarily give

the smallest values of typical indexes of errors, where an error is defined as the

deviation of a parameter estimate from its true value, which is typically squared and

averaged over a range of the associated observable variables. For instance, consider

Xi �i:i:d:Nðl; r2Þ ði ¼ 1; . . .; nÞ and �X ¼ n�1
Pn

j¼1 Xj with n being the sample size.

Then, it is known that among the family of the estimators of r2 given by

cn
Pn

j¼1 ðXj � �XÞ2, where cn is a constant depending on n, cn ¼ 1=ðnþ 1Þ gives the
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smallest mean square error (see, e.g., DeGroot and Schervish 2002, p. 431; for the

associated problems about variance estimation, see Ogasawara 2015). Note that the

above estimator is n=ðnþ 1Þ times the normal-theory MLE.

Discrepancy functions are defined in many ways using different definitions of

distances. In the above case, the squared Euclid distance averaged over the

distribution is used. This example is a fortunate one in that the constant cn is

obtained as an exact one. In many other cases, it is difficult to obtain exact solutions.

Using an additive term of order Opðn�1Þ to the MLE, Ogasawara (2015) obtained a

solution minimizing the asymptotic mean square error up to order Oðn�2Þ denoted
by MSE!Oðn�2Þ in this paper.

The Euclid distance is an intuitively appealing natural one, especially for a single

parameter. On the other hand, in the multi-parameter case, the overall error index

for the MLEs of the parameters is defined in many ways since the MSEs for several

estimators are given by the matrix MSE, which is the sum of the corresponding

covariance matrix and the outer product of the same vectors of biases (see, e.g.,

Giles and Rayner 1979). One of the natural definitions of the overall index is the

sum of the MSEs of the estimators, which is called the total MSE (TMSE) by

Gruber (1998, p. 117). Ogasawara (2014b) obtained an optimal value of the added

term of order Opðn�1Þ similar to the single parameter case, which minimizes the

TMSE!Oðn�2Þ and a similar solution for the linear predictor given by the multiple

MLEs with known weights for the predictor. Another overall index appropriate

especially in the multi-parameter case is the log-likelihood, which will be used in

this paper. Note that using this index, the problem of different ways of summarizing

the matrix MSE is avoided. Further, since likelihood is used, the log-likelihood

index is unchanged by reparametrization.

In the following section, the predictive expected log-likelihood will be defined

and used. Then, a family of the estimators adjusting the MLE by adding a higher-

order term is defined, whose asymptotically optimal value will be derived. The

family has two typical sub-families giving shrinkage (or expanded) estimators and

bias-adjusted estimators. Examples will be given using frequently used distributions

(gamma, exponential, Poisson, Bernoulli and normal), where the corresponding

optimal adjustment using the MSE!Oðn�2Þ will also be shown for comparison. The

conditions for the relative sizes of the optimal coefficients by maximizing the

asymptotic predictive expected log-likelihood and by minimizing the MSE!Oðn�2Þ
will be given for a simple case.

2 The asymptotic predictive expected log-likelihood
and its maximization

Let h be a q� 1 vector of parameters with ĥML and h0 being its MLE and the

population counterpart, respectively. Let X be a n� p matrix of n realized values of

the random vector x� ¼ ðx�1; . . .; x�pÞ
0
. Then, the log-likelihood of h given X averaged

over n observations is denoted by �lðh;XÞ. When X is replaced by the corresponding
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random matrix X� with its rows being independent copies of x�, we have �lðh;X�Þ
whose expectation over its range is

�l�ðhÞ � EX�f�lðh;X�Þg ¼
Z

RðZÞ
�lðh;ZÞf ðZjh0ÞdZ; ð1Þ

where f ðZjhÞ is the density of X� ¼ Z. In the case of discrete distributions, (1)

should be replaced by the corresponding summation with f ðZjh0Þ seen as a prob-

ability mass. The expectation (1) is maximized when h ¼ h0 by Jensen’s inequality.

That is, ĥML does not maximize �l�ðhÞ, which is the expected log-likelihood of h.
It is known that under regularity conditions

EX�f�l�ðĥMLÞg ¼ �l�ðh0Þ � n�1ðq=2Þ þ Oðn�2Þ ð2Þ

(see, e.g., Sakamoto et al. 1986, Eq. (4.21)).

The asymptotic difference n�1ðq=2Þ, when multiplied by 2, is a half of n�1 times

the correction term in the Akaike information criterion (AIC; Akaike 1973). The

amount of the difference is seen as an undesirable bias of ĥML. In this paper by a

modification of ĥML, say ~h, we will maximize �l�ð~hÞ among a family of the estimators

using optimal coefficients yielding ~h from ĥML. So, we will maximize the following

quantity:

EX� ½�l�f~hðX�Þg� ¼
Z

RðXÞ

Z

RðZÞ
�lf~hðXÞ;Zgf ðZjh0ÞdZ

" #

f ðXjh0ÞdX; ð3Þ

which is called the mean expected log-likelihood (Sakamoto et al. 1986, p. 60) when
~h is ĥML. Since Z in (3) can be seen as a set of quantities associated with prediction

to be given in the future, (3) is called the predictive expected log-likelihood in this

paper.

When Z is a set of quantities in the future, (1) to (3) are associated with

predictive likelihood or the predictive posterior distribution though the direction of

prediction is reversed, since Z in the future is integrated out (see Fisher 1956,

Chapter 5, Section 7; Hinkley 1979; Lejeune and Faulkenberry 1982; Leonard

1982; Bjornstad 1990; Konishi and Kitagawa 1996, 2008, Section 9.3).

Recall that when h ¼ h0, �l
�ðhÞ in (1) is maximized. Consequently, (3) is also

maximized when ~h ¼ h0. Since h0 does not depend on X, the maximum is

EX�f�l�ðh0Þg ¼ �l�ðh0Þ. Take the difference

�l�ðh0Þ � EX�f�l�ð~hÞg ¼ EX�f�l�ðh0Þ � �l�ð~hÞg

�
Z

RðXÞ
f ðXjh0Þ log

L�ðh0Þ
L�ð~hÞ

dX;
ð4Þ

where L�ðh0Þ and L�ð~hÞ are expf�l�ðh0Þg and expf�l�ð~hÞg, respectively. The quantity
expf�l�ðhÞg is interpreted as a pseudo-likelihood of h corresponding to the predictive

expected log-likelihood. The value of (4) is non-negative, and is seen as a discrepancy

of h0 and ~h based on theKullback and Leibler (1951) distance. So, themaximization of
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the predictive expected log-likelihood in terms of ~h is given by finding ~h such that the
distance of (5) is minimized. Incidentally, Lawless and Fredette (2005) used the

Kullback–Leibler distance for evaluation of the goodness of an estimator.

In practice, f ðXjh0Þ or f ðZjh0Þ may not be true, where another alternative true

density of X� is denoted by fTðXjf0Þ with f0 being a q� � 1 vector of parameters for

the alternative model. The vector h0 under model misspecification is defined as ĥML

when infinitely many observations are available. Under model misspecification, we

deal with the cases satisfying

ET

o�lðh;XÞ
oh

jh¼h0

� �

¼ 0 ð5Þ

where the subscript ‘‘T’’ indicates that the subscripted operator is defined under the

alternative true distribution. That is, in this case the expectation is taken using the

density fTðXjf0Þ rather than f ðXjh0Þ. Examples satisfying (5) will be illustrated in

Sect. 4.5. In the following, the possible model misspecification is considered unless

otherwise stated.

3 A family of the estimators maximizing the asymptotic predictive
expected log-likelihood

3.1 The asymptotic predictive expected log-likelihood for the family
of estimators

Define a family of estimators

ĥAk ¼ ĥML � n�1diagðkÞâ; ð6Þ

where diagðkÞ ¼

k1 0

k2

. .
.

0 kq

2

6
6
6
4

3

7
7
7
5
; k ¼ ðk 1; . . .; k qÞ0 ¼ Oð1Þ is the vector of

unknown coefficients to be derived, and â ¼ aðĥMLÞ is a differentiable arbitrary

function of ĥML. Two typical cases are â ¼ ĥML and â ¼ b̂1, where n�1b1 is the

vector of the asymptotic biases of the elements of ĥML with the assumption that

ETðĥMLÞ ¼ h0 þ n�1b1 þ Oðn�2Þ, and b̂1 is a sample version of b1. As mentioned

earlier, these cases give two sub-families of estimators. When â ¼ ĥML and â ¼ b̂1,
the following notations are used:

ĥSk ¼ fIðqÞ � n�1diagðkÞgĥML and ĥBk ¼ ĥML � n�1diagðkÞb̂1; ð7Þ

where S in ĥSk indicates the shrinkage when ki’s are hopefully positive, B in ĥBk
indicates bias adjustment which does not necessarily mean bias reduction, and IðqÞ is

the q� q identity matrix.
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Recalling the definition of �l�ðhÞ in (1), let

o j�l�

ðoh0Þhji
� o j�l�ðhÞ

ðohÞhji
jh¼h0 ðj ¼ 1; 2; 3Þ ð8Þ

for simplicity of notation, where xhji ¼ x	 � � � 	 x (j times of x) is the j-fold

Kronecker product of x. Then,

o�l�

oh0
¼ 0 and

o j�l�

ðoh0Þhji
¼ Oð1Þ ðj ¼ 2; 3Þ; ð9Þ

where �l�ðhÞ does not include stochastic quantities X� or Z� until h is evaluated at,

e.g., stochastic ĥML.

The predictive expected log-likelihood of ĥAk under possible model misspeci-

fication is written as:

ETf�l�ðĥAkÞg ¼
Z

RðXÞ
�l�fhAkðXÞgfTðXjf0ÞdX: ð10Þ

Note that

ĥAk ¼ ĥML � n�1diagðkÞâ
¼ ĥML � n�1fdiagðkÞa0 þ diagðkÞðâ� a0Þg
¼ ĥML � n�1fdiagða0Þ þ diagðâ� a0Þgk;

ð11Þ

where a0 ¼ aðh0Þ. Then, using the Taylor series expansion about h0 under regularity
conditions with the assumptions ĥML � h0 ¼ Opðn�1=2Þ and â� a0 ¼ Opðn�1=2Þ, we
have

�l�fhAkðX�Þg ¼ �l�ðĥAkÞ � �̂l
�
k

¼ �l�ðh0Þ þ
X4

j¼2

o j�l�

j!ðoh00Þ
hji ðĥAk � h0Þhji

( )

Opðn�j=2Þ

þ Opðn�5=2Þ
ð12Þ

� ð�l�0ÞOð1Þ þ
X4

j¼2

o j�l�

j!ðoh00Þ
hji ðĥML � h0Þhji

( )

Opðn�j=2Þ

� n�1k0diagða0Þ
o2�l�

oh0oh
0
0

ðĥML � h0Þ
� �

Opðn�3=2Þ
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� n�1k0diagðâ� a0Þ
o2�l�

oh0oh
0
0

ðĥML � h0Þ
� �

Opðn�2Þ

þ n�2 1

2
k0diagða0Þ

o2�l�

oh0oh
0
0

diagða0Þk
� �

Oðn�2Þ

� n�1 1

2
k0diagða0Þ

o3�l�

oh0ðoh00Þ
h2i ðĥML � h0Þh2i

( )

Opðn�2Þ

þOpðn�5=2Þ;

where f�gOpð�Þ and f�gOð�Þ indicate the orders of the quantities in braces for clarity.

Define

K � o2�l�

oh0oh
0
0

¼ Oð1Þ and C � nET

o�l

oh0

o�l

oh00

� �

¼ Oð1Þ ð13Þ

where o�l=oh0 ¼ o�lðh;X�Þ=ohjh¼h0 ¼ Opðn�1=2Þ (compare with o�l�=oh0 ¼ 0). Let

�̂l
�
ML � �l�ðĥMLÞ. Then, the expectation of (12) is

ETð�̂l�kÞ ¼ ETð�̂l�MLÞ

þ n�2k
0

"

�diagða0ÞKb1 � nETfðĥML � h0Þ
0
	 diagðâ� a0ÞgvecðKÞ

� 1

2
fvec0 ðK�1CK�1Þ 	 diagða0Þg

o3�l�

ðoh0Þh3i

#

� n�2 1

2
k

0
diagða0Þð�KÞdiagða0Þkþ Oðn�3Þ

ð14Þ

with

nETfðĥML � h0Þ0 	 diagðâ� a0Þg

¼ diag[n acovfðĥMLÞ1; âg�; . . .; diag[n acovfðĥMLÞq; âg�
h i

þ Oðn�1Þ

¼ diag K�1CK�1 oa
0
0

oh0

� �

1�

� �

; . . .; diag K�1CK�1 oa
0
0

oh0

� �

q�

( )" #

þ Oðn�1Þ

� diag row K�1CK�1 oa
0
0

oh0

� �� �

þ Oðn�1Þ;

ð15Þ

where vecð�Þ is the vectorizing operator stacking the columns of a matrix sequen-

tially with vec0ð�Þ ¼ fvecð�Þg0, acovð � ; � Þ is the asymptotic covariance of order

Oðn�1Þ for two variables, diagðxÞ ¼ diagðx0Þ, ð�Þj indicates the j-th element of a

vector, and ð�Þj� is the j-th row of a matrix. Since the a-th element of
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diag row K�1CK�1 oa
0
0

oh0

� �� �

vecðKÞ

is

Xq

b¼1

K�1CK�1 oða0Þa
oh0

� �

b

ðKÞab ¼ KK�1CK�1 oða0Þa
oh0

� �

a

¼ CK�1 oða0Þa
oh0

� �

a

;

ð16Þ

where ð�Þab indicates the (a, b)th element of a matrix, we have

diag row K�1CK�1 oa
0
0

oh0

� �� �

vecðKÞ

¼ CK�1 oa
0
0

oh0

� �

11

; . . . CK�1 oa
0
0

oh0

� �

qq

( )0

¼ Diag CK�1 oa
0
0

oh0

� �

1ðqÞ;

ð17Þ

where Diagð�Þ is the diagonal matrix whose diagonal elements are those of a matrix

in parentheses and 1ðqÞ is the q� 1 vector of 1’s.

It is known that b1 under possible model misspecification is given as:

b1 ¼ K�1nET

o�l

oh00
	M

� �

vecðK�1Þ

� 1

2
K�1 o3�l�

oh0ðoh00Þ
h2i vecðK

�1CK�1Þ;
ð18Þ

where o2�l=oh0oh
0
0 � ET o2�l=oh0oh

0
0

� �
� ðMÞOpðn�1=2Þ. The result of (18) is typically

derived by the inverse expansion of o�l=ohjh¼ĥML
¼ 0 at h ¼ h0 in terms of ĥML � h0

(see, e.g., Ogasawara, 2010, Eq. (2.4)). Using (18), the first term in brackets on the

right-hand side of (14) becomes

�diagða0ÞKb1 ¼ �diagða0ÞK K�1nET

o�l

oh00
	M

� �

vecðK�1Þ
�

� 1

2
K�1 o3�l�

oh0ðoh00Þ
h2i vecðK

�1CK�1Þ
) ð19Þ

¼ �diagða0ÞnET

o�l

oh00
	M

� �

vecðK�1Þ

þ 1

2
f vec

0ðK�1CK�1Þ 	 diagða0Þg
o3�l�

ðoh0Þh3i
:

From (17) and (19), we have
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ETð�̂l�kÞ ¼ ETð�̂l�MLÞ!Oðn�2Þ

þ n�2 k0 �diagða0ÞnET

o�l

oh00
	M

� �

vecðK�1Þ
��

�Diag CK�1 oa
0
0

oh0

� �

1ðqÞ

�

� 1

2
k0diagða0Þð�KÞdiagða0Þk

	

þ Oðn�3Þ

� ETð�̂l�MLÞ!Oðn�2Þ þ n�2ðk0bA � k0AAkÞ þ Oðn�3Þ;

ð20Þ

where ETð�Þ!Oðn�2Þ indicates that the expectation is taken up to order Oðn�2Þ, and

bA ¼ �diagða0ÞnET

o�l

oh00
	M

� �

vecðK�1Þ � Diag CK�1 oa
0
0

oh0

� �

1ðqÞ;

AA ¼ 1

2
diagða0Þð�KÞdiagða0Þ:

ð21Þ

3.2 The vector of maximizing coefficients

The k maximizing (20) without the remainder term is given by

kAmax ¼
1

2
A�1

A bA

¼ diag�1ða0ÞK�1diag�1ða0Þ

� diagða0ÞnET

o�l

oh00
	M

� �

vecðK�1Þ þ Diag CK�1 oa
0
0

oh0

� �

1ðqÞ

� �
ð22Þ

¼ diag�1ða0ÞK�1

� nET

o�l

oh00
	M

� �

vecðK�1Þ þ diag�1ða0ÞDiag CK�1 oa
0
0

oh0

� �

1ðqÞ

� �

;

where diag�1ða0Þ ¼ fdiagða0Þg�1
with the assumption of its existence.

The maximized value without the remainder term is

ETð�̂l�MLÞ!Oðn�2Þ þ
n�2

4
b0AA

�1
A bA

¼ ETð�̂l�MLÞ!Oðn�2Þ

þ n�2

2
vec0ðK�1ÞnET

o�l

oh0
	M

� �

þ 10ðqÞDiag CK�1 oa
0
0

oh0

� �

diag�1ða0Þ
� �

� ð�K�1Þ

� nET

o�l

oh00
	M

� �

vecðK�1Þ þ diag�1ða0ÞDiag CK�1 oa
0
0

oh0

� �

1ðqÞ

� �

:

ð23Þ
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As will be addressed later, (22) and (23) become considerably simplified in the

case of the canonical parameters of the exponential family since o j�l=ðoh0Þhji ¼
o j�l�=ðoh0Þhjiðj ¼ 2; 3; . . .Þ and M ¼ O. The result is summarized.

Result 1 The vector k of coefficients maximizing the asymptotic predictive

expected log-likelihood averaged over observations up to order Oðn�2Þ among the

family of the estimators ĥAk ¼ ĥML � n�1diagðkÞâ using a differentiable vector

function â ¼ aðĥMLÞ under possible model misspecification is given by kAmax in (22)

with the maximized value being (23).

When a common coefficient k in k is used, k becomes k ¼ k1ðqÞ. The result in

this case is summarized as:

Result 2 When k ¼ k1ðqÞ in Result 1, bA and AA become scalars as:

bA ¼ �a00nET

o�l

oh00
	M

� �

vecðK�1Þ � tr CK�1 oa
0
0

oh0

� �

ð24Þ

and aA ¼ 1

2
a00ð�KÞa0; ð25Þ

respectively. Then, the maximizing k in k ¼ k1ðqÞ is

kAmax ¼
bA

2aA

¼ 1

a00Ka0
a00nET

o�l

oh00
	M

� �

vecðK�1Þ þ tr CK�1 oa
0
0

oh0

� �� � ð26Þ

with the maximized value without the remainder term being

ETð�̂l�MLÞ!Oðn�2Þ þ n�2 b2A
4aA

¼ ETð�̂l�MLÞ!Oðn�2Þ

� n�2

2a00Ka0
a00nET

o�l

oh00
	M

� �

vecðK�1Þ þ tr CK�1 oa
0
0

oh0

� �� �2

:

ð27Þ

In the case of the canonical parameters in the exponential family, M vanishes in

Result 2 as in Result 1. When â ¼ ĥML, oa00=oh0 becomes IðqÞ and can be omitted in

Results 1 and 2. In this case, the contribution of the trace term in (26) to kAmax is
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trðCK�1Þ
a00Ka0

¼ trf�KðK�1CK�1Þg
a00ð�KÞa0

¼
trfn�1 acov�1

h0
ðĥMLÞn acovTðĥMLÞg

a00n
�1 acov�1

h0
ðĥMLÞa0

; ð28Þ

where acovh0ðĥMLÞ is the asymptotic covariance matrix of order Oðn�1Þ for ĥML

under correct model specification, acovTðĥMLÞ is the corresponding matrix under

possible model misspecification, and acov�1
h0
ðĥMLÞ ¼ facovh0ðĥMLÞg�1

. Since the

trace in (28) becomes q under correct model specification, the scaled trace value

trf n�1 acov�1
h0
ðĥMLÞn acovTðĥMLÞg=q is called the dispersion ratio in this paper.

When the dispersion ratio is relatively large, kAmax in (26) tends to be large.

An advantage of the restricted vector k ¼ k1ðqÞ over the unrestricted one is that

the solution kAmax is available even when some but not all of the elements of a0 are
zero. In this case, diag�1ða0Þ was unavailable unless k is shortened by omitting its

elements corresponding to the zero elements of a0.
When the model is correctly specified, we have �K ¼ C ¼ I0, where I0 is the

Fisher information matrix per observation and the dispersion ratio becomes 1, which

gives

Result 3 The vector k of coefficients maximizing the asymptotic predictive

expected log-likelihood under the conditions of Result 1 and, in addition, under

correct model specification is given by

bA ¼ diagða0ÞnEh0
o�l

oh00
	M

� �

vecðI�1
0 Þ þ Diag

oa00
oh0

� �

1ðqÞ ð29Þ

and AA ¼ 1

2
diagða0ÞI0diagða0Þ ð30Þ

yielding

kAmax ¼
1

2
A�1

A bA

¼ diag�1ða0ÞI�1
0

� nEh0
o�l

oh00
	M

� �

vecðI�1
0 Þ þ diag�1ða0ÞDiag

oa00
oh0

� �

1ðqÞ

� �

;

ð31Þ

where Eh0ð�Þ indicates that the expectation is taken under correct model specifi-

cation. The maximized value without the remainder term is
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Eh0ð�̂l
�
MLÞ!Oðn�2Þ þ

n�2

4
b

0

AA
�1
A bA

¼ Eh0ð�̂l
�
MLÞ!Oðn�2Þ

þ n�2

2
vec

0 ðI�1
0 ÞnEh0

o�l

oh0
	M

� �

þ 10ðqÞDiag
oa00
oh0

� �

diag�1ða0Þ
� �

� I�1
0 nEh0

o�l

oh00
	M

� �

vecðI�1
0 Þ þ diag�1ða0ÞDiag

oa00
oh0

� �

1ðqÞ

� �

:

ð32Þ

As in Result 2, we have

Result 4 When k ¼ k1ðqÞ in Result 3 under correct model specification,

bA ¼ a00nEh0
o�l

oh00
	M

� �

vecðI�1
0 Þ þ tr

oa00
oh0

� �

;

aA ¼ a00I0a0=2

ð33Þ

and

kAmax ¼
bA

2aA
¼ 1

a00I0a0
a00nEh0

o�l

oh00
	M

� �

vecðI�1
0 Þ þ tr

oa00
oh0

� �� �

: ð34Þ

The maximized value without the remainder term is

Eh0ð�̂l
�
MLÞ!Oðn�2Þ þ n�2 b2A

4aA

¼ Eh0ð�̂l
�
MLÞ!Oðn�2Þ þ

n�2

2a00I0a0
a00nEh0

o�l

oh00
	M

� �

vecðI�1
0 Þ þ tr

oa00
oh0

� �� �2

:

ð35Þ

As before, canonical parametrization in the exponential family gives simplifi-

cation. Under non-canonical parametrization, an example of the vanishing term with

M after taking the expectation is the normal distribution as will be illustrated later.

When â ¼ ĥML with the vanishing M, kAmax of (34) becomes as simple as:

kAmax ¼
q

a00I0a0
ð36Þ

with the maximized value

Eh0ð�̂l
�
MLÞ!Oðn�2Þ þ n�2 q2

2a00I0a0
: ð37Þ

Note that the term ETð�̂l�MLÞ!Oðn�2Þ or Eh0ð�̂l
�
MLÞ!Oðn�2Þ appears throughout the

associated results for clarity and completeness though the term is irrelevant for
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deriving kAmax. So, the term is seen as a constant. However, when the evaluation of

the term is required, the result can be obtained, which is given in the appendix. The

term of order Oðn�1Þ in Eh0ð�̂l
�
MLÞ!Oðn�2Þ was given in (2) as �n�1q=2, where q is the

q times the unit dispersion ratio under correct model specification. Under possible

model misspecification, the term is n�1trðCK�1Þ=2, where �trðCK�1Þ is also the

q times the dispersion ratio.

The terms ETð�̂l�MLÞ!Oðn�2Þ and Eh0ð�̂l
�
MLÞ!Oðn�2Þ are associated with the asymptotic

bias correction higher than those in the AIC and Takeuchi information criterion

(TIC; Takeuchi 1976; Stone 1977; Konishi and Kitagawa 2008), which was derived

by Konishi and Kitagawa (2003), and Ogasawara (2017) in different expressions. In

this bias correction, many of the terms in Eh0ð�̂l
�
MLÞ!Oðn�2Þ and ETð�̂l�MLÞ!Oðn�2Þ are

cancelled since the amount of bias correction is Eh0ð�̂lMLÞ!Oðn�2Þ � Eh0ð�̂l
�
MLÞ!Oðn�2Þ

or ETð�̂lMLÞ!Oðn�2Þ � ETð�̂l�MLÞ!Oðn�2Þ.

The maximizing coefficients in Results 1–4 depend on unknown population

values, e.g., a0. Although we can have their sample counterparts, it can be shown

that when the population values are replaced by their estimates, the associated

asymptotic results do not hold. This difficulty can be solved by several ways, which

will be addressed after (46) in the next section.

4 Examples

In this section, examples are given using typical distributions in statistics. The

results in Sects. 4.1 to 4.4 are obtained under correct model specification while those

in Sect. 4.5 are shown under model misspecification. In Sect. 4.4, the multi-

parameter cases are illustrated using the normal distribution. In these examples, the

corresponding results derived by minimizing MSE!Oðn�2Þ are also given for

comparison. Ogasawara (2015) obtained the coefficient of the bias adjustment

minimizing the MSE!Oðn�2Þ for a single parameter and a parameter in the parameter

vector. Ogasawara (2014b) extended the result to the multi-parameter case, where

all the parameters in a vector parameter are simultaneously considered. Ogasawara

(2014b) used TMSE!Oðn�2Þ (see Sect. 1) and the linear predictor, where only a

single coefficient k was used. For comparison to the results in Sect. 4.4,

Ogasawara’s (2014b) result is extended using unconstrained vector k of coefficients

and an arbitrary vector â as follows.

Let ĥAk ¼ ĥML � n�1diagðkÞâ as before. Then, under possible model

misspecification
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TMSE ¼ ETfðĥAk � h0Þ0ðĥAk � h0Þg

¼ n�110ðqÞb2 þ n�2 10ðqÞbD2
h

� 2trfdiagðkÞn acovTðâ; ĥ
0
MLÞg

þ fb1 � diagðkÞa0g0fb1 � diagðkÞa0g� þ Oðn�3Þ
¼ n�110ðqÞb2

þ n�2 10ðqÞbD2
h

þ b01b1 � 2k0Diagfn acovTðâ; ĥ
0
MLÞ þ a0b

0
1g1ðqÞ

þ k0Diag(a0a
0
0Þk� þ Oðn�3Þ

¼ TMSE!Oðn�2Þ þ Oðn�3Þ;

ð38Þ

where n�1b2 is the q� 1 vector of the asymptotic variances of order Oðn�1Þ for the
elements of ĥML, and n�2bD2 is the corresponding vector of the added higher-order

asymptotic variances of order Oðn�2Þ. Then,

Result 5 The vector of the coefficients minimizing TMSE!Oðn�2Þ defined in (38)

under possible model misspecification is

kAmin ¼ Diag�1ða0a00ÞDiagfn acovTðâ; ĥ
0
MLÞ þ a0b

0
1g1ðqÞ ð39Þ

with the minimized TMSE!Oðn�2Þ being

n�110ðqÞb2 þ n�2 10ðqÞbD2
h

þ b01b1 � 10ðqÞDiagfn acovTðâ; ĥ
0
MLÞ þ a0b

0
1g

�Diag�1ða0a00ÞDiagfn acovTðâ; ĥ
0
MLÞ þ a0b

0
1g1ðqÞ


 ð40Þ

Result 6 When k ¼ k1ðqÞ in Result 5,

kAmin ¼
1

a00a0
½trfn acovTðâ; ĥ

0
MLÞg þ a00b1� ð41Þ

with the minimized TMSE!Oðn�2Þ being

n�110ðqÞb2 þ n�2 10ðqÞbD2 þ b01b1 �
1

a00a0
½trfn acovTðâ; ĥ

0
MLg þ a00b1�

2

� 	

ð42Þ

Result 5 is new. Result 6 is slightly generalized than that in Ogasawara (2014b)

in that an arbitrary vector â is used. When â ¼ ĥML and â ¼ b̂1, kAmin is written as

kSmin and kBmin, respectively.

As addressed earlier, canonical parametrization in the exponential family gives

simplified results. Two additional results by this parametrization under correct

model specification are given. For this case, it is known that

b1 ¼ � 1

2
I�1
0 I

ðD1Þ
0 vecðI�1

0 Þ ð43Þ
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(see, e.g., Ogasawara, 2013), where I
ðDjÞ
0 ¼ �ojþ2�l=oh0ðoh00Þ

hjþ1i ðj ¼ 1; 2; . . .Þ with
j = 2 for later use, which is the j-th derivative of the information matrix evaluated

at the population value. From (43), after some algebra, we have

ob01
oh0

¼ 1

2
I
ðD1Þ
0 ½fI�1

0 I
ðD1Þ
0 vecðI�1

0 Þg 	 I�1
0 � � 1

2
I
ðD2Þ
0 f vecðI�1

0 Þ 	 I�1
0 g

þ 1

2
I
ðD1Þ
0 I

�1h2i
0 I

ðD1Þ0
0 I�1

0 :

ð44Þ

Recalling Result 4 and defining kBmax; bB and aB as kAmax; bA and aA,

respectively, when â ¼ b̂1 (kSmax; bS and aS are similarly defined for later use when

â ¼ ĥML), (44) gives

kBmax ¼
bB

2aB
¼ trðob01=oh0Þ

b01I0b1

¼ 2

vec
0 ðI�1

0 ÞIðD1Þ
0

0 I�1
0 I

ðD1Þ
0 vecðI�1

0 Þ
tr I

ðD1Þ
0

h
½fI�1

0 I
ðD1Þ
0 vecðI�1

0 Þg 	 I�1
0 �

� I
ðD2Þ
0 f vecðI�1

0 Þ 	 I�1
0 g þ I

ðD1Þ
0 I

�1h2i
0 I

ðD1Þ0
0 I�1

0

i
:

ð45Þ

In the case of a single parameter, it is known that for ĥBk ¼ ĥML � n�1kb̂1,

kBmin ¼ 5� 2½k/ss� ¼ 5� 2
i
ðD2Þ
0 =i20

ðiðD1Þ0 =i
3=2
0 Þ2

¼ 5� 2
i0i

ðD2Þ
0

ðiðD1Þ0 Þ2
ð46Þ

(Ogasawara, 2013, Result 2; Ogasawara, 2014a, Erratum), where [k/ss] stands for

the ratio of the excess kurtosis to the squared skewness of the single sufficient

statistic, and i0; i
ðD1Þ
0 and i

ðD2Þ
0 are scalar counterparts of I0; I

ðD1Þ
0 and I

ðD2Þ
0 ,

respectively.

Note that the minimizing coefficients in Results 5 and 6 given above generally

depend on unknown population values, which are not available in practice and

cannot automatically be replaced by their sample counterparts. The situation is

similar to that of the maximizing coefficients in Sect. 3. This difficulty can be

solved in several ways (see Ogasawara 2014b, pp. 203–204; Ogasawara 2016,

Section 7). That is, (i) in some fortunate cases (e.g., Examples 1.1 to 2.3, 4.2, 4.4

and 4.5 shown later), the minimizing coefficients do not depend on unknown values.

(ii) Some cases have lower/upper bounds for the minimizing coefficients (e.g.,

Example 3.1 shown later). (iii) In many cases, we have prior information on the

range of unknown values. When the minimizing coefficients are monotonic

functions of the population values, the range gives bounds similar to those of (ii).

(iv) When another independent sample of size OðnÞ is available as in cross

validation, the estimated minimizing coefficients using the second sample can be

used without changing the asymptotic results given in Results 5 and 6.
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4.1 Gamma distribution

Example 1.1 The canonical parameter ð�1=bÞ, when the shape parameter ðaÞ is

given, with its biased MLE in the gamma distribution.

The density of the gamma distribution using the scale parameter b, given the

shape parameter a, is f ðx� ¼ xja; bÞ ¼ xa�1 expð�x=bÞ=fbaCðaÞg ðx[ 0Þ, where
the notations similar to â and b1 used earlier are used for their familiarity as long as

confusion does not occur. The case of a ¼ 1 gives the exponential distribution.

When a is a positive integer, we have the Erlangian distribution.

The canonical parameter is h ¼ �1=b (negative rate). Then,

f ðx� ¼ xja; hÞ ¼ xa�1ð�hÞa expðhxÞ=CðaÞ ðx[ 0Þ. From, e.g., Ogasawara (2014a,

Example 3), ĥML ¼ �a=�x; b1 ¼ h0=a; i0 ¼ varðx�Þ ¼ a=h20; b2 ¼ i�1
0 ¼ h20=a and

[k/ss] = 3/2, where �x is the sample mean. Then,

1. ĥSmax (see (36)): The notation ĥSmax synonymous with ĥSkSmax
is used for

simplicity with other simple ones defined similarly:

kSmax ¼ 1=ðh20i0Þ ¼ 1=a: ð47Þ

2. ĥBmax (see (34)): Use ob1=oh0 ¼ 1=a, then kBmax ¼ ðob1=oh0Þ=
ðb21i0Þ ¼ ð1=aÞ=ð1=aÞ ¼ 1. Since b̂1 ¼ ĥML=a, we find that

ĥSmax ¼ ĥBmax ¼ 1� n�1

a

� �

ĥML: ð48Þ

3. ĥSmin (see (41)): kSmin ¼ h�2
0 ðb2 þ h0b1Þ ¼ h�2

0 ðh20a�1 þ h0h0a�1Þ ¼ 2=a.

4. ĥBmin (see (41)): Since b̂1 ¼ ĥML=a, we have kBmin ¼ akSmin ¼ 2, which is also

given by kBmin ¼ 5� 2½k/ss� ¼ 2.

From 3 and 4,

ĥSmin ¼ ĥBmin ¼ 1� n�1 2

a

� �

ĥML: ð49Þ

It is found that the amount of the correction in (49) is two times that of (48). The

relatively larger correction in ĥSmin and ĥBmin than in ĥSmax and ĥBmax is a typical

tendency. It is to be noted that the formulas of (48) and (49) do not depend on the

unknown canonical parameter h0.

Example 1.2 The scale parameter ðbÞ, when the shape parameter ðaÞ is given in

the gamma distribution (a non-canonical parameter with its unbiased MLE).
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Since Eh0ðx�Þ ¼ ab0 using the population scale parameter b0, the scale parameter

is a scaled expectation parameter. So, only kSmax and kSmin are obtained. Preliminary

results are

o�l

ob0
¼ �x

b20
� a
b0

; b̂ML ¼ �x

a
;

o2�l

ob20
¼ �2

�x

b30
þ a

b20
; i0 ¼ �Eh0

o2�l

ob20

 !

¼ a

b20
;

Eh0ðb̂MLÞ ¼ b0; b2 ¼ nvarðb̂MLÞ ¼ b20=a; b1 ¼ 0;

nEh0
o�l

ob0

o2�l

ob20
� Eh0

o2�l

ob20

 !( )" #

¼ nEh0
�x� ab0

b20
� 2ð�x� ab0Þ

b30

( )" #

¼ � 2

b50
nvarð�xÞ ¼ � 2

b50
ab20 ¼ � 2a

b30
:

ð50Þ

1. ĥSmax (see (34)):

kSmax ¼
1

b20ðab
�2
0 Þ

b0 � 2a

b30

 !
b20
a
þ 1

( )

¼ � 1

a
ð51Þ

and

ĥSmax ¼ ð1� n�1kSmaxÞĥML ¼ 1þ n�1

a

� �

ĥML ¼ 1þ n�1

a

� �
�x

a
ð52Þ

2. ĥSmin (see (41)):

kSmin ¼ b2h
�2
0 þ b1h

�1
0 ¼ b2h

�2
0 ¼ 1=a ð53Þ

and ĥSmin ¼ 1� n�1

a

� �

ĥML ¼ 1� n�1

a

� �
�x

a
: ð54Þ

Note that (52) is an expected result since (52) should be asymptotically equal to

the negative of the reciprocal of (48). The results are puzzling in that ĥSmax in (52) is

an inflated estimator while ĥSmin in (54) is a shrinkage estimator. Since the amount

of the added bias in (52) and (54) is the same with the reversed direction, (54) looks

better than (52) since the variance of (54) is smaller than that of (52). Note,

however, that this is based on the viewpoint of the Euclid distance. When the

viewpoint of the Kullback–Leibler distance (see (4)) is employed, (52) is better than

(54).
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Example 1.3 The exponential distribution under arbitrary parametrization.

This case partially reduces to those in Examples 1.1 and 1.2 when a ¼ 1. That is,

under canonical parametrization ðh ¼ 1=bÞ using the rate parameter h,

1.

ĥSmax ¼ ĥBmax ¼ ð1� n�1ÞĥML ¼ ð1� n�1Þ=�x: ð55Þ

2.

ĥSmin ¼ ĥBmin ¼ ð1� 2n�1ÞĥML ¼ ð1� 2n�1Þ=�x: ð56Þ

The pleasantly simple result of (55) was obtained by Takezawa (2014; see also

2015) as an exact one in that (55) maximizes the exact predictive expected log-

likelihood among the family of knĥML rather than the asymptotic expectation. Recall

that the parametrization h ¼ �1=b was used in Example 1.1. When h ¼ 1=b is used,

the reflected observable variable �x� is to be used, if necessary, without changing

the essential results.

When the scale or expectation parameter b is used, from (52) and (54) with

a ¼ 1, we have

3.

ĥSmax ¼ ð1þ n�1ÞĥML ¼ ð1þ n�1Þ�x; ð57Þ

4.

ĥSmin ¼ ð1� n�1ÞĥML ¼ ð1� n�1Þ�x: ð58Þ

Again simple results are obtained. Note that Takezawa (2014, 2015) gave only

(55) among (55) to (58). However, (57) is not an exact one. For illustration, we

derive the exact solution knmax maximizing the exact predictive expected log-

likelihood among the family of knĥML ¼ knb̂ML.

First, we have

Eh0f�l�ðknĥMLÞg

¼
Z þ1

0

log
1

knĥML

� �

� 1

knĥML

b

� �
ð1=bÞnxn�1

�
ðn� 1Þ! exp � x�

b

� �

dx�

¼
Z þ1

0

log
1

knx�=n

� �

� n

knx�
b

� �
b�nxn�1

�
ðn� 1Þ! exp � x�

b

� �

dx�;

ð59Þ

where x� is the variable corresponding to the sum of n observed variables, which

follows the Erlangian distribution with the parameters n and b.
Differentiating (59) with respect to kn and setting the result to zero, we obtain
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Z þ1

0

� 1

kn
þ n

k2nx�
b

� �
b�nxn�1

�
ðn� 1Þ! exp � x�

b

� �

dx�

¼ � 1

kn
þ 1

k2n

n

n� 1

Z þ1

0

b�ðn�1Þxn�2
�

ðn� 2Þ! exp � x�
b

� �

dx� ¼ � 1

kn
þ 1

k2n

n

n� 1
¼ 0;

ð60Þ

giving

knmax ¼
n

n� 1
¼ 1þ 1

n
þ Oðn�2Þ: ð61Þ

The above result obtained directly was given for illustration, which is also

derived by using Takezawa’s (2014) exact solution as:

fð1� n�1Þĥ�1
MLg

�1 ¼ n

n� 1
ĥML ¼ knmaxĥML; ð62Þ

where ĥ�1
ML is the MLE of the canonical parameter. Equation (62) is based on the

invariant property of the likelihood irrespective of parametrization.

When b� � log b (the log scale or the log inter-event time parameter) is used,

ĥSmax ¼ logfð1� n�1Þ�1
expðĥMLÞg ¼ ĥML � logð1� n�1Þ

¼ f1� ĥ�1
ML logð1� n�1ÞgĥML ¼ ĥML þ n�1 þ Oðn�2Þ:

ð63Þ

From (63), knmax ¼ 1� ĥ�1
ML logð1� n�1Þ is obtained, though the additive exact

solution ĥML � logð1� n�1Þ and its asymptotic approximation ĥML þ n�1 are

simpler.

When we again compare the results in (55) and (57), (55) gives the unbiased

estimator up to order Oðn�1Þ and simultaneously gives variance reduction. On the

other hand, bias and variance are both inflated in (57). It is of interest to see that the

correction factor ð1� n�1Þ in (55) and (58) is the same though the parametrization

is different.

4.2 Poisson distribution

Example 2.1 The canonical parameter ðlog kÞ in the Poisson distribution with its

biased MLE.

Let k be the source or the expectation parameter in the Poisson distribution.

Then, h ¼ log k is the canonical parameter with its probability function

Prðx� ¼ xjhÞ ¼ expð�ehÞehx=x! ¼ expðhx� ehÞ=x! ðx ¼ 0; 1; 2; . . .Þ. Preliminary

results are

ĥML ¼ log �x ð�x 6¼ 0Þ; i0 ¼ k0 ¼ eh0 ; b2 ¼ i�1
0 ; b1 ¼ �e�h0=2 and k=ss½ � ¼ 1

ð64Þ

(Ogasawara 2014a, Example 2).

1.
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ĥSmax see 36ð Þð Þ: kSmax ¼
1

h20i0
¼ 1

h20e
h0
: ð65Þ

2. ĥBmax (see (34)): Use ob1=oh0 ¼ e�h0=2, then,

kBmax ¼
ob1=oh0
b21i0

¼ e�h0=2

ðe�h0=2Þ2eh0
¼ 2: ð66Þ

3. ĥSmin (see (41)):

kSmin ¼ b2h
�2
0 þ b1h

�1
0 ¼ e�h0h�2

0 � ðe�h0=2Þh�1
0

¼ e�h0h�1
0 fh�1

0 � ð1=2Þg ¼ kSmax � ðe�h0=2Þh�1
0 ðh0 6¼ 0Þ:

ð67Þ

4.

ĥBmin see 46ð Þð Þ: kBmin ¼ 5� 2½k/ss� ¼ 3: ð68Þ

Note that as in the gamma distribution, the amount of correction in (68) is larger

than that of (66). However, (67) is smaller (larger) than (65) when h0 [ 0 ðh0\0Þ.
The value of (67) can be negative, zero and positive.

Example 2.2 The source or the expectation parameter ðkÞ in the Poisson

distribution (a non-canonical parameter).

Basic results are

Prðx� ¼ xjkÞ ¼ expð�kÞkx=x! ðx ¼ 0; 1; 2; . . .Þ;
k̂ML ¼ �x; b1 ¼ 0; b2 ¼ k0; i0 ¼ k�1

0 ;

nEh0
o�l

ok0

o2�l

ok20
� Eh0

o2�l

ok20

 !( )" #

¼ nEh0
�x

k0
� 1

� �

� �x

k20
þ 1

k0

 !( )

¼ � 1

k30
nvarð�xÞ ¼ � 1

k20
:

ð69Þ

1.

ĥSmax see 34ð Þð Þ: kSmax ¼
1

k20k
�1
0

k0 � 1

k20

 !

k0 þ 1

( )

¼ 0: ð70Þ

2.

ĥSmin see 41ð Þð Þ: kSmin ¼ b2h
�2
0 þ b1h

�1
0 ¼ b2h

�2
0 ¼ k0k

�2
0 ¼ k�1

0 : ð71Þ
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Equation (70) indicates that the MLE is optimal. The amount of correction in

ĥSmin is larger than that of ĥSmax.

Example 2.3 The parameter of the mean inter-event time ðb ¼ 1=kÞ (a non-

canonical parameter with its biased MLE).

Preliminary results are

Prðx� ¼ xjbÞ ¼ expð�1=bÞb�x=x! ðx ¼ 0; 1; 2; . . .Þ;
b̂ML ¼ 1=�x; b1 ¼ b20; b2 ¼ b30; i0 ¼ b�3

0 ; n acovðĥML; b̂1Þ ¼ 2b40;

nEh0
o�l

ob0

o2�l

ob20
� Eh0

o2�l

ob20

 !( )" #

¼ nEh0
1

b20
� �x

b0

 !
�x

b20
� 1

b30

 !( )

¼ � 1

b30
nvarð�xÞ ¼ � 1

b40

ð72Þ

(see Ogasawara 2015).

1.

ĥSmax see 34ð Þð Þ: kSmax ¼
1

b20b
�3
0

¼ b0 � 1

b40

 !

b30 þ 1

( )

¼ 0: ð73Þ

2. ĥBmax (see (34)): Since ob1=oh0 ¼ 2b0, we have

kBmax ¼
1

b40b
�3
0

¼ b20 � 1

b40

 !

b30 þ 2b0

( )

¼ 1: ð74Þ

3.

ĥSmin see 41ð Þð Þ: kSmin ¼ b2h
�2
0 þ b1h

�1
0 ¼ b30b

�2
0 þ b20b

�1
0 ¼ 2b0: ð75Þ

4. ĥBmin (see (41)): Using a0 ¼ b1 ¼ b20 under correct model specification,

kBmin ¼
1

b21
fn acovh0ðĥML; b̂1Þ þ b21g ¼ 2þ 1 ¼ 3: ð76Þ

Note that again kSmax ¼ 0 as is expected.

4.3 Bernoulli distribution

Example 3.1 The canonical parameter (logit) with its biased MLE.

Basic results are
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Prðx� ¼ xjgÞ ¼ 1

1þ expð�gÞ

� �x
expð�gÞ

1þ expð�gÞ

� �1�x

ðx ¼ 0; 1Þ;

p0 �
1

1þ expð�g0Þ
; g0 ¼ log

p0
1� p0

; p̂ML ¼ �x;

ĝML ¼ logf�x=ð1� �xÞg; i0 ¼ p0ð1� p0Þ; b2 ¼ fp0ð1� p0Þg�1;

b1 ¼ � i�2
0 j3ðx�Þ

2
¼ � 1� 2p0

2p0ð1� p0Þ
; skðx�Þ ¼ 1� 2p0

fp0ð1� p0Þg1=2
;

ktðx�Þ ¼ 1� 6p0 þ 6p20
p0ð1� p0Þ

; ½k/ss� ¼ 1� 6p0 þ 6p20
ð1� 2p0Þ2

¼ 1� 2p0ð1� p0Þ
ð1� 2p0Þ2

\1

ð�x 6¼ 0; 1; p0 6¼ 0; 0:5; 1Þ

ð77Þ

(Ogasawara 2014a, Example 1), where jjð�Þ indicates the j-th cumulant of a variable;

skð�Þ is the skewness of a variable; and ktð�Þ is the excess kurtosis of a variable.
1.

ĥSmax see 36ð Þð Þ: kSmax ¼
1

g20p0ð1� p0Þ
: ð78Þ

2. ĥBmax (see (34)): Since

ob1
oh0

¼ � 1

2

o

og0

1� 2p0
p0ð1� p0Þ

¼ p0ð1� p0Þ
p0ð1� p0Þ

þ ð1� 2p0Þ2p0ð1� p0Þ
2fp0ð1� p0Þg2

¼ 1þ ð1� 2p0Þ2

2p0ð1� p0Þ
[ 1;

kBmax ¼
ob1=oh0
b21i0

¼ 1þ ð1� 2p0Þ2

2p0ð1� p0Þ

( )

=
1� 2p0

2p0ð1� p0Þ

� �2

p0ð1� p0Þ
" #

¼ 2f2p0ð1� p0Þ þ ð1� 2p0Þ2g
ð1� 2p0Þ2

¼ 2þ 4p0ð1� p0Þ
ð1� 2p0Þ2

[ 2 ðp0 6¼ 0; 0:5; 1Þ:

ð79Þ

3. ĥSmin (see (41)):

kSmin ¼ b2h
�2
0 þ b1h

�1
0 ¼ fp0ð1� p0Þg�1g�2

0 � 1� 2p0
2p0ð1� p0Þ

g�1
0

¼ 1

p0ð1� p0Þg20
1� 1

2
ð1� 2p0Þg0

� �

[
1

p0ð1� p0Þg20
¼ kSmax

ðp0 6¼ 0; 0:5; 1; ð1� 2p0Þg0\0Þ:

ð80Þ
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4. ĥBmin (see (46)):

kBmin ¼ 5� 2½k/ss� ¼ 5� 2 1� 2p0ð1� p0Þ
ð1� 2p0Þ2

( )

¼ 3þ 4p0ð1� p0Þ
ð1� 2p0Þ2

[ 3

ð81Þ

(Ogasawara 2014a, 2015, Example 2).

In the above results, the relative sizes of corrections by optimal coefficients are

found to be similar to those in the Poisson distribution. All the optimal coefficients

depend on the unknown parameter. The lower bound 3 for kBmin is a known one

while the lower bound 2 for kBmax is a new one.

Example 3.2 The source or the expectation parameter ðpÞ(a non-canonical

parameter).

Basic results are

Prðx� ¼ xjpÞ ¼ pxð1� pÞ1�x ðx ¼ 0; 1Þ; p̂ML ¼ �x; b1 ¼ 0;

i0 ¼ fp0ð1� p0Þg�1; b2 ¼ p0ð1� p0Þ;

nEh0
o�l

op0

o2�l

op20
� Eh0

o2�l

op20

� �� �� 	

¼ nEh0
�x

p0
� 1� �x

1� p0

� �

� �x

p20
� 1� �x

ð1� p0Þ2
þ 1

p0ð1� p0Þ

 !( )

¼ 1

p0ð1� p0Þp20ð1� p0Þ2
nEh0 ½ð�x� p0Þfp20 � ð1� p0Þ2gð�x� p0Þ�

¼ � 1� 2p0
p20ð1� p0Þ2

:

ð82Þ

1. ĥSmax (see (34)):

kSmax ¼
1

p20fp0ð1� p0Þg�1
p0 � 1� 2p0

p20ð1� p0Þ2

( )

p0ð1� p0Þ þ 1

" #

¼ 1� p0
p0

� 1� 2p0
1� p0

þ 1

� �

¼ 1:

ð83Þ

2. ĥSmin (see (41)):
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kSmin ¼ b2h
�2
0 þ b1h

�1
0 ¼ b2h

�2
0 ¼ p0ð1� p0Þp�2

0 ¼ 1� p0
p0

[ 0 ðp0 6¼ 0; 1Þ:

ð84Þ

We find that kSmax does not depend on the unknown parameter. The relative size

of kSmax and kSmin depends on the unknown parameter, which is given as follows:

p0: 0; 1=2ð Þ 1=2 1=2; 1ð Þ
Property: kSmin [ kSmax kSmin ¼ kSmax kSmin\kSmax

: ð85Þ

4.4 The univariate normal distribution

For convenience, the variance parameter r2 is also denoted by /. Preliminary results

are

f ðx� ¼ xjl; r2ð¼ /ÞÞ ¼ 1
ffiffiffiffiffiffi
2p

p
r
exp �ðx� lÞ2

2r2

( )

¼ 1
ffiffiffiffiffiffi
2p

p
/1=2

exp �ðx� lÞ2

2/

( )

;

h0 ¼ ðl0;/0Þ
0;

o�l

oh0
¼ �x� l0

/0

; � 1

2/0

þ
n�1

Pn
j¼1 ðxj � l0Þ2

2/2
0

( )0

;

ĥML ¼ �x; n�1
Xn

j¼1
ðxj � �xÞ2

n o0
;

o2�l

oh0oh
0
0

¼
� 1

/0

� �x� l0
/2
0

� �x� l0
/2
0

1

2/2
0

�
n�1

Pn
j¼1 ðxj � l0Þ

2

/3
0

2

6
6
6
4

3

7
7
7
5
;

� Eh0
o2�l

oh0oh
0
0

� �

¼

1

/0

0

0
1

2/2
0

0

B
B
@

1

C
C
A ¼ I0; n acovðĥMLÞ ¼ I�1

0 ; b1 ¼ ð0;�/0Þ0;

nEh0
o�l

ol0
M

� �

¼
0 � 1

/2
0

� 1

/2
0

0

0

B
B
B
@

1

C
C
C
A
; nEh0

o�l

o/0

M

� �

¼
0 0

0 � 1

/3
0

0

@

1

A;

ð86Þ

where
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nEh0
o�l

o/0

o2�l

o/2
0

� Eh0
o2�l

o/2
0

 !( )" #

¼ � n

2/5
0

Eh0 n�1
Xn

j¼1
ðxj � l0Þ2 � /0

n o2
� 	

¼ � 1

2/5
0

ð3/2
0 � /2

0Þ ¼ � 1

/3
0

ð87Þ

is used.

Example 4.1 The parameters l and / ð¼ r2Þ with unconstrained k (a non-

canonical parameter vector with its partially biased MLE).

Since b1 ¼ ð0;�/0Þ
0; ĥBmax and ĥBmin are not available.

1. ĥSmax (see (31)):

kSmax ¼ diag�1ðl0;/0Þ
/0 0

0 2/2
0

� �

� 0 �1=/2
0 0 0

�1=/2
0 0 0 �1=/3

0

 !

ð/0; 0; 0; 2/
2
0Þ

0 þ diag�1ðl0;/0Þ1ð2Þ

( )

ð88Þ

¼
/0=l0 0

0 2/0

 !
1=l0

�2=/0

 !

¼
/0=l

2
0

�4

 !

¼
c2v

�4

 !

ðl0 6¼ 0Þ;

where cv is the coefficient of variation assuming l0 6¼ 0. It is found that the second

element -4 of kSmax gives an estimator asymptotically equal to the estimator called

‘‘the third variance’’ by Takezawa (2012, Eq. (21)) using a different method though

with a common predictive viewpoint. Note that the adjusted estimator for a variance

in (88) and Takezawa’ third variance are inflated estimators over the usual unbiased

one and the normal-theory MLE.

2. ĥSmin (see (39)):

kSmin ¼ Diag�1
l0

/0

 !
ðl0;/0Þ

( )
nvarðl̂MLÞ 0

0 navarð/̂MLÞ

 !

þ
0 0

0 �/2
0

� �( )

1ð2Þ

¼
1=l20 0

0 1=/2
0

 !
/0 0

0 2/2
0 � /2

0

� �

1ð2Þ ¼
/0=l

2
0

1

� �

¼
c2v

1

 !

:

ð89Þ

It is of interest to see that both the elements of kSmax and kSmin for l0 are the

same and depend on only cv. Since c2V in (88) and (89) is positive under the
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conditions l0 6¼ 0 and /0 ¼ r20 [ 0, the adjusted estimator ð1� n�1c2VÞ�x is a

shrinkage estimator when 1� n�1c2V 
 0. If l0 is close to zero, c2V becomes very

large. While this may seem odd, the result is reasonable, which can be explained as

follows. When l0 is close to zero, the large c2V gives small 1� n�1c2V as long as

1� n�1c2V 
 0. Consequently, this gives a smaller adjusted estimator ð1� n�1c2VÞ�x,
which is closer to the small population value than the usual estimator �x. Since

1� n�1c2V is an asymptotic result, 1� n�1c2V can become negative with finite n. In

this case, 1� n�1c2V may be replaced by zero.

When k for ĥBmax and ĥBmin is shortened as a scalar only for /0, the solutions

become similar to those in Example 4.2 shown next.

Example 4.2 The parameters l and / ð¼ r2Þ with k ¼ k1ð2Þ (a non-canonical

parameter vector with its partially biased MLE).

This is given for illustration using k ¼ k1ð2Þ. Note that generally the equal value k

for l and / ¼ r2 is meaningless. However, when cV is known to be proportional to

1=r with l[ 0, the equal k can be employed.

1. ĥSmax (see (34)):

kSmax ¼
1

ðl0;/0Þ 1=/0 0

0 1=ð2/2
0Þ

� � l0

/0

 !

�
ðl0;/0Þ 0 �1=/2

0 0 0

�1=/2
0 0 0 �1=/3

0

 !

ð/0; 0; 0; 2/
2
0Þ

0 þ 2

( )

¼ l20
/0

þ 1

2

� ��1

/0 � 1

/0

� 2

/0

� �

þ 2

� �

¼ � 2/0

2l20 þ /0

¼ � 2c2v
2þ c2v

\0:

ð90Þ

2. ĥBmax (see (34)): Using
ob01
oh0

¼ 0 0

0 �1

� �

,

Behaviormetrika (2017) 44:57–95 81

123



kBmax ¼
1

ð0;�/0Þ 1=/0 0

0 1=ð2/2
0Þ

� �
0

�/0

 !

�
ð0;�/0Þ 0 �1=/2

0 0 0

�1=/2
0 0 0 �1=/3

0

 !

ð/0; 0; 0; 2/
2
0Þ

0 � 1

( )

¼ 2 /0

1

/0

þ 2

/0

� �

� 1

� �

¼ 4:

ð91Þ

3. ĥSmin (see (41)):

kSmin ¼
1

h00h0
ð10

ð2Þ
b2 þ h00b1Þ

¼ 1

ðl0;/0Þðl0;/0Þ0
f10

ð2Þ
ð/0; 2/

2
0Þ

0 þ ðl0;/0Þð0;�/0Þ0g ¼ /0ð1þ /0Þ
l20 þ /2

0

[ 0:

ð92Þ

4. ĥBmin (see (41)): Using b1 ¼ ð0;�/0Þ0 and

n acovh0ðĥML; b̂
0
1Þ ¼

0 0

0 �n avarð/̂MLÞ

� �

¼
0 0

0 �2/2
0

� �

;

kBmin ¼
1

b01b1
ð�2/2

0 þ b01b1Þ ¼
1

/2
0

ð�2/2
0Þ þ 1 ¼ �1:

ð93Þ

Note that �fn=ðnþ 1ÞgkBmin ¼ n=ðnþ 1Þ is the exact solution as explained in

Sect. 1.

Example 4.3 The mean parameter l when the variance / ð¼ r2Þ is known (the

canonical and expectation parameter).

We have

h0 ¼ l0;
o�l

oh0
¼ �x� l0

/0

; ĥML ¼ �x;
o2�l

oh20
¼ � 1

/0

; i0 ¼
1

/0

;

nvarðĥMLÞ ¼ i�1
0 ¼ /0; b1 ¼ 0:

ð94Þ

Then,

1.

ĥSmax see 36ð Þð Þ: kSmax ¼
1

l20/
�1
0

¼ /0

l20
¼ c2v: ð95Þ
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2.

ĥSmin see 41ð Þð Þ: kSmin ¼
1

l20
fn varðĥMLÞ þ l0 � 0g ¼ /0

l20
¼ c2v: ð96Þ

We see that the optimal coefficients are the same. Note that the results hold even

under model misspecification, since nvarð�xÞ ¼ /0 holds under arbitrary distribu-

tions when it exists with C ¼ �K ¼ /�1
0 .

Example 4.4 The variance parameter / ð¼ r2Þ when the mean l is known (a non-

canonical parameter with its unbiased MLE).

Basic results are

o�l

oh0
¼ � 1

2/0

þ
n�1

Pn
j¼1 ðxj � l0Þ2

2/2
0

; /̂ML ¼ n�1
Xn

j¼1
ðxj � l0Þ

2;

b1 ¼ 0; n varðĥMLÞ ¼ 2/2
0;

o2�l

oh20
¼ 1

2/2
0

�
n�1

Pn
j¼1 ðxj � l0Þ2

/3
0

;

Eh0
o2�l

oh20

 !

¼ � 1

2/2
0

; i0 ¼
1

2/2
0

; Eh0
o�l

oh0

o2�l

oh20
� Eh0

o2�l

oh20

 !( )" #

¼ � 1

/3
0

;

ð97Þ

where the last equation is the same as (87). Then,

1.

ĥSmax see 34ð Þð Þ: kSmax ¼
1

/2
0ð2/

2
0Þ

�1
f/0ð�/3

0Þ
�1
2/2

0 þ 1g ¼ �2: ð98Þ

2.

ĥSmin see 41ð Þð Þ: kSmin ¼
1

/2
0

fn avarðĥMLÞ þ /0 � 0g ¼ 2: ð99Þ

Example 4.5 The precision parameter h ¼ 1=r2 ¼ 1=/, when the mean l is

known (the canonical parameter with its biased MLE; Ogasawara 2013, Example 5).

The vector of the canonical parameters, when l and / are unknown, is

fl=/; �1=ð2/Þg0 with the vector of sufficient statistics ðx�; x�2Þ0. Note, however,
that the use of the parameter l=/ may be limited. Let h ¼ 1=/. Then, h is the

precision parameter (the reciprocal of variance). When l0 is known, define

hðl0; �0:5Þ0 � hd, where h is a single parameter with the sufficient statistic

sd � ðx�; x�2Þd ¼ ðx�; x�2Þðl0; �0:5Þ0; ð100Þ

whose mean over observations is � 1
2
n�1

Pn
j¼1 ðx�j � l0Þ2 þ

l2
0

2
.
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Basic results are

Eh0ðsdÞ ¼
1

2
ðl20 � /0Þ; i0 ¼ varðsdÞ ¼ /2

0=2; j3ðsdÞ ¼ �/3
0; j4ðsdÞ ¼ 3/4

0;

skðsdÞ ¼ �
ffiffiffi
8

p
; ktðsdÞ ¼ 12; b1 ¼ 2=/0 ¼ 2h0; ½k/ss� ¼ 3=2;

b2 ¼ i�1
0 ¼ 2/�2

0 ¼ 2h20; ĥML ¼ 1=/̂ML

ð101Þ

(Ogasawara 2014a, Example 5). Then,

1.

ĥSmax see 36ð Þð Þ: kSmax ¼
1

h20ð/
2
0=2Þ

¼ 2: ð102Þ

2. ĥBmax (see (34)): Using b1 ¼ 2h0,

kBmax ¼
2

ð2h0Þ2ð/2
0=2Þ

¼ 1: ð103Þ

3.

ĥSmin see 41ð Þð Þ: kSmin ¼ b2h
�2
0 þ b1h

�1
0 ¼ 2h20h

�2
0 þ 2h0h

�1
0 ¼ 4: ð104Þ

4.

ĥBmin see 46ð Þð Þ: kBmin ¼ 5� 2½k/ss� ¼ 2: ð105Þ

The result of (102) is an expected one from (98) in Example 4.4. Note that the

distribution of x� is the same in Examples 4.4 and 4.5 with different parametrization,

i.e., h ¼ / or h ¼ 1=/. Then, from (98), ĥSmax in Example 4.5 is asymptotically

equal to the reciprocal of ĥSmax in Example 4.4, which gives, for Example 4.5,

fð1þ 2n�1Þ/̂MLg�1 ¼ ð1� 2n�1ÞĥML þ Opðn�2Þ yielding (102).

4.5 Misspecified models

Example 5.1 The misspecified exponential distribution when the gamma distri-

bution with a 6¼ 1 is true.

This example is the case when one of the parameters in a distribution is fixed at

an incorrect value. In this example, the density

f ðx� ¼ xjkÞ ¼ k expð�kxÞ ðx[ 0Þ ð106Þ

is used irrespective of the situation where the true density is

fTðx� ¼ xjk1; aÞ ¼ xa�1ka1 expð�k1xÞ=CðaÞ ðx[ 0; a 6¼ 1Þ: ð107Þ

84 Behaviormetrika (2017) 44:57–95

123



Then,

h0 ¼ k0 ¼ k1=a; ĥML ¼ 1=�x;

Eh0ð�xÞ ¼ 1=k0; n varh0ð�xÞ ¼ 1=k20;

ETð�xÞ ¼ a=k1 ¼ 1=k0; n varTð�xÞ ¼ a=k21;

n avarh0ðĥMLÞ ¼
oĥML

o �x
j�x¼1=k0

 !2

n varh0ð�xÞ ¼ k40k
�2
0 ¼ k20;

n avarTðĥMLÞ ¼
oĥML

o �x
j�x¼1=k0

 !2

n varTð�xÞ ¼ k40ða=k
2
1Þ ¼

k21
a3

;

ð108Þ

o�l

oh0
¼ 1

k0
� �x;

o2�l

oh20
¼ � 1

k20
¼ �i0 ¼ Oð1Þ;

C ¼ c ¼ nET

o�l

oh0

� �2
( )

¼ ET

1

k0
� �x

� �2
( )

¼ a

k21
;

b1 ¼
1

2

o2ĥML

o �x2
j�x¼1=k0n varTð�xÞ ¼ k30ða=k

2
1Þ ¼ k1=a

2:

The dispersion ratio defined earlier is

n avarTðĥMLÞ
n avarh0ðĥMLÞ

¼ 1

a
: ð109Þ

Since b1 ¼ k1=a2 depends on a and k1, only kSmax and kSmin are considered.

1. ĥSmax (see (26)):

kSmax ¼
trðCK�1Þ
h00Kh0

¼ ða=k21Þð�i0Þ�1

h20ð�i0Þ
¼ 1

a
6¼ 1: ð110Þ

2. ĥSmin (see (41)):

kSmin ¼
1

h20
fn avarTðĥMLÞ þ h20a

�1g ¼ 1

k20
� ak40

k21
þ a�1 ¼ 2

a
6¼ 2: ð111Þ

It is found that that kSmax is equal to the dispersion ratio, which is not equal to the

unit value given by the true model. Similarly, kSmin in (111) is two times the

dispersion ratio, which is not equal to 2 given by the true model (see (56)).
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Example 5.2 The misspecified Poisson distribution when the Bernoulli distribution

is true.

This example is the case when a distribution is used under the situation where the

true distribution is a different type of distribution. In this example, the source or

expectation parameter in the Poisson distribution is used:

Prðx� ¼ xjkÞ ¼ expð�kÞkx=x! ðx ¼ 0; 1; 2; . . .Þ; ð112Þ

when the true distribution is

PrTðx� ¼ xjpÞ ¼ pxð1� pÞ1�x ðx ¼ 0; 1Þ: ð113Þ

Basic results are

h0 ¼ k0 ¼ p0; ĥML ¼ �x; b1 ¼ 0; n varh0ðĥMLÞ ¼ n varh0ð�xÞ ¼ p0;

b2 ¼ n varTðĥMLÞ ¼ n varTð�xÞ ¼ p0ð1� p0Þ 6¼ p0 ðp0 6¼ 0Þ;
o�l

oh0
¼ �1þ �x

p0
;

o2�l

oh20
¼ � �x

p20
;

Eh0
o2�l

oh20

 !

¼ � 1

p0
¼ �io; ET

o2�l

oh20

 !

¼ � 1

p0
¼ Eh0

o2�l

oh20

 !

;

ð114Þ

C ¼ c ¼ nET

o�l

oh0

� �2
( )

¼ 1

p20
nETfð�x� p0Þ2g ¼ 1� p0

p0
\p�1

0 ¼ io;

nET

o�l

oh0

o2�l

oh20
� ET

o2�l

oh20

 !( )" #

¼ � 1

p0p20
nETfð�x� p0Þ2g ¼ � 1� p0

p20
:

Note that the dispersion ratio p0ð1� p0Þ=p0 ¼ 1� p0 ðp0 6¼ 0Þ is smaller than 1.

Then,

1. ĥSmax (see (26)):

kSmax ¼
1

p20ð�p�1
0 Þ p0 � 1� p0

p20

� �

ð�p0Þ � ð1� p0Þ
� �

¼ 0: ð115Þ

2. ĥSmin (see (41)):

kSmin ¼
1

h20
fn varTðĥMLÞ þ h0 � 0g ¼ 1

p20
p0ð1� p0Þ ¼

1� p0
p0

: ð116Þ

Recall that the zero value of kSmax holds when the Poisson distribution is true (see

(70)).
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5 Different criteria

5.1 Comparison of optimal coefficients using different criteria

In Sect. 4, the tendency of the relatively large amount of correction by kAmin over

that by kAmax was observed. The difference can be partially explained using the case

of a single parameter.

Theorem 1 For a single parameter under correct model specification

kAmin � kAmax ¼ � i
ðD1Þ
0

2i20a0
ða0 6¼ 0Þ: ð117Þ

Proof From (34) in Result 4 and (41) in Result 6, we have

kAmin � kAmax ¼
1

a20
fn acovh0ðĥML; âÞ þ a0b1g

� 1

a20i0
a0nEh0

o�l

oh0
	 m

� �
1

i0
þ oa0
oh0

� �

;

ð118Þ

where m = M in the case of a single parameter. Since b1 ¼ i�2
0 nEh0 o�l=oh0 	 mð Þ �

f1=ð2i20Þg �o3�l�=oh30
� �

(see (18)) and n acovh0ðĥML; âÞ ¼ i�1
0 oa0=oh0, (118)

becomes

kAmin � kAmax ¼ � 1

2i20a0
� o3�l�

oh30

 !

¼ � i
ðD1Þ
0

2i20a0
: Q:E:D: ð119Þ

Let signð�Þ ¼ �1; 0; 1 depending on the sign of the real quantity in

parentheses, then the following result is obtained.

signðiðD1Þ0 a0Þ: �1 0 1

Property: kAmin [ kAmax kAmin ¼ kAmax kAmin\kAmax

ð120Þ

Corollary 1 For a single canonical parameter in the exponential family under

correct model specification

kAmin � kAmax ¼ b1=a0: ð121Þ

Proof From (34) with the vanishing m and (41) as in Theorem 1, we have
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kAmin � kAmax ¼
1

a20
fn acovh0ðĥML; âÞ þ a0b1g �

oa0=oh0
a20i0

¼ 1

a20
n avarh0ðĥMLÞ

oa0
oh0

þ b1
a0

� oa0=oh0
a20i0

¼ b1=a0 ða0 6¼ 0Þ: Q:E:D:

ð122Þ

Corollary 1 is a special case of Theorem 1 and is alternatively obtained by

b1 ¼ �i
ðD1Þ
0 =ð2i20Þ with the vanishing m in (18). Using Corollary 1, the following

results are obtained.

Corollary 2 Under the same conditions as in Corollary 1,

kSmin � kSmax ¼ b1=h0 ðh0 6¼ 0Þ and kBmin � kBmax ¼ 1: ð123Þ

The second equation of (123) shows that kBmin, when available, is always greater

than kBmax by 1. The first equation shows the following result.

Corollary 3 Under the same conditions as in Corollary 1, the relative size of kSmin

and kSmax is given as follows:

signfskðx�Þh0g: �1 0 1

Property: kSmin [ kSmax kSmin ¼ kSmax kSmin\kSmax

ð124Þ

Proof It is known that

b1 ¼ � 1

2
i�2
0 i

ðD1Þ
0 ¼ � 1

2
i
�1=2
0 skðx�Þ ð125Þ

(Ogasawara 2013, Eq. 3.1). Using (125) and Corollary 2, (124) follows. Q.E.D.

In Example 1.1 for the gamma distribution, b1 ¼ h0=a gives b1=h0 ¼ 1=a[ 0

yielding kSmin [ kSmax. In Example 2.1 for the Poisson distribution, b1 ¼
�e�h0=2\0 (see (64)). However, h0ð¼ log k0Þ can be negative, 0 or positive (see

the comment after (68)), giving an undetermined property of (120) or relative size.

In Example 3.1 for the Bernoulli distribution, b1=h0 ¼
�ð1� 2p0Þ=f2p0ð1� p0Þgg�1

0 [ 0 ðp0 6¼ 0; 0:5; 1Þ, which gives kSmin [ kSmax.

In Example 4.3 for the univariate normal distribution, b1 ¼ 0 and skðx�Þ ¼ 0, giving

kSmin ¼ kSmax. On the other hand, in Example 4.5 for the same normal distribution

under a condition different from that in Example 4.3, skðsdÞ ¼ �
ffiffiffi
8

p
\0, where sd

corresponds to x� in Example 4.3. Since in Example 4.5 h0 ¼ /�1
0 [ 0, (124) gives

kSmin [ kSmax (see (102) and (104)).
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Recall that the term with i
ðD1Þ
0 or �o3�l�=oh30 comes from the last term except the

remainder term on the right-hand side of the last equation of (12). Since the other

terms including k have the common factor �o2�l�=oh0oh
0
0 ¼ Oð1Þ, we find that in

the case of a single parameter, the minimization of MSE!Oðn�2Þ is equal to the

maximization of the asymptotic predictive expected log-likelihood up to order

Oðn�2Þ when we neglect the last term with the third derivative.

In the case of multiple parameters, these two criteria do not give the same

optimal sets of coefficients k. This suggests the following new distances to be

minimized.

Definition 1 The generalized mean square error and the scale-free mean square

error up to order Oðn�2Þ are defined as:

GMSE!Oðn�2Þ � ETfðĥAk � h0Þ0ð�KÞðĥAk � h0Þg!Oðn�2Þ ð126Þ

and

SMSE!Oðn�2Þ � ETfðĥAk � h0Þ0Diagð�KÞðĥAk � h0Þg!Oðn�2Þ; ð127Þ

respectively.

It is obvious that (126) is a Mahalanobis distance under correct model

specification, which is also scale free as for (127). In (126) and (127), K is an

unknown non-stochastic quantity like the target vector h0. Minimization of (126)

and (127) can be done in similar manners as before with the explicit solutions

minimizing the corresponding quadratic forms. Note that minimizing GMSE!Oðn�2Þ
is equivalent to maximizing the asymptotic predictive expected log-likelihood up to

order Oðn�2Þ neglecting the term of the third derivative but considering the off-

diagonal elements of the second-derivative matrix with the different diagonal

elements in the case of multiple parameters. So, the optimal coefficients obtained by

this criterion may be situated between those by minimizing the TMSE!Oðn�2Þ and

those by maximizing the asymptotic predictive expected log-likelihood.

5.2 Composite correction vector

So far, the functional form of â ¼ aðĥMLÞ is assumed to be given, whose typical

cases are ĥML and b̂1ð¼ b1ðĥMLÞÞ. Let âð1Þ and âð2Þ are two arbitrary vectors similar

to â. Then, define the composite vector using a fixed weight w as follows:

âw ¼ wâð1Þ þ ð1� wÞâð2Þ ð128Þ

The vector âw can be used as a special case of â. An example of âw is

âw ¼ wĥML þ ð1� wÞb̂1, which is expected to yield an intermediate effect between

those when â ¼ ĥML for shrinkage and when â ¼ b̂1 for bias adjustment.

Acknowledgements This work was partially supported by a Grant-in-Aid for Scientific Research from

the Japanese Ministry of Education, Culture, Sports, Science and Technology (JSPS KAKENHI, Grant

No. 26330031).

Behaviormetrika (2017) 44:57–95 89

123



Appendix

The asymptotic predictive expected log-likelihood for the maximum
likelihood estimator

In this appendix, ETð�̂l�MLÞ!Oðn�2Þ in (14) is obtained, where

ETð�̂l�MLÞ ¼ ETf�l�ðĥMLÞg ¼
R
RðXÞ

�l�fhMLðXÞgfTðXjf0ÞdX (see (10)). For this

expectation, we use the expansion of ĥML by Ogasawara (2010, p. 2151) as follows:

ĥML � h0 ¼
X3

j¼1

KðjÞl
ðjÞ
0 þ Opðn�2Þ ðKðjÞ ¼ Oð1Þ; l

ðjÞ
0 ¼ Opðn�j=2Þ; j ¼ 1; 2; 3 Þ;

Kð1Þl
ð1Þ
0 ¼ �K�1 o�l

o h0
;

Kð2Þl
ð2Þ
0 ¼ K�1MK�1 o�l

o h0
� 1

2
K�1ETðJð3Þ0 Þ K�1 o�l

o h0

� �h2i

Kð3Þl
ð3Þ
0 ¼ �K�1MK�1MK�1 o�l

o h0
þ 1

2
K�1MK�1ETðJð3Þ0 Þ K�1 o�l

o h0

� �h2i

þ K�1ETðJð3Þ0 Þ K�1MK�1 o�l

o h0

� �

	 K�1 o�l

o h0

� �� �

� 1

2
K�1fJð3Þ0

� ETðJð3Þ0 Þg K�1 o�l

o h0

� �h2i

� 1

2
K�1ETðJð3Þ0 Þ K�1 o�l

o h0

� �

	 K�1ETðJð3Þ0 Þ K�1 o�l

o h0

� �h2i( )" #

þ 1

6
K�1ETðJð4Þ0 Þ K�1 o�l

o h0

� �h3i
;

J
ðiÞ
0 � o j�l

oh0ðoh00Þ
hj�1i ¼ Opð1Þ ðj ¼ 3; 4Þ;

ð129Þ
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l
ð1Þ
0 ¼ o�l

o h0
; l

ð2Þ
0 ¼ v0ðMÞ 	 o�l

o h00
;

o�l

o h00

� �h2i( )0

� ðlð2�1Þ0
0 ; l

ð2�2Þ0
0 Þ0;

l
ð3Þ
0 ¼ v0ðMÞh2i 	 o�l

o h00
; v0ðMÞ 	 o�l

o h00

� �h2i"

;

vec0fJð3Þ0 � ETðJð3Þ0 Þg 	 o�l

o h00

� �h2i
;

o�l

o h00

� �h3i#0

� ðlð3�1Þ0
0 ; l

ð3�2Þ0
0 ; l

ð3�3Þ0
0 ; l

ð3�4Þ0
0 Þ0;

where vð�Þ is the vectorizing operator taking the non-duplicated elements of a

symmetric matrix and v0ð�Þ ¼ fvð�Þg0.
Using (129), the matrices Kð2�jÞ ðj ¼ 1; 2Þ and Kð3�jÞ ðj ¼ 1; . . .; 4Þ are implicitly

defined by

Kð2Þl
ð2Þ
0 ¼

X2

j¼1

Kð2�jÞl
ð2�jÞ
0 ; Kð3Þl

ð3Þ
0 ¼

X4

j¼1

Kð3�jÞl
ð3�jÞ
0 : ð130Þ

The expectation to be derived is

ETð�̂l�MLÞ ¼ f�l�ðh0ÞgOð1Þ

þ ET

X4

j¼2

o j�l�

j!ðoh00Þ
hji ðĥML � h0Þhji

( )

Opðn�j=2Þ

2

4

3

5

!Oðn�2Þ

þOðn�3Þ:
ð131Þ

In (131), the asymptotic expectation is derived term by term. In the following, the

notation, e.g., ðKð2�1ÞÞðe:ab;c;dÞ indicates an element of Kð2�1Þ corresponding to the e-

th row and the column denoted by ‘‘ab, c, d’’ which corresponds to

ðMÞab ða
 bÞ; o�l=oðh0Þc and o�l=oðh0Þd in l
ð2�1Þ
0 . The notation, e.g.,

Pð2Þ
ðg; hÞ

indicates the summation of two terms exchanging g and h;
P

a
 b

ð�Þ �
Pq

b¼1

Pq

a¼b

ð�Þ; and

kab ¼ ðK�1Þab.

1.
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ET

1

2

o2�l�

ðoh00Þ
h2i ðĥML � h0Þh2i

( )

¼ 1

2
n�1vec0ðKÞnETfðKð1Þl

ð1Þ
0 Þh2ig

þ 1

2
n�2vec0ðKÞ

�

2n2ETfðKð2Þl
ð2Þ
0 Þ 	 ðKð1Þl

ð1Þ
0 Þg

þ 2n2ETfðKð3Þl
ð3Þ
0 Þ 	 ðKð1Þl

ð1Þ
0 Þg þ n2ETfðKð2Þl

ð2Þ
0 Þh2ig

	

þ Oðn�3Þ

ð132Þ

¼ n�1

2
trðCK�1Þ

þ n�2
Xq

a;b¼1

kab

�

ðAÞ

X

c
 d

Xq

e;f¼1

n2ETfmcdðlð1Þ0 Þeðl
ð1Þ
0 Þf gðKð2�1ÞÞða: cd;eÞð�kbf Þ

þ
Xq

c;d;e¼1

n2ETfðlð1Þ0 Þcðl
ð1Þ
0 Þdðl

ð1Þ
0 ÞegðKð2�2ÞÞða: c;dÞð�kbeÞ

þ
X

c
 d

X

e
 f

Xq

g;h¼1

ðKð3�1ÞÞða: cd;ef ;gÞð�kbhÞ
�

n acovfmcd;mef gcgh

þ
X2

ðg;hÞ
n acovfmcd; ðlð1Þ0 Þggn acovfmef ; ðlð1Þ0 Þhg

	

þ
X

c
 d

Xq

e;f ;g¼1

ðKð3�2ÞÞða: cd;e;f Þð�kbgÞ
X3

ðe;f ;gÞ
n acovfmcd; ðlð1Þ0 Þegcfg

þ
Xq

c;d;e;f ;g;h¼1

ðKð3�3ÞÞða: cde;f ;g;hÞð�kbhÞ
X3

ðf ;g;hÞ
n acovfðJð3Þ0 Þðc;d;eÞ; ðl

ð1Þ
0 Þf gcgh

þ
Xq

c;d;e;f¼1

ðKð3�4ÞÞða: c;d;eÞð�kbf Þðccdcef þ ccecdf þ ccf cdeÞ
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þ 1

2

�

ðBÞ

X

c
 d

X

e
 f

Xq

g;h¼1

ðKð2�1ÞÞða: cd;gÞðKð2�1ÞÞðb: ef ;hÞ n acovðmcd;mef Þ
�

cgh

þ
X2

ðg;hÞ
n acovf mcd; ðlð1Þ0 Þggn acovf mef ; ðlð1Þ0 Þhg

i

þ 2
X

c
 d

Xq

e;f ;g¼1

ðKð2�1ÞÞða: cd;eÞðKð2�2ÞÞðb: f ;gÞ
X3

ðe;f ;gÞ
n acovf mcd; ðlð1Þ0 Þegcfg

þ
Xq

c;d;e;f¼1

ðKð2�2ÞÞða: c;dÞðKð2�2ÞÞðb: e;f Þðccdcef þ ccecdf þ ccf cdeÞ
	

ðBÞ

	

ðAÞ

þOðn�3Þ;

where, e.g., ½
ðAÞ

� �
ðAÞ

is for ease of finding correspondence.

2.

ET

1

6

o3�l�

ðoh00Þ
h3i ðĥML � h0Þh3i

( )

¼ n�2 o3�l�

ðoh00Þ
h3i

n2

6
ETfðKð1Þl

ð1Þ
0 Þh3ig þ n2

2
ETfðKð2Þl

ð2Þ
0 Þ 	 ðKð1Þl

ð1Þ
0 Þh2ig

� 	

þ Oðn�3Þ
ð133Þ

¼ n�2
Xq

a;b;c¼1

o3�l�

oh0aoh0boh0c

�

ðAÞ

1

6

Xq

d;e;f¼1

ð�kadÞð�kbeÞð�kcf Þ

� n2ETfðlð1Þ0 Þdðl
ð1Þ
0 Þeðl

ð1Þ
0 Þf g

þ 1

2

�

ðBÞ

X

d
 e

Xq

f ;g;h¼1

ðKð2�1ÞÞða: de;f Þð�kbgÞð�kchÞ
X3

ðf ;g;hÞ
n acovfmde; ðlð1Þ0 Þf gcgh

þ
Xq

d;e;f ;g¼1

ðKð2�2ÞÞða: d;eÞð�kbf Þð�kcgÞðcdecfg þ cdf ceg þ cdgcef Þ
	

ðBÞ

	

ðAÞ

þOðn�3Þ:

3.
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ET

1

24

o4�l�

ðoh00Þ
h4i ðĥML � h0Þh4i

( )

¼ n�2

8
vec0ðK�1CK�1Þ o4�l�

ðoh0Þh2iðoh00Þ
h2i vecðK

�1CK�1Þ þ Oðn�3Þ:
ð134Þ

In 1, 2 and 3, when the model is true ETð�Þ ¼ Eh0ð�Þ and �K ¼ C ¼ I0.

Especially, the term of order Oðn�1Þ becomes

n�1

2
trðCK�1Þ ¼ �n�1 q

2
: ð135Þ

That is, the expectation is asymptotically smaller than �l�ðh0Þ ¼ �l�0 by n�1q=2 up

to this order.
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