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Abstract A family of the estimators adjusting the maximum likelihood estimator
by a higher-order term maximizing the asymptotic predictive expected log-likeli-
hood is introduced under possible model misspecification. The negative predictive
expected log-likelihood is seen as the Kullback-Leibler distance plus a constant
between the adjusted estimator and the population counterpart. The vector of
coefficients in the correction term for the adjusted estimator is given explicitly by
maximizing a quadratic form. Examples using typical distributions in statistics are
shown.

Keywords Expected log-likelihood - Kullback-Leibler distance - Mean square
error - Asymptotic expectation - Shrinkage - Asymptotic bias

1 Introduction

It is known that the maximum likelihood estimator (MLE) does not necessarily give
the smallest values of typical indexes of errors, where an error is defined as the
deviation of a parameter estimate from its true value, which is typically squared and
averaged over a range of the associated observable variables. For instance, consider
X" N(u,0?) (i=1,...,n) and X = n~! >i1 X; with n being the sample size.
Then, it is known that among the family of the estimators of &> given by
n iy (Xj— X)?, where ¢, is a constant depending on n, ¢, = 1/(n + 1) gives the
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smallest mean square error (see, e.g., DeGroot and Schervish 2002, p. 431; for the
associated problems about variance estimation, see Ogasawara 2015). Note that the
above estimator is n/(n + 1) times the normal-theory MLE.

Discrepancy functions are defined in many ways using different definitions of
distances. In the above case, the squared Euclid distance averaged over the
distribution is used. This example is a fortunate one in that the constant c, is
obtained as an exact one. In many other cases, it is difficult to obtain exact solutions.
Using an additive term of order O,(n"") to the MLE, Ogasawara (2015) obtained a
solution minimizing the asymptotic mean square error up to order O(n=2) denoted
by MSE_y(,-2) in this paper.

The Euclid distance is an intuitively appealing natural one, especially for a single
parameter. On the other hand, in the multi-parameter case, the overall error index
for the MLEs of the parameters is defined in many ways since the MSEs for several
estimators are given by the matrix MSE, which is the sum of the corresponding
covariance matrix and the outer product of the same vectors of biases (see, e.g.,
Giles and Rayner 1979). One of the natural definitions of the overall index is the
sum of the MSEs of the estimators, which is called the total MSE (TMSE) by
Gruber (1998, p. 117). Ogasawara (2014b) obtained an optimal value of the added
term of order O,(n~!) similar to the single parameter case, which minimizes the
TMSE_ p(,2) and a similar solution for the linear predictor given by the multiple
MLEs with known weights for the predictor. Another overall index appropriate
especially in the multi-parameter case is the log-likelihood, which will be used in
this paper. Note that using this index, the problem of different ways of summarizing
the matrix MSE is avoided. Further, since likelihood is used, the log-likelihood
index is unchanged by reparametrization.

In the following section, the predictive expected log-likelihood will be defined
and used. Then, a family of the estimators adjusting the MLE by adding a higher-
order term is defined, whose asymptotically optimal value will be derived. The
family has two typical sub-families giving shrinkage (or expanded) estimators and
bias-adjusted estimators. Examples will be given using frequently used distributions
(gamma, exponential, Poisson, Bernoulli and normal), where the corresponding
optimal adjustment using the MSE_, (,-2) will also be shown for comparison. The
conditions for the relative sizes of the optimal coefficients by maximizing the
asymptotic predictive expected log-likelihood and by minimizing the MSE_,¢(,-2)
will be given for a simple case.

2 The asymptotic predictive expected log-likelihood
and its maximization

Let O be a g x 1 vector of parameters with éML and 0y being its MLE and the
population counterpart, respectively. Let X be a n X p matrix of n realized values of
the random vector x* = (x}, .. .7x;)/. Then, the log-likelihood of 0 given X averaged

over n observations is denoted by /(0, X). When X is replaced by the corresponding
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random matrix X* with its rows being independent copies of x*, we have (0, X*)
whose expectation over its range is

[(6) = Ex- {1(6,X")} = / (@2 Zi0n)az. (1)

where f(Z|0) is the density of X* = Z. In the case of discrete distributions, (1)

should be replaced by the corresponding summation with f(Z|6y) seen as a prob-

ability mass. The expectation (1) is maximized when @ = @, by Jensen’s inequality.

That is, éML does not maximize i*(O), which is the expected log-likelihood of 0.
It is known that under regularity conditions

Ex-{I"(Om)} = I"(80) —n'(q/2) + O(n™?) )

(see, e.g., Sakamoto et al. 1986, Eq. (4.21)).

The asymptotic difference n~!(g/2), when multiplied by 2, is a half of n~! times
the correction term in the Akaike information criterion (AIC; Akaike 1973). The
amount of the difference is seen as an undesirable bias of Oy . In this paper by a
modification of By , say 0, we will maximize [* (6) among a family of the estimators

using optimal coefficients yielding 0 from Oy So, we will maximize the following
quantity:

Ex [ {00C))) = |

R(X)

[ /R ” 1{0(X), Z}f (Z]00)dZ | f(X|00)dX, (3)

which is called the mean expected log-likelihood (Sakamoto et al. 1986, p. 60) when
0 is Oyr. Since Z in (3) can be seen as a set of quantities associated with prediction
to be given in the future, (3) is called the predictive expected log-likelihood in this
paper.

When Z is a set of quantities in the future, (1) to (3) are associated with
predictive likelihood or the predictive posterior distribution though the direction of
prediction is reversed, since Z in the future is integrated out (see Fisher 1956,
Chapter 5, Section 7; Hinkley 1979; Lejeune and Faulkenberry 1982; Leonard
1982; Bjornstad 1990; Konishi and Kitagawa 1996, 2008, Section 9.3).

Recall that when @ = 0y, /*(0) in (1) is maximized. Consequently, (3) is also

maximized when 0 = 0. Since 0y does not depend on X, the maximum is
Ex-{I*(89)} = I*(0p). Take the difference

I"(80) — Ex- {I"(6)} = Ex {I"(60) — I'(0)}
L*(0 4
= [ sexiony o= Wax @
R(X) L*(8)
where L*(8y) and L*() are exp{l*(8y)} and exp{l*(8)}, respectively. The quantity
exp{l*(@)} is interpreted as a pseudo-likelihood of @ corresponding to the predictive
expected log-likelihood. The value of (4) is non-negative, and is seen as a discrepancy
of 0 and 0 based on the Kullback and Leibler (1951) distance. So, the maximization of
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the predictive expected log-likelihood in terms of 0is given by finding 0 such that the
distance of (5) is minimized. Incidentally, Lawless and Fredette (2005) used the
Kullback-Leibler distance for evaluation of the goodness of an estimator.

In practice, f(X|0y) or f(Z|6y) may not be true, where another alternative true
density of X* is denoted by fr(X|{,) with {, being a ¢g* x 1 vector of parameters for
the alternative model. The vector 0y under model misspecification is defined as éML
when infinitely many observations are available. Under model misspecification, we
deal with the cases satisfying

o b 0 ®

where the subscript “T” indicates that the subscripted operator is defined under the
alternative true distribution. That is, in this case the expectation is taken using the
density fr(X|g,) rather than f(X|0). Examples satisfying (5) will be illustrated in
Sect. 4.5. In the following, the possible model misspecification is considered unless
otherwise stated.

3 A family of the estimators maximizing the asymptotic predictive
expected log-likelihood

3.1 The asymptotic predictive expected log-likelihood for the family
of estimators

Define a family of estimators

Oac = O — ' diag(k)a, (6)
ky 0
_ ka , .
where diag(k) = . , k= (ki,...,kg) =0O(1) is the vector of
0 k,

unknown coefficients to be derived, and & = a(éML) is a differentiable arbitrary
function of éML. Two typical cases are a = éML and o = [§1, where n~!B, is the
vector of the asymptotic biases of the elements of Oy with the assumption that
Er(0y) = 00 + n'B, + O(n~2), and B, is a sample version of B,. As mentioned

earlier, these cases give two sub-families of estimators. When & = Opr and 6 = ﬁl,
the following notations are used:

éSk = {I(q> — n_ldiag(k)}éML and éBk = éML — n_ldiag(k)ﬁ,, (7)

where S in GSk indicates the shrinkage when k;’s are hopefully positive, B in (i
indicates bias adjustment which does not necessarily mean bias reduction, and I, is
the ¢ x ¢ identity matrix.
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Recalling the definition of 7*(8) in (1), let
o'r o1 (0)

(900)"  (20)"

|0:90 (/ =1,2, 3) (8)

for simplicity of notation, where X/ =x®---®x (j times of x) is the j-fold
Kronecker product of x. Then,

or o'r

——=0 and - =0(1) (j=2,3), 9

where [*(0) does not include stochastic quantities X* or Z* until 0 is evaluated at,
e.g., stochastic Oy .

The predictive expected log-likelihood of 0 under possible model misspeci-
fication is written as:

Bl 0} = | T 0u(0MXIG)X. (10)
R(X)
Note that
Oac = Oy — n ' diag(K)él
= Oy — n~ ' {diag (K)ot + diag(k) (6 — o)} (11)
= Oy — 1! {diag(ap) + diag(d — ao) 1k,

where oy = a(0). Then, using the Taylor series expansion about 6, under regularity
conditions with the assumptions 8y — 8p = 0,(n~"/?) and & — &y = 0,(n" /), we
have
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1K/ diag( )ﬁ (Bpi. — 00)
g(dl 60089’0 ML o o)
+ {nz K'diag(ato) =— °r ; diag(ao)k}
A oo

637* R
! dia ag(otg) ———— (O — eo)<2>} +0,(n?),
{ 26, (06}, 0,(n-%)

where {-}, () and {-},, indicate the orders of the quantities in braces for clarity.
Define

T

ol dl
=——= 1 I'=nEr| —=— | = 0O(1 1
30000 O(1) and n T( ) o(1) (13)

36, 06,

where 01/00) = 0l(8,X")/00]g_q, = 0,(n"'/?) (compare with dI* /00, = 0). Let
l%;,[L = Z*(GML). Then, the expectation of (12) is

Er() = Er(hn)
+ n %K | —diag(otg) AP, — nEr{(Oyr — 00)/ ® diag(a — ap) pvec(A)
— l{vec/(Afll"Afl) ® diag(or )}i
2 &l%o (600)<3>
—n? %k/diag(ag)(—A)diag(ao)k +0(n™?)
(14)
with
IlET{(éML — 00)/ ® dlag(ci — d())}
= {diag[n acov{(Oy),,d}], ..., diag[n acov{(éML)q,d}ﬂ +0(n™")
ot Oory
_ [diag{ <A—'rA—' a;;)) 1}, . .,diag{ (A ITA-! aeo> } +omhy (19

= diag{row <A_'FA_1 %> } + 0™,

where vec(-) is the vectorizing operator stacking the columns of a matrix sequen-
tially with vec’(-) = {vec(-)}, acov(-, -) is the asymptotic covariance of order
O(n™") for two variables, diag(x) = diag(x'), (-); indicates the j-th element of a

vector, and (-); is the j-th row of a matrix. Since the a-th element of

j-
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/!
diag{row <A1I‘A1 2%;2) }VGC(A)

b=1 () (16)
_ o 19}
—{4TA 1 a
{ 009 }a’
where (-),, indicates the (a, b)th element of a matrix, we have
a /
diagd row [ A~'TA™! ] vec(A)
00,
(17)

)

8

!
oot oot/ oot/
= (ra' ) .. (rat 22 = Diag( FTA™' 21
{< 6(-)0)11’ ( 690>qq} 1ag< 690) (

where Diag(-) is the diagonal matrix whose diagonal elements are those of a matrix
in parentheses and 1, is the ¢ x 1 vector of 1’s.
It is known that B, under possible model misspecification is given as:

B, = A 'nEr a—I,®M vec(A™")
00,
37
—lA_la—ll@Vtec(A_lFA_l),
2 20,(00))

(18)

where 0°1/00,00, — Er (62Z/600606)E (M), (4-112)- The result of (18) is typically
derived by the inverse expansion of 6[/ Gﬂ\e:éML = 0 at 0 = 0 in terms of GML — 0

(see, e.g., Ogasawara, 2010, Eq. (2.4)). Using (18), the first term in brackets on the
right-hand side of (14) becomes

ol
—diag(ag)AB, = —diag(ao)A{A_lnET <60' ® M) vec(A™!)
o

——A_lizvec(A_ll“A_l)
27 2008y

ol

= —diag(a)nEr | = @ M |vec(A™")
00,

37*

690)<3> '

1
+ 5{ vec'(A™'TA™Y) @ diag(a) }

From (17) and (19), we have
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!
_ Diag <FA“ %> 1, } - %k’diag(ao)(A)diag(ao)k}

(20)

where Er(-)_ (-2 indicates that the expectation is taken up to order O(n?), and

. al _ , _, Oatf
by = —diag(og)nEr <@_96 ® M> vec(A™") — Diag (FA ! @_9(())> 1),

Ap = %diag(ao)(—A)diag(ao).

3.2 The vector of maximizing coefficients
The k maximizing (20) without the remainder term is given by

|
kAmax = EAAle

= diag ™! (otg) A "' diag ! (a19)
) al - . _1 Qo
x  diag(og)nEr | 7 ® M |vec(A™") + Diag| FA™" = |1,
00, 00

= diag™! (ap) A"

!
X < nEr 6—1,®M Vec(Afl)—i—diag’l(ao)Diag I‘Afl% 1 ¢
A 009

where diag ™' (atg) = {diag(ato)} " with the assumption of its existence.
The maximized value without the remainder term is

-2
2, n _
Er(hyL) o2 + Tb./AAAIbA

= ET(K/IL)—»O(n 2)

0o,
00y

al , , Qo
X {nET (6—% ® M) vec(A™") + diag ™' (ap) Diag (l“A1 %2) 1, }

@ Springer

(21)

+5 vec' (A "nEr ﬂ®M +1£ yDiag TA' 2 ) diag ™! (ap) (23)
2 00, a



Behaviormetrika (2017) 44:57-95 65

As will be addressed later, (22) and (23) become considerably simplified in the
case of the canonical parameters of the exponential family since 0/1/ (690)0> =
6’7*/(600)@(]' =2,3,...) and M = O. The result is summarized.

Result 1 The vector K of coefficients maximizing the asymptotic predictive
expected log-likelihood averaged over observations up to order O(n~?) among the
family of the estimators éAk = éML — n~'diag(k)a& using a differentiable vector
Sfunction o = a(éML) under possible model misspecification is given by Kamax in (22)

with the maximized value being (23).

When a common coefficient & in Kk is used, k becomes k = kl(q>. The result in
this case is summarized as:

Result 2 When k = k1, in Result 1, bs and A become scalars as:

7 /!
ba = —oynEr <aael, ® M> vec(A™) —tr <FA“ gzg) (24)
0

1
and ap = 5&6(—A)ao, (25)

respectively. Then, the maximizing k in K = k1, is

kamax = ;LTAA
L (2 AT
— m {aonET <666 ® M>vec(A )+ tr(I‘A 690> }
with the maximized value without the remainder term being
Er() o) + 172 f_
- ET(?*ML)ﬂO(n*Z) (27)

o oy nE a—Z®M vec(A™!) +tr l“A’la;«6 2
2apAay | 0 \6)] 300) | -

In the case of the canonical parameters in the exponential family, M vanishes in
Result 2 as in Result 1. When & = éML, Oay, /00, becomes I, and can be omitted in
Results 1 and 2. In this case, the contribution of the trace term in (26) to kamax 1S
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(A t{-AA'TA™)}  tr{n " acovy! (Bw)n acovr(Oyr)}

oAy ag(—A)ag B apn~! acovy ! (Bp )0

» o (28)

where acovy, (éML) is the asymptotic covariance matrix of order O(n~") for O
under correct model specification, acovT(éML) is the corresponding matrix under
possible model misspecification, and acov, () = {acovy, (Oy)} . Since the
trace in (28) becomes g under correct model specification, the scaled trace value
tr{ n! acov(jol (Ou ) acovr (O )} /g is called the dispersion ratio in this paper.
When the dispersion ratio is relatively large, kamax in (26) tends to be large.

An advantage of the restricted vector k = k1, over the unrestricted one is that
the solution kamax 1S available even when some but not all of the elements of & are
zero. In this case, diag™!(aty) was unavailable unless k is shortened by omitting its
elements corresponding to the zero elements of ay.

When the model is correctly specified, we have —A = I' = I, where I is the
Fisher information matrix per observation and the dispersion ratio becomes 1, which
gives
Result 3 The vector K of coefficients maximizing the asymptotic predictive
expected log-likelihood under the conditions of Result 1 and, in addition, under
correct model specification is given by

. ol _ . {0y
b = diag (e )nEy, <6—96 ® M) vec(I;') + Diag (6(—)2) 1 (29)

1
and Ax = Ediag(ao)lodiag(ao) (30)
yielding
[

Kamax = EAA ba
= diag™" (ap)I;" (31)

ol Do
x nEs, (55 ® M )vee(ly") + diag ™ (a0)Ding 22 ) 1 -

o0, L)

where Eqg,(-) indicates that the expectation is taken under correct model specifi-
cation. The maximized value without the remainder term is
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Eg, (ljl\k/lL)—»O(n*z) + TbAAzle
= Eq, (TK/IL)HO(VFZ)

-2 al o, (32)
—1 l
+—2 {VCC (I; " )nEq, <_600 ® > +1, Dlag<ae )dlag (o )}

B 0
x I {nEOO (66—916 ® M) vee(Iy') + diag ™" () Diag (ags) ! }

As in Result 2, we have

Result 4  When k = k1, in Result 3 under correct model specification,

ol ot/
ba = anEg [ = @M I+t =2
A = onEg, (696@) )Vec( N+ r(a%) (33)

ap = d610d0/2

and

bA 1 67 adl
k max — A~ — ¥ _ E M I, t 4
A 2an aéloao{ ot <59/ ® >vec( D+ r<690)} 34)

The maximized value wéthout the remainder term is
b
—2 D4

Eoq (lyr)—o(n2) + 1 N

A -2 ol d 2 (35)
= Eg, (I ) I aynEy, ( =+ @ M |vec(Iy') + tr 0%
0\ "ML/ ~0(n2) 2(!61()&0 0 ! 69,0 600

As before, canonical parametrization in the exponential family gives simplifi-
cation. Under non-canonical parametrization, an example of the vanishing term with
M after taking the expectation is the normal distribution as will be illustrated later.

When & = éML with the vanishing M, kamax of (34) becomes as simple as:

q

—_— 36
d610d0 ( )

kAmax =

with the maximized value

-2 612

2&6 I() o '

Eqg, (KdL)—»O(n*ﬂ +n (37)

Note that the term ET(?&L)HO(W” or E(;O(l%;/[L)Hom,z) appears throughout the
associated results for clarity and completeness though the term is irrelevant for
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deriving Kamax. S0, the term is seen as a constant. However, when the evaluation of
the term is required, the result can be obtained, which is given in the appendix. The

term of order O(n~!) in E@O(?&L)%O(nfz) was given in (2) as —n~'q/2, where q is the
q times the unit dispersion ratio under correct model specification. Under possible

model misspecification, the term is n~'tr(TA™")/2, where —tr(A™") is also the
q times the dispersion ratio.

The terms ET(KAL)—»O(n*Z) and Ego(lﬁ;,m)_,omﬂ are associated with the asymptotic
bias correction higher than those in the AIC and Takeuchi information criterion
(TIC; Takeuchi 1976; Stone 1977; Konishi and Kitagawa 2008), which was derived
by Konishi and Kitagawa (2003), and Ogasawara (2017) in different expressions. In

this bias correction, many of the terms in EOU(?ML)HO(,,—Z) and ET(l%;/IL)ﬁO(nQ) are
cancelled since the amount of bias correction is E@n(lﬁML)HO(n,z) — Ego(lgli/[L)HO(n*Z)

or Er(lu) . o(u2) = Er(lui) - o)

The maximizing coefficients in Results 1-4 depend on unknown population
values, e.g., ap. Although we can have their sample counterparts, it can be shown
that when the population values are replaced by their estimates, the associated
asymptotic results do not hold. This difficulty can be solved by several ways, which
will be addressed after (46) in the next section.

4 Examples

In this section, examples are given using typical distributions in statistics. The
results in Sects. 4.1 to 4.4 are obtained under correct model specification while those
in Sect. 4.5 are shown under model misspecification. In Sect. 4.4, the multi-
parameter cases are illustrated using the normal distribution. In these examples, the
corresponding results derived by minimizing MSE_,,(,2) are also given for
comparison. Ogasawara (2015) obtained the coefficient of the bias adjustment
minimizing the MSE_, (,-2) for a single parameter and a parameter in the parameter
vector. Ogasawara (2014b) extended the result to the multi-parameter case, where
all the parameters in a vector parameter are simultaneously considered. Ogasawara
(2014b) used TMSE_ (,2) (see Sect. 1) and the linear predictor, where only a
single coefficient k was used. For comparison to the results in Sect. 4.4,
Ogasawara’s (2014b) result is extended using unconstrained vector k of coefficients
and an arbitrary vector d as follows.

Let Oar = Oy — n~'diag(k)a as before. Then, under possible model
misspecification
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TMSE = Er{(0ar — 0)' (0ax — 60)}
S Y P [ll(q)ﬂm — 2tr{diag(k)n acovr(4, é;\/IL)}
+ {B; — diag(k)ao}' {B; — diag(K)aw}] + O(n?)
n 1B, (38)
-2 {1/@)5 a2+ BB, — 2K'Diag{nacovr (8, By ) + ooB 11y
+ K'Diag(aag)k] + O(n ™)
=TMSE (2 + O(n?),

where n~ !B, is the ¢ x 1 vector of the asymptotic variances of order O(n~!) for the
elements of Oy, and n=2B,, is the corresponding vector of the added higher-order
asymptotic variances of order O(n=2). Then,

Result 5 The vector of the coefficients minimizing TMSE_ -2y defined in (38)
under possible model misspecification is

Kamin = Diag™' (ag0) Diag{n acovr (4, é;VIL) + a0 1) (39)

with the minimized TMSE_, () being

711 b+ 1" [ ﬂAz + BB, — Dlag{n acovr(d, 0ML) +aoBy } (40)
xDiag ™! (aoaO)Diag{n acovy(d, Oy, ) + otoB M)
Result 6 When k = k1, in Result 5,
1 Al
kAmin = [tr{n acovr (d, 9ML)} + a:)Bl] (41)
oo
with the minimized TMSE_, (,-2) being
_ _ 1

n 11@[}2 +n7? (B2 + BBy — [tr{" acovr(d, eML} +op, ) (42)

Result 5 is new. Result 6 is slightly generalized than that in Ogasawara (2014b)

in that an arbitrary vector & is used. When & = QML and o = ﬁ,, Kamin 1S Written as
Ksmin and Kppin, respectively.

As addressed earlier, canonical parametrization in the exponential family gives
simplified results. Two additional results by this parametrization under correct
model specification are given. For this case, it is known that

J QLY _
B =51 17" vee(l; ) (43)
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(see, e.g., Ogasawara, 2013), where I(()Dj) = 76”27/600(698)("“) (G=1,2,...) with
Jj = 2 for later use, which is the j-th derivative of the information matrix evaluated
at the population value. From (43), after some algebra, we have

OB, 1 (D) y_14(D1 - - 1 (o2 — -
50, =310 U vee (I} @ 151) = 51977 (vee(l ) @ 1) "
44
1 _ i
+§I(()D1)101<2>I£)D1)161.

Recalling Result 4 and defining kgmax, b and ap as kamax, ba and aa,
respectively, when & = [31 (ksmax, bs and ag are similarly defined for later use when
6 = Oy), (44) gives

P by tr(Op)/06)
BT g BiloB,
2 (D1) [ fy—17(D1) -1 -1
= . tr[I0 {I; Ty 'vec(Ip )} @ 1] (45)
vec' (Ial)I(()Dl) Iall(()Dl)vec(Ial)
(D1

— 1P vee(ph @ ;' + 1PV PV I

In the case of a single parameter, it is known that for éBk = éML — n"k/?l,

i"? /2 ioi?
kpmin =5 — 2[k/ss] = 52— L0 —5_5 20 (46)
W i ?y (i)

(Ogasawara, 2013, Result 2; Ogasawara, 2014a, Erratum), where [k/ss] stands for
the ratio of the excess kurtosis to the squared skewness of the single sufficient

statistic, and iy, iE)Dl) and iém) are scalar counterparts of I, IE,DI) and I(()Dz),
respectively.

Note that the minimizing coefficients in Results 5 and 6 given above generally
depend on unknown population values, which are not available in practice and
cannot automatically be replaced by their sample counterparts. The situation is
similar to that of the maximizing coefficients in Sect. 3. This difficulty can be
solved in several ways (see Ogasawara 2014b, pp. 203-204; Ogasawara 2016,
Section 7). That is, (i) in some fortunate cases (e.g., Examples 1.1 to 2.3, 4.2, 4.4
and 4.5 shown later), the minimizing coefficients do not depend on unknown values.
(i) Some cases have lower/upper bounds for the minimizing coefficients (e.g.,
Example 3.1 shown later). (iii) In many cases, we have prior information on the
range of unknown values. When the minimizing coefficients are monotonic
functions of the population values, the range gives bounds similar to those of (ii).
(iv) When another independent sample of size O(n) is available as in cross
validation, the estimated minimizing coefficients using the second sample can be
used without changing the asymptotic results given in Results 5 and 6.
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4.1 Gamma distribution

Example 1.1 The canonical parameter (—1/f), when the shape parameter (o) is
given, with its biased MLE in the gamma distribution.

The density of the gamma distribution using the scale parameter f§, given the
shape parameter o, is f(x* = x|o, f) = x* Lexp(—x/B)/{f* ' (x)} (x> 0), where
the notations similar to a and B, used earlier are used for their familiarity as long as
confusion does not occur. The case of o« = 1 gives the exponential distribution.
When o is a positive integer, we have the Erlangian distribution.

The canonical parameter is 0= —1/f (negative rate). Then,
fx* = x|, 0) = x*1(=0)*exp(0x) /T () (x > 0). From, e.g., Ogasawara (2014a,
Example 3), Oy = —a/%, B, = 0o/a, ip = var(x*) = /03, By = iy' = 03/ and
[k/ss] = 3/2, where X is the sample mean. Then,

1. QSmaX (see (36)): The notation QSmaX synonymous with és;%m is used for
simplicity with other simple ones defined similarly:

ksmax = 1/(05i0) = 1/o. (47)

2. Opma  (see  (34): Use 0B,/00p=1/a, then kpmax = (3f;/000)/
(Brip) = (1/a)/(1/a) = 1. Since B, = Owr /o, we find that

~ ~ n71 ~
QSmax = BBmax = <1 - 7) QML- (48)

3. Osmin (see (41)): ksmin = 05 2(By + 00)) = 05 (030" + Bobpo ") = 2/,
OBmin (see (41)): Since ff; = Oy /o, we have kpmin = 0tksmin = 2, which is also
given by kgmin = 5 — 2[k/ss] = 2.

From 3 and 4,

éSmin = éBmin = (1 - n71 3) éML~ (49)

It is found that the amount of the correction in (49) is two times that of (48). The

relatively larger correction in éSmin and 9Bmin than in éSmax and éBmax is a typical
tendency. It is to be noted that the formulas of (48) and (49) do not depend on the
unknown canonical parameter 0.

Example 1.2 The scale parameter (f), when the shape parameter () is given in
the gamma distribution (a non-canonical parameter with its unbiased MLE).
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Since Eg, (x*) = af, using the population scale parameter f3,, the scale parameter
is a scaled expectation parameter. So, only ksmax and ksmin are obtained. Preliminary
results are

ol X o /} ¥ o Z)E+oc ) E ol o
=3 5, ==, T 5= —4—=x —71:—(_)0 — = 5,
B B b o KR o) B

EOo(ﬁML) =By, B = ’War(ﬁML) = ﬁé/“a By =0,

ol [l ol _ g |E b ) 2 - apy)
"oy laﬁo{aﬁé E9°<6B3> H - Eg‘}[ Bo { Ba H (50)

2 ) 2 20
= —ﬁ—gnvar(x) = ——Saﬁg = —ﬁ—g
1. Osmax (see (34)):
Ksmax = {ﬁ (——20(>—'[’)‘2’+1}——l (51)
R T\ K :

and
N - A n 1 - n N\ %
HSmax = (1 —n kSmax>0ML =|1+— OML =(1+— |- (52)
o o o

2. Ogmin (see (41)):

ksmin = $2057 + B1605" = B0, =1/ (53)
-1 -1 _

and Ogpin = (1 - ”—) O, = (1 - ”—) ) (54)
o o o

Note that (52) is an expected result since (52) should be asymptotically equal to
the negative of the reciprocal of (48). The results are puzzling in that éSmax in (52) is
an inflated estimator while égmin in (54) is a shrinkage estimator. Since the amount
of the added bias in (52) and (54) is the same with the reversed direction, (54) looks
better than (52) since the variance of (54) is smaller than that of (52). Note,
however, that this is based on the viewpoint of the Euclid distance. When the
viewpoint of the Kullback-Leibler distance (see (4)) is employed, (52) is better than
(54).
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Example 1.3 The exponential distribution under arbitrary parametrization.

This case partially reduces to those in Examples 1.1 and 1.2 when o = 1. That is,
under canonical parametrization (6 = 1/f) using the rate parameter 6,

1.

éSmax = éBmax = (1 - nil)éML = (1 - nil)/f- (55)

éSmin = éBmin = (1 — 2n_l)éML = (1 — 2n")/)€. (56)

The pleasantly simple result of (55) was obtained by Takezawa (2014; see also
2015) as an exact one in that (55) maximizes the exact predictive expected log-
likelihood among the family of &, éML rather than the asymptotic expectation. Recall
that the parametrization = —1/f was used in Example 1.1. When 6 = 1/ is used,
the reflected observable variable —x* is to be used, if necessary, without changing
the essential results.

When the scale or expectation parameter f§ is used, from (52) and (54) with
o = 1, we have

3.

Osmax = (1 + 1~ 0m = (1 +n~ ")z, (57)

Osmin = (1 = n "0 = (1 —n" )% (58)

Again simple results are obtained. Note that Takezawa (2014, 2015) gave only
(55) among (55) to (58). However, (57) is not an exact one. For illustration, we
derive the exact solution k,n,x maximizing the exact predictive expected log-

likelihood among the family of k0w = knfyy -
First, we have

Eg, {T (knOn) }
+oo non—1
- /0 {log (kn(;M) B kn(;MLﬁ }(1(2[? e (_%> D)
yR VA N

where x. is the variable corresponding to the sum of n observed variables, which
follows the Erlangian distribution with the parameters n and f.
Differentiating (59) with respect to k,, and setting the result to zero, we obtain
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oo 1 n B x! X.
[ e e (5

1 1 n +00 prn=l)yn=2 X. 1 1 n
kn+k2n—l/0 (n—2)! exP( [3) T Rn—1

n

giving
n

1
knmax :m: 1 J’_E"’O(n_z) (61)

The above result obtained directly was given for illustration, which is also
derived by using Takezawa’s (2014) exact solution as:

N n o . ~
{(1 — l’l_])f)M}‘} ! = mgML = knmangLy (62)

where (51\_4}_ is the MLE of the canonical parameter. Equation (62) is based on the
invariant property of the likelihood irrespective of parametrization.
When f* = log 8 (the log scale or the log inter-event time parameter) is used,

Osmax = log{(1 —n~ ") exp(Opr)} = O — log(1 —n™")

) X . (63)
= {1 — Oi/&‘ IOg(l — nil)}()ML = OML + I’l71 + 0(1’172).

From (63), kymax = 1 — QK,IIL log(1 — n‘l) is obtained, though the additive exact
solution Oy —log(1 —n~') and its asymptotic approximation Oyy +n~! are
simpler.

When we again compare the results in (55) and (57), (55) gives the unbiased
estimator up to order O(n~!) and simultaneously gives variance reduction. On the
other hand, bias and variance are both inflated in (57). It is of interest to see that the
correction factor (1 — n’l) in (55) and (58) is the same though the parametrization
is different.

4.2 Poisson distribution
Example 2.1 The canonical parameter (log Z) in the Poisson distribution with its

biased MLE.

Let 4 be the source or the expectation parameter in the Poisson distribution.
Then, 6 =1logA is the canonical parameter with its probability function
Pr(x* = x|0) = exp(—e”)e® /x! = exp(Ox — e’)/x! (x=0,1,2,...). Preliminary
results are

Ovp =logx (X#£0), ig=2o=e", B, = iy, By =—e®/2and [k/ss] = 1

(64)
(Ogasawara 2014a, Example 2).
1.
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« 1
Osmax (see (36)): ksmax =

2. éBmax (see (34)): Use 0B, /00y = e~ /2, then,

e h/2

kBmax -

0P, /060 _
Bio

3. Ogmin (see (41)):

ksmin = ﬁzoaz + ﬁ1051 = 6790062 - (6790/2)051

= e 0051{05" — (1/2)} = ksmax — (€7%/2)05" (05 #0).

Opmin (see (46)): kpmin = 5 — 2[k/ss] = 3.

(e /2)%"

1

Ogio  Ogeh

(68)

Note that as in the gamma distribution, the amount of correction in (68) is larger
than that of (66). However, (67) is smaller (larger) than (65) when 0y > 0 (0 <0).

The value of (67) can be negative, zero and positive.

Example 2.2 The source or the expectation parameter (1) in the Poisson

distribution (a non-canonical parameter).
Basic results are
Pr(x* = x|4) = exp(—)A"/x! (x =10,1,2,...),

- B . _1
j~ML:-X7 ﬁlzou ﬂ2: 05 10:)“0 )

ol |d%
E, |— {3 —=° _
. [aio {azg

(e

_F_. 1 69
;%+/10>} (69)

1 var(%) 1
= ——3n X)=——>.
% %
1.
A 1 1
Hsmax(see (34)) kSmax = 3. )V() ) )u() +1 =0. (70)
27 2
2.

[)Smin(see (41)): ksmin = ﬁzoaz + ﬁlo(;l = :820(;2 = ;“0)“(;2 =

ot (7))
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Equation (70) indicates that the MLE is optimal. The amount of correction in
éSmin is larger than that of ésmax.

Example 2.3 The parameter of the mean inter-event time (f = 1/1) (a non-
canonical parameter with its biased MLE).

Preliminary results are

Pr(x* = x|f) = exp(—=1/B)p*/x! (x=0,1,2,...),
B = 1/% B = Bos Br= By io =By, nacov(Ow, B) = 26,

ol | d% %l 1 x®\[x 1
Ol g (9L X\ (x_1 (72)
" [@ﬁo{aﬁé Eg“(@ﬁé) H E{<ﬁ ﬁo) (ﬂé ﬂé>}

1 1

—nvar(x) = —

B Bo
(see Ogasawara 2015).
1.

éSmax(See (34)) ksmax = ,BO;O {ﬁo( ﬁo) ﬁo + 1} 0. (73)

2. Opma (see (34)): Since 0f, /00y = 2f,, we have

1
kBmax = 2 74
B ﬁoﬁo {50 ( /30> ﬁo + ﬂo} (74)

Osmin(see (41)): ksmin = 200> + B105" = BoBo” + Boby' = 2B (75)

4. éBmin (see (41)): Using ap = f; = ﬁg under correct model specification,

1 ~ ~
KkBmin :F{naCOVG)O(@MLaﬁI) +p}=2+1=3. (76)
1

Note that again ksyax = 0 as is expected.

4.3 Bernoulli distribution

Example 3.1 The canonical parameter (logit) with its biased MLE.

Basic results are

@ Springer



Behaviormetrika (2017) 44:57-95 77

Prioc = aln) = {1 + eip(—n)}x{l ingp—(n_)n)}'_" &=0.1),

: log—2—, Ay =%
Tp=——, Ho=log——, =X,
0 1+ exp(—1y) Mo &1 _ T ML
i, = log{x/(1 = %)}, io =mo(1 —m0), B ={mo(l —m0)} ",
o (77)
p _ K3(x):_ 1 - 2n Kirt) = 1 —2mn
: 2 2mo(1 — mo)” {mo(1 — o)}/
1-6 6m? 1-6 6m2 27y (1 —
Ke(x") = Tp + n07 lK/ss] = Ty + 2n0 1 7o ( n(;)
mo(1 — 7o) (1 —2mp) (1 —2mp)

(2#07 I; 7[0#0, 057 1)

(Ogasawara 2014a, Example 1), where Kj(~) indicates the j-th cuamulant of a variable;
sk(-) is the skewness of a variable; and kt(-) is the excess kurtosis of a variable.

1.

1

ngmo(1 — mp) (78)

Osmax (see (36)): ksmax =
2. Opmax (see (34)): Since

% 10 1-— 27‘60 7'6()(1 — 7'50) (1 — 27[0)27'50(1 — 7'[())

o0y 20nymo(l —m)  mo(l — mo) 2{mo(1 — mo)}2
(1 —2m)*
Zﬂo(l—ﬁo)

0B, /000 (1 —2m)* 1 —2m 2n .
kBmaX — ﬁ%lo - {1 + 27'50(1 — 77:0)}/ [{27’[0(1 — TE())} 0(1 O)‘|

_2{2m(1 — mo) + (1 —2m0)"} _ 5 Amo(l — mo)

=1+ > 1,

>2 (m £0, 0.5, 1).

(1 —2m)? B (1 —2m)?
(79)
3. Osmin (see (41)):
-2 ~1 -1, -2 1-2n
ksmin = B205" + 10" = {mo(1 —m0)} "1y~ — mﬂo
1 (80)

1 1
=— <1 ——(1—-2x > ——————— = KSmax
e LR S el

(7[()7&07 057 17 (1727[0)710<0)
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4. Ogmin (see (46)):

2m(1 — 41 —
kimn = 5 — 2[kdss] =5 — 24 1 — 2o Zm) {5 dmo(l Zm0)
(1 —2mo) (1 —2mo)

(81)

(Ogasawara 2014a, 2015, Example 2).
In the above results, the relative sizes of corrections by optimal coefficients are
found to be similar to those in the Poisson distribution. All the optimal coefficients

depend on the unknown parameter. The lower bound 3 for kpmi, is a known one
while the lower bound 2 for kppax 1S @ new one.

Example 3.2 The source or the expectation parameter (m)(a non-canonical
parameter).

Basic results are
Pr(x = x|m) = (1 =)' (x=0,1), A =% B, =0,
i() = {7‘50(1 — 7'60)}71, ﬂz = 7'50(1 - TEO)»

B ol (0% - 0%l
n Il B el
“om o2~ "\ on2
X 1—x X 1—x 1
=nE o —_—— —— = + (82)
0 { <TE() 1-— 71'()) < TC% (1 — 7[0)2 TE()(l - 7'[0)) }

- : n i —mo){my — (1 — o)’} (¥ — m
= ()l =gyl o) = (1= )X = o)
__Ll=2m

(1 —mo)*

1. Ogmax (see (34)):

1 1-— 27'5()
ksmax = — |0y ————= ¢7o(l —m) + 1
3 {mo(1 — )} ! l { (1 — no)z}

1-— 1-2
- ”°< ”°+1>1.
N 1—7'[0

(83)

2. Osmin (see (41)):
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_ _ _ _ 1 —m
ksmin = o052 + B105" = o052 = mo(1 — mo)my > = - 950 (m#0, 1).

(84)

We find that kgm,x does not depend on the unknown parameter. The relative size
of ksmax and ksmin depends on the unknown parameter, which is given as follows:

o: 0, 1/2) 1/2 (1/2, 1)

. (85)
PYOPGHYI ks min > kS max  KSmin = kS max kS min < kS max

4.4 The univariate normal distribution

For convenience, the variance parameter ¢ is also denoted by ¢. Preliminary results
are

F = o= ) = expl -Gl 1 f G
a Vame T\ 247 Vg PP T Ty [

— !
ol {x—ﬂo 1 on! ,’H(xj—uo)z}

00 = (u0a¢0)/7 6_00: ¢0 y —a T+

2¢, 265
.« n /
0ML = {f, n_l : ()C] _f)z} )

j=1

b Xl
e o ¢
00000 | x—pm 1Ny m) |
0 20 b
1
_ — 0
0%l bo - _
~Fo (M) B 0 L =1To, nacov(Oy) =I;", By = (0, =)',
205
. 1
_ -— _ 0 0
ol b5 ( al )
nEeo (_M) = ) nEf’o M) = 1 ’
Otto 1 0 %o 0 -5
) 0
0

(86)

where
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. [ai{azi - <621‘)H
O |~ N~ Lo\ —>
3o | 3y og (87)

n 2 1 |
= —%%EGO [{n_l Ziz] (Xj - .“0)2 — (f)o} :| = —745(5)(3(;')% — q’)%) — _E

0

is used.

Example 4.1 The parameters p and ¢ (= o) with unconstrained k (a non-
canonical parameter vector with its partially biased MLE).

Since B, = (0, —dbo)/, Opmax and Opmin are not available.

1. Ospax (see (31)):

0
kS max — diagil(:an ¢0) ( ?)0 2¢2)
0

0 _1 0 0 0 /! . —
" {<1/¢5 0 ' 0 1/¢3>(¢°’0’0’2¢3) - diag 1(“0’4)o>1<2>}

| Po/mo O U\ (/2 [ &
_< 0 2¢0)<—2/¢0)_< _2>_<_4> (1o #0),

where ¢, is the coefficient of variation assuming y, # 0. It is found that the second
element —4 of kgmax gives an estimator asymptotically equal to the estimator called
“the third variance” by Takezawa (2012, Eq. (21)) using a different method though
with a common predictive viewpoint. Note that the adjusted estimator for a variance
in (88) and Takezawa’ third variance are inflated estimators over the usual unbiased
one and the normal-theory MLE.

(88)

2. éSmin (see (39)):

 — Tiac— ! Ho (:“07(1’0) I’lVﬂI(ﬂML) 0 0 0

Ksmin = Diag {( ¢0> }{( 0 navar((;ASML)) + (0 _(]5(2))}1(2)
_ (V0 o 0 _ (bl _ o

_< 0 1/¢>§><o 2¢§—¢§>1@)‘( 1 >—<1>-

It is of interest to see that both the elements of kgpy.x and Kkgpi, for p, are the
same and depend on only cy. Since c%, in (88) and (89) is positive under the

(89)
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conditions iy # 0 and ¢, = o5 > 0, the adjusted estimator (1 —n~'c3)x is a

shrinkage estimator when 1 — n’lc%, >0. If y, is close to zero, c3 becomes very
large. While this may seem odd, the result is reasonable, which can be explained as
follows. When u, is close to zero, the large c%, gives small 1 —n~!c? as long as
11— n’lc%, > 0. Consequently, this gives a smaller adjusted estimator (1 — n’lc%,))f,
which is closer to the small population value than the usual estimator Xx. Since
1 —n~'c} is an asymptotic result, 1 —n~'c3 can become negative with finite n. In
this case, 1 —n~'c may be replaced by zero.

When K for Qg and Oy, is shortened as a scalar only for ¢, the solutions
become similar to those in Example 4.2 shown next.

Example 4.2 The parameters p and ¢ (= ¢) with k = k1) (a non-canonical
parameter vector with its partially biased MLE).

This is given for illustration using k = k1,). Note that generally the equal value k

for yand ¢ = ¢ is meaningless. However, when cy is known to be proportional to
1/o with u > 0, the equal k can be employed.

1. Ogmax (see (34)):

k max —
s (Ko, Do) <1/<;5O 0 )<#0>
0 1/C¢5) /) \ ¢y
(1o, $o) [ O _1/¢% 0 0 N
X { <_1/¢(2) 0 0 _1/¢8>(¢070,0,2¢0) _|_2}

) -1 2
U5 1) { ( 1 2 ) } 2¢, 2c;
(‘f’o 2 %o bo Do 2u5 + o 2+q

(90)

/
2. Opmax (see (34)): Using % _ (8 01)’
. _
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kBmax -
<a—¢w<1ﬂm 0 )( 0)
0 1/2¢0) ) \ —¢,

b ~1/4 0 0 2 (91)
x{ <_1/¢% 0 0 _1/¢8>(¢07070,2¢0) 1}

=2y g) 1) =2

3. Ogmin (see (41)):

ksmin = (_), (lzz)ﬂz +6,8))
1 / / $o(1+ o)
= (g, 297 L h0)(0, — 0 0.
(H07¢0)(ﬂ07¢0)/{ (2)(% Po) + (ko o) %)} o+¢0 i
(92)
4. Opmin (sce (41)): Using B; = (0, —¢)" and
acov (é ﬁ/)—<0 0 >—<0 0 >
GIML P —navar(qAﬁML) S \0 —2¢5)’ (93)
kBmin = B, (—2¢5 + B1B)) = ¢0( 2¢5) + —-L

Note that —{n/(n + 1) }kpmin = n/(n + 1) is the exact solution as explained in
Sect. 1.

Example 4.3 The mean parameter i when the variance ¢ (= ¢°) is known (the
canonical and expectation parameter).

We have
ol X—py o 11
0 = s An L 0 =X, T5= "7 lo=—71,
0= 30, b0 M a0; b0’ " o (94)
nvar(éML) = ia' = ¢y, f; =0.
Then,
1.
Osmax (see (36)): ksmax = % = ¢—‘2) = (95)
HoPo Ho
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2.
e . . o 1 A _ ®o 2
Osmin(see (41)): ksmin = ?{n var(Ovy) + po x 0} = F =ci. (96)
0 0

We see that the optimal coefficients are the same. Note that the results hold even
under model misspecification, since nvar( ¥) = ¢, holds under arbitrary distribu-

tions when it exists with T = —A = ¢, .

Example 4.4 The variance parameter ¢ (= ¢>) when the mean y is known (a non-
canonical parameter with its unbiased MLE).

Basic results are

ol 1L o Y ) i
=—5—+ : ) ¢ML:n IZJ'ZI('XI

0y 24, 202 ’
T 1 T Y (g )’
B =0, ”VaF(GML) ¢ ) =2 = ) (97)
1 o0 247 %
Gl 1 1 ol | o 0%l 1
E ~o = <2 ':_7E0_ __Eo A2 =73
g (aeg) 202 0 T ag2 ! [600 {aeg ’ (aeﬁ 3
where the last equation is the same as (87). Then,
1.
éSmax (see (34)): ksmax = {(bo( (f)o 12¢0 +1}=— (98)
¢o(2¢o)
2.

~ 1 ~
Osmin (see (41)): ksmin = —5 {navar(0uL) + ¢o x 0} = 2. (99)
0

Example 4.5 The precision parameter 0 = 1/6> = 1/¢, when the mean p is
known (the canonical parameter with its biased MLE; Ogasawara 2013, Example 5).

The vector of the canonical parameters, when u and ¢ are unknown, is
{u/¢, —1/(2¢)} with the vector of sufficient statistics (x*,x*?)'. Note, however,
that the use of the parameter u/¢ may be limited. Let 0 = 1/¢. Then, 0 is the
precision parameter (the reciprocal of variance). When g, is known, define
0(py, —0.5)" = 0d, where 0 is a single parameter with the sufficient statistic

sa = (0 )d = (1,57 (g, —0.5)', (100)

. . 2 2
whose mean over observations is —3n"" 1 (6 = 1o)” + B
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Basic results are

Eg,(sa) = % (g — o), io = var(sa) = dg/2, K3(sa) = —p, Ka(sa) = 3y,
sk(sq) = —V/8, kt(sq) =12, B, =2/dy = 200, [K/ss] =3/2,
By =iy =2¢g> =203, O =1/dyr

(101)
(Ogasawara 2014a, Example 5). Then,
1.
A 1
Osmax (see (36)): ksmax = 55— = 2. (102)
05(90/2)
2. Opma (see (34)): Using B, = 20,
2
kBmax =—=1. (103)
(200)*(¢5/2)
3.
Osmin (see (41)): ksmin = B205" + B105" = 2030,” +2000," = 4. (104)
4.

OBmin (see (46)): kpmin = 5 — 2[k/ss] = 2. (105)

The result of (102) is an expected one from (98) in Example 4.4. Note that the
distribution of x* is the same in Examples 4.4 and 4.5 with different parametrization,

ie.,, 8 = ¢ or 8 =1/¢. Then, from (98), Ogmax in Example 4.5 is asymptotically
equal to the reciprocal of éSmaX in Example 4.4, which gives, for Example 4.5,
{1420 Yy} ' = (1 =200y + 0,(n2) yielding (102).

4.5 Misspecified models

Example 5.1 The misspecified exponential distribution when the gamma distri-
bution with o # 1 is true.

This example is the case when one of the parameters in a distribution is fixed at
an incorrect value. In this example, the density

f(x* =x|A) = Lexp(—4Ax) (x > 0) (106)
is used irrespective of the situation where the true density is

fr(x* = x|, 0) = 2 exp(—=Aix)/T(x) (x>0, a#1). (107)
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Then,
Oy = Ay = ;L]/OC, éML = l/)f,
Ey, (%) = 1/29, nvary,(x) = l/ié,
Er(%) = a/41 = 1/2, nvarp(¥) = o/},

. 2
A a0 I (108)
navarg, (OyL) = (a—l\;‘ |x_1/;v0> nvarg, (X) = 2glg” = 75,
30 ’ pr
A ML _ !
navarr(Ow) = <ﬁ |x—1/,10> nvarp(x) = Zg(a/27) = a—é,
o 1 o°l 1
e = ¥ . = = _jy = 1
0w o A oW
ar\’ 1 2 o
r - - E - = E —— X = —
e T{(@%) } T{(zo x) } 7
10%0 o \
By = EWG:WO" varp(¥) = 23(/47) = 41 /o
The dispersion ratio defined earlier is
manila) 1 o
navarg, (Omr) %

Since 8; = A;/a* depends on « and A, only kspax and Ksmin are considered.

1. Ogmax (see (26)):

w(FA™)  (o/2])(—ip)™" 1

Ksmax = = =—£1. 110
S 0),A0, 02(~io) e (110)
2. Osmin (see (41)):
1 . ooy 1 ady 2
ksmin = — {navarr(OmL) + 0po ' } = 5 X — + o = - #2. (111)
0o oo M o

It is found that that ksmax 1S equal to the dispersion ratio, which is not equal to the
unit value given by the true model. Similarly, ksmi, in (111) is two times the
dispersion ratio, which is not equal to 2 given by the true model (see (56)).
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Example 5.2 'The misspecified Poisson distribution when the Bernoulli distribution
is true.

This example is the case when a distribution is used under the situation where the
true distribution is a different type of distribution. In this example, the source or
expectation parameter in the Poisson distribution is used:

Pr(x* = x|4) = exp(—A)A" /x! (x=0,1,2,...), (112)
when the true distribution is
Prr(x* =xln) = (1 —m)'" ™" (x=0,1). (113)
Basic results are

00 = /10 = T, éML = f, ﬁl = O, nvargo(éML) = nvaroo(f) = Ty,
ﬂz = nvarT(éML) = nvarT()E) = 77:0(1 — TC()) 75 o (TC() 75 0)7
ol x o X
=+, ~2 - 2
a00 o 600 0

- Gl 1 . %l L %
~AD = —— = "Iy, ~ D = - = o\ ~ 2 |
“\ o0 o "\ o0 R

ol 1 1—m .
'=y= nET{ (690) } 2nET{(x_ 71:0)2} — 0 <77:61 = i,,

o

ol o > 1 — mp
Er|—<(— E — = — .
T [690 {69(2) (662> }1 - 7Ton T{(x 7r0) } n(z)

Note that the dispersion ratio 7o(1 — 7p) /7o = 1 — 7y (7p # 0) is smaller than 1.
Then,

(114)

bS]

1. Ogmax (see (26)):

1 1—
ksmax = m {ﬂo (— 271’0) (_ﬂo) - (1 - ”0)} =0. (115)
2. Ogmin (see (41)):

1—7‘[0

1 N 1
kSmin = ?{n varT(OML) =+ 0() X 0} = ?TC()(I — 7[0) = (116)

0 0 o

Recall that the zero value of ksyax holds when the Poisson distribution is true (see

(70)).
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5 Different criteria
5.1 Comparison of optimal coefficients using different criteria

In Sect. 4, the tendency of the relatively large amount of correction by kamin over
that by kamax Was observed. The difference can be partially explained using the case
of a single parameter.

Theorem 1 For a single parameter under correct model specification

.(D1)

14
kamin — kamax = — 2(1?(2)06() (OCO 7é 0) (117)

Proof From (34) in Result 4 and (41) in Result 6, we have

1 A .
kAmin - kAmax - ? {l’l acovy, (6ML7 O() + a()ﬁl}
0

1 sonE ai ® 1 n aO(()
- n —m |-+ —
O((z)io 07560 600 io 600 ’

where m = M in the case of a single parameter. Since f8; = iy 2nEy, (31/00y ® m) —
{1/23)}(~0°F /003) (see (18)) and nacove, (0w, d) = iy 0o /D0y, (118)
becomes

(118)

1 632* i(()Dl)
kamin — kamax = _2i(2)_060 - 60(3) = - 21%0(0 . QED (119)

Let sign(-)=—1, 0, 1 depending on the sign of the real quantity in
parentheses, then the following result is obtained.

sign(i(()Dl)oco): -1 0 1

(120)
Property: kAmin > kAmax kAmin = kAmax kAmin <kAmax

Corollary 1 For a single canonical parameter in the exponential family under
correct model specification

kamin — kAmax :ﬁl/fxO- (12])

Proof From (34) with the vanishing m and (41) as in Theorem 1, we have
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1 5 30t /00
kamin — Kamax = — {n acovoo(OML’ ) + Ofoﬁl} _ oco/ 0
% OCOZ()
= iy 9% ﬁl ~ Oag /0o
-2 navarg, (Ove) =5 3 00 o oo (122)

=B/ (29 #0). QE.D.

Corollary 1 is a special case of Theorem 1 and is alternatively obtained by

p = —10 /(210) with the vanishing m in (18). Using Corollary 1, the following
results are obtained.

Corollary 2 Under the same conditions as in Corollary 1,

kSmin - kSmaX = ﬁ1/90 (90 7& 0) and kBmin - kBmax =1 (123)

The second equation of (123) shows that kgnin, When available, is always greater
than kpmax by 1. The first equation shows the following result.

Corollary 3 Under the same conditions as in Corollary 1, the relative size of ksmin
and ksmax is given as follows:

sign{sk(x*)0p}: -1 0 1 (124)
PrOPertyt kSmin > kSmax kSmin = kSmax kSmin <kSmax
Proof 1t is known that
I .oy 1 12
Blz 202< - 20 / ( ) (125)

(Ogasawara 2013, Eq. 3.1). Using (125) and Corollary 2, (124) follows. Q.E.D.

In Example 1.1 for the gamma distribution, f5; = 6y/a gives f,/0p = 1/o >0
yielding ksmin > ksmax- In Example 2.1 for the Poisson distribution, f; =
—e~% /2 <0 (see (64)). However, 0p(= log /o) can be negative, 0 or positive (see
the comment after (68)), giving an undetermined property of (120) or relative size.
In Example 3.1 for the Bernoulli distribution, p1/00 =
—(1 —2m) /{2mo(1 — mo) }175" >0 (mo #0, 0.5, 1), which gives ksmin > Ksmax-
In Example 4.3 for the univariate normal distribution, f; = 0 and sk(x*) = 0, giving
ksmin = ksmax. On the other hand, in Example 4.5 for the same normal distribution
under a condition different from that in Example 4.3, sk(s;) = -8 <0, where s;
corresponds to x* in Example 4.3. Since in Example 4.5 0y = ¢ 1'> 0, (124) gives
ksmin > ksmax (see (102) and (104)).
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Recall that the term with i(()Dl) or —0°I* /007 comes from the last term except the

remainder term on the right-hand side of the last equation of (12). Since the other
terms including k have the common factor —0I* /00,00, = O(1), we find that in
the case of a single parameter, the minimization of MSE_ 4,2y is equal to the
maximization of the asymptotic predictive expected log-likelihood up to order
O(n=?) when we neglect the last term with the third derivative.

In the case of multiple parameters, these two criteria do not give the same
optimal sets of coefficients k. This suggests the following new distances to be
minimized.

Definition 1 The generalized mean square error and the scale-free mean square
error up to order O(n~2) are defined as:

GMSE _ o) = Er{(0ac — 00)'(—A) (0 — 80)} o, 2) (126)

and
SMSE_o(,-2) = Er{(8ax — 09) Diag(—A)(0ax — 00)} o, 2 (127)

respectively.

It is obvious that (126) is a Mahalanobis distance under correct model
specification, which is also scale free as for (127). In (126) and (127), A is an
unknown non-stochastic quantity like the target vector 6y. Minimization of (126)
and (127) can be done in similar manners as before with the explicit solutions
minimizing the corresponding quadratic forms. Note that minimizing GMSE_, ¢(,-2)
is equivalent to maximizing the asymptotic predictive expected log-likelihood up to
order O(n~?) neglecting the term of the third derivative but considering the off-
diagonal elements of the second-derivative matrix with the different diagonal
elements in the case of multiple parameters. So, the optimal coefficients obtained by
this criterion may be situated between those by minimizing the TMSE_,(,-2) and
those by maximizing the asymptotic predictive expected log-likelihood.

5.2 Composite correction vector

So far, the functional form of & = &(0yy.) is assumed to be given, whose typical

cases are Oy and B, (= B, (Owr)). Let 6V and 6% are two arbitrary vectors similar
to d. Then, define the composite vector using a fixed weight w as follows:

6, = wa' + (1 —w)a? (128)
The vector ¢, can be used as a special case of d. An example of d,, is

6, = Wy + (1— w)ﬁl, which is expected to yield an intermediate effect between
those when 6 = Oy for shrinkage and when & = ﬁ] for bias adjustment.
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the Japanese Ministry of Education, Culture, Sports, Science and Technology (JSPS KAKENHI, Grant
No. 26330031).
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Appendix

The asymptotic predictive expected log-likelihood for the maximum
likelihood estimator

In this appendix, ET(IQ;/[L)_@(”—Z) in (14) is obtained, where

ET(?;/IL) = ET{Z*(GML)} = fR(X) Z*{OML(X)}fT<X|CO)dX (see (10)) For this

expectation, we use the expansion of Ot by Ogasawara (2010, p. 2151) as follows:

3
O — 0 = > A +0,(n7?) (AY = 0(1), 1) = 0,(n7?), j=1,2,3),

j=1
ol
AOY) = A =
0 00y’
AR = A-tma 2L Ly ) A 2L .
o a0, 2 T 20,
n G
ol 1 ol
A(3)l(3) _ _AflMA—lMA—l e _AflMA—lE (3) Afl_
0 30, 2 (A 5g,

ERNES Siva-t 00 ST WS RSP
+ A" 'Er(J; ){(A MA 690>®<A 20, 2A {Js
7\ @
IOy SNl
ET(JO )}<A 690)

- NG
- 01 -1 (3) - 0l ¢
(A aeo)®{A Erllo )\ A 75,

7\ 3
LA 1B, g0y (a1 2L

1
— S ATER ()

(129)
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7 7 ANZAN
(1) ol (2) ’ 0l ol _ 21 3(2=2)\/
) =—. 1) = M)Q—- =1 1
0 600’ 0 {V( )®666, 69() (O » 70 )v
0

3-1) (3-2) {(3-3) ;(3-4)
U SR TN O

where v(-) is the vectorizing operator taking the non-duplicated elements of a
symmetric matrix and v'(-) = {v(-)}'.

Using (129), the matrices A7) (j = 1,2) and A®™) (j = 1,...,4) are implicitly
defined by

2
ALY = STACIET ALY = 3 ACIF) (130)
The expectation to be derived is
ET(T;AL) = {Z*(GO)}O(I)

. -
o'r A -
G) -3
+ Er Z{' o0 (,->(9ML—90)]} +0(n™).
J1(38) Op(n7) | _o(n-2)

J=2

(131)

In (131), the asymptotic expectation is derived term by term. In the following, the
notation, e.g., (A(z_l)) (e:ab,c.d) indicates an element of A?~Y corresponding to the e-
th row and the column denoted by “ab, ¢, d” which corresponds to
(M), (a>b), dI/0(0y), and dl/d(By), in 15)271). The notation, e.g., Zg?h)

q
indicates the summation of two terms exchanging g and 4; > (1) = >_ > (+); and
a>b b=1a=b
2% = (AN,

1.
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1o )
ET{EW“’ML“*“

1
= 5n_lvec’(A)nET{(A(l)l(()l))<2>}

| 132
+ Enfzvec’(A) [2n2E {(Al l<2)) ® (A(Ulél))} (132
+ 2B {(APIF) @ (AN} + B { (AP) P
+0(n™?)
" w(rA™)
q
S [ T Z P Er{mea(15),007), APy (1)
a,b=1 c>def=1
A
S o a0y Ay ) (2-2) b
+ ) B {(1p).(067),067) HAC) o (—27)
c,de=1
q
+ Z Z (A(371>)(a: cd,e.f}g)(_;”bh) |:l’l acov{mcd,mef}ygh
c>de>f gh=1
2
+ 3" nacov{mea, 1§) Jnacov{my, (l(()l))h}:|
(g:h)
q
+ Z Z (A(3_2))(a cde,f Z nacov{mcd, ( E)l))e}’yfg
c>def,g=1 (ef, g)
q
+ Z (A(373))(a Ldefgh Z nacov{( JO )cde ( ) }/gh
cdyef,gh=1 (f.g:h)

q
+ dz); ] (A(3_4))(a: c.d,e)(_/lbf)(’ycdyef + VeeVap + VefVae)
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1 ! _ _
+§ [ Z Z Z (A® 1>)<a: cd.,g>(A(2 1))(17: ef ) [nacov(imea, mer) v,

c>de>f gh=1
B) ¢

2
+ Z nacov{ mq, (l(()l))g}n acov{ my, (lél))h}}
(&:h)

g 3
_ _ 1
+2’Z Z (A(2 1))(a: cd,e)(A(2 2))(h:f,g) Z nacov{ mcdv(l(() ))e}yfg
c>def,.g=1 (ef,8)
q
=+ Z (A(272))(a: c,d)(A(272))(b: ef)(’ycd'yef—’—yceydf+ycfyde) :| :l +0(n73)’
cdes=l (B) (A)
where, e.g., [ - | is for ease of finding correspondence.
(a) (A4)
2.
1 or 3
Er{-——— (0 — 90)“
{6<aeg><3><
2 O e A1) g (A @)
=n W@T{( o)}"'?T{( 0 )@ ( 0 )}
+0(n?)
(133)
D P i ST
" 2 800,000,000, | 6 2, ”
a,b,c= A) ef=
1 1 1
x B {(15))y15). 15"}
1 4 _ T 1
+§ [ Z (A(z 1))((1: de,f)(_)'bg)(_)'h) Z nacov{mdey(l(()))f}ygh
®) d>ef.gh=1 (f.8:h)
q X
+ ) (AP g (A2 Gaege + VapVeg + VagVer) ] } +0(n 7).
def,g=1
/8 (B) (A)
3.
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1 o'
1 O 6 )@
B CITTRA
_ (134)
n? o*r

= ?vec'(A*IFA*I) vec(AT'TA™") + o(n7?).

(000) (00))

In 1, 2 and 3, when the model is true Er(-) =Egy, () and —A =T =1,.
Especially, the term of order O(n~!) becomes

n-!

tr(FTA™ ") = —n!

NSRS

(135)

That is, the expectation is asymptotically smaller than *(8) = [; by n~'q/2 up
to this order.
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