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Abstract
With Quality of Experience (QoE) research having made significant advances over the years, service and network providers 
aim at user-centric evaluation of the services provided in their system. The question arises how to derive QoE in systems. 
In the context of subjective user studies conducted to derive relationships between influence factors and QoE, user diversity 
leads to varying distributions of user rating scores for different test conditions. Such models are commonly exploited by 
providers to derive various QoE metrics in their system, such as expected QoE, or the percentage of users rating above a 
certain threshold. The question then becomes how to combine (a) user rating distributions obtained from subjective studies, 
and (b) system parameter distributions, so as to obtain the actual observed QoE distribution in the system? Moreover, how 
can various QoE metrics of interest in the system be derived? We prove fundamental relationships for the derivation of QoE 
in systems, thus providing an important link between the QoE community and the systems community. In our numerical 
examples, we focus mainly on QoE metrics. We furthermore provide a more generalized view on quantifying the quality 
of systems by defining a QoE-based Service-level Quality Index. This index exploits the fact that quality can be seen as a 
proxy measure for utility. Following the assumption that not all user sessions should be weighted equally, we aim to provide 
a generic framework that can be utilized to quantify the overall utility of a service delivered by a system.
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Introduction

One of the main research challenges faced by the the QoE 
community is deriving QoE models for various applications 
and services, whereby ratings collected from subjective user 

studies are used to model the relationship between tested 
influence factors and QoE. With it being well known that 
different users perceive both quality and value differently 
[1], user diversity will inherently impact the distribution of 
rating scores for a given test condition [2, 3]. However, the 
majority of user studies to-date still report only on MOS 
(Mean Opinion Score) values and confidence intervals, and 
utilize these values to derive QoE models. When focusing 
on technical Quality of Service (QoS) influence factors, this 
leads to the common reporting of so-called QoS-to-MOS 
mapping functions.

Previous work has argued that from a service/network 
provider perspective, there is a likely interest in additional 
metrics beyond MOS values, thus providing deeper insight 
into rating distributions and how various conditions are per-
ceived by the user population [3–5] (as opposed to how con-
ditions are perceived by an “average user”). As an example, 
the GoB metric gives the probability that for a given condi-
tion, the user rating will be “good or better” [6] (e.g., on a 5 
pt. Absolute Category Rating, ACR, scale, this corresponds 
to a rating of 4 or 5). In addition to a QoS-to-MOS map-
ping function, the results of a user study could thus be used 
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to derive and report also a QoS-to-GoB mapping function. 
Such a mapping function could subsequently be used by a 
service or network provider in the context of QoE manage-
ment when aiming to maximize the percentage of “happy” 
users in the system [7]. To generalize, subjective studies are 
used to derive QoS-to-QoE mapping functions, where QoE 
in this context can refer to any QoE metric of interest (e.g., 
MOS, GoB).

Fundamental relationships for deriving QoE 
in systems

Moving from the domain of user studies to the systems 
domain, we consider service/network providers interested 
in deriving various QoE metrics in their system, given (a) 
the system performance, and (b) QoE models available from 
user studies. To put it in a mathematical context, we observe 
certain system parameters, which is described by a random 
variable (RV). Assuming, for illustration purposes, a Web-
based service, system performance may be quantified by the 
response time X experienced by the end user. As a result, we 
have a response time distribution in the system, meaning 
various users will experience different response times. On 
the other hand, going back to the results of subjective stud-
ies, we know that the user ratings for a certain test condition 
(response time) also follow a distribution. Hence, due to user 
diversity, the experienced QoE for a certain response time 
X = t is again a distribution Q|t . The question arises as to 
what is the observed QoE distribution Q in the system, when 
X is a random variable of the system’s performance and Q|t 
is a random variable of the user’s QoE for X = t ? Moreover, 
how can various QoE metrics in the system be derived, such 
as expected QoE and expected GoB?

To this end, we highlight the following key contributions 
of the paper:

• We prove a fundamental relationship showing that the 
expected QoE in the system is equal to the expected 
MOS in the system, despite the fact that the actual QoE 
distribution in the system is not (necessarily) equal to 
the MOS distribution in the system. We note that the 
MOS distribution in the system is obtained by mapping 
response times of the system to MOS values as per a 
given QoS-to-MOS mapping function.

• We show that to derive additional QoE metrics in the 
system it is necessary to use corresponding mapping 
functions derived from user rating distributions in sub-
jective studies. In particular, to derive the expected GoB 
metric in the system, a QoS-to-GoB mapping function 
is needed. If only a QoS-to-MOS mapping function is 

available, it is not possible to derive the expected GoB 
in the system.

• Going beyond our previous work [8], in which we derived 
fundamental relationships assuming that QoE depends on 
a single QoS parameter only, we now show that these 
relationships can be extended to an arbitrary num-
ber of parameters. Novel use cases are considered to 
demonstrate how to use those fundamental relationships. 
Firstly, the dimensioning of a web server based on a tar-
get GoB ratio is discussed. Secondly, we consider HTTP 
video streaming QoE as an example for a multidimen-
sional QoE relationship.

To stress the implications of these contributions, we again 
highlight the link between the QoE community, systems 
community, and end users: if researchers conducting sub-
jective user studies provide different QoS-to-QoE map-
ping functions for QoE metrics of interest, this is enough 
to derive corresponding QoE metrics from a system’s 
perspective. This holds for any system parameter distribu-
tion, as long as the corresponding values are captured in the 
reported QoE models.

The term ’service’ has evolved over the years from being 
simple transport of data to a model where access to an appli-
cation may be delivered as a service. When deriving QoE-
related metrics in a system, we consider the system as offer-
ing a single service (e.g., web browsing, video streaming, 
etc.). Multiple users using the service each experience their 
own QoE. Adopting a more generalized approach (portrayed 
in Fig. 1), we may consider a system as potentially offering 
multiple services. During a certain time period, multiple ses-
sions corresponding to a given service may be active in the 
system. A session involves one or more users. For example, 
in a network (system) we could consider HTTP streaming 
(a service). Over the course of one hour, multiple users are 
each watching their own video streams for a given duration 
(session).

For a given service, we distinguish between the 
following:

• the QoE of an individual user experiencing a session, and
• a measure indicating the overall service quality over a 

target time period (covering multiple sessions).

It is important to note that QoE is inherently linked to an end 
user experience. Thus, when measuring aggregate quality 
over multiple users, we are no longer referring to QoE as 
such, but rather to a QoE-based quality aggregate.

Not all user sessions are created equal

In our aim to calculate expected QoE in a system and 
prove fundamental relationships, in Sections “Fundamental 
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relationship: QoE in the system for a single parameter” 
and “Extension of the fundamental relations to multiple 
parameters” we will consider a system as offering a single 
service, where all individual QoE values (inherently linked 
to individual users) are equally weighted.

In a realistic setting, however, where a system operator is 
aiming to utilize estimated QoE values of users in the system 
for purposes such as dimensioning, monitoring, or bench-
marking, the relative importance of user sessions may need 
to be considered. We therefore go a step further and provide 
a generic framework for quantifying the utility of a given 
service from a QoE-based perspective, discussed in Sec-
tion “A QoE-based approach to Service-Level Quality”. We 
address cases when not all user sessions (and consequently 
corresponding user QoE values) should be weighted equally.

Continuing with the previously given example of HTTP 
video streaming, we consider the service delivered to mul-
tiple users in a network over a one-hour period. We utilize 
QoE models that map system performance to QoE for each 
individual user viewing session. One option is to calculate 
the QoE for each user session, and then consider the aver-
age value to be the expected QoE in the system for that 
service (as reported in Sections “Fundamental relationship: 
QoE in the system for a single parameter” and “Extension 
of the fundamental relations to multiple parameters”). How-
ever, in a realistic case, some users may watch short 1–3 
minute video clips, while others may watch videos lasting 
30 min–1 h. Such sessions widely differ both in terms of 
duration, as well as in terms of consumed system resources. 
Consequently, we argue that when calculating an aggregate 
quality index for the given time frame, it may be relevant for 
the service provider to consider some sessions to be “more 
important” than others, i.e., they do not contribute to the 
same extent to a measure of the overall service quality.

We therefore define a QoE-based Service Quality Index 
(SQI) as: a measure indicating the overall utility of a service 
delivered by a system and derived as a weighted combination 
of quality values estimated per user session. Individual QoE 
values are weighted according to factors that are deemed 

relevant by a service provider, and may be related to session 
characteristics (e.g., session duration), resource consump-
tion (costs), number of users involved in a session, etc. We 
note here that we are working off the assumption that QoE 
is indeed a good proxy for the users’ utility. While we think 
that this is indeed a reasonable assumption for most services, 
it should be verified for individual services when necessary. 
For simplicity’s sake, we also assume a linear correlation 
between QoE and utility. This might be simplistic, as shown 
by Kilkki [9], however we note that a non-linear relationship 
between QoE and utility does not affect the core of our pro-
posal, it simply implies a slightly more complex weighting 
function. The fundamental relationship extended to SQI is 
also formulated in that way that the SQI value in a system is 
equal to the expected utility values.

Definition of terms

Several different QoE-related terms and concepts are used 
throughout the paper. For the sake of clarity, we first define 
relevant terms according to their usage in this paper. Please 
note that proper mathematical definitions are provided in 
the later sections.

The term Quality of Experience (QoE) refers to a com-
plex multidimensional construct comprised of various per-
ceptual features contributing to the quality of an individual’s 
experience. A commonly cited definition of QoE is provided 
in the Qualinet Whitepaper [10] stating that “Quality of 
Experience (QoE) is the degree of delight or annoyance of 
the user of an application or service. It results from the ful-
fillment of his or her expectations with respect to the utility 
and / or enjoyment of the application or service in the light 
of the user’s personality and current state.” Moreover, in the 
context of communication services, it is stated that QoE is 
influenced by various underlying influence factors related to 
the service, content, device, application, and context of use.

The quantification of QoE for an individual user is 
obtained through individual QoE user ratings. While 
we are aware that an individual’s rating may in fact be 

Fig. 1  The relationship between systems, services, and sessions, as considered in this paper
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influenced by a wide range of underlying system, context, 
and human factors, we note that network and service provid-
ers commonly rely on simplified QoE models, developed to 
estimate QoE based on measurable QoS parameters in the 
system. Thereby, we consider a user as quantifying their 
QoE for a given condition (in our case expressed in terms 
of QoS parameters) on an underlying rating scale, e.g., a 
5-point Absolute Category Rating scale (1: poor, 2: bad, 
3: fair, 4: good, 5: excellent). This quantification is neces-
sary for the analysis of systems and for the derivation of 
fundamental relationships. For the sake of readability, we 
often simply say ‘QoE of a user’ instead of using the correct 
notion ‘QoE rating of a user on the used rating scale’. We 
further note that the term ‘QoE distribution’ refers to the 
‘distribution of QoE user ratings on the used rating scale’. 
When using the term QoE metrics, we refer to an aggrega-
tion of individual QoE user ratings across multiple users for 
a particular condition. Examples for common QoE metrics 
are the Mean Opinion Score (MOS), which refers to the 
average rating over all users for a given test condition; the 
Good-or-Better (GoB) ratio indicating the ratio of users rat-
ing good or better on the given rating scale; and the Poor-or-
Worse (PoW) ratio indicating the ratio of users rating poor 
or worse. A more detailed overview of QoE metrics and 
their definitions is provided in [3]. As stated previously, the 
majority of conducted user studies only report such aggre-
gated metrics. Most commonly, studies report MOS values 
per test condition, thereby lacking insights into the distribu-
tion of QoE ratings for the condition. The reporting of such 
aggregate metrics hides the underlying diversity of actual 

user scores. Consequently, the reporting of only MOS val-
ues makes it impossible to infer the GoB ratio from a MOS 
value. With the MOS alone, we cannot say anything about 
the GoB. For example, a MOS of 3 is reached (a) if 100% of 
the users are rating 3 or (b) if 50% of the users are rating 1 
and 50% are rating 5. Although resulting in the same MOS, 
a system provider may for example be more interested in 
the PoW ratio.

In a system, users will experience different conditions. 
When referring to the expected QoE in the system, we are 
in fact referring to the expected value of the QoE user rat-
ings in the system. Hence, we are using the mathematical 
definition of expected value, which should in this context 
not be confused with the notion of the users’ expectations 
(in relation to the perceiving subject’s frame of reference) 
as used in the Qualinet definition and addressed in a number 
of studies [11]. Figure 2 visualizes the different terms and 
provides the relationship between individual users in ses-
sions and the expected QoE in the system.

Finally, in this article we introduce the Service Quality 
Index (SQI) in a system, which we define as being based 
on session utility functions (further details provided in Sec-
tion “A QoE-based approach to Service-Level Quality”). 
Utility functions have generally been used to specify the 
relation between relative user satisfaction and consumption 
of a certain resource [12]. With the concept having been 
adopted from economics, utility functions offer a way to 
formalize the correlation between network performance and 
user perceived quality (QoE), by defining a formal mathe-
matical vehicle for expressing a user’s degree of satisfaction 

Fig. 2  Overview of system 
parameter distributions as 
observed in a real system, and 
user rating distributions in a 
subjective study. They are com-
bined into a QoE distribution as 
observed in the system

System and services

– utilization, request patterns,
– configuration,
– implementation, . . .

System parameter distribution

Parameter X of the system is measured
and is a random variable (RV).
H(x) = P (X ≤ x), h(x) = d

dx
H(x)

User diversity

– experience of the individual user,
– preferences and expectations,
– actual context, . . .

User rating distribution

For fixed x, user ratings (RV) are mea-
sured in a subjective study.
Q(i|x) = P (Q|x ≤ i) = P (Q ≤ i|X = x)

⊙combine distributions

random variable X,
e.g. response time

lab studies, field
trials, crowdsourcing

QoE distribution in the system

The QoE distribution Q over all users is Q(i) = P (Q ≤ i) =
∫∞
x=0 Q(i|x) · h(x)dx.

The distribution Q allows to derive metrics like expected QoE in the system, E[Q],
or GoB in the system GoB[Q]. Fundamental relationships show E[Q] = E[f(X)] or
GoB[Q] = E[g(X)] with proper mapping functions f and g.

mapping function
e.g. MOS f(x)
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with respect to corresponding multi-criteria service perfor-
mance [13, 14]. In this paper, when considering the individ-
ual user perspective, we consider a QoE mapping function 
as relating user perceived quality to system conditions, i.e., 
QoS parameters (please note that when assuming a broader 
view of QoE, this relationship can of course depend on addi-
tional context, user factors, etc.). In the context of customer 
retention and avoiding churn, it is well known that QoE is 
one of the main drivers for service and network providers 
when deploying their services [15–17]. Further, consider-
ing the provider’s perspective, ensuring a certain level of 
QoE for a given user session entails a certain cost, results in 
a certain revenue, etc. Thus, as previously mentioned, not 
all user sessions are necessarily considered equal in terms 
of their relevance and value to the provider. Consequently, 
focusing on the provider perspective, we refer to the utility 
of a given user session as the estimated QoE of the session, 
but scaled using an assigned weight factor, so as to reflect 
additional factors deemed relevant by the provider (e.g., cost 
in terms of resource consumption, profit). For example, a 
session with higher costs for the provider could result in a 
decreased session utility (obtained by scaling the QoE esti-
mate with a lower weight factor). For a provider aiming to 
quantify the overall quality (or utility) of a service delivered 
in their system, we propose to integrate individual session 
utility values into a metric that we refer to as SQI.

The remainder of the paper is structured as follows. 
Section  “Fundamental relationship: QoE in the system 
for a single parameter” provides the one-dimensional fun-
damental relationship between the QoE in the system and 
the subjective user studies for arbitrary QoE metrics. The 
multi-dimensional case is considered in Section “Extension 
of the fundamental relations to multiple parameters”. Sec-
tion “A QoE-based approach to Service-Level Quality” then 
provides a generic framework for quantifying SQI from a 
user oriented perspective, building on the assumption that 
user QoE values in the system may need to be weighted 
differently, depending on the target use case. A final discus-
sion and conclusions are given in Section “Discussion and 
conclusions”.

Fundamental relationship: QoE in the system 
for a single parameter

This section revisits fundamental relationships to quantify 
QoE in the system for a single service. Thereby, the users 
in the system consume the service in a similar way. In this 
section, we assume that the QoE depends on a single system 
parameter only. As a consequence, the QoE of the users, 
Q, may be derived by applying a one-dimensional mapping 
function to the single system parameter, X. As a concrete 
example, we consider web QoE. The users are consuming 

certain web pages from a server, whereby the response time 
of the server is the relevant QoE parameter. We use the web 
QoE example for illustrating how to use the QoE in the sys-
tem for dimensioning a web server in Section “Example: 
Web QoE dimensioning”. Before that, we summarize the 
fundamental one-dimensional relationships for QoE in the 
system, as originally contributed in [8]. The limitation to a 
single parameter is no longer required and will be extended 
to an arbitrary number of parameters in Section “Extension 
of the fundamental relations to multiple parameters”.

Fundamental one‑dimensional QoE relationship

Figure 2 provides an overall picture on deriving QoE in a 
system. In a system, its users will experience different per-
formance measures, such as response times, throughput, 
etc. For the sake of readability, in the following we will 
use response times for web QoE as an example of a system 
parameter X. The system’s performance depends on both its 
configuration and its implementation. However, since the 
system utilization varies as the offered load (requests) var-
ies, the users will experience different response times, which 
can be represented by a continuous random variable X. The 
cumulative distribution function (CDF), H(x), and the prob-
ability density function (PDF), h(x), of the response time is

Two different users experiencing the same system condition 
(e.g., response time) x may rate the situation differently due 
to user diversity. The rating scale may be either discrete, 
like the typical 5-point Absolute Category Rating (ACR) 
scale, or continuous. Thus, we obtain a (discrete or continu-
ous) QoE user rating distribution that depends on x. This 
is represented by a random variable Q|x for the QoE user 
ratings, given that the system parameter is X = x , with the 
CDF Q(i|x) and PDF q(i|x), as follows

In the case of a discrete rating scale, q(i|x) is the prob-
ability mass function (PMF) indicating the probability 
P(Q = i|X = x) that the user rating is Q = i for the system 
parameter X = x.

Now let us do the following Gedankenexperiment. All 
users in the system are rating the QoE on the same 5-point 
rating scale after a session. This could be implemented by 
the service provider with a proper interface in the provided 
application, although this may be very annoying in practice. 
Then, the service provider observes a random variable Q of 
all QoE user ratings as well as a random variable X of the 

(1)H(x) = P(X ≤ x), h(x) =
d

dx
H(x) .

(2)
Q(i|x) =P(Q|x ≤ i) = P(Q ≤ i|X = x),

q(i|x) = d

dx
q(i|x) .
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corresponding QoS measurements. Hence, the provider also 
obtains the conditional QoE Q|x which is a random variable 
reflecting the user ratings in the system for a particular QoS 
x. Then, we obtain the MOS mapping function f(x) as the 
average over all user ratings for x, which is the expected 
value of the random variable Q|x. Hence, f (x) = E[Q|x] . In a 
similar way, the GoB mapping function g(x) = P(Q|x ≥ 4) is 
obtained for the underlying 5-point rating scale – and analo-
gously other QoE metrics of interest like PoW. The fun-
damental relationships show how the service provider can 
combine the QoS measurements and QoE mapping functions 
and which statements can be derived on the expected QoE 
in the system or the ratio of users in the system with a QoE 
user rating which is good or better. To be more precise, the 
expected QoE in the system means the expected value of the 
random variable Q of the QoE users rating, i.e. E[Q] . Those 
fundamental relationships are derived in the following.

Q is the unconditional random variable for the QoE user 
ratings over all the system performance conditions, with the 
CDF Q(i) and PDF q(i) as follows.

In practice, the service provider does not obtain the QoE 
user rating distribution Q. Instead, the provider may collect 
QoS measurements, i.e. the random variable X. The prob-
abilities q(i|x) and Q(i|x) may be estimated from user ratings 
obtained by means of subjective studies, e.g., in the labora-
tory, via crowdsourcing, or by field trials, as long as the 
system condition x is observed. In user studies, the QoE user 
rating distribution typically has been obtained under certain 
(controlled or observed) conditions, which do not reflect the 
current system parameter distribution H(x). The H(x) might 
change due to reconfiguration or reimplementation of the 
system and its service, or due to changes in the offered load 
or system utilization.

A service provider is interested in the QoE distribution 
Q(i) of all users in the system. The stochastic components of 
the QoE distribution are (1) system parameter distribution 
X (i.e. response time in our example) and (2) user rating 
diversity yielding user rating distribution Q(i|x). To be more 
precise, the service provider is interested in QoE metrics 
like the expected QoE in the system over all users or the 
ratio of users in the system who rated the experience QoE 
good or better. In practice, the service provider would not 
ask all users as we do in the Gedankenexperiment. But the 
service provider may be able to measure QoS and utilizes 
existing QoE models from literature, which provides e.g. a 
mapping f(x) from QoS to MOS, a mapping g(x) from QoS 

(3)Q(i) = P(Q ≤ i) = �
∞

x=0

Q(i|x)h(x)dx

(4)q(i) = P(Q = i) = ∫
∞

x=0

q(i|x)h(x)dx

to GoB, or a mapping q(i|x) from QoS to conditional user 
rating distributions.

While answering this question from a mathematical point 
of view, we need to be aware of the inherent limitations of 
such indirect QoE measurements. The service provider relies 
on the provided QoS mapping functions in order to estimate 
the QoE user rating distribution or QoE metrics of interest. 
However, in practice it may be sufficient to get a rough esti-
mate of the true QoE of the users in the system to get a QoE 
oriented perspective rather than a QoS-driven focus.

Expected QoE versus expected MOS

We consider here the case of a discrete rating scale like a 
5-point ACR scale for the sake of simplicity. In particular, 
we use a discrete rating scale with items 0,… , n where 0 
indicates the lowest QoE and n indicates the highest QoE of 
the scale. Please note that those fundamental relationships 
can also be derived for continuous rating scales analogously.

In Eq. (2) the distribution of the QoE user ratings i under 
a specific system parameter x is given. The expected user 
rating, given x, is the MOS value.

Let f (x) = E[Q�x] =
∑n

i=0
iq(i�x) be the mapping function 

between the condition x and the MOS rating (the mean opin-
ion score for a given value of x), which may be derived from 
subjective user studies. In practice, subjective studies will 
typically cover only a few instants of the response time only 
due to cost reasons. However, the mapping function f(x) is 
continuous, since x is continuous.

Then, a continuous mapping function f like the exponen-
tial function suggested by the IQX hypothesis [15] needs 
to be fitted to the collected MOS values. Please note that 
no assumptions are required for this mapping function f(x), 
besides continuity.

The MOS mapping function allows us to derive the fol-
lowing fundamental one-dimensional relationship between 
the expected QoE in the system and the system parameter 
X. The expected QoE in the system means the expected 
value of the random value Q reflecting the QoE user rat-
ings in the system as observed in the Gedankenexperiment. 

(5)E[Q|x] =
n∑

i=0

iq(i|x)

(6)f ∶ x → ℝ x ∈ ℝ≥0
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For the sake of readability, we just use the term ‘expected 
QoE in the system’.

where the random variable M of MOS ratings is the trans-
formation from the random variable, X using the MOS map-
ping function, M = f (X) . This equality follows from

The E[Q] is the expected value of Q over the distribution 
of Q, while E[M] is the expected value of M over the dis-
tribution of X. This equation can be read from both sides. 
(a) E[Q] = E

[
f (X)

]
 . This implies that the QoE user rating 

Q in the system is obtained as illustrated in the Gedanken-
experiment. Then, we may derive the MOS mapping f(x) 
from the user ratings in the system for any condition x and 
the equality holds. (b) E

[
f (X)

]
= E[Q] . If we only have the 

QoS to MOS mapping function, then we may apply the map-
ping to the QoS values X. Assuming that this MOS mapping 
function provides the average user rating of the users in the 
system for any condition x, then this equality holds. Hence, 
the service provider relies on the MOS mapping function to 
properly include the relevant parameters and context for the 
users in its system. This is typically a simplification in prac-
tice, but gives the service provider the possibility to evaluate 
the system in a more QoE-centric way.

This can be seen from the simple fact that for a discrete 
rating scale, Q is a discrete random variable, while M is a 
continuous random variable. Please note that we do not need 
any assumptions on the user rating distribution Q|x , response 
time distribution X or the MOS mapping function f(x) for 
this fundamental relationship E[Q] = E

[
f (X)

]
.

In practice, it is tempting to measure the expected 
response time E[X] and then to apply the MOS mapping 
function f to get the expected MOS (i.e. the expected user 
rating). However, the relation between the system param-
eter (e.g.m response time) and MOS is in general a non-
linear function, which implies that

(7)
E[Q] =

n∑

i=0

iq(i) = ∫
∞

x=0

(
n∑

i=0

iq(i|x)
)
h(x)dx

= ∫
∞

x=0

f (x)h(x)dx = E
[
f (X)

]
= E[M] .

In general, E[f (X)] ≠ f (E[X]) , except when f is a linear 
transformation. E.g., if f (x) = x2 then f (E[X]) = (E[X])2 
is not the same as E

[
f (X)

]
= E

[
X2

]
 . Only for a determin-

istic distribution with a constant value, the variance is 
Var[X] = E

[
X2

]
− E[X]2 = 0 and E

[
X2

]
= E[X]2.

GoB ratio

The probability that the QoE Q in the system is rated good or 
better is denoted as GoB[Q] = P(Q ≥ �) =

∑n

i=�
q(i) where 

� is set accordingly to reflect good or better. Commonly, 
a value of � =

3

4
n is chosen on a rating scale with mini-

mum value of 0 and maximum value of n [3]. For example, 
on a 5-point ACR scale, 4 indicates a value of good and 
GoB[Q] = P(Q ≥ 4) . 

For deriving the QoE metric GoB for the QoE distribution Q 
over all users in the system and stochastic response times, it 
is necessary to provide a continuous GoB mapping function 
g(x) = GoB[Q|x] for the response time x.

In general, it is not possible to derive the GoB from the MOS 
distribution M, although approximations may exist under 
certain assumptions and conditions, see [18]. The funda-
mental GoB relationship means that the system parameter X 
may be measured and can then be mapped to g(X) to derive 
GoB[Q].

Higher moments and user distribution

In a similar way, we may derive those fundamental results 
for variances or distributions, see [8]. To derive the complete 
distribution of the random variable Q, it is necessary to have 
the distribution q(i|x) = P(Q = i|X = x).

Please note that we included an example for deriving the 
QoE user rating distribution Q from QoS measurements in 

(8)E[Q] = E
[
f (X)

] ≠ f (E[X]) .

(9)
GoB[Q] = P(Q ≥ �) =

n∑

i=�
�

∞

x=0

q(i|x)h(x)dx

= �
∞

x=0

g(x)h(x)dx = E
[
g(X)

]

(10)

q(i) = P(Q = i) = ∫
∞

x=0

P(Q = i|X = x)h(x)dx

= ∫
∞

x=0

P(Q|x = i)h(x)dx , ∀i = 0,… , n
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[8]. In that example, we consider a single web server offer-
ing a certain service. Previous subjective studies have shown 
that for a given waiting time x, the conditional distribution 
Q|x can be approximated with a binomial distribution. The 
fundamental relationship allows to obtain then the distribu-
tion Q with the equation above. Based on this example, we 
show in Section “Example: Web QoE dimensioning” how to 
derive the GoB mapping function g(x) to analyze the GoB 
ratio in the system.

For the k’th order moments of the r.v. Q:

where fk(x) =
∑n

i=1
ikq(i�x) = E[(Q�x)k]

Example: Web QoE dimensioning

In the following example, we use the GoB in the system to 
dimension a web server. The goal of the dimensioning is to 
determine the required service rate of the server such that a 
certain target GoB ratio is ensured for a given system request 
rate. We consider a single web server offering users a certain 
service like access to a web site. We chose this simple use 
case, since there exist web QoE models that may be utilized 
for this example, and the system itself can be be modeled 
as a queueing system, for which analytical results are well 
known. The response time of the system, i.e. the web page 
load time, is the single parameter X influencing the QoE in 
this example.

The system is modeled as an M/M/1-FCFS queueing 
system. User requests arrive according to a Poisson pro-
cess with rate � . The server has a single processing unit 
which serves request in a first-come-first-serve (FCFS) man-
ner with service rate � . If the server is occupied, arriving 
requests need to wait until they are served. An unlimited 
waiting room for the incoming requests is assumed. With 
the request interarrival times and the service times following 
an exponential distribution, with intensities � and � , respec-
tively, this is a classical M/M/1-FCFS waiting queue with 
the well known response time distribution X ∼ Expo(� − �) , 
and the probability density function (PDF):

under the assumption 𝜇 > 𝜆 (where the system is said to be 
stable).

In [3], it is shown that the opinion scores (for a given 
system parameter x), Q|x for a web QoE study can be very 
well approximated with a binomial distribution for vari-
ous system response times x. Thereby, the user ratings 

(11)

E[Qk] = ∫
∞

x=0

n∑

i=1

ikq(i|x)h(x)dx

= ∫
∞

x=0

n∑

i=1

fk(x)h(x)dx = E[fk(X)]

(12)h(x) = (� − �)e−(�−�)x .

are shifted to a scale from 0 to 4 (instead of the typical 
1 to 5 scale). In that subjective study, a set of different 
page load times x was rated by 72 subjects. Thus, for any 
response time x, we may approximate the distribution of 
Q|x with a Binominal distribution, Q|x ∼ Bino(n, px) with 
MOS E

[
Q|x

]
= npx and n = 4 on the discrete rating scale 

(0; 4). due to the used rating scale. The parameter px fol-
lows as px = E

[
Q|x

]
∕n . The MOS for a certain response 

time follows the IQX hypothesis, as shown in [19], which 
finally leads to Q|x ∼ Bino(n, e−�x) , with probability mass 
function (PMF)

with the sensitivity parameter � = 0.25 of the IQX hypoth-
esis for this distribution, see [8]. The MOS mapping function 
is f (x) = E[Q�x] =

∑4

i=0
iq(i�x) which is f (x) = ne−�x.

Considering the scale from 0,… , 4 , and with � = 3 , the 
GoB mapping function from Eq.(9) is

The GoB of all users in the M/M/1 system example can 
be derived by computing E[g(X)] = GoB[Q] . Combining 
the response time distribution h(x), Eq.(12), with the GoB 
mapping function g(x), Eq.(14), then we can in our exam-
ple derive g(X) and hence E[g(X)] both analytically and 
numerically:

where � is the arrival rate, � the service rate, and � = 0.25 
the fitted IQX sensitivity parameter.

Now, we want to dimension the web server system in 
such a way that the GoB ratio is larger than a target value, 
e.g. G�(�,�) ≥ G∗ where G∗ = 90% in this example. This 
requirement can either be expressed by the service rate � as 
a function of the arrival rate � and G∗ , or by � as a function 
of � and G∗ . In this example we use the required service rate 
�(G∗) as a function of the arrival rate and the target GoB 
ratio G∗ . Figure 3 provides the numerical results and allows 
the service provider to determine the required service rate 
depending on the actual arrival rate in the system. Hence, the 
service provider needs to estimate the arrival rate to finally 
decide on the required service rate, according to the follow-
ing equation for a target GoB ratio of 0 < G∗ < 1:

(13)
q(i|x) = P(Q|x = i) =

(
n

i

)
e−i�x(1 − e−�x)n−i

for i = 0, 1, 2, 3, 4

(14)
g(x) =

n∑

i=�

q(i|x) = q(3|x) + q(4|x)

= e−4�x + 4e−3�x(1 − e−�x) = 4e−3�x − 3e−4�x .

(15)
G�(�,�) = E[g(X)] = ∫

∞

x=0

g(x)h(x)dx

= (� − �)

(
4

3� − � + �
−

3

4� − � + �

)



Quality and User Experience (2020) 5:7 

1 3

Page 9 of 17 7

Please note that arrival rate � and the sensitivity param-
eter � have the unit 1/s, while the target GoB ratio G∗ is 
dimensionless.

Extension of the fundamental relations 
to multiple parameters

The web QoE example in the previous section considered 
the response time as single parameter influencing the QoE. 
Thus, X is a one-dimensional random variable which needs 
to be measured in the system. Then, the one-dimensional 
QoE mapping function can be applied to derive QoE metrics 
in the system.

For other applications and services, several parameters 
influencing QoE must be considered. As a result, several 
random variables need to be observed in the system. Then, a 
multidimensional QoE mapping function may be applied to 
quantify the QoE in the system. As an example, we consider 
non-adaptive HTTP video streaming in Section “Example: 
HTTP video streaming QoE”. The QoE is mainly deter-
mined by the number of stalls and the total stall duration 
[20] which are not independent of each other. In practice, 
those two parameters need to be measured in the system to 
derive the joint probability density function for both param-
eters. This use case demonstrates how to conduct a QoE 
evaluation of a running service in a system. In Section “Fun-
damental multidimensional QoE relationships”, we derive 
fundamental relationships for the QoE in the system for 

(16)𝜇(G∗) ≥ 𝜆 +
7𝛽

2

(√
1 − G∗∕49

1 − G∗
− 1

)
> 𝜆

multiple parameter. The underlying multidimensional QoE 
model may have certain characteristics, e.g. an additive or 
multiplicative QoE model, which will allow to simplify the 
fundamental relationships (Section “Multiplicative and addi-
tive QoE models”). The video streaming example in Sec-
tion “Example: HTTP video streaming QoE” will also show 
how to utilize the relationships in real-world system when 
measuring the system performance.

We want to highlight that we still consider in this section 
that all sessions are comparable. This allows to quantify the 
QoE for the offered service in the system across all users.

Fundamental multidimensional QoE relationships

We follow the same line of thinking as sketched in Fig. 2. 
The system performance distribution is described by the ran-
dom variables X1,X2,… which may be dependent on each 
other. Hence, we have a multivariate random variable which 
is a list of random variables with the corresponding joint 
probability density function h(x1, x2, ...).

In subjective studies, the conditional probabilities Q|� are 
obtained for the test condition � = (x1, x2,…) . From the 
subjective studies, relevant mapping functions are derived, 
e.g., a MOS mapping function f ∶ � → [1;5] . In practice, it 
is a difficult problem to sample the parameter space � prop-
erly to derive appropriate models such as the MOS mapping 
function. A large set of parameters (reflected in the dimen-
sionality of the parameter space of � ) will require too high 
costs for conducting subjective experiments which would 
cover a representative combination of system parameters in 
� . If one or more of the system parameters are continuous 
and not discrete, this will increase this challenge even fur-
ther. This sampling problem is interesting and investigated 
in recent literature. As a starting point, the interested reader 
may review for example [21–24] developing active learning 
algorithms for multidimensional QoE models.

Expected QoE

For the sake of simplicity, we consider in the following 
only two parameters, e.g., X1 (number of stalls) and X2 (stall 
duration), to derive the fundamental multidimensional QoE 
relationships. The same thoughts can be generalized to an 
arbitrary number of possibly dependent parameters. We fur-
ther assume a discrete rating scale yielding a discrete ran-
dom variable of user ratings, i.e., Q ∈ {0,… , n} . Again, the 
derivation can be generalized to continuous rating scales 
analogously.

The expected QoE in the system requires the 
joint two-dimensional PDF h(x1, x2) of the two 

(17)� = (X1,X2,…)

Fig. 3  Dimensioning of the required service rate for the web QoE 
example (Section “Example: Web QoE dimensioning”) such that the 
GoB is above a certain target GoB ratio G∗ for a given arrival rate 
(Eq.(16). In practice, the provider needs to fix G∗ and estimate the 
arrival rate, e.g. overestimating
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parameters � = (X1,X2) as well as the conditional QoE dis-
tribution Q|x with the corresponding probability mass function 
q(i|�) = q(i|x1, x2) = P(Q|� = i) = P(Q = i|X1 = x1,X2 = x2) = (Q = i|�) . 
Then, we obtain the following fundamental relationship for the 
expected QoE E[Q] in the system.

Similar to the one-dimensional relationship, a MOS mapping 
function f is required which maps the system performance � to 
a distribution of MOS values M = f (�) . Note that the relation 
given in Eq.(18) generally holds for k-dimensional parameter 
sets (in Section “Fundamental relationship: QoE in the sys-
tem for a single parameter”, we consider k = 1-dimensional, 
while in this section we consider k = 2-dimensional sets). The 
k-dimensional MOS mapping function is f (�) = E

[
Q|x

]
 and the 

expected QoE in the system is then the expected MOS.

GoB ratio

For other QoE metrics, similar derivations as in the one-
dimensional case lead to the fundamental relationships. We 
show the example of the GoB ratio in the following.

(18)

E[Q] =

n∑

i=0

i ⋅ q(i) =
∑

i

i∫x1
∫x2

q(i|x1, x2) ⋅ h(x1, x2)dx1dx2

= ∫x1
∫x2

h(x1, x2)
∑

i

iq(i|x1, x2)dx1dx2

= ∫x1
∫x2

h(x1, x2)E
[
Q|x1, x2

]
dx1dx2

= ∫x1
∫x2

h(x1, x2)f (x1, x2)dx1dx2 = ∫�

h(�)f (�)d�

= E
[
f (X1,X2)

]
= E

[
f (�)

]

(19)GoB[Q] = P(Q ≥ �) =

n∑

i=�

P(Q = i)

(20)

=

n∑

i=�
∫x1

∫x2

q(i|x1, x2)h(x1, x2)dx1dx2

= ∫x1
∫x2

h(x1, x2)

n∑

i=�

q(i|x1, x2)dx1dx2

= ∫x1
∫x2

h(x1, x2)g(x1, x2)dx1dx2

= ∫�

h(�)g(�)d�

= E
[
g(�)

]

Hence, we need the multidimensional GoB mapping func-
tion g and the multivariate PDF h for calculating the GoB 
over all users in the system. It is g(x1, x2) = GoB[Q|x].

QoE distribution

For the derivation of the complete distribution of the random 
variable Q, it is necessary to have the distribution q(i|x1, x2).

Multiplicative and additive QoE models

The fundamental relationships indicate that the joint PDF h 
is required to compute the metrics for the QoE in the system. 
Now, let us consider that the two random variables X1 and 
X2 are independent of each other. Then, the joint probability 
density function h(x1, x2) is the product of the marginal PDFs 
h1(x1) and h2(x2).

Another simplification considers the underlying QoE model. 
The literature often provides additive and multiplicative QoE 
models, see [25] for detailed discussions. To this end, we 
focus on the expected QoE in the system and corresponding 
MOS mapping functions in the following for additive and 
multiplicative MOS models.

Additive MOS model and expected QoE in the system

The literature suggests additive QoE models for different 
services like mobile web browsing [26] or speech quality. 
The E-model [27] is a commonly used parametric planning 
model for predicting expected speech quality. The underlying 
principle for handling multiple different types of impairments 
came from the OPINE model proposed by NTT, assuming 
quality degradation factors are summed on a psychological 
scale [28]. For video quality estimates, the amendment of 
ITU-T Rec. P.1201 [29] suggests the use of an additive model 
whereby degradations resulting from stalling and initial delay 
are subtracted from a maximum MOS value.

Let us consider an additive QoE model which maps the 
parameters x1 and x2 to corresponding MOS values. In gen-
eral, we may have m different mapping functions f ∗

j
 , 

( j = 1,⋯ ,m ) which are defined on a k-dimensional param-
eter space � , where m and k might be different. For instance, 

(21)

q(i) = P(Q = i) = ∫x1
∫x2

q(i|x1, x2)h(x1, x2)dx1dx2 ∀i = 0,… , n

(22)h(x1, x2) = h1(x1) ⋅ h2(x2)
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in the combined additive model we weights the two terms 
with corresponding factors a1 and a2 . There are no assump-
tions on the functions f1 and f2 , which may be e.g. non-linear 
functions. We arrive at the following (non-linear) two-
dimensional MOS mapping function f.

In the following we consider two mapping functions, f1 
and f2 , and two parameters x1 and x2 , and let f ∗

i
(�) = fi(xi) , 

i = 1, 2 , i.e., one function fi per parameter xi . Hence,

The expected QoE in the system can be derived based on the 
fundamental relation E[Q] = E

[
f (X)

]
 . For such additive QoE 

models, we obtain then

On a  k -d imens iona l  pa ramete r  se t  �  ,  t he 
E[Q] =

∑k

d=1
adf

∗
d
(�).

We may use the marginal distributions to further simplify 
the summands. Let us consider the marginal distribution 
h1(x1) = ∫

x2
h(x1, x2)dx2 . The conditional density is defined 

as h(x2|x1) = h(x1, x2)∕h1(x1) . In other words, the joint den-
sity of both random variables is the product between the 
conditional density and the marginal density.1

Thus, the expected QoE in the system can be described with 
the marginal density functions.

(23)f (�) = a1f
∗
1
(�) + a2f

∗
2
(�)

(24)f (x1, x2) = a1f1(x1) + a2f2(x2)

(25)

E[Q] = ∫x1
∫x2

(a1f1(x1) + a2f2(x2)) ⋅ h(x1, x2)dx1dx2

= ∫x1
∫x2

a1f1(x1)h(x1, x2)dx1dx2

+ ∫x1
∫x2

a2f2(x2)h(x1, x2)dx1dx2

= a1E[f
∗
1
(�)] + a2E[f

∗
2
(�)]

(26)

E
[
f ∗
1
(�)

]
= ∫x1

∫x2

f1(x1)h(x1, x2)dx1dx2

= ∫x1
∫x2

f1(x1)h(x2|x1)h1(x1)dx1dx2

= ∫x1

f1(x1)h1(x1)∫x2

h(x2|x1)dx2dx1

= ∫x1

f1(x1)h1(x1)dx1 = E
[
f1(X1)

]

(27)E[Q] = a1E[f1(X1)] + a2E[f2(X2)]

On a  k -d imens iona l  pa ramete r  se t  �  ,  t he 
E[Q] =

∑k

d=1
adfd(Xd).

In practice, the usage of the marginal distributions may 
be required, when the complete information is not available. 
The complete information could be provided as a tuple of 
measurement values for each session or as a multi-dimen-
sional histogram. Due to the large amount of measurement 
data, in practice the marginal distributions may be only cap-
tured. Dash boards for example may only provide the aggre-
gated histogram of measurement values for the individual 
parameters.

Multiplicative QoE model

For multiplicative QoE models, we obtain similar results 
as in the additive case, except the simplified formulation 
with marginal distributions is not possible as we will see 
later. Multiplicative models have been demonstrated for 
audiovisual quality whereby the multiplicative term between 
audio and video qualities is generally sufficient to estimate 
audiovisual quality [30]. This was confirmed in a survey 
comparing integration models [31].

The video streaming example in Section  “Example: 
HTTP video streaming QoE” relies also on such a mul-
tiplicative MOS model. In particular, the multidimen-
sional IQX model [21] relies on a multiplicative model. 
The parameters x1 and x2 are contributing to the MOS 
according to the single dimensional IQX hypothesis. 
Thus, f1(x1) = a1e

−�1x1 and f2(x2) = a2e
−�2x2 . In addition, 

the interaction between the two parameters is considered 
f12(x1, x2) = a12e

−�12x1x2 . Then, the MIQX model suggests 
f (x1, x2) = f1(x1) ⋅ f2(x2) ⋅ f12(x1, x2) = ae−(�1x1+�2x2+�12x1x2) = ae−�� . 
Hence, the MIQX is an extension of the IQX to a vector of 
parameters � and the sensitivity parameters � with �� as a 
linear model with interaction. The result of the MIQX is a 
multiplicative model.

We consider the multiplicative model for the MOS and 
two potentially dependent parameters X1,X2 in the follow-
ing. Here, the MOS mapping function takes into account an 
additive offset b and a discrete rating scale.

The expected MOS is then the system can be derived with 
the fundamental relationship and the joint PDF h(x1, x2).

(28)f (x1, x2) = a ⋅ f1(x1) ⋅ f2(x2) + b

1 This relation is well known regarding conditional probabilities.
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However, this equation cannot be simplified anymore as in 
the additive case, since the latter integral leads to a function 
�2  o f  x1 .  T h u s ,  we  h ave  t h e  f u n c t i o n 
�2(x1) = ∫

x2
f2(x2)h(x2|x1)dx2 based on f2 and therefore

In the case that the parameters X1 and X2 are independent, 
Eq.(29) can be simplified, since h(x1, x2) = h1(x1)h2(x2) or 
h(x2|x1) = h2(x2) . Then, �2(x1) = E

[
X2

]
.

Example: HTTP video streaming QoE

This example shows how to quantify the expected QoE 
for an HTTP video streaming service in a system for two-
dimensional QoS measures. This example also depicts how 
a service provider may monitor the QoS in the system and 
then apply the two-dimensional fundamental relationship in 
order to estimate the expected QoE in the system.

The service provider measures the stalling pattern on 
application layer, which is the total stall duration t and 
the number n of stalls, i.e., the system parameter set is 
� = (x1 = n, x2 = t) . Previous work has already shown that 
stalling is a major QoE influence factor [20]. In particular, 
for (non-adaptive) HTTP streaming2, a two-dimensional 
QoE mapping function f (�) = f (n, t) is provided which maps 
the number of stalls and the total stall duration to MOS val-
ues [20].

(29)

E[Q] =

n∑

i=0

iq(i) =

n∑

i=0

i∫x1
∫x2

q(i|x1, x2)h(x1, x2)dx1dx2

= ∫x1
∫x2

h(x1, x2)

n∑

i=0

iq(i|x1, x2)dx1dx2

= ∫x1
∫x2

h(x1, x2)f (x1, x2)dx1dx2

= a∫x1
∫x2

f1(x1)f2(x2)h(x1, x2)dx1dx2 + b

= a∫x1

f1(x1)h1(x1)∫x2

f2(x2)h(x2|x1)dx2dx1 + b

(30)E[Q] = a∫x1

f1(x1)h1(x1)�2(x1)dx1 + b .

(31)
E[Q] = a∫x1

f1(x1)h1(x1)∫x2

f2(x2)h2(x2)dx2dx1 + b

= a ⋅ E
[
f1(X1)

]
⋅ E

[
f2(X2)

]
+ b

which implies that f ∶ � → [1.5;5]

For obtaining the stalling patterns, we conduct a simu-
lation and we compare the measurement results for the 
expected QoE in the system with theoretical results from 
the known simulation parameters. The observed number 
of stalls N in the system is a random variable which is 
assumed to follow a geometric distribution: N ∼ Geom(p) 
with P(N = k) = (1 − p)k ⋅ p for k = 0, 1, 2,… . The total stall 
duration follows an Erlang distribution which is composed 
of N exponential phases of average length L. Thereby, L 
indicates the average stall duration for each of the N stall 
events. Thus, T ∼ Erlang(N, L) . We select the parameters 
of the stalling simulation as follows: E[N] = 2.5,E[L] = 2 s . 
This results into E[T] = E[N] ⋅ E[L] = 5 s.

For each simulated video j, we sample the set �j = {nj, tj} , 
where nj is the number of stalls for video j, and tj is the 
total stalling duration for the same video. We simulated 
M = 100, 000 replications, i.e., M video sessions. We esti-
mated the number of stalls of N̄ = 2.47 over all videos, the 
total stall duration T̄ = 4.91 s . The probability of no stalling, 
P(N = 0) = 0.2866 . The total stall duration and the number 
of stalls are correlated and the coefficient of correlation is 
corr(N, T) = 0.88.

We are interested in the average QoE of the video ser-
vice (which is the expected MOS) in the system, with the 
random variables N and T which are mapped to the ran-
dom variable Q = f (N, T) by Eq.  (32). Thus, we need 
to compute E[Q] = E[f (N, T)] which requires the joint 
PDF h(�) = h(n, t) . In practice, however, we simply use 
the measurement values � = {nj, tj} and obtain qj from 
qj = f (�i) = f (nj, tj) , which is the corresponding MOS value 
for the j-th video. Please remember: With the MOS mapping 
function, we can only derive the expected system QoE (but 
not system GoB etc.).

The average QoE of the video service obtained from the 
measurements is therefore

For the QoE of the system, it is also recommended to com-
pute the confidence intervals based on the measurements. In 
this example, the average QoE is E[Q] = 3.380 with the 95% 
confidence interval (3.299, 3.460). As already discussed pre-
viously, it is not possible to compute the average QoE by 
mapping the average number of stalls and the average total 
duration to MOS, unless the mapping is a linear function. 
In our example, we estimated Q̄ = 3.38 , which is not equal 
to f (N̄, T̄) = 2.55.

The theoretical expected QoE in the system can be 
derived for our scenario with the joint PDF h(n,  t) for 

(32)f (n, t) = 3.5 ⋅ e−0.15t−0.19n + 1.5

(33)Q̄ =
1

M

M∑

j=1

qj .

2 There are more advanced HTTP streaming models available which 
also consider adaptive streaming like [32]. For the sake of simplic-
ity and for illustrating the application of the fundamental multidimen-
sional relationships, the simpler non-adaptive HTTP video streaming 
case is considered.
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the MOS mapping function with parameters �, �t, �n, � . It 
is f (n, t) = �e−�t⋅t−�n⋅n + � . The joint PDF h(n,  t) can be 
expressed with the conditional density an(t) which is the 
total stall duration under the condition of n stalls. Thereby, 
the number of stalls follows the geometric distribution with 
parameter p and an(t) follows the Erlang distribution with n 
phases of average length L = 1∕� = 2 s . Figure 4 shows the 
results for a parameter study on the average number of stalls 
in the system according to the following equation.

In practice, for monitoring the QoE in the system, it is 
required that the corresponding mapping function is used 
(e.g. MOS mapping function f as in the example above or 
GoB mapping function g). Then the input parameters of the 
mapping function need to be measured in the system. Then, 
the QoE in the system can be derived according to the funda-
mental relationships. Hence, the average of the measurement 
values mapped to QoE needs to be calculated, as in Eq.(33).

A QoE‑based approach to Service‑Level 
Quality

In the calculations and discussions given in Sections “Fun-
damental relationship: QoE in the system for a single param-
eter” and “Extension of the fundamental relations to mul-
tiple parameters”, the QoE in the system is obtained using 
estimated per-user QoE values, e.g., by applying MOS or 

(34)

E[Q] =

∞∑

n=0
∫

∞

t=0

f (n, t)h(n, t)dt

=
e�n (�t + �)(�p + �) + ��(p − 1)

e�n(�t + �) + �(p − 1)

GoB mapping functions to a given set of system parameters. 
Therefore, the QoE of the individual users are all taken into 
account in the same way and weighted equally. However, a 
service provider (or system operator) may aim at utilizing 
the estimated QoE values of the users for various purposes 
(e.g., network/server dimensioning, quality monitoring, sys-
tem benchmarking). In this context, a user interacts with the 
service within a certain session. Those sessions may be very 
different in terms of session duration, resource demands, or 
emerging costs for the proivder. For some services, such as 
multiparty video calls, several users may take part in the 
same session, but each user will have their own individual 
experience of that session.

It may be relevant to consider that certain sessions are 
more “important” than others for the provider, e.g., due to 
resource demands or costs for a session, or due to the num-
ber of affected users in a session. Thus, such sessions may 
be more indicative of an aggregate service quality measure, 
which is then in turn used by an operator as a proxy measure 
when performing tasks such as network/server dimension-
ing, quality monitoring, or system benchmarking. In this 
section, we first provide a generic definition of a Service 
Quality Index (SQI), and then provide two example use 
cases to demonstrate scenarios in which a service provider 
can utilize such an index.

Defining a QoE‑based Service Index (SQI)

In Section “Not all user sessions are created equal”, we 
defined the SQI as a measure indicating the overall utility 
of a service delivered by a system and derived as a weighted 
combination of quality values estimated per user session. 
Rather than considering only a QoE mapping function 
(which estimates QoE per session), we extend this notion to 
a utility function, which weights individual session QoE val-
ues in a manner that is deemed relevant by a service provider 
(e.g., based on session duration, resource consumption, etc.). 
For a session i, we define the utility function as:

where m∗(�s) is QoE mapping in session s on a subset of 
� , and w∗(�s) = ws is the weight of session s. In a generic 
sense, the weight factor is assigned to indicate the relative 
importance of a given session quality value. Hence, we may 
use normalized weights for the utility function, e.g., when 
having S sessions, w∗

s
= ws∕

∑S

s=1
ws . Please note that xs may 

also include other aspects than QoS parameters like the dura-
tion of sessions or the resource consumption for that session. 
Then the QoE mapping function may only consider a subset 
of those parameters. Similarly, the weighting function may 
also consider a subset of the parameters.

(35)u(�s) = m∗(�s) ⋅ w
∗(�s)

Fig. 4  Parameter study for the HTTP video streaming example. 
Again, f (E[N], E[T]) cannot be used to derive the average system 
QoE, but E

[
f (N,T)

]
 due to the non-linear QoS-MOS mapping func-

tion
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We then define the SQI as the expected session utility 
values which requires the joint PDF h(�) of the parameters 
� (RV) which are the input values for the QoE mapping 
function m∗ and the weighting function w∗ . Then, we have

If all sessions have the same weight, w(�) = 1 , and we use 
the MOS mapping function f, then SQI = E

[
f (�)

]
= E[Q] 

and SQI represents the expected QoE in the system. 
If we use the GoB mapping function g instead, then 
SQI = E

[
g(�)

]
= GoB[Q].

In the following sections, we illustrate two example use 
cases with different weights illustrating how the SQI may be 
utilized in a meaningful way by service providers.

Example use case: utilizing SQI for web QoE 
dimensioning

As an example, we once again consider a web service pro-
vider aiming to dimension a web server (as explained previ-
ously in Section “Example: Web QoE dimensioning”). For 
each loaded page, we have a waiting time tw and a service 
time ts to process the user request at the web server. The page 
load time is t = tw + ts and the MOS is from Eq (31)

where a = 4 , f ∗
1
(�) = f1(tw) = e−�tw and f ∗

2
(�) = f2(ts) = e−�ts . 

Rather than relying simply on calculating expected QoE in 
the system, the provider may assign weights to individual 
MOS values that are proportional to the service times. One 
example for this time-dependent consideration is the pro-
cessing costs. Le us consider ad impressions during service 
consumption. A service provider may have contracts with ad 
companies which pay per impression time. While a user is 
served, ads are displayed and the provider may get revenue 
from the ads company [33].

Thus, we consider the weight of a user request to cor-
respond to w∗(tw, ts) = w(ts) = ts , i.e., only the time it 
takes to process the user request, i.e. to download actual 
contents. The joint PDF is h(tw, ts) . In the FIFO sys-
tem, the waiting time and the service time are independ-
ent (different than in a processor sharing system). Hence, 
we simply multiply the PDFs of the waiting time and the 
service time h(tw, ts) = hw(tw) ⋅ hs(ts) . The PDF of the ser-
vice time is hs(ts) = �e−�⋅ts . The PDF of the waiting time 
is hw(tw) = �(� − �)e−(�−�)tw . Putting the different parts 
together, we can derive the SQI based on the random 

(36)SQI = ∫�

u(�)h(�)d� = ∫�

m∗(�)w∗(�)h(�)d� .

f (tw, ts) = af1(tw)f2(ts) = 4e−�(tw+ts)

variables Tw and Ts reflecting the waiting time and the ser-
vice time.

For dimensioning the service rate � (how fast user requests 
can be processed), the service provider first needs to esti-
mate the service demand rate � , i.e. the number of user 
requests per time. Figure 5 shows the SQI as well as the 
expected QoE in the system in relation to the server rate � 
for � = 3 . The system is stable, i.e., not in overload, when 
𝜇 > 𝜆 . As expected, the higher the server rate is, the higher 
the expected QoE in the system is. However, taking into 
account the session weights, we have a different picture. Low 
server rates � close to � = 1 lead to highly loaded systems 
with bad QoE and low SQI values. However, high server 
rates lead to high QoE values, but shorter service times. 
In that case, the provider may lose revenue from the ads 
company. As a result, the SQI value is also low. In Fig. 5, 
the SQI curve indicates the optimal operating point wrt. 
the service rate, which is considered best for the operator 
according to the SQI.

Example use case: utilizing SQI for benchmarking 
a system offering multiparty calls

For complex applications, such as WebRTC conferences, 
where many users can participate in a session, using several 
media modalities at once, we face some additional com-
plexities in defining the “quality of a session”, since unlike 

(37)

SQI = E
[
u(Tw, Ts)

]

= ∫tw,ts

w∗(tw, ts) ⋅ f (tw, ts) ⋅ h(tw, ts)dtwdts

=
4�(� − �)

(� + �)2(� − � + �)

Fig. 5  Utilizing SQI for the web QoE example in Section  “Funda-
mental one-dimensional QoE relationship” for � = 3 . We use the ser-
vice time as weighting function w(tw, ts) = ts and use the MOS map-
ping function f (tw, ts) . The optimal server rate is � = 3.58 leading to 
SQI = 0.57 and E[Q] = 3.80 . The QoE values are shifted to a 5-point 
scale from [1; 5]
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the case of video streaming or web browsing, each session 
itself (a “call”) potentially involves: (a) many users, and (b) 
several QoE models (e.g., for voice and video) that need to 
be combined. As is the case with e.g., video streaming, calls 
can have widely varying durations, which in and of them-
selves also affect the QoE of the participating users (who in 
addition can join or drop at different times during the call).

In such a context, if from the service level we want to see 
the “call” as our session unit, there needs to be some quality 
aggregation done already at the session level (since anyway 
we are considering the session quality as a function of the 
QoE of the participating users). In this case, we can shift 
the inter-session variation into the session quality estimation 
itself (assuming that different weights should be assigned 
to different participating user QoE values), and then we can 
simply average session qualities over the service as a whole. 
If, on the other hand, we wanted to consider the session 
granularity at the user level, as opposed to the call level, we 
would need to include some aspects of the call itself (e.g., 
duration of the user’s participation, number of users in the 
call) in the weighting function.

Let us assume that a service provider would like to apply 
the SQI framework for the purpose of benchmarking their 
service. We use the following notation: S: total number of 
sessions; ns : number of users in session s; n =

∑S

s=1
ns : total 

number of users across all sessions; �s,i : a set of objectively 
measured parameters related to user i in session s; u(�s,i) : the 
utility function for user i in session s; m(�s,i) : the mapped 
QoE value for user i in session s; and w(�s,i) : the weight for 
user i in session s. We then calculate the SQI as a weighted 
average of all utility values summarized across all users and 
sessions:

The weight assigned to a given user QoE value can be 
derived based on the relevance of a user within a particular 
session (as compared to other session users, for example, 
if there is a so-called dominant speaker), as well as based 
on the relevance of the session itself (as compared to other 
sessions), or some combination thereof. By now considering 
each user QoE value individually, we can denote the SQI 
value as the following:

where �i is the set of objectively measured parame-
ters for user i, i = 1, ..., n . It thus once again follows that 
SQI = E[u(�)].

We note that if all weights are equal, then w(��) = 1 
for all users in the system. In such a case, if we use 

(38)SQI =
1

n

S∑

s=1

ns∑

i=1

u(�s,i) =
1

n

S∑

s=1

ns∑

i=1

m(�s,i) ⋅ w(�s,i)

(39)SQI =
1

n

n∑

i=1

u(�i) =
1

n

n∑

i=1

m(�i) ⋅ w(�i)

the MOS mapping function, then it follows that 
SQI = E

[
f (�)

]
= E[Q] . Analogously, if we use the GoB 

mapping function, it follows that SQI = E
[
g(�)

]
= GoB[Q].

Discussion and conclusions

Service and network providers rely on QoE models (often in 
the form of QoS-to-MOS mapping functions) for estimating 
and / or predicting user perceived service quality in their 
systems. A common approach is to use the distribution of 
MOS scores in the system (as obtained from a QoS-to-MOS 
mapping function) to draw conclusions with respect to the 
QoE distribution (or other QoE metrics) of users in the sys-
tem. These metrics are then further used to drive QoE opti-
mization and management decisions [34–36]. Similarly, [37] 
analyzes MOS distributions, but states that “[...] the ultimate 
goal is to predict the distribution of user ratings”. This will 
“[...] give operators and service providers a holistic view of 
service quality.” Especially in 5G, a user-centric design is 
foreseen, requiring to consider system QoE [38].

In this paper, we draw the attention of the systems com-
munity to the fact that the actual QoE distribution in a sys-
tem is not (necessarily) equal to the MOS distribution in the 
system. The current systems literature however, indicates 
that there is clearly lack of a common understanding as to 
what are the implications of using MOS distributions rather 
than actual QoE distributions. For example, it is not pos-
sible to derive the ratio of users experiencing good or better 
(GoB) quality in the system by utilizing the MOS mapping 
function to obtain the MOS distribution. Instead, a QoS-to-
GoB mapping is required. We provide important insights 
to raise awareness and foster further research in this area; 
targeting also the QoE community, and once again highlight 
the need for reporting QoE metrics and mapping functions 
beyond just those relying on MOS (e.g., GoB).

The contribution of this paper are proven fundamental 
multi-dimensional QoE relationships providing an impor-
tant link between the QoE community and the systems com-
munity. If researchers conducting subjective user studies 
provide different QoS-to-QoE mapping functions for QoE 
metrics of interest (e.g., MOS or GoB), this is enough to 
derive corresponding QoE metrics from a system’s perspec-
tive. This holds for any QoS distribution in the system, as 
long as the corresponding QoS values are captured in the 
QoE models.

In addition, we propose a framework for network/service 
providers which provides guidelines for taking into account 
the relative importance of user sessions in a system. We 
define a QoE-based Service Quality Index (SQI) based on 
individual user QoE values, which are weighted according 
to factors that are deemed relevant by a service provider. 
Such factors may be related to session characteristics (e.g., 
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session duration), resource consumption (e.g., costs), num-
ber of users involved in a session, etc. The index considers 
utility as an extension of quality, and is consistent with the 
definition of QoE metrics in the system when all QoE values 
are weighted equally.
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