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Abstract
The satisfied user ratio (SUR) curve for a lossy image compression scheme, e.g., JPEG, characterizes the complementary 
cumulative distribution function of the just noticeable difference (JND), the smallest distortion level that can be perceived 
by a subject when a reference image is compared to a distorted one. A sequence of JNDs can be defined with a suitable suc-
cessive choice of reference images. We propose the first deep learning approach to predict SUR curves. We show how to 
apply maximum likelihood estimation and the Anderson–Darling test to select a suitable parametric model for the distribu-
tion function. We then use deep feature learning to predict samples of the SUR curve and apply the method of least squares 
to fit the parametric model to the predicted samples. Our deep learning approach relies on a siamese convolutional neural 
network, transfer learning, and deep feature learning, using pairs consisting of a reference image and a compressed image 
for training. Experiments on the MCL-JCI dataset showed state-of-the-art performance. For example, the mean Bhattacha-
ryya distances between the predicted and ground truth first, second, and third JND distributions were 0.0810, 0.0702, and 
0.0522, respectively, and the corresponding average absolute differences of the peak signal-to-noise ratio at a median of the 
first JND distribution were 0.58, 0.69, and 0.58 dB. Further experiments on the JND-Pano dataset showed that the method 
transfers well to high resolution panoramic images viewed on head-mounted displays.
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Introduction

Image compression is typically used to meet constraints on 
transmission bandwidth and storage space. The quality of a 
compressed image is quantitatively determined by encod-
ing parameters, e.g., the quality factor (QF) in JPEG com-
pression. When images are compressed, artifacts such as 
blocking and ringing may appear and affect the visual qual-
ity experienced by the users. The satisfied user ratio (SUR) 
is the fraction of users that do not perceive any distortion 

when comparing the original image to its compressed ver-
sion. The constraint on the SUR may vary according to the 
application.

Determining the relationship between the encoding 
parameter and the SUR is a challenging task. The conven-
tional method consists of three steps. First, the source image 
is compressed multiple times at different bitrates. Next, a 
group of subjects is asked to identify the smallest distortion 
level that they can be perceived. A subject cannot notice the 
distortion until it reaches a certain level. This just notice-
able difference (JND) level is different from one subject to 
another due to individual variations in the physiological and 
visual attention mechanisms. Finally, the overall SUR for 
the image is obtained by statistical analysis. Following this 
procedure, several subjective quality studies were conducted 
and yielded JND-based image and video databases, e.g., 
MCL-JCI [14], JND-Pano [24], SIAT-JSSI [7], SIAT-JASI 
[7], MCL-JCV [32], and VideoSet [34]. Subjective visual 
quality assessment studies are reliable but time-consuming 
and expensive. In contrast, objective (algorithmic) SUR 
estimation can work efficiently at no extra annotation cost.
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In recent years, deep learning has made tremendous pro-
gress in computer vision tasks such as image classification 
[10, 31], object detection [22, 29], and image quality assess-
ment (IQA) [2, 12, 35]. Instead of carefully designing hand-
crafted features, deep learning-based methods automatically 
discover representations from raw image data that are most 
suitable for the specific tasks, and can improve the perfor-
mance significantly.

Inspired by these findings, we propose a novel deep 
learning approach to predict the relationship between the 
SUR and the encoding parameter (or distortion level) for 
compressed images. Given a pristine image and its distorted 
versions, we first use a siamese network [3, 5] to predict the 
SUR at each distortion level. Then we apply the least squares 
method to fit a parametric model to the predicted values and 
use the graph of this model as SUR curve.

The main contributions of our work are as follows: 

1. We exploit maximum likelihood estimation (MLE) and 
the Anderson–Darling test to select the most suitable 
parametric distribution for SUR modelling instead of 
using the normal distribution as a default like all previ-
ous works.

2. We propose a deep learning architecture to predict sam-
ples of the SUR curves of compressed images automati-
cally, followed by a regression step yielding a parametric 
SUR model.

3. We improve the performance of our model by using 
transfer feature learning from a similar prediction task. 
We first train the proposed model independently on an 
IQA task. Given the images for SUR prediction, we 
extract multi-level spatially pooled (MLSP) [11] features 
from the learned model, on which a shallow regression 
network is further trained to predict the SUR value for a 
given image pair.

Compared to our previous work [6], our new contributions 
are as follows. (1) We optimize the proposed architecture 
and apply feature learning instead of a fine-tuning approach, 
significantly decreasing computational cost and improving 
performance. (2) We use MLE and the Anderson–Darling 
test to select the JND distribution model instead of assuming 
it to be Gaussian. (3) We conduct more experiments using 
the MCI-JCL dataset to prove the efficiency of our model, 
providing results for not only the first JND, but for the sec-
ond and third JNDs as well. (4) We add experiments with 
the JND-Pano dataset, showing that the method transfers 
well to high resolution panoramic images viewed on head-
mounted displays.

Definitions

We consider a lossy image compression scheme that pro-
duces monotonically increasing distortion magnitudes as a 
function of an encoding parameter. The metric for the dis-
tortion magnitude may be the mean squared error, and the 
encoding parameter is assumed to take only a finite number 
of values. For example, in JPEG, the encoding parameter 
is the quality factor QF ∈ {1,… , 100} . A value of QF cor-
responds to the distortion level n = 101 − QF , where n = 1 
is the smallest and n = 100 is the largest distortion level.

Definition 1 (kth JND) For a given pristine image I[0], we 
associate distorted images I[n], n = 1,… ,N corresponding 
to distortion levels n = 1,… ,N . Let JND0 be the (trivial) 
random variable with probability ℙ(JND0 = 0) = 1 . The kth 
JND, which we denote by JNDk, k ≥ 1 , is a random vari-
able whose value is the smallest distortion level that can 
be perceived by an observer when the image I[JNDk−1] is 
compared to the images I[n], n > JNDk−1.

For simplicity of notation, the random variable JNDk will 
be denoted by JND when there is no risk of confusion.

Definition 2 (p% JND ) The p% JND is the smallest integer 
in the set {1, 2,… ,N} for which the cumulative distribution 
function of JND is greater than or equal to p

100
.

Samples of the JNDs can be generated iteratively. The 
original pristine image I[0] serves as the first anchor image. 
The increasingly distorted images I[n], n = 1, 2,… , are 
displayed sequentially together with the anchor image until 
a distortion can be perceived. This yields a sample of the 
first JND. This first image with a noticeable distortion then 
replaces the anchor image, to be compared with the remain-
ing distorted images sequentially until again a noticeable 
difference is detected, yielding a sample of the second JND, 
and so on.

The set of random variables {JNDk | k ≥ 1} in Definition 
1 is a discrete finite stochastic process. The number of (non-
trivial) JNDs of the stochastic process depends on the image 
sequence on hand. It is limited by the smallest number of 
JNDs that a random observer is able to perceive for the given 
image sequence. In practical applications, the first JND is 
the most important one. At the following JNDs the image 
quality is degraded multiple times from the original which 
implies that a satisfactory usage of the corresponding images 
may be very limited. In this paper, we have considered only 
the first three JNDs, which was also the choice made in [34].

Definition 1 is intended for sequences of increasingly 
distorted images, and the prototype application is given by 
image compression with decreasing bitrate. However, it can 
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also be applied to other media like sequences of video clips 
or, more generally, to sequences of perceptual stimuli of any 
kind. Moreover, these sequences need not be sequences with 
increasing distortion. JNDs may also be useful, for example, 
to study the effect of parameter-dependent image enhance-
ment methods.

The notion of a sequence of JNDs obtained by the itera-
tive procedure as considered in this paper was introduced 
to the field of image and video quality assessment only 
recently [21]. In that contribution, an empirical study for 
five sequences of compressed images and video clips was 
carried out, with 20 subjects contributing their sequences of 
JND samples for each set of stimuli. In the followup paper 
[14], a larger dataset of 50 source images was introduced, 
including subjective tests with 30 participants, and providing 
the dataset MCL-JCI, that we are using for our studies here. 
Neither of the mentioned contributions gave a formal defini-
tion of JNDs. However, the experimental protocols suggest 
that in these papers the JND random variables were sampled 
in the spirit of Definition 1.

At this point it is important to take note of the common 
(but slightly different) usage of JNDs in psychophysics. 
Those JND scales are based on the long standing principle 
in psychology that equally noticed differences are perceptu-
ally equal, unless always or never noticed. It is this linear 
scale of JNDs that has also been used as units of perceptual 
quality scales for images in [17, 28]. For subjective quality 
assessment, an input image is compared to a quality ruler, 
consisting of a series of reference images varying in a single 
attribute (sharpness), with known and fixed quality differ-
ences between the samples, given by a certain number of 
JND units.

Another application of this JND scale was given in a later 
paper [34], where the kth JND for k > 1 was obtained differ-
ently from the procedure outlined in Definition 1, namely by 
using the same anchor image for all observers. This anchor 
image was chosen as the one corresponding to the 25% quan-
tile of the previous JND, i.e., the point at which the fraction 
of observers that cannot perceive a noticeable difference 
drops below 75%.

To conclude, let us state that the classical psychophysical 
JND scale produces a perceptual distance of one JND unit 
between the reference image and the first JND from Defini-
tion 1, as expected. However, it is not hard to see that for 
the kth JND, k > 1 , the perceptual distance to the reference 
image according to the common psychophysical JND scale 
may differ from the expected value, i.e., k.

Definition 3 (SUR function and curve) The SUR func-
tion is the complementary cumulative distribution function 
(CCDF) of the JND. The graph of this function is called the 
SUR curve.

The SUR function, which we denote by SUR(⋅) , gives the 
proportion of the sample population for which the JND is 
greater than a given value. That is,

Since the range of the JND is discrete (i.e., integers 
{1, 2,… ,N} ), the SUR function is a monotonically decreas-
ing step function.

The SUR curve can be used to determine the highest dis-
tortion level for which a given proportion of the population 
is satisfied, in the sense that it cannot perceive a distortion. 
Formally, we apply the definition of the SUR function and 
curve also for the second and third JND, although for these 
cases, an interpretation as a proportion of “satisfied” users 
is not appropriate.

Definition 4 (p% SUR) The p% SUR is the largest integer 
in the set {1, 2,… ,N} for which the SUR function is greater 
than or equal to p

100
,

If we set p = 75 , we obtain the 75% SUR used in [33].

Related works

Existing research on JND can be classified into three main 
areas: 1. subjective quality assessment studies to collect JND 
annotations, 2. mathematical modeling of the JND probabil-
ity distribution and SUR function, and 3. prediction of the 
probability distribution of the JND and the SUR curve for a 
given image or video.

Subjective quality assessment

The JND prediction problem has been addressed for various 
media, including images and videos, and for different types 
of applied distortions. Existing JND databases have made 
this possible.

Jin et al. [14] conducted subjective quality assessment 
tests to collect JND samples for JPEG compressed images 
and built a JND-based image dataset called MCL-JCI. The 
tests involved 150 participants and 50 source images. With 
JND samples for a given image collected from 30 subjects, 
they found that humans can distinguish only a few distor-
tion levels (five to seven). Since subjective tests are time-
consuming and expensive, a binary search algorithm was 
proposed to speed up the annotation procedure. The search 
procedure helps to quickly narrow down the first noticeable 
difference, resulting in a smaller number of subjective com-
parisons than the alternative linear search.

SUR(x) = ℙ(JND > x).

p% SUR = max{n ∈
{
1, ...,N} | SUR(n) ≥ p

100

}
.
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Liu et al. [24] created a JND dataset for panoramic images 
viewed using a head-mounted display. JPEG compressed 
versions of 40 source images of resolution 5000 × 2500 were 
inspected by at least 25 observers each. An aggressive binary 
search procedure was used to identify the corresponding first 
JNDs.

Wang et al. [32] conducted subjective tests on JND for 
compressed videos using H.264/AVC coding. They collected 
JND samples from 50 subjects, building a JND-based video 
dataset called MCL-JCV.

Wang et al. [34] built a large-scale JND video dataset 
called VideoSet for 220 5-s source videos in four resolutions 
(1080p, 720p, 540p, 360p). Distorted versions of the vid-
eos were obtained with H.264/AVC compression. To obtain 
the JND sample from a given subject, they used a modified 
binary search procedure comparable to the ones adopted in 
[14] and [32]. For each subject, samples from the first three 
JNDs were collected.

Fan et al. [7] studied the JND of symmetrically and asym-
metrically compressed stereoscopic images for JPEG2000 
and H.265 intra-coding. They generated two JND-based ste-
reo image datasets, one for symmetric compression and one 
for asymmetric compression.

We are interested in studying a widely-encountered type 
of distortion, the JPEG compression. This is why we rely 
on the MCL-JCI and JND-Pano datasets, which offer JND 
values for JPEG compressed images.

Mathematical modeling of JND and SUR

In previous works, the distribution of JND values has been 
modeled as a normal distribution [32, 34], some works have 
studied its skewness and kurtosis, and others modeled it as 
a Gaussian mixture [14].

In [32] and [34], a normal distribution was used to model 
the first three JNDs. In [34], the Jarque-Bera test was used 
to check whether the JND samples have the skewness and 
kurtosis matching a normal distribution. Almost all videos 
passed the normality test.

In [14], the JND samples are classified into three groups 
(low QF, middle QF, high QF), and it is assumed that the 
JND distribution for each group is a Gaussian mixture with a 
finite number of components. The parameters of the Gauss-
ian mixture model (GMM) are determined with the expec-
tation maximization algorithm. The number of components 
of the GMM is determined with the Bayesian information 
criterion. However, this methodology is overly compli-
cated, ambiguous in the choice of the three groups, and not 
justified.

In [7], the authors assumed that the JND on the QF scale 
was normally distributed but also noted that an empirical 
test ( �2 test [27]) found that only 29 of the 50 source images 
passed the normality test. In “Modeling the SUR function” 

section, we show that other models are more suitable and 
propose a method to select one, without requiring a complex 
mixture model.

Prediction of JND and SUR

JND studies evaluate the personal (user-specific) JND and 
accumulate a distribution of JND values over a population of 
participants. Existing works have proposed to predict vari-
ous aspects of the JND distribution, such as the mean value 
of the JND [13], the 75% JND value [23], or the actual SUR 
curve as the Q-function of the fitted normal distribution [33].

Huang et al. [13] propose a support vector regression 
(SVR)-based model to predict the mean value of the JND 
for HEVC encoded videos. They exploit the masking effect 
and a spatial-temporal sensitivity map based on spatial, sali-
ency, luminance, and temporal information.

Wang et al. [33] also use SVR to predict the SUR curve. 
The SVR is fed a feature vector consisting of the concat-
enation of two feature vectors. The first one is based on 
the computation of video multi-method assessment fusion 
(VMAF) [19] quality indices on spatial-temporal segments 
of the compressed video, while the second one is based on 
spatial randomness and temporal randomness features that 
measure the masking effect in the corresponding segments 
of the source video. For the dataset VideoSet, the average 
prediction error at the 75% SUR between the predicted quan-
tization parameter (QP) value and the ground truth QP value 
was found to be 1.218, 1.273, 1.345, and 1.605 for resolu-
tions 1080p, 720p, 540p, and 360p, respectively.

Zhang et al.  [36] use Gaussian process regression to 
model the relationship between the SUR curve and the 
bitrate for video compression. Three types of features called 
visual masking features, recompression features, and basic 
attribute features are used for training and prediction. Visual 
masking features consist of one spatial and one temporal 
feature. Recompression features consist of four different 
bitrates and one variation of the VMAF score over two dif-
ferent bitrates. Basic attribute features are computed from 
the anchor video and consist of one VMAF score, the frame 
rate, the resolution, and the bitrate. Experimental results for 
VideoSet show that the method outperforms the method in 
[33].

Hadizadeh et al. [9] build an objective predictor (binary 
classifier) to determine whether a reference image is per-
ceptually distinguishable from a version contaminated with 
noise according to a JND model. Given a reference image 
and its noisy version, they use sparse coding to extract a 
feature vector and feed it into a multi-layer neural network 
for the classification. The network is trained on a dataset 
obtained through subjective experiments with 15 subjects 
and 999 reference images. The predictor achieves a clas-
sification accuracy of about 97% on this dataset.
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Liu et al. [23] propose a deep learning technique to pre-
dict the JND for image compression. JND prediction is seen 
as a multi-class classification problem, which is converted 
into several binary classification problems. The binary clas-
sifier is based on deep learning and predicts whether a dis-
torted image is perceptually lossy with respect to a reference. 
A sliding window technique is used to deal with inconsist-
encies in the multiple binary classifications. Experimental 
results for MCL-JCI show that the absolute prediction error 
of the proposed model is 0.79 dB peak signal-to-noise ratio 
(PSNR) on average.

Our work improves the modeling and prediction of the 
JND distribution. We use a deep learning approach. For a 
general introduction to deep learning we recommend the 
book [8]. Unlike Liu et al. [23], we formulate the SUR curve 
prediction problem as a regression problem. We find a bet-
ter suited distribution type that matches the empirical JND 
samples and predict the entire SUR curve, not just a statistic.

Modeling the SUR function

We defined the JND as a discrete random variable and 
the SUR function as its CCDF, which is a monotonically 
decreasing step function. In practice, the SUR function must 
be estimated from sparse and noisy data, i.e., from a small 
set of subjective JND measurements. We generalize from 
these samples by fitting a suitable mathematical model to the 
data. For this purpose, we consider a set of common continu-
ous random variables that have a mathematical form defined 
by parameters. After choosing the best fitting one, we evalu-
ate the corresponding CCDFs at the integer distortion levels. 
Thereby, we again obtain a discrete and fitted JND random 
variable, which replaces the noisy original one for all sub-
sequent steps. The continuous JND distribution provides the 
ground truth p% JNDs and SURs for the images of the given 
JND dataset (see Fig. 1 for an illustration of the procedure).

To select the most suitable distribution for a given dataset 
of samples, we use maximum likelihood estimation (MLE) 
and the Anderson–Darling (A–D) test. MLE allows us to 
estimate the parameters of the probabilistic models and 
also to rank different models according to increasing nega-
tive log-likelihood, averaged over the source images in the 
dataset. For a given distribution model and a set of corre-
sponding samples, the A–D test can be applied for the null 
hypothesis that the JND samples were drawn from the model 
at a specified significance level (5% in our experimental set-
tings). This allows us to rank the models according to the 
number of times the null hypothesis was rejected. The A–D 
test was a suitable goodness of fit test for the datasets consid-
ered in this paper. Unlike the chi-squared test, it can be used 
with a small number of samples. It is also more accurate 

than the Kolmogorov–Smirnov test when the distribution 
parameters are estimated from the data [26].

We considered the 20 parametric continuous probability 
distribution models that are available in Matlab (R2019b) 
and fitted them to the JND samples of the MCL-JCI [14] 
and JND-Pano [24] datasets, expressed in terms of distortion 
levels and also in the reverse orientation, i.e., with respect 
to the corresponding JPEG quality factors QF. Consider-
ing the two datasets together, the generalized extreme value 
(GEV) distribution, applied for the QF data, was the most 
suitable model.

Table 1 shows the results for the QF data. For the 50 
source images in the MCL-JCI dataset, the GEV distribution 
ranked second in terms of both the negative log-likelihood 
and the A–D test for the first JND. In contrast, the Gauss-
ian distribution, ranked 12th for the negative log-likelihood 
criterion and 4th for the A–D test. For the JND-Pano dataset, 
the GEV distribution ranked third for both the log-likelihood 
and the A–D test.

The probability density function (PDF) of the GEV dis-
tribution is given by

where x ∈ ℝ satisfies

Here, � ≠ 0 , � , and � are called shape parameter, location 
parameter, and scale parameter, respectively.

Since convergence of MLE was better for the QF data 
than for the distortion level data, we built our models based 
on the QF data. That is, we used the PDF

to model the JND distribution, where fX is the PDF of the 
GEV that models the QF data. Note that fY is not the PDF 
of a GEV distribution. Finally, the CCDF of fY,

served as a model for the SUR function, where we have 
copied the GEV parameters of fX in the notation of fY and 
F for convenience.

Finally, to return to a discrete model for the JND, we sam-
ple the continuous model F(y | �,�, �) at integer distortion 
levels y = 1,… , 100 and arrive at the piecewise constant 
SUR function

(1)f (x|�,�, �) = 1

�
exp

(
−z

−
1

�

)
z
−1−

1

�

z = 1 + 𝜉
x − 𝜇

𝜎
> 0

(2)fY (y) = fX(101 − y | �,�, �)

F(y | �,�, �) = 1 − ∫
y

−∞

fY (s | �,�, �) ds,

SUR(y) =

�
1 y < 1

F(⌊y⌋ � 𝜉,𝜇, 𝜎) y ≥ 1
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where ⌊y⌋ denotes the greatest integer less than or equal to y. 
For completeness, the modeled JND is given by the discrete 
random variable

Figure 2a shows the histogram of the first JND for the 
fifth image in the MCL-JCI dataset, the corresponding 

ℙ(JND = n) = SUR(n − 1) − SUR(n).

empirical SUR curve, the model obtained with MLE of the 
GEV distribution for the QF data, the corresponding SUR 
curve, and the 75% SUR. Figure 2b, c show similar results 
for the second and third JND, respectively. Figure 3 shows 
the results for the 14th image in the MCL-JCI dataset, high-
lighting the 50% SUR instead of the 75% SUR.

Deep learning for SUR prediction

Structure of training data

We need to predict SUR curves that are calculated from 
subjective JND studies, given a reference image and a distor-
tion type, e.g., JPEG compression. In order to train a good 
machine learning model, we considered a few ways to pre-
sent the available information during training. With respect 
to the inputs, we could present one (the reference) or more 
input images (reference and distorted images) to the model. 
The output has to be a representation of the SUR function.

With regard to the outputs, for a reference image I[0] and 
its distorted versions I[1],… , I[N] the SUR curve can be 
represented as SUR(1),… , SUR(N) . The SUR function can 
be calculated from the empirical CCDF, or by first fitting an 
appropriate analytical distribution to the subjective data. In 
the latter case, the analytical representation can be sampled 
similarly to the empirical SUR or the model can be trained 
to predict the parameters of the analytical CCDF.

For the inputs of the model, if we attempted to predict 
a representation of the SUR curve from a single reference 

Table 1  Ranking of the distribution models according to negative log-likelihood of MLE and A–D test for the 50 source images of the MCL-JCI 
dataset [14] and the 40 images of the JND-Pano dataset [24]

The models are from Matlab (R2019b) and described in [15, 16]: Half-normal (1), Rayleigh (2), Exponential (3), Generalized Extreme Value 
(4), Generalized Pareto (5), Stable (6), tLocation Scale (7), Birnbaum-Saunders (8), Extreme Value (9), Gamma (10), Logistic (11), Loglogis-
tic (12), LogNormal (13), Nakagami (14), Normal (15), Poisson (16), Rician (17), Weibull (18). Results for the two other models available in 
Matlab, beta distribution and Burr distribution, are not included as fitting the JND samples with the distributions was not possible. The log-
likelihoods and p values are available in [30]

MCL-JCI [14] Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

First JND log-likelihood 16 14 18 2 13 3 1 4 15 6 11 7 5 8 12 17 10 9
A–D reject 50 18 50 2 47 1 5 3 18 3 2 3 3 4 4 43 4 4
A–D rank 9 6 9 2 8 1 5 3 6 3 2 3 3 4 4 7 4 4

Second JND log-likelihood 16 13 17 1 14 5 10 2 15 4 11 6 3 7 12 18 9 8
A–D reject 43 8 49 0 38 0 0 0 6 0 0 0 0 0 1 32 0 0
A–D rank 7 4 8 1 6 1 1 1 3 1 1 1 1 1 2 5 1 1

Third JND log-likelihood 16 13 17 1 14 5 10 2 15 4 11 6 3 7 12 18 9 8
A–D reject 41 5 44 0 31 0 0 0 7 0 0 0 0 0 0 22 0 0
A–D rank 6 2 7 1 5 1 1 1 3 1 1 1 1 1 1 4 1 1

JND-Pano [24] Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
First JND log-likelihood 16 15 17 3 1 4 2 13 14 10 9 11 12 7 8 18 6 5

A–D reject 36 8 40 2 31 1 1 1 0 0 0 0 0 0 0 37 0 0
A–D rank 6 4 8 3 5 2 2 2 1 1 1 1 1 1 1 7 1 1

0 20 40 60 80 100
Distortion level

0

0.2

0.4

0.6

0.8

1

S
U

R

Fig. 1  Illustration of how the ground-truth output values for our pre-
diction model are derived. We start with samples for a JND level 
from the MCL-JCI dataset [14]. The histogram, in dark blue, shows 
their summary. We fit an analytical SUR curve, shown in red, to the 
empirical samples, given an analytical distribution type. The blue 
dots show the ground-truth analytical samples that are used to train 
our prediction model
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image, we would be ignoring information about the par-
ticular type of degradation that was applied to images in 
the subjective study. The model is expected to learn bet-
ter when both the reference and its distorted version(s) are 
considered. Ideally we should provide the model with the 
reference and all the distorted images as inputs. In this way, 
using an appropriate learning method, the model has all the 
information that participants in the experiments had, and is 
expected to perform the best. However, in this formulation 
the problem is more difficult to solve, requiring a different 
learning model and more training data. We simplify it by 
inputting pairs of images: a reference I[0] and a distorted 
version I[k], k ∈ {1,… ,N} . In this case we have two options 
for the outputs: 1. either predict the representation of the 
entire SUR curve (sampled, or parametric) or 2. predict the 
corresponding SUR(k) value. In both cases (1. and 2.), as 
predictions are independent of each other, the pairwise pre-
dictions need to be aggregated into a single SUR curve over 
all distortion levels for a given reference.

We chose to do pair-based prediction of sampled ana-
lytical SUR functions, as shown in Fig. 1. Predicting the 
empirical samples of the SUR does not perform as well as 
predicting the sampled analytical SUR. This is probably due 
to the denoising effect of first mapping a distribution to the 

subjective data. Each sample of the SUR is independently 
predicted, and then the overall SUR is estimated from the 
samples by least-squares fitting.

Problem definition

The regression problem for predicting SUR curves can be 
formulated as follows. Let I1[0], I2[0],… , IK[0] be a training 
set of K pristine reference images. For each reference image 
Ik[0], k ∈ {1,… ,K} , we associate the N distorted images 
Ik[n], n = 1,… ,N corresponding to the N distortion levels 
n = 1,… ,N.

Problem Let SURk(⋅), k = 1,… ,K, denote the SUR func-
tion of image Ik[0] and its sequence of distorted images 
Ik[1],… , Ik[N] . Find a regression model f� , parameterized 
by � , such that

for k = 1,… ,K, n = 1,… ,N.

f�(Ik[0], Ik[n]) ≈ SURk(n)

Fig. 2  SUR curve and 75% SUR of the first three JNDs. The data is for the fifth source image in the MCL-JCI dataset [14]

Fig. 3  SUR curve and 50% SUR of the first three JNDs. The data is for the 14th source image in the MCL-JCI dataset [14]
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Proposed model

Subjective studies are usually time-consuming and expen-
sive, which limits JND datasets to relatively small size. With 
such small data, training a deep model from scratch may be 
prone to overfitting. To address this limitation we propose 
a two-stage model that applies transfer learning and feature 
learning, as depicted in Fig. 4.

In the first stage (Fig. 4a), a pair of images, namely a 
pristine image Ik[0] and a distorted version Ik[n] , are fed 
into a siamese network that uses an Inception-V3 [31] con-
volutional neural network (CNN) body with shared weights. 
The network body is truncated, such that the global average 
pooling (GAP) layer and the final fully-connected layer are 
removed. Each branch of the siamese network yields a stack 
of 2,048 feature maps. The feature maps are passed through 
a GAP layer, which outputs a 2,048-dimensional feature 
vector �gap for each branch. Then we calculate ��gap , corre-
sponding to feature vector differences between the distorted 
images Ik[n] and the pristine image Ik[0] , i.e.,

By concatenating the two feature vectors �gap(Ik[0]) , 
�gap(Ik[n]) and the feature difference vector ��gap , we obtain 
a 6,144 dimensional vector. The latter is passed to three 
fully connected (FC) layers with 512, 256, and 128 neurons, 

��gap = �gap(Ik[0]) − �gap(Ik[n]).

respectively, where each FC layer is followed by a drop-
out layer (0.25 ratio) to avoid overfitting. The output layer 
is linear with one neuron to predict a quality score of the 
distorted image Ik[n] , obtained from a fixed full-reference 
(FR)-IQA method.

In the second stage (Fig.  4b), we keep the weights 
fixed in the Inception-V3 body as trained in the first stage. 
A reference and a distorted image are presented to the 
Inception-V3 body, and for each of them MLSP [11] fea-
tures �mlsp with 10,048 components each are extracted. As 
in the first stage, we concatenate �mlsp(Ik[0]) , �mlsp(Ik[n]) , 
and ��mlsp = �mlsp(Ik[0]) − �mlsp(Ik[n]) . The concatenated 
30,144-dimensional feature vector is passed to an FC head 
to predict the SUR value. This FC head has the same struc-
ture as the FC head in the first stage.

Let (Ir, Id, q) be an item of the training data, where Ir and 
Id are the reference image and its distorted version, and q 
corresponds to the FR-IQA score in the first stage and the 
SUR value in the second stage. Our objective is to minimize 
the mean of the absolute error, or L1 loss function

Our proposed model, called SUR-FeatNet, has the following 
properties. We first train a deep model to predict the FR-IQA 
score of a distorted image relative to its pristine original. 
This is similar to predicting an SUR value and therefore the 

L = ||f�(Ir, Id) − q||.

Fig. 4  SUR-FeatNet architecture for prediction of the SUR curve. 
In the first stage (a), a Siamese CNN is used to predict an objective 
quality score of a reference image and its distorted version, which 
is similar to the SUR prediction task (b) and allowed us to train on 

a large-scale dataset to address overfitting. In the second stage (b), 
MLSP features of a reference image and its distorted version were 
extracted and fed into a shallow regression network that was used to 
predict SUR values
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features learned in the first stage are expected to be useful 
for predicting SUR values in the second stage. As it is very 
convenient to generate distorted images given a large-scale 
set of pristine reference images and to estimate their quality 
score by an FR-IQA method, training a deep model on a 
large-scale image set to address overfitting becomes feasible.

Second, training on these “locked-in” MLSP features in 
the second stage instead of fine-tuning a very large deep net-
work not only reduces computational time, but also prevents 
forgetting previously trained information, which may lead to 
a better performance on a small dataset.

Prediction of the SUR curve and the JND

For any source image I[0], together with its distorted ver-
sions I[1],… , I[N] , a sequence of predicted satisfied user 
ratios SUR(1),… , SUR(N) is obtained from the network. 
Assuming that the JND of the QF data follows a GEV dis-
tribution, we estimate the shape parameter � , the location 
parameter � , and the scale parameter � by least squares 
fitting,

The fitted SUR curve is given by F(n | 𝜉, �̂�, �̂�).

Experiment

Setup

In our experiments, we used the MCL-JCI dataset [14] and 
the JND-Pano dataset [24] to evaluate the performance of 
the proposed method. The MCL-JCI dataset contains 50 
pristine images with a resolution of 1920 × 1080 . Each pris-
tine image was encoded 100 times by a JPEG encoder with 
QF decreasing from 100 to 1, corresponding to distortion 
levels 1 to 100. Thus, there are 5,050 images in total. The 
JND-Pano dataset contains 40 pristine panoramic images 
with a resolution of 5000 × 2500 . As for MCL-JCI, each 
pristine image was encoded 100 times by a JPEG encoder, 
which resulted in 4,040 images in total.

The annotation provided for the image sequences in 
MCL-JCI and for each of the M = 30 participants of the 
study [14] is the QF value corresponding to the first JND 
(and also those of the second, third, etc.). For each source 
image Ik[0] (k = 1,… , 50) in the MCL-JCI dataset, we 
modeled its SUR function for the given JND samples, 
according to the GEV distribution (Eq. (1)). Finally, we 
sampled the fitted SUR model to derive the target values 
SURk(n), k = 1,… , 50, n = 1,… , 100 for the deep learning 
algorithm. Following the same procedure, we derived the 

(𝜉, �̂�, �̂�) = argmin
𝜉,𝜇,𝜎

N∑

n=1

|||F(n | 𝜉,𝜇, 𝜎) − SUR(n)
|||
2

.

target values SURk(n), k = 1,… , 40, n = 1,… , 100 of the 
first JND in the JND-Pano dataset, which contains 19 to 21 
JND measurements per image (after outlier removal).

k-fold cross validation was used to evaluate the perfor-
mance ( k = 10 ). Specifically, each dataset was divided into 
10 subsets, each containing a certain number of source 
images (five images in MCL-JCI and four images in JND-
Pano) and all corresponding distorted versions of them. Each 
time, one subset was kept as a test set, and the remaining 
nine subsets were used for training and validation. The over-
all result was the average of 10 test results.

The Adam optimizer [18] was used to train SUR-Feat-
Net with the default parameters �1 = 0.9 , �2 = 0.999 , and 
a custom learning rate � . In our experiments, we tried 
� = 10−1, 10−2,… , 10−5 and found that � = 10−5 gave the 
smallest validation loss. Therefore, we set � = 10−5 and 
trained for 30 epochs. In the training process, we monitored 
the absolute error loss on the validation set and saved the 
best performing model. Our implementation used the Python 
Keras library with Tensorflow as a backend [4] and ran on 
two NVIDIA Titan Xp GPUs, where the batch size was set 
to 16. The source code for our model is available on GitHub 
[30].

Strategies to address overfitting

For the first stage of our model, we used the Konstanz artifi-
cially distorted image quality set (KADIS-700k) [20]. This 
dataset has 140,000 pristine images, with five degraded ver-
sions each, where the distortions were chosen randomly out 
of a set of 25 distortion types. We used a full-reference IQA 
metric to compute the objective quality scores for all pairs. 
For this purpose, we chose MDSI [25] as it was reported 
as the best FR-IQA metric when evaluating on multiple 
benchmark IQA databases. As KADIS-700k is a large-scale 
set, we only trained for five epochs before MLSP feature 
extraction.

In addition to transfer learning in the first stage, we 
applied image augmentation in the second stage to help 
avoid overfitting. Each original and compressed image of 
both datasets was split into four non-overlapping patches, 
where each patch has a resolution of 960 × 540 in MCL-JCI 
and 2500 × 1250 in JND-Pano. We also cropped one patch 
of the same resolution from the center of the image. The 
SUR values for the patches were set to be equal to those of 
their source images. With this image augmentation, we had 
25,250 annotated patches in MCL-JCI and 20,200 annotated 
patches in JND-Pano.

After training the networks with these training sets, SUR 
values were predicted for the test set. To predict the SUR 
of a distorted image, predictions for its five corresponding 
patches were generated by the network and averaged.
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Results and analysis for MCL‑JCI

Three metrics were used to evaluate the performance of 
SUR-FeatNet: mean absolute error (MAE) of the 50% JNDs, 
MAE of the PSNR at the 50% JNDs, and Bhattacharyya 
distance [1] between the predicted and ground truth JND 
distributions of type GEV. The ground truth GEV param-
eters were obtained by using MLE to fit a GEV distribution 
to the MCL-JCI QF values.

We first compared the performance of the following four 
learning schemes. 

1. Fine-tune (ImageNet) In the first scheme, we used the 
architecture in the first stage (Fig. 4a). Its CNN body 
was initialized with the pre-trained weights on ImageNet 
and FC layers were initialized with random weights. 
With the initialized weights, the network was fine-tuned 
for SUR prediction using the MCL-JCI dataset.

2. Fine-tune (KADIS-700k) The second scheme used the 
same architecture and same initialized weights as the 
first scheme. However, it was first fine-tuned on KADIS-
700k to predict FR-IQA quality scores before it was fine-
tuned on MCL-JCI dataset.

3. MLSP (ImageNet) In the third scheme, we trained a shal-
low regression network for SUR prediction based on 
MLSP features, which were extracted from a pre-trained 
network on ImageNet.

4. MLSP (KADIS-700k) The fourth scheme, which is used 
by our approach, trained the same regression network 
as the third scheme. However, its MLSP features were 
extracted from fine-tuned weights on KADIS-700k 
instead of ImageNet.

Table 2 shows the performance of the four schemes for the 
first JND. Clearly, transfer learning from the image classifi-
cation domain (ImageNet) to the quality assessment domain 
(KADIS-700k), together with MLSP feature learning, out-
performed the remaining schemes (Tables 3, 4).

Tables 5, 6, and 7 present the detailed results of the first, 
second, and third JND for each image sequence. Figure 5 
shows the statistics. For all three JNDs, more than 75% of 
the images have a Bhattacharyya distance smaller than 0.1 
(Fig. 5a). With respect to the first, second, and third JND, 
the absolute error in 50% JND was less than 5 for 32, 41, 
and 45 images, respectively (Fig. 5b). For more than 90% 
of the images, the absolute error in 50% JND was smaller 
than 10. Figure 6 compares the PSNR at ground truth and 
predicted 50% JND for the first, second, and third JNDs. The 
Pearson linear correlation coefficient (PLCC) was very high, 
reaching 0.9771, 0.9721, and 0.9741, respectively (Fig. 7).

Figure 8 shows the best two predictions, sorted according 
to the mean Bhattacharyya distance over the three JNDs. 

Table 2  Performance comparison for the first JND of MCL-JCI with 
different learning schemes

�JND is the MAE of the 50% JNDs. �PSNR is the MAE of the PSNR 
at the 50% JNDs

Scheme Bhattachar-
yya distance

�JND �PSNR (dB)

1. Fine-tune (ImageNet) 0.1244 5.86 0.74
2. Fine-tune (KADIS-700k) 0.0936 5.17 0.64
3. MLSP (ImageNet) 0.0949 5.22 0.64
4. MLSP (KADIS-700k) 0.0810 4.44 0.58

Table 3  Comparison between 
SUR-FeatNet and the baseline 
method (Algorithm 1) for the 
two benchmark datasets

�JND is the MAE of the 50% JNDs. �PSNR is the MAE of the PSNR at the 50% JNDs

Dataset JND SUR-FeatNet Baseline

Bhattacharyya 
distance

�JND �PSNR (dB) �JND �PSNR (dB)

MCL-JCI First 0.0810 4.44 0.58 27.97 2.94
Second 0.0702 3.34 0.69 31.68 2.96
Third 0.0522 2.10 0.58 34.14 2.86

JND-Pano First 0.1053 8.63 0.76 27.05 2.93

Table 4  Performance 
comparison with the state-of-
the-art PW-JND model [23] and 
SUR-Net [6] for the MCL-JCI 
dataset

Best performance is highlighted in bold
�JND is the MAE with respect to the ground truth. �PSNR is the MAE of the PSNR

Method First JND (50%JND) Second JND (50%JND) First JND (75%SUR)

�JND �PSNR (dB) �JND �PSNR (dB) �JND �PSNR(dB)

Baseline 27.97 2.94 31.68 2.96 – –
PW-JND [23] 8.7 0.82 3.14 0.76 – –
SUR-Net [6] 5.22 0.63 – – 6.73 0.69
SUR-FeatNet 4.44 0.58 3.34 0.69 5.45 0.59



Quality and User Experience (2020) 5:5 

1 3

Page 11 of 23 5

Ta
bl

e 
5 

 G
EV

 d
ist

rib
ut

io
n 

m
od

el
 o

f t
he

 fi
rs

t J
N

D
 fo

r t
he

 5
0 

im
ag

e 
se

qu
en

ce
s o

f t
he

 M
C

L-
JC

I d
at

as
et

Im
ag

e
G

ro
un

d 
tru

th
SU

R-
Fe

at
N

et
B

ha
tta

ch
ar

yy
a

�
J
N
D

�
P
S
N
R

k
�

�
�

JN
D

PS
N

R
𝜇

𝜎
𝜉

Ĵ
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Ĵ
N
D

P̂
S
N
R

di
st

an
ce

(d
B

)

36
12

.5
8

4.
51

−
 0

.1
1

87
28

.3
5

11
.7

1
4.

52
0.

01
88

28
.1

3
0.

00
71

1
0.

22

37
18

.6
2

13
.1

6
0.

09
78

26
.8

3
13

.6
4

7.
66

0.
27

85
25

.7
8

0.
05

48
7

1.
05

38
8.

14
3.

00
0.

35
92

26
.7

2
10

.5
3

5.
01

0.
01

89
27

.6
4

0.
05

85
3

0.
92

39
10

.5
0

5.
88

0.
09

89
31

.1
2

12
.1

5
6.

15
0.

08
87

31
.7

2
0.

00
93

2
0.

61
40

16
.2

0
6.

83
0.

19
83

36
.3

6
16

.1
9

6.
07

0.
17

83
36

.3
6

0.
00

43
0

0.
00

41
9.

62
2.

48
0.

26
91

25
.2

8
9.

38
4.

23
−

 0
.2

1
91

25
.2

8
0.

08
92

0
0.

00
42

10
.1

7
4.

27
−

 0
.2

0
90

27
.9

9
11

.1
9

4.
67

0.
15

89
28

.2
8

0.
05

30
1

0.
29

43
14

.6
9

6.
81

−
 0

.0
5

84
33

.6
1

10
.3

4
4.

38
−

 0
.0

8
90

31
.9

3
0.

10
05

6
1.

68
44

8.
53

2.
56

−
 0

.0
5

92
26

.8
5

10
.3

7
4.

11
0.

01
90

27
.5

6
0.

07
21

2
0.

71
45

17
.9

0
10

.9
4

−
 0

.0
6

80
40

.4
0

13
.2

9
7.

33
−

 0
.0

8
86

38
.3

6
0.

06
51

6
2.

04
46

8.
65

2.
98

0.
18

92
28

.9
7

9.
33

4.
87

0.
04

90
29

.7
7

0.
04

21
2

0.
81

47
10

.5
3

6.
63

0.
18

88
32

.3
1

9.
70

4.
32

−
 0

.0
7

90
31

.6
1

0.
05

89
2

0.
69

48
8.

27
4.

37
0.

26
92

30
.3

6
11

.5
1

4.
91

0.
00

88
32

.0
2

0.
05

37
4

1.
66

49
8.

84
3.

15
0.

49
91

33
.7

1
10

.8
9

3.
65

−
 0

.0
4

89
34

.4
6

0.
06

42
2

0.
75

50
8.

46
2.

92
0.

25
92

30
.2

6
13

.3
2

4.
06

0.
08

87
32

.3
0

0.
19

56
5

2.
04

A
vg

.
0.

05
22

2.
10

0.
58

Sh
ow

n 
ar

e 
th

e 
lo

ca
tio

n 
�

 , s
ca

le
 �

 a
nd

 s
ha

pe
 �

 , f
or

 b
ot

h 
gr

ou
nd

 tr
ut

h 
an

d 
SU

R-
Fe

at
N

et
, t

og
et

he
r w

ith
 th

e 
50

%
 JN

D
 v

al
ue

s 
an

d 
PS

N
R

 a
t t

he
 5

0%
 JN

D
 v

al
ue

. T
he

 B
ha

tta
ch

ar
yy

a 
di

st
an

ce
 m

ea
s-

ur
es

 th
e 

di
ve

rg
en

ce
 b

et
w

ee
n 

th
e 

pr
ed

ic
te

d 
an

d 
gr

ou
nd

 tr
ut

h 
di

str
ib

ut
io

ns
, �

J
N
D
=
|ĴN
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The best prediction result was for image 35, with absolute 
50% JND errors of 0, 0, and 1, Bhattacharyya distances of 
0.0073, 0.0073, and 0.0052, and PSNR differences at the 
50% JNDs of 0, 0, and 0.3 dB for the first, second, and third 
JND, respectively.

The prediction results for a few images were not as good. 
For example, Fig. 9 presents the worst two predictions. The 
worst prediction was for image 12, which had absolute 50% 
JND errors of 27, 13, and 2, Bhattacharyya distances of 
0.4884, 0.2373, and 0.0167, and PSNR differences at the 
50% JND of 2.55, 1.88, and 0.34 for the first, second, and 
third JND, respectively. This may be because the size and 
diversity of the training set are too small for the deep learn-
ing algorithm. We expect that this problem can be overcome 
by training on a large-scale JND dataset.

The overall performance of SUR-FeatNet is displayed 
in Table 3. The mean Bhattacharyya distances between 
the predicted and the ground truth first, second, and third 

JND distributions were only 0.0810, 0.0702, and 0.0522, 
respectively.

Algorithm 1 Baseline method for p% JND prediction
1: image �I Original test image
2: float PSNR[1...N ] � PSNR at p% JNDs in training set
3: T ← 1

N

∑N
n=1 PSNR[n] � PSNR threshold at p% JND

4: function JND(I, T )
5: D ← 0 � Initialize distortion level
6: repeat
7: D ← D + 1 � Increment distortion level
8: QF ← 101−D � JPEG quality factor QF
9: Î ←JPEG−1(JPEG(I,QF)) � Encode / decode
10: until PSNR(Î, I) ≤ T
11: return D � The p% JND is at level D.
12: end function

These performances can be compared with a simple base-
line prediction based on the average PSNR at the 50% JND. 
For that, we use the same data splitting of the k-fold cross 
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Fig. 5  Statistics of experimental results on the MCL-JCI dataset. a 
Histogram of Bhattacharyya distance between the predicted JND dis-
tribution and the ground truth JND distribution. b Histogram of the 

absolute error between predicted JND (50% JND) and ground truth 
JND (50% JND). The GEV distribution is used as distribution model
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Fig. 6  PSNR comparison between the ground truth JNDs and predicted JNDs at first JND (a), second JND (b), and third JND (c) for the MCL-
JCI dataset. The corresponding PLCCs are 0.9771, 0.9721, and 0.9741
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validation. For each source image, one subset of compressed 
images was used for testing, and the remaining nine subsets 
were joined and used together for “training”. The 50% JNDs 
for the test set were predicted by the distortion levels cor-
responding to the average PSNRs at the corresponding 50% 
JNDs in the training set (see Algorithm 1 for the details).

Table 3 reports the average prediction errors in terms 
of distortion levels and PSNR. The images in the MCL-
JCI dataset corresponding to the 50% JNDs predicted by 
the baseline method show an average error in PSNR close 
to 3 dB while those predicted by SUR-FeatNet are much 
smaller, ranging from 0.58 to 0.69 dB.

Results and analysis for JND‑Pano

The overall performance on the JND-Pano dataset is sum-
marized in Table 3. The average Bhattacharyya distance is 
0.1053, the absolute JND error is 8.63, and the PSNR dif-
ference at the JND is 0.76 dB. This demonstrates that our 
SUR-FeatNet also works well for panoramic images and 
head-mounted displays.

Nevertheless, the performance for the JND-Pano data-
set is not as good as that for MCL-JCI. This is because the 
JND-Pano dataset is different in character compared to the 
MCL-JCI dataset: images are panoramic, thus much larger in 
resolution, and the JND samples are obtained using a differ-
ent modality, i.e., head-mounted displays rather than screen 
images. As a result, participants of subjective JND studies 
for JND-Pano may be more likely to overlook differences 
between reference and distorted images. This is supported 
by an analysis of the JND measurements across all images, 
which yielded an average standard deviation of 14.93 in 
JND-Pano, compared to only 10.16 in MCL-JCI.

Table 8 presents the detailed results w.r.t. the first JND 
for each image sequence in the JND-Pano dataset, and the 
statistics are shown in Fig. 7.

Comparison with previous work

SUR-FeatNet outperformed the state-of-the-art PW-JND 
model of Liu et al. [23] for the first and second JND, see 
Table 4, except for the mean absolute error of the predicted 
distortion level of the second JND. There are no results listed 
in [23] for the third JND. Note, that in [23] the ground truth 
JNDs are slightly different from those used for SUR-FeatNet, 
as they had been taken from the model in [14] (Table 2). One 
advantage of our method compared to the work in [23] is 
that it can predict the distortion level at arbitrary percentiles 
(e.g., at the 75% SUR).

SUR-FeatNet also showed a better performance when 
predicting the 75% SUR for the first JND in the MCL-
JCI dataset, compared to our previous model SUR-Net [6] 
(Table 4).

Concluding remarks

Summary

To predict SUR curves, we needed a well-behaved model 
for the curves themselves. This has led us to search for the 
best fitting distribution for the empirical JND data. A well-
fitting distribution improves the modeling capabilities of any 
predictive model used subsequently.

We proposed a deep-learning approach to predict SUR 
curves for compressed images. In a first stage, pairs of 
images, a reference and a distorted, are fed into a Siamese 
CNN to predict an objective quality score. In a second stage, 
extracted MLSP features are fed into a shallow regression 
network to predict the SUR value of a given image pair.

For a target percentage of satisfied users, the predicted 
SUR curve can be used to determine the JPEG qual-
ity factor QF that provides a compressed image, which is 
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Fig. 7  Statistics of experimental results for the JND-Pano dataset. a 
Histogram of Bhattacharyya distance between predicted JND distri-
bution and ground truth JND distribution. b Histogram of the abso-

lute error between predicted JND (50% JND) and ground truth JND 
(50% JND). c PSNR comparison between the ground truth JNDs and 
the predicted JNDs; the PLCC is 0.9651
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Fig. 9  Worst two prediction results according to overall Bhattacharyya distance for the first three JNDs. The first row shows the source images. 
The second, third, and fourth rows correspond to the first, second, and third JNDs
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indistinguishable from the original for these users, thereby 
providing bitrate savings without the need for subjective 
visual quality assessment.

Limitations and future work

The performance of our model is limited by the small 
amount of annotated data available. A large scale JND 

Table 8  GEV distribution model of the first JND for the 40 image sequences of the JND-Pano dataset

Shown are the location � , scale � and shape � , for both ground truth and SUR-FeatNet, together with the 50% JND values and PSNR at the 50% 
JND value. The Bhattacharyya distance measures the divergence between the predicted and ground truth distributions, �JND = |ĴND − JND| , 
and �PSNR = |P̂SNR − PSNR|

Image Ground truth SUR-FeatNet Bhattacharyya �JND �PSNR

k � � � JND PSNR �̂� �̂� 𝜉 ĴND P̂SNR distance (dB)

1 29.63 12.90 0.09 67 33.24 33.03 13.43 0.12 63 33.70 0.0242 4 0.45
2 35.18 13.03 0.01 62 41.09 32.88 12.01 − 0.25 64 40.80 0.0388 2 0.28
3 26.04 6.80 0.53 73 31.82 30.50 11.53 − 0.05 67 32.38 0.0845 6 0.57
4 32.72 12.13 − 0.29 65 30.17 29.74 11.23 0.09 68 29.88 0.0398 3 0.29
5 33.24 13.77 − 0.07 63 33.14 24.68 13.39 − 0.08 72 32.11 0.0490 9 1.03
6 38.12 14.34 − 0.27 58 34.92 24.10 18.08 − 0.24 71 33.71 0.0957 13 1.21
7 30.44 10.74 0.04 67 29.68 42.34 17.77 − 0.20 53 31.02 0.0963 14 1.34
8 38.62 14.03 − 0.48 58 30.15 35.43 13.55 0.01 61 29.88 0.0699 3 0.28
9 47.82 17.18 − 0.37 48 31.47 36.41 15.02 − 0.19 60 30.53 0.0561 12 0.95
10 51.36 19.06 − 0.36 44 39.58 36.44 10.64 − 0.06 61 38.43 0.1538 17 1.15
11 36.30 10.14 − 0.43 62 34.78 33.93 13.02 0.04 63 34.71 0.0987 1 0.07
12 24.46 12.11 − 0.51 73 32.08 39.15 14.50 − 0.02 57 33.62 0.3741 16 1.54
13 39.70 10.69 − 0.65 58 37.59 30.45 11.57 0.13 67 36.76 0.1650 9 0.84
14 29.51 10.30 − 0.19 68 34.02 36.38 12.77 0.04 60 34.69 0.0870 8 0.67
15 36.14 9.92 − 0.32 62 27.82 30.00 9.96 0.06 68 27.34 0.0636 6 0.48
16 40.28 11.89 − 0.23 57 32.53 34.52 11.52 − 0.28 63 32.04 0.0400 6 0.49
17 37.81 13.43 − 0.18 59 30.96 35.72 16.66 − 0.18 60 30.92 0.0152 1 0.04
18 60.23 19.32 − 0.53 35 37.59 49.24 19.92 − 0.46 46 36.63 0.0522 11 0.96
19 44.24 16.07 − 0.37 52 31.98 32.15 11.80 0.14 65 30.83 0.0990 13 1.15
20 44.08 15.01 − 0.26 52 33.16 35.47 18.08 − 0.35 60 32.48 0.0461 8 0.68
21 39.22 17.56 − 0.20 56 30.26 43.01 17.59 − 0.34 52 30.63 0.0135 4 0.37
22 30.85 17.16 − 1.13 66 29.79 49.28 19.62 − 0.31 45 31.26 0.2440 21 1.47
23 38.91 18.06 − 0.44 56 28.97 24.44 15.53 − 0.25 72 27.49 0.1070 16 1.48
24 24.38 12.24 − 0.26 73 33.27 33.25 14.62 − 0.08 63 34.22 0.1023 10 0.95
25 36.19 13.41 − 0.64 61 30.67 34.12 11.81 0.07 63 30.52 0.1217 2 0.15
26 49.02 25.93 − 0.47 44 35.29 37.45 11.58 − 0.22 60 33.93 0.2197 16 1.36
27 35.24 11.90 0.06 62 32.01 32.21 11.08 − 0.20 65 31.74 0.0396 3 0.27
28 42.54 6.89 − 0.51 57 41.89 40.02 16.29 − 0.24 56 41.95 0.2577 1 0.06
29 40.22 20.17 − 0.29 54 37.83 40.32 13.36 − 0.20 56 37.72 0.0382 2 0.11
30 34.49 14.66 − 0.09 62 37.89 37.41 16.04 − 0.10 58 38.22 0.0101 4 0.33
31 42.14 15.15 − 0.29 54 35.92 34.64 13.29 − 0.20 62 35.25 0.0335 8 0.67
32 26.39 5.64 0.93 73 31.55 31.06 12.40 − 0.17 66 32.38 0.1928 7 0.83
33 41.31 15.01 − 0.30 55 35.20 34.87 12.59 −− 0.28 62 34.60 0.0444 7 0.60
34 38.78 12.73 − 1.04 59 32.65 42.39 20.40 − 0.20 52 33.24 0.2886 7 0.59
35 24.82 10.13 0.05 73 31.61 42.45 14.44 − 0.26 54 33.54 0.1920 19 1.93
36 57.31 19.34 − 0.59 38 33.25 34.85 13.87 − 0.20 62 31.45 0.2220 24 1.80
37 35.29 15.13 −  0.46 61 28.81 38.70 13.54 − 0.13 58 29.13 0.0630 3 0.32
38 34.65 13.24 − 0.22 62 31.54 41.20 16.99 − 0.42 55 32.17 0.0361 7 0.63
39 58.57 23.59 − 1.05 36 38.21 41.03 19.27 − 0.48 54 36.42 0.1706 18 1.79
40 40.85 18.90 −− 0.47 54 39.28 45.57 16.59 − 0.14 50 39.52 0.0651 4 0.24
Avg. 0.1053 8.63 0.76
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dataset with a large number of diverse-content reference 
images would significantly improve the performance of our 
model, as well as other potential models.

We assumed that the image compression scheme is lossy 
and produces monotonically increasing distortions as a func-
tion of an encoding parameter. For input images that are 
noisy, compression at high bitrates may smooth the images, 
leading to a higher perceptual image quality. Consequently, 
the psychometric function associated to the distortion will 
not fit well with the applied model.

Our model makes independent predictions for each pair 
of reference and JPEG compression level. The integration 
of these predictions is implemented as an additional step. A 
model that is aware of the relations between the predictions 
at training time could have a better performance. One option 
would be to directly predict the parameters of the analyti-
cal distribution given only the source image, or the source 
image and all its distorted versions, at the same time. Such 
an approach may need more training data.

The proposed method can be easily generalized to predict 
the SUR curves for images compressed with other encoding 
methods, or different distortion types.

We provided results for 50% JND and 75% SUR. Results 
for other percentages can be obtained in a similar way.
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