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Abstract
Scylla paramamosain have been considered as an economic candidate for aquaculture, however, high mortality during early
larval stages exhibits a significant bottleneck to their mass seed production. Operational enzymatic variables were investigated for
further studies on feeding optimization. Ontogenetic change of the digestive system of S. paramamosain was enzymatically
(trypsin, chymotrypsin, pepsin, amylase and alkaline phosphatase) evaluated. Results showed that these enzymes were already
presented in the larvae before exogenous feeding. The first detection after hatching was low activity and gradually increased from
Z3 except trypsin, and chymotrypsin activity increased from Z5 stage. Alkaline phosphatase activity peaked at Z2 and Z4,
followed by a sharp fall in Z5 and megalope. Trypsin and Chymotrypsin activities were also decreased from Z3 to Z5, then
sharply increased from Z5; however, Chymotrypsin activity decreased after megalope stage. Pepsin activity was detectable after
hatching and regularly increased through the larval development. Amylase activity was low from hatching to Z3 and then
suddenly increased. Alkaline phosphatase activity was recorded with the highest activity at Z2 and Z4, then complex variation,
particularly at Z3 and megalope stage. The study constitutes physiological information on ontogenic development as well as the
digestive abilities of mud crab larvae further, facilitates feeding diet formulation and larviculture of this species.
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Introduction

Mud crab (Scylla paramamosain) is an important commercial
species for aquaculture in Southeast Asian countries. Due to
the increase in crab farming, the wild crab seed was
overexploited but still unmet demand (Lindner 2005).
Therefore, there is a requirement to improve the mud crab
hatchery technology for sustainable development of crab cul-
ture. However, the current technology is facingmass mortality
during larval metamorphosis. Many reasons caused this phe-
nomenon, such as vibriosis (Jithendran et al. 2010; Wu et al.
2016), nutrition (Holme 2008; Holme et al. 2009) and water
quality (Li et al. 2008; Li et al. 2012). The major impediment

is high mortality at Zoea 1 and Megalope stage (Keenan et al.
1998; Serrano and Traifalgar 2012); emphasized the roles of
larval ontogenic development and digestive physiological ca-
pacity for larviculture technology improvement.

During planktonic stages (from Zoea 1 to Zoea 5), the
hepatopancreas of mud crab is not fully functional, leading
to the limitation of digestive enzymatic capacities
(Kamarudin et al. 1994; Serrano 2012). Hence it might be
closely related to the larval feeding strategies and trophic sta-
tus (Le Vay et al. 2001; Andrés et al. 2010). Furthermore, due
to the lack of essential enzymes for the hydrolysis of food
particles, live feed become an excellent alternative enzymatic
source to enhance the digestive capacity of the larvae (Holme
et al. 2009; Res 2013).

Give these hypotheses in feeding preferences among dif-
ferent stages in the life cycle of mud crab, the question arises
whether the activity and presence of digestive enzymes were
reflected through the feeding preferences? How is the varia-
tion in levels of enzyme activities among the planktonic
stages? especially at two critical stages as Z1 and Megalope.
Comprehensive knowledge of digestive process could con-
tribute to developing an efficient seed production technology
for S. paramamosain in forming appropriate feeds and feeding
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regimes. Ontogenetic changes in the types and concentrations
of digestive enzymes were indicative of shifts in the ability of
crab larvae to hydrolyse dietary components and consequently
highlight possible shifts in diet (Hammer et al. 2000). Thus,
this study aims to illustrate digestive enzymes activities during
ontogenetic development of mud crab larvae.

Materials and Methods

Larviculture and Sample Collection

The ovigerous crab was obtained from CaMau province, Viet
Nam and separately kept in 100 L tanks after disinfecting by
200 ppm formalin for 10 min. During broodstock selection
and hatchery husbandry practices, crabs were quarantined
and tested by following the standards of testing and assessing
aquatic breeds (The circular No: 11/2014/TT-BNNPTNT).
The crab was daily fed with blood cockles and exchanged
water at 100%. After hatching, the strong photopositive larvae
were collected and reared in 500 L tanks at 300 inds/L of
stocking density and 30 ppt of salinity. Larvae were fed
Artemia (Art) (Vinh Chau strain, Viet Nam) throughout rear-
ing period (Fig. 1). The diameter of decapsulated Artemia
cysts was from 200 to 250 μm, and Artemia nauplii ranged
from 470 to 550 μm, consisting 56.2% of crude protein,
13.4% of lipid, and 14.6% of carbohydrate.

The larval stage of mud crab S. paramamosain consists five
zoeal stages (Z), megalope (M), and then molts into crablet (C)
(Linh et al. 2017). At every stage from Z 1 until Crab 1, the
whole body of crab larvae was poll sampled to 100 mg per
sample in triplicate, and was collected before feeding (wet
weight) and rinsed in saline water, removed water on tissue,
then kept in 1.5 ml tube at −80 °C for enzymatic analyses.

Digestive Enzyme Assays

Pooled samples (the whole larvae was each pooled to 100 mg
per each sample) were prepared in a 1.5 ml tube with 500 μl
demineralized water by homogenization (Saborowski et al.
2006), followed by centrifugation for 30 min at 15,000 g at
4 °C. The extract was transferred to other tubes and proceed

for enzymatic assay in triplicate and repeated three batches of
mud crab. Total protein content was determined according to
the protocol of Marichamy et al. (2011).

Trypsin activity was assayed using Nα-benzoyl-DL-
arginine p-nitroanilide (BAPNA, Sigma B4875) according
to Geiger and Fritz (1988). The 2.25 mL reaction volume
consisted of 1.25 mL substrate solution, 0.1 mL of purified
trypsin solution and buffer. The BAPNA solution was added
to start the reaction for 5 min, then added 0.25 mL of 30%
acetic acid to stop reaction and the absorbance measured at
405 nm. One unit is defined as the amount of trypsin that
cleaves the substrate, yielding 1.0 μmol of p-NA per minute
at 25 °C.

Chymotrypsin activitywas assayed according to Hummel
(1959), reaction mixture comprising1.4 ml Benzoyl-L-
tyrosine ethyl ester (BTEE) 1.07 mM in 50% (w/w) methanol,
1.0 ml 80 mM Tris-HCl buffer (pH 7.8) contained 0.1 M
CaCl2, and 0.3 ml crude enzyme extract in final volume of
2.7 ml was used for the assay. The reaction was stopped by
adding 0.3 ml of 30% acetic acid and absorbed at 256 nm. One
unit will hydrolyze 1.0 μmole of BTEE per minute at
pH 7.8 at 25 °C.

Pepsin activity was measured using hemoglobin as sub-
strate by modification of Worthington (1982) and Suzer et al.
(2007). The assayed enzyme was mixed with the pH 2.0 sub-
strate containing 2% hemoglobin solution in 0.3 N HCl; the
incubation was conducted for 10 min at 37 °C. The reaction
was stopped by adding 5% Trichloroacetic Acid, before
centrifuging at 4000 g for 6 min at 4 °C and absorbed at
280 nm. One unit of pepsin will produce ΔA280 of 0.001 per
minute at pH 2.0 and 37 °C measured as trichloroacetic acid
soluble products using hemoglobin as the substrate.

α-Amylase activity was assayed using EnzyChromTM a-
Amylase Assay Kit (ECAM-100) Quantitative Colorimetric
Amylase Determination (BioAssay Systems, USA), absorbed
at 585 nm. One unit of enzyme catalyzes the production of 1
μmole of glucose per min under the assay conditions.

Alkaline phosphatase activity was analyzed using
QuantiChromTM Alkaline Phosphatase Assay Kit
(DALP-250) Colorimetric Kinetic Determination of
Serum Alkaline Phosphatase Activity (BioAssay Systems,
USA), read at 405 nm. Alkaline phosphatase activity was
expressed as μM of ρ-nitrophenol formation per minute
per microgram of total proteins.

Statistical analysis was carried out with the computer
program Origin 2018 (OriginLab, Northampton,
Massachusetts, USA) and SPSS 24.0 (IBM, Chicago, IL,
USA). One-way ANOVA was used to test the significant
variation between specific activity of enzymes (U/mg pro-
tein) at various larval stages. Differences among treatments
were considered significant at p < 0.05. LSD was applied
to determine multiple comparisons between enzymatic as-
say activities at different stages.

Larval stage

Newly hatching Art (1-2art/ml) 

Art nauplii (1-2 art/ml) 

 Z1   Z3  Z5      Megalope   Crab-1

Art biomass 

Fig. 1 Artemia feeding regime for crab larvae
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Results

Water Parameters

During rearing period, water was sustained at 26.5–29.5 °C of
temperature and 30‰ of salinity. There was no significant
fluctuation of the water quality water at daytime and night
time. Total ammonium (0.1–0.5 mg/L), nitrite (0.3–0.5 mg/
l) and pH (7.2–7.8) were overall stable and within appreciate
ranges (Boyd 1998). During the molting, however, the nitrite
level increased to 0.5 mg/l but later was controlled to near zero
by water exchange.

Enzyme Assay

The activities of digestive enzymes, trypsin, chymotrypsin,
pepsin, and amylase, could be detected, but extremely low
at early stages (from Z1 to Z3), while alkaline phosphatase
remarkably high (Fig. 2). The pepsin activity was regularly
increased and reached a peak (8.32 ± 0.26 U/mg protein) at
Crab 1 (Fig. 5). At the Z1 stage, the specific activity of
pepsin was low (1.69 ± 0.09 U/mg protein). Thereafter, the
activity continuously and significantly increased until the
larvae reach to Crab 1.

In contrast, trypsin and chymotrypsin, amylase and alkaline
phosphatase strongly fluctuated. The trypsin activity was low
in Z1 (0.92 ± 0.05U/mg protein), significantly increased in Z2
(2.43 ± 0.57 U/mg protein) but rapidly decreased from Z3 to
Z5 (1.71 ± 0.42 and 0.99 ± 0.49 U/mg protein, respectively).
After megalope metamorphosis, trypsin activity raised again
and reached the highest level in Crab 1 (3.94 ± 0.06 U/mg
protein) (Fig. 3). The same pattern was expressed for chymo-
trypsin, however, chymotrypsin was low in crab 1 (0.76 ±
0.05 U/mg protein) (Figs. 4 and 5).

Different to trypsin and chymotrypsin, amylase activity
increased after hatching (from 1.09 ± 0.06 U/mg protein in
Z1 to 1.86 ± 0.08 U/mg protein in Z2) but dropped abruptly
in Z3 stage (0.64 ± 0.08 U/mg protein), then sharply increased
to a peak in Z5 stage (9.36 ± 0.08 U/mg protein). However,
the activity did not remain in megalope and crab 1, afterward,
an abrupt decrease was proceeded up to crab 1 (4.21 ± 0.16 U/
mg protein) (Fig. 6).

Despite strong variations, the specific activity of alkaline
phosphatase remained at a high level and significant differ-
ence among metamorphosis stage during ontogeny. From Z1,
the activity increased significantly formed two peaks in Z2
and Z4 (52.42 ± 5.25 and 55.23 ± 10.62 U/mg protein, respec-
tively) (Fig. 7). However, the megalope stage was recorded
with a decrease to a valley of alkaline phosphatase activity
(6.63 ± 3.27 U/mg protein), and then eventually increased in
crab 1 (13.39 ± 0.15 U/mg protein), significantly low com-
pared to zoea stages.

Discussion

Digestive enzyme activity was indicated to be associated with
the development of the digestive tract, genetically modulated
by specific stage and diet composition (Biesiot and Capuzzo
1990; Serrano and Traifalgar 2012). The result from this study
showed that proteolytic enzymes (trypsin, chymotrypsin, pep-
sin), amylase and alkaline phosphatase could be detected after
hatching and varied among different development stages.
These enzymes are responsible for the ability of larvae to
digest and mineralize protein, carbohydrates. The early detec-
tion and fluctuation during larval development of these
assayed enzyme activities show that the enzyme synthesis
during early ontogenic stages is genetically programmed and
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at different time (Biesiot and Capuzzo 1990). The comparable
pattern has been reported on Penaeid shrimp larvae after
hatching (Jones et al. 1997), mud crab Scylla serata larvae
(Hong et al. 1995; Serrano and Traifalgar 2012) and spider
crab, Maja brachydactyla (Andrés et al. 2010).

Metabolism of carbohydrate was determined to be necessary
for decapod larvae and irrespectively of their feeding habits
(Andrés et al. 2010), in which α-amylases have a central phys-
iological role in the primary steps of starch hydrolysis and gly-
cogen storage (Date et al. 2015; Asaro et al. 2018). Previous
studies have presented on various crustacean larvae, either in
penaeid shrimps (Carrillo-Farnés et al. 2007), crabs
(Saborowski et al. 2006; Asaro et al. 2017; Asaro et al. 2018)
or lobsters (Johnston 2003) and carideans (Kamarudin et al.
1994; Romero et al. 2017), ranging from herbivorous, omniv-
orous and carnivorous, respectively. In this study, Amylase with
low level was observed fromZ1 to Z3 indicated the carnivorous
behavior of crab larvae at early stages. However, a sharp in-
crease of amylase level from Z4 to megalope was recorded,
reflected the changing into omnivorous feeding behavior. The

slightly decreasing of ability to digest carbohydrates in
megalope metamorphosis to the first crab, agreed to demon-
strated patterns in Panaeus juponicus and Macrobrachium
rosenbergii larvae (Kamarudin et al. 1994), Scylla serata
(Serrano and Traifalgar 2012).

Phosphatase enzymes play an essential role in chitin syn-
thesis, to convert Dolichol pyrophosphate to Dolichol phos-
phate or Dolichol Phosphate to Dolichol (Urich 1994;
Salaenoi et al. 2012). Dolichol phosphate joined as a carrier
in the pyrophosphate-linked oligosaccharides assembly
(Monin and Rangneker 1974), and an acceptor in the
Dolichyl phosphate glucose synthesis (Morris and
Greenaway 1992; Urich 1994). Alkaline phosphatase also as-
sociates precipitation of calcium phosphate complexes within
the vesicles in calcification (Sandhu and Jande 1982), joins in
the hydroxyapatite crystals formation which maintains phos-
phate, calcium homeostasis and supports for hydrolyzation of
phosphate compounds to supply phosphate for calcification
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process (Mornet et al. 2001; Marcin et al. 2003). The most
considerable change was remarked in Alkaline phosphatase
activity with different larval stages in this study. However,
the operation was maintained at high levels compared to other
enzymes. At Z3 and Z5 metamorphosis to megalope stage,
Alkaline phosphatase activity drastically declined, and mass
mortality of larvae was also confirmed in these periods be-
cause of incomplete molt, which have reported on Scylla
serata (Hamasaki et al. 2002; Suprayudi et al. 2012), on blue
swimming crab Portunus pelagicus (Fujaya et al. 2013).
Therefore, it’s reasonable to hypothesize on the lack of alka-
line phosphatase in critical stages (Z1 to Z3, Z5 to megalope)
closely related to the mortality of larvae. The molting cycle of
decapod was devised in early post-molt, post-molt, inter-molt,
and late inter-molt (Salaenoi et al. 2012; Chamchuen et al.
2014). The alkaline phosphatase activities in different phases
were highly significant, presenting high range at inter-molt,
pre-molt stages extended to late pre-molt and low range at
early post-molt due to the process of deterioration from pre-
molt (Saborowski et al. 2006; Salaenoi et al. 2012). Crab
integument contained a high level of alkaline phosphatase to
transfer phosphate and phosphoryl group from seawater or
among cells into the tissues supplied for phosphate metabo-
lism and bio-mineralization (Salaenoi et al. 2012). The perfor-
mance and rearrangement of the new cuticle during molting
required a supposed increase of alkaline phosphatase, howev-
er, the interrupt of alkaline phosphatase occurred at Z3 and
megalope could lead to incomplete molt syndrome related to
mass mortality during larviculture.

The assayed proteases (trypsin, chymotrypsin, and pepsin)
are typical enzymes in aquatic organisms. Particularly, pro-
teinases present in midgut and stomach at high level to pro-
mote the breaking of alimentary proteins (Saborowski et al.
2006). They have been documented in several decapod

species such as Macrobrachium rosenbergii (Deru and
Wales 1990; Kamarudin et al. 1994), lobster Homams
americanus (Biesiot and Capuzzo 1990), Scylla serata
(Hong et al. 1995; Serrano and Traifalgar 2012), spiny lobster,
Jasus edwardsii (Johnston 2003), blue swimming crab
Portunus pelagicus (Chamchuen et al. 2014). After hatching,
proteinases of mud crab were detected at certain level, ap-
peared in all larval stages and reached to significantly high
activity in crab 1, comparable to Scylla serata (Hong et al.
1995; Serrano and Traifalgar 2012) and Portunus pelagicus
(Chamchuen et al. 2014). It also confirmed the ability to digest
protein at beginning by endogenous proteolytic enzymes.
Moreover, Jantrarotai et al. (2005), investigated the digestive
system of Scylla olivacea by histological method, have report-
ed that anterior midgut and posterior midgut gland did not
performed at Z1 and Z2. These structures were progressively
increased in Z3 to Z5, could result to the fluctuation of trypsin
and chymotrypsin. The expand of hepatopancreas was ob-
served on both sides of the digestive tract from Z3
(Jantrarotai et al. 2005), augured the completion of the devel-
opment of the digestive system. Additionally, the appearance
of the sixth abdominal segment, the highly functional gastric
organ, and hepatopancreas at Z4, mandibular palp at Z5, even-
tually performed of feeding apparatus at Megalope confirmed
the completed development of digestive system (Kumlu and
Jones 1995; Li and Li 1998; Holme et al. 2009). When
reached to crab 1, the high activities of proteinases and amy-
lase were evident for an effective digestion. However, there
was not homogenous among composition enzymes. Pepsin
was recorded with a linear increase while trypsin and chymo-
trypsin showed a strong fluctuation from Z3 to Z5, these re-
sults support the histological findings and describe the func-
tional complexity.

In conclusion, this study presented the lack of endopepti-
dases during larval development of mud crab (Scylla
paramamosain). The larvae could digest external food at Z1,
and the enzymatic activity was significantly increased and
archived at crab 1. However, the activity of examined en-
zymes was low at early stages, and impracticable to stimulate
of enzyme production, suggest that additional enzyme sources
(live feed/ digestive enzymes) should be integrated into diets
for mud crab larviculture.
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