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Abstract The first record of caudal fin-deformed wild fish,
Conger conger (Linnaeus, 1758) from the northern Aegean
Sea, Turkey was reported. The tail-deformed specimen with
370 mm Total length, 24 mm preorbital length, 14 mm eye
diameter and 89 mm head length. The caudal region of the
deformed specimen was completely deformed and fused, and
the tail length of the abnormal fish was 33.3%when compared
to the tail of the normal specimen. Possible reasons that are the
cause of found abnormality such as viral, bacterial or environ-
mental pollution are discussed. The abnormality could be con-
sidered an important indicator of environmentally induced
stress since in the described area there is a significant pollution
of heavy metals. The cause could be a spontaneous genetic
mutation since the finding was a single specimen and not a
frequent state in other fish within the studied area.
Nevertheless, the present finding highlights the need for closer
monitoring of the marine environment and for the identifica-
tion of the specific factor that caused this abnormality.
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The history of documenting fish anomalies is long and since
the sixteenth Century, when interest in this field of knowledge
had started (Berra and Au 1981) a large number of studies
have been made available documenting the presence of vari-
ous types of anomalies in wild fishes (Boglione et al. 2006;

Jawad and Hosie 2007; Jawad and ktoner 2007;
Koumoundouros 2008; Jawad and Al-Mamry 2012; Jawad
et al. 2016). Causes of fish deformities can be assigned to
viruses (Walker and Winton 2010), bacterial infection
(Balebona et al. 1993), parasites (Cunningham et al. 2005),
different types of pollution (Sadler et al. 2001) and radiations
(Anbumani and Mohankumar 2012). Fin anomalies, in gener-
al, are extremely well documented in both wild and reared fish
(Divanach et al. 1996), but a limited number of studies
concerning the caudal fin deformities have been published
(Almatar and Chen 2010; Jawad 2014; Jawad and Al-
Mamry 2012; Jawad et al. 2010).

The European conger,C. conger is a marine species prefers
demersal habitat with an oceanodromous habit and lives in the
depth range from the surface and down to 117 m (Riede 2004;
Mytilineou et al. 2005). The distribution of this species is
confined to the eastern Atlantic Ocean from Norway to the
north to Senegal in the south and also found in the
Mediterranean and Black Seas (Froese and Pauly 2017). It’s
a nocturnal predator feeds mainly on fishes, crustaceans, and
cephalopods (Bauchot and Saldanha 1986; Göthel 1992), and
has one reproductive cycle in its life (Maigret and Ly 1986).
Individuals reaching maturity at 200 mm total length (Froese
and Pauly 2017).

As far as the authors are concerned, there are no previous
skeletal deformities on the record about the European conger.
Therefore, the importance of this study is in the record for the
first time a case of skeletal anomaly involving the posterior
parts of the dorsal and anal fins in addition to the caudal fin in
the European conger from Turkish waters and to describe this
abnormality.

On 1st December 2015, one specimen of C. conger show-
ing caudal fin deformity was caught by a bottom trawl (44 mm
mesh size in cod-end) at depth of 50 m from Çandarlı Bay,
Izmir (38°52′ N - 26°51′ E). A normal specimen was also
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obtained from the same fishing lot used for comparison. The
specimens were fixed in 70% ethanol and deposited in the fish
collection of the Ege University, Fisheries Faculty (ESFM-
PIS/2015–11). The skeleton of both normal and abnormal
specimens was examined by x-ray and measurements were
recorded to the nearest millimeter.

The tail-deformed specimen had the following body mea-
surements: 370 mm Total length, 24 mm preorbital length,
14 mm eye diameter and 89 mm head length, and 23.3 mm
tail length. This specimen is compared to normal fish having
490 mm Total length, 14 mm preorbital length, 8 mm eye
diameter, 65 mm head length, and 70 mm tail length
(Fig. 1a,b). The tail length of the abnormal fish is 33.3% of
the tail of the normal specimen.

Externally, the caudal fin short and the caudal fin rays were
deformed. The connection with both the dorsal and the anal
fins was missing due to the shortening of the caudal fin. The
dorsal and the ventral sides of the body were down-elevated
under the posterior part of the dorsal fin (Fig. 2). The radio-
graph of the abnormal specimens was compared with that of
the normal (Fig. 3,a,b) and showed the following skeletal de-
formities; (1) the last 14 caudal vertebrae appeared to be in-
volved in a severe vertebral deformities; (2) the subsequent
caudal vertebrae showed to have the following anomalies
(counting from backward to forward): V 14, with deformed
centra; V13 and 12, with both deformed centra and it bent
downward; V 11 & 10, coalescence and missing half of their
centra; V9, compressed; and V8–1 were severely deformed so
the shape of their centra is not recognizable; (3) the neural
spines of these vertebrae were deformed, but those of 1–8
vertebrae were severely deformed; (4) the skeleton of the cau-
dal fin was deformed and raised upward. No skeletal deformi-
ties were shown in the other parts of the vertebral column.

This is the first report on the caudal fin anomaly that is
observed in C. conger taken from wild teleosts in the
Turkish waters. It aimed to identify teratogenic caudal fin in
the specimen of studied species and find a possible

relationship between this deformity and several types of envi-
ronmental disorders such as pollutants.

The present case on caudal fin deformity was incidental
and no planned experiment on the impact of malnutrition
and environmental parameters was performed. Hence, it was
not possible to determine the exact reason for the anomaly in
the juveniles of the studied species.

In spite of the presence of a large number of studies on fin
anomalies worldwide, the percentage of the aberration for
each fin is not available. Generally, distribution of the fin
deformities might consider the second next to the vertebral
column abnormalities in fish, which comprise13% of the de-
scribe malformed vertebral columns (Galvan-Magana et al.
1994). The deformities in the caudal fin can develop as a result
of abnormal bending of the posterior end of the notochord
during the yolk-sac stage before the development of the caudal
skeleton (Koumoundouros et al. 1997). Therefore, the fish
specimen examined in the present study might have been liv-
ing for several years with this deformity, and this kind of
malformation would not have interfered with its biological
activities, such as feeding (Ribeiro-Prado et al. 2008).

In nature, there are several potential factors that cause the
caudal fin deformities, among these are the effect of exposure
to light and heat during reproduction (Koo and Johnston
1978) and the pollution with heavy metals (Sloof 1982). In
the Aegean Sea, the variation in water temperature during the
year is obvious, with the extreme low level in the summer time
when temperature and salinity at their utmost levels
(Souvermezoglou et al. 1999; Sunlu 2006). Such variation
will lead to decrease in oxygen level, a case is known as
Bhypoxia^ that in turn, can induce the incidence of
malformations (Eva et al. 2004).

There is a high possibility that the present anomaly in the
European conger was a result of pollution with trace metals.
Izmir bay is reported to have a high level of pollution in trace
metals (Kucuksezgin et al. 2006; Pekey 2006; Kucuksezgin
et al. 2011). The trace can decrease collagen synthesis, cause a

Fig. 1 Abnormal specimen of
Conger conger, 263 mm TL
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protoplasmic poison and change the integrity of the bones
(Bhatnager and Hussain 1977; Luh et al. 1973; Iguchi and
Sano 1982). On the other hand, the genetic factors cannot be
eliminated. Tave et al. (1983) identified a dominant lethal gene
responsible for the ‘saddleback’ phenotype in Oreochfotnisj
attfctis (Steindaehner). Mair (1992) has concluded that a lethal
mutant phenotype controlled by an autosomal recessive gene
with variable expression can cause caudal deformity syn-
drome in Oreochromis niloticus, which can act upon by the
natural selection agents against this recessive gene. Gjerde
et al. (2005) have found that particular vertebral deformities
in the Atlantic salmon are regulated by a considerable additive
genetic constituent. Their work supported the results of
McKay and Gjerde (1986) on the same species and
Heringstad et al. 2003) on others.

To specify the ecological and behavioral impacts of a de-
formed caudal fin of a fish, the normal role of this fin during
the swimming activity of the fish. Different fishes swim in
different ways. A primary grouping marks several modes
among fishes that use their body and caudal fin mainly for
propulsion. The eels and eel-like fishes follow what is called
the ‘anguilliform’ swimming type in which they undulate a
large portion of their bodies (Breder 1926; Webb 1975).

Different fish species having different shapes and sizes of
fins, which signaling evolutionary adaptations for either social
purposes (Bischoff et al. 1985; Partridge and Endler 1987;
Price et al. 1987) or swimming capacities (Beamish 1978;
Yates 1983; Videler 1993). The social importance of Fin
shapes and sizes are socially important in the context of
sexual selection, especially in guppies (Endler 1983;
Kodric-Brown 1985; Nicoletto 1991). On the other

hand, the effects of different fin sizes and/or shapes
on swimming capabilities within species are poorly un-
derstood (Webb 1973; Nicoletto 1991).

During the swimming activity, fin sizes and shapes play a
vital role to control the swimming performance because the
fins conveying to the water a large proportion of the propul-
sive power created by the muscles (Yates 1983; Weihs 1989;
Videler 1993). A positive relationship between the amount of
water accelerated and the size of the fins (Simons 1970; Long
1992; McHenry et al. 1995). Therefore, fish with high aspect
ratios were characterized as fast-swimmers (Weihs 1989;
Videler 1993). Normal swimming speed means the ability of
fish avoid predators finding food, which enhance growth and
other metabolic activities of the fish.

The anguilliform swimmers tend to be elongate with little
or no narrowing at the caudal peduncle. The continuation of
the dorsal and the anal fin with the caudal fin is remarkably
extreme in eels (Helfman et al. 1997). They undulate from
one-third to almost all of their bodies, depending on speed,
often with one or more complete waves present at a time
(Gillis 1998). In the hydrodynamics of the eel-like swimming,
the oscillating nature of the caudal-fin lateral movements pre-
vents the boundary-layer from growing to the thickness ex-
pected for steady-state motion. The consequence of such re-
duced boundary-layer thickness will be an increased drag on
the caudal fin substantially enhancing the total drag of the fish.
This phenomenon has been termed boundary-layer thinning
(Bone, in Lighthill 1971) and has been advanced by these
authors to partially explain the relatively high drag values
computed for swimming fish. The substantial drag caused
by the caudal fin would be reduced by removal of parts of
the caudal fin (Bone, in Lighthill 1971). On another hand,
Breder (1926) and Gray (1968) has noted that caudal-fin
size reduction in fish swimming does not markedly impair
steady, or sustained swimming performance. The effects
of reducing the size of the fin are explicated in terms of
redistribution of thrust-related hydrodynamic loading over
the remaining portion of the tail and the body. This would
change the loading on the muscle system, which is ex-
pected to affect the efficiency of muscular activity (Hill
1950). A change in muscle efficiency implies an alteration
in the amount of metabolically available energy transmit-
ted to the mechanical caudal-propeller system, and conse-
quently a change in metabolic energy expenditure or
thrust/drag relations.

The ecological impact of the deformed caudal fin or the
reduction in its size can be seen clear in the fish performance,
swimming behaviour and spontaneous activity. In fish perfor-
mance, the outstanding swimming capability is could be an
adaptation to the environment the fish living in (Laale 1977).
Usually, the predatory fish are significantly larger than their
prey, to avoid predation, the prey must swim or maneuver
much faster and better than the predator. With individualsFig. 3 Normal specimen of Conger conger, 490 mm TL

Fig. 2 Abnormal specimen of Conger conger, 263 mm TL, tail region

Thalassas (2018) 34:159–164 161



having a lower aspect ratio of the deformed caudal fin, a re-
duction in the lift to thrust will be evident in such individuals
(Weihs 1989; Videler 1993). Also, the deformed caudal fin
will have less number of the wave length of bending than
the normal fin (Simons 1970). Still to say that the smaller
the caudal fin is the less momentum transmission from the
muscles to the water, which results in a reduction in swim-
ming capability. Plaut (2000) in his study on zebrafish sug-
gested that approximately 65% of the power transmitted to the
water in individuals with normal caudal fin is derived from the
tail. In fish performance and to be a fast, sustained swimmer,
the fish needs to have non-deformed caudal fin. The fast and
sustained movement is needed in rapid moving water environ-
ment, to escape predators and to catch a passing prey (Plaut
and Gordon 1994).

Baganz et al. (1998) have shown that the size of the caudal
fin affects the activity of the fish. Those with normal fins were
active during their routine hours either day or night, but those
with smaller or deformed fins are less active and can explore
the very restricted area around their living niches.

From above discussion, it is possible to envisage that
the caudal fin is playing an important role in the swim-
ming and the activity of the fish. With the deformed fin
will experience a reduction of swimming capabilities,
resulting in a reduction in activity rates, may decrease
the ability to gather food and make the fish more vulner-
able to predation. Such costs corresponding with in-
creased chances of sexual selection may exemplify the
handicap principle (Zahavi 1977; Maynard Smith 1985).

The European conger eel is one of the most abundant
predators that inhabit the continental shelf and the rocky
shelf-slope areas (Xavier et al. 2010). This species feeds
on crustaceans, fish and cephalopods (Cau and Manconi
1984; Morato et al. 1999; O’sullivan et al. 2004; Matić-
Skoko et al. 2012; Sallami et al. 2015). Males and females
differ in their food composition (Matić-Skoko et al.
2012). Such differences are related to the depth as the
two sexes found at deferent depth. In some areas such
as Ireland, this species is considered a specialist feeder
because only a few fish species were found as prey
(O’Sullivan et al. 2004). The results of Matić-Skoko
et al. (2012) reflect the adaptability of the conger eel
and might also partially explain the broad distribution of
the species (Xavier et al. 2010). It is also found that this
species is foraging close to rocky areas, where they have
the ability to obtain refuge in rocks, the prey items come
from the area where the fish are collected (Mytilineou
et al. 2005). Such feeding habit might assist the caudal
fin deformed specimen described in this study to forage
only a little distance from where it lives and therefore do
not need to swim far and fast to obtain food. This is
possibility fits with the well-built body of the specimens
suggesting that it has not been in malnutrition state.
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