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Abstract
The need to urgently find alternative plant-based biodegradable fibres is not just important, it is a pressing necessity. The 
severe environmental damage caused by plastic packaging materials demands immediate action. It is a responsibility that 
everybody should share to reduce the global plastic pollution rate and environmental footprint. Biodegradable films from 
natural and waste products have gained considerable consideration for their ability to guarantee optimal product conservation 
while avoiding any risk of contamination or intoxication. Therefore, this overview addresses recent developments in food 
packaging and the application of sensors to indicate possible packed food spoilage. The new role of food packaging was 
discussed widely, from traditional to bio-based, active and intelligent packaging. Until a few years ago, food packaging 
had the sole purpose of protecting food from external contamination. However, the barrier effect is no longer enough: the 
packaging should act directly on the food and the surrounding space. The interesting innovation that responds to this need is 
active and intelligent packaging, a market with solid growth in recent years. It allows the enhancement of food conservation 
and the detection of pathogens while maintaining good monitoring of the environment inside the package, continuously 
recording the food conditions. This more complete and interactive information is recorded thanks to special analytical 
devices: sensors. They can detect and transmit a message to the consumer about food quality, freshness and safety, thanks 
to the ability to record internal and external changes in the product’s environment. However, these devices are not free from 
limitations, such as costs and performance, which limit their wider use.
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Introduction

The alarming accumulation of plastic debris in the North 
Pacific Ocean, an area twice the size of Texas, serves as a 
stark reminder of the urgent need for sustainable alternatives 
to plastic packaging. This pollution, which harms marine 
life through ingestion and entanglement, is just one of the 
many problems caused by plastic. Microplastics, ingested 
by marine organisms, enter the food chain and potentially 
affect human health. A recent study estimated that humans 
consume tens of thousands of microplastic particles annually 

(Zhao and You 2024). The pollution caused by plastic is not 
only marine. While beneficial for crop yields, agricultural 
plastic mulch can contaminate soil when plastic fragments 
break down. These fragments can affect soil organisms and 
overall soil health. Indeed, plastic residues can persist in the 
soil, affecting its long-term productivity. They degrade into 
microplastics, thus contaminating the soil and affecting its 
health and fertility. These are just some of the many prob-
lems caused by plastic packaging, underscoring the urgent 
need for more sustainable alternatives and better waste man-
agement practices.

The potential of bioplastics to significantly reduce envi-
ronmental impact and provide a sustainable alternative 
to commercial plastic is a beacon of hope in the field of 
food packaging. Bioplastics, produced from renewable 
resources such as corn starch, sugar cane, and cellulose, 
reduce dependence on fossil oil and the overall carbon foot-
print. This potential of bioplastics to revolutionize the food 
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packaging industry is a promising step towards a more sus-
tainable future.

Until a few years ago, the traditional goals of packaging 
have been to protect the food product from external 
biochemical contamination and to provide consumers with 
ease of use during the storage, transport and delivery phases 
(De Paola et al. 2022; Moustafa et al. 2019). Therefore, 
packaging was characterized by a series of characteristics 
that denote a particular propensity for passive action. 
However, a trend of recent decades is to innovate this 
perspective and offer generic protection of the product, 
making them functional and interacting with consumers. 
As consumer concerns about food safety and product 
freshness increased, packaging was needed to monitor 
and communicate food status. Additionally, government 
regulations regarding food safety and preservation have 
pushed the industry to seek more advanced solutions to 
ensure food quality. The challenge of recent years is to 
extend the food shelf-life over time by controlling chemical, 
microbiological, enzymatic, chemical-physical, and 
mechanical phenomena.

Technology, which has become increasingly sophisticated 
over the past years, has the merit of simplifying and 
significantly improving our lives. It plays a fundamental and, 
in some cases, indispensable role in our daily lives and is 
constantly evolving today. It is also increasingly established 
in the packaging in the food and industrial sectors, with the 
creation of increasingly innovative products, referred to as 
“functional packaging” (Biji et al. 2015).

Functional packaging falls into the packaging systems 
capable of constantly monitoring various parameters closely 
correlated with the variation in food storage conditions. 

These systems can acquire and transmit information 
about foods in real time without altering their nutritional 
properties, shapes, or colours. This process can take place 
thanks to the creation of particular, specific devices and 
highly technological indicators external or internal to the 
package, which allow continuous feedback on the state of 
the food to be provided, improving the shelf life and quality 
of the food.

In particular, intelligent packaging provides information 
to the consumer through barcode labels, gas indicators 
to detect or record changes external or internal to the 
packaging, temperature indicators, or biosensors. Moreover, 
developments concerning delayed microbial growth within 
packaging, delayed food oxidation, and slower moisture 
migration in dried products have led to several advances 
in the active packaging field (Alessandroni et al. 2022; 
Ouahioune et al. 2022). Smart packaging comprises both 
active and intelligent packaging systems to provide more 
accurate information about the food product conditions to 
the consumer and display a protective effect over the food 
product through, e.g., antioxidant and antimicrobial agents 
(Rodrigues et al. 2021).

This overview addresses the most critical smart packaging 
systems and their different applications. Bio-packaging and 
smart packaging exploitation have been widely investigated 
and reviewed in past years. However, to our knowledge, a 
comprehensive overview covering all the aspects of novel 
food packaging, from the introduction of bioplastics to 
the innovation of active and intelligent packaging, is very 
rare. Table 1 summarizes the most relevant review papers 
published about innovative food packaging since 2018 to 
elaborate on the originality of the current overview.

Table 1  Summary of review papers about improved food packaging and main topics discussed

References Edible/
bio-
packaging

Active 
packaging

Intelligent 
packaging

Bayram et al. (2021); Chen et al. (2019); Coppola et al. (2021); Hassan et al. (2018); Huang et al. (2019); 
Kumar et al. (2022); Liu et al. (2021); Mangaraj et al. (2019); Matheus et al. (2023); Mohamed et al. 
(2020); Nilsen-Nygaard et al. (2021); Parreidt et al. (2018); Taherimehr et al. (2021); Zhao et al. (2020)

✓ X X

(Asgher et al. (2020); Atta et al. (2022a); Bahrami et al. (2020); Chawla et al. (2021); Guo et al. (2023); 
Huang et al. (2019); Rangaraj et al. (2021); Omerović et al. (2021); Shao et al. (2021); Sharma et al. 
(2021); Vilela et al. (2018); Yildirim et al. (2018)

X ✓ X

(Asgher et al. (2020); Atta et al. (2022a); Rangaraj et al. (2021); Trajkovska Petkoska et al. (2021) ✓ ✓ X
(Cheng et al. (2022); Dodero et al. (2021); Halonen et al. (2020); Kalpana et al. (2019); Khan et al. (2024); 

Konala and Gaikwad (2021); Osmólska et al. (2022); Ozcan (2020); Priyadarshi et al. (2021); Rodrigues 
et al. (2021); Weston et al. (2021); Yousefi et al. (2019)

X X ✓

(Drago et al. (2020); Han et al. (2018); Majid et al. (2018); Mustafa and Andreescu (2018); Soltani Firouz 
et al. (2021)

X ✓ ✓

Present overview ✓ ✓ ✓
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The bioplastics

Bioplastics have been proposed as a potential solution to 
mitigate environmental damage, particularly in the single-
use food packaging sector.

General concepts

Bioplastic refers to a category of plastic materials derived 
from renewable biological resources, aiming to reduce 
environmental impact compared to conventional plastics. 
Furthermore, bioplastics can improve the image and 
reputation of companies that adopt more sustainable 
practices, responding to growing consumer expectations 
for greener products and packaging. The properties of 
bioplastics can vary significantly based on their composition 
and manufacturing process. Some may be better suited for 
specific applications than others. However, it is essential to 
note that not all bioplastics are created equally (Ali et al. 
2023; Tennakoon et  al. 2023; Zhao et  al. 2023). Some 
bioplastics may require specific composting conditions to 
degrade fully, while others may not be compostable but 
only biodegradable. Furthermore, the production process 
and disposal of bioplastics must be managed correctly to 
maximize environmental benefits and minimize negative 
impacts. The following subchapters will discuss these 
aspects in detail.

Compostable and biodegradable materials: 
eco‑friendly solutions for modern industry

The applications of bio-packaging fall within the strategic 
plan for the circular economy (Gan and Chow 2018), by pro-
moting waste disposal using compostable and biodegradable 
materials (Fig. 1).

Compostability and biodegradability are distinct 
properties, even if they are often mistakenly used as 
synonyms. The distinction between biodegradable and 
compostable materials is crucial to understanding each 
type’s practical implications and environmental benefits.

A compostable product can be disposed of with organic 
waste and recovered in composting plants. Through the 
composting process, it is then transformed into a new 
material, giving it a new life and giving it the name of 
“compost”. Compost is an odourless organic substance 
and is often reused as a fertilizer. This sector’s most used 
compostable materials are BPS (Biodegradable Plastics 
from Starch), used for food packaging and bags, and PHA 
(polyhydroxyalkanoates). The latter are polymers produced 
by microorganisms, used for films and food containers, 
and compostable in domestic and industrial environments. 

Compostable materials require adequate infrastructure 
for industrial or home composting. The absence of such 
structures can limit the effectiveness of composting.

A biodegradable product is defined as one that can 
degrade through processes naturally generated by 
microorganisms such as fungi and bacteria. This mechanism, 
activated automatically, ends without human help and avoids 
contaminating the surrounding environment. Among the 
most used biodegradable materials in the food packaging 
sector, we find PLA (polylactic acid), used to produce 
bottles, cutlery, and food packaging. Decomposable under 
specific industrial composting conditions. Biodegradable 
materials do not always decompose quickly in landfills or 
natural environments. They may require specific temperature 
and humidity conditions to degrade effectively. For example, 
in the case of PLA, high temperatures (around 55–60 °C) 
are necessary for industrial composting. These high 
temperatures accelerate the decomposition of the material 
relatively quickly.

Therefore, bioplastics have one or both characteristics 
and can originate from renewable sources (e.g., vegetable 
or animal origin) and fossils (e.g. oil). Bio-based films are 
specially designed for food packaging and are relatively 
less harmful to the environment (Terzioğlu et al. 2021; 
Yaradoddi et al. 2022).

Renewable natural resources of edible films

There is an ever-greater desire to develop edible packaging 
and films from renewable sources that can improve the 
quality and extend the shelf-life of the products contained 
therein (Claudia Leites et al. 2021). Edible films are made 
using edible biopolymers as a base. The biopolymers used 
for this purpose can be polysaccharides, lipids, and proteins 
(Teixeira et al. 2014). Additives such as plasticizers are 
added to biopolymers and mixed with the basic biopolymers 

Fig. 1  The environmental advantages of using bio-packaging
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to alter some of the most critical physical properties of the 
films obtained. Packaging, being in contact with food, 
represents an ingredient of the food itself. For this reason, it 
is necessary to use compounds appropriate to the application 
(Min and Krochta 2005).

Biopolymers constitute a large family of materials, and 
based on their numerous sources, applications and different 
preparation techniques, they can be divided into three main 
groups (Fig. 2).

Polysaccharides such as cellulose, starch and chitosan 
are among the most used materials for creating edible films 
intended for food preservation. These natural materials offer 
numerous benefits in terms of sustainability, food safety, and 
functionality.

Cellulose is the most abundant polysaccharide present in 
nature, derived mainly from plants. Cellulose-based films 
are transparent and durable and can form an effective barrier 
against oxygen, moisture and microorganisms, helping to 
extend the shelf life of foods. Pereira et al. have created 
a thermally stable membrane based on acetylated banana 
pseudostem cellulose (Pereira et al. 2022). This membrane 
could inhibit the growth of Staphylococcus aureus and 
Escherichia coli on its surface, confirming the potential use 
of these membranes as bio-packaging for food preservation. 
Starch, obtained from sources such as corn, potatoes and 
rice, is also widely used in producing edible films due to 
its biodegradability and ease of processing. Starch films 
can be improved by adding plasticizers and other additives 
to achieve optimal mechanical and barrier properties, thus 
maintaining food freshness. Bajer et al. have verified the 
potential application in the food industry for edible films 
based on potato starch, chitosan and aloe vera gel, obtaining 
a new intelligent material with antimicrobial and antioxidant 
properties that are necessary for food packaging (Bajer et al. 
2020).

Finally, chitosan, derived from the chitin in crustacean 
shells, has excellent antimicrobial and antifungal properties, 

making it ideal for applications in food packaging. Chitosan 
films can inhibit the growth of bacteria and mould, 
extending the shelf life of foods and improving food safety. 
Additionally, chitosan is biodegradable and biocompatible, 
making it a sustainable choice. About this, Diaz-Montes 
et al. have developed sustainable films using a chitosan-
based blend for mushroom preservation. They demonstrated 
that applying dextran/chitosan blend films may be viable as 
a bio-packaging alternative for preserving fresh mushrooms, 
extending their shelf life and quality (Díaz-Montes et al. 
2021).

Manufacturing techniques such as heating, drying, and 
enzymatic action should be appropriate to obtain an edible 
coating for food-grade products. Controlling the conditions 
of the manufacturing process is significant, as any change 
in the treatment conditions can alter the reaction kinetics 
and mechanisms.

The advantages of using biopolymers are innumerable; 
the most important is their much shorter total degradation 
than conventional plastic, which contributes to a less 
polluted ecosystem. However, bio-based plastics are not 
without some disadvantages. They present some limitations 
in processing, and a sore point is their production cost, which 
has limited the growth of this sector. Additionally, some 
bioplastics are only compostable in industrial composting 
facilities and are not always available everywhere, limiting 
their environmental benefit.

Potential applications of edible films in food

Edible films and coatings can be ingested with the product 
in the packaging and can, therefore, be considered food in all 
respects. The main objective of these films is to improve and 
prolong the quality of the food by limiting the transfer of gas, 
humidity and any fats inside the food (Gupta et al. 2022). 
Furthermore, packaging for food use must boast various 

Fig. 2  Classification of biopolymers based on their origin: biomass extract, microbial production, or chemical synthesis
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characteristics, such as excellent mechanical properties, 
thermal stability and good organoleptic characteristics.

An edible film is a thin layer of material made up of 
edible components. The main advantages that distinguish 
these structures are their biodegradability, biocompatibility, 
and minimal toxicity properties (Alkan and Yemenicioğlu 
2016) (Fig. 3).

An edible film is classified according to the structural 
materials used. For this purpose, components of proteins, 
polysaccharides, and lipids are used. These substances are 
added to plasticizing agents (glycerol, fatty acids, sorbitol, 
and glucose), solvents, and various preservative additives. 
These preservative additives play a crucial role in extending 
the shelf life of the food product by inhibiting the growth of 
microorganisms and preventing spoilage. The only solvents 
available are water and ethanol solutions to maintain the 
edibility characteristic.

There are proteins among the most used polymers for 
forming films. These are macromolecules with very specific 
amino acid sequences and, therefore, concrete molecular 
structures. Proteins are the most used resources compared 
to other film-forming resources thanks to the characteristics 
they enjoy. In fact, secondary to quaternary protein 
structures can easily undergo modifications to achieve the 
desired film properties by thermal denaturation, application 
of pressure and irradiation, and mechanical treatments. Such 
modifications and applications can adjust products’ most 
crucial physical properties, such as mechanical properties 
and thermal stability. The primary protein sources used for 

film-forming techniques are derived from a broad spectrum 
of plant and animal sources, including animal tissue, eggs, 
cereals, milk and dairy products. Plant-based proteins and 
polysaccharides have attracted global industry interest. 
In particular, edible films produced from pea protein and 
pea starch have been found to have excellent mechanical 
properties, water vapour permeability, transparency and 
solubility. In this regard, Farshi et al. demonstrated that pea-
based edible films preserve food quality, maintain vegetable 
texture and nutritional content, prevent nuts from rancidity, 
improve fruit freshness, and package dual-textured foods 
(Farshi et al. 2024).

Milk proteins, such as casein or whey proteins, are a 
potential sustainable source of biopolymer derivatives 
(Chaudhary et al. 2022; Kandasamy et al. 2021). Due to their 
various benefits, they have shown great promise in replacing 
plastics in different applications. Besides nutritional benefits, 
casein and whey proteins have versatile physico-mechanical 
properties such as solubility and biodegradability, making 
them ideal for developing several innovative new edible 
food packaging systems (Daniloski et  al. 2021). These 
commercial films are also antimicrobial, shielding foods 
against physical and microbial contamination. This critical 
property extends the shelf life of the food product.

The most relevant trends can be identified following the 
latest advanced studies conducted:

• The versatility of edible films is evident in the diverse 
materials used for food coatings, including starches, 

Fig. 3  Advantages of edible packaging in food applications
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soy proteins, waxes, chitosan, and whey. Recent studies 
have even explored the use of polymeric materials 
for edible film formulation, opening up a world of 
possibilities for food packaging.

• Numerous studies have underscored the protective role 
of edible films in preserving the quality and extending 
the shelf life of various food products. This reassures 
us about the safety and quality of the food we consume.

• The future of food packaging is bright, with numerous 
ongoing research projects harnessing the potential of 
edible films as carriers for bioactive compounds and 
nanoparticles. This research not only instils optimism 
about the future of food packaging but also underscores 
the significant role of these innovative technologies in 
shaping the industry (Falguera et al. 2011).

Regulatory aspects of edible films are crucial to 
ensuring consumer safety and promoting confidence in 
new food packaging materials. A rigorous and transparent 
regulatory framework, close surveillance, continuous 
research, and innovation are essential for the widespread 
adoption of these products. Regulations must balance food 
safety, sustainability and promoting innovation, ensuring 
that edible films can deliver their benefits safely and 
effectively (Koirala et al. 2023; Pei et al. 2024). The main 
regulatory aspects related to edible films are

• Food safety. This is the most critical aspect of the 
regulation of edible films. The materials of which the 
bio packaging is made come into contact with the food; 
for this reason, it must comply with rigorous standards 
that guarantee the absence of risks to human health 
(Roy et al. 2023).

• Authorized ingredients. The regulations specify 
which substances can be used and in what quantities. 
In the United States, for example, ingredients must be 
recognized as Generally Recognized as Safe (GRAS). 
At the same time, they must be included in the positive 
lists of authorized food additives in Europe.

• Labeling and consumer information. Labeling is 
another crucial aspect. Edible film manufacturers must 
provide clear and complete information on the product, 
including ingredients, instructions for use, and any 
nutritional claims.

• Production and hygiene standards. Another essential 
aspect that should not be underestimated is ensuring the 
products are safe, high-quality, and contaminant-free. 
Regular tests are necessary throughout the production 
process to ensure compliance with safety standards.

• Innovation and sustainability. Finally, regulations 
are evolving to keep pace with innovations in the 
food packaging industry and the growing focus on 

sustainability, which has been discussed extensively in 
the previous subsections.

Adopting all these measures has made it possible to 
develop greater environmental awareness on the part of 
consumers. Consumers are increasingly concerned about 
the environmental impact of plastic waste and are more 
likely to choose biopackaging if they are informed about the 
environmental benefits of biopackaging. The biggest limit 
remains the cost. It is a significant factor in the acceptance 
of biopackaging. Often, biodegradable materials are more 
expensive than traditional plastics. Many consumers are 
willing to pay a higher price for eco-friendly products, 
but this willingness can vary based on income and 
environmental sensitivity (Guo et al. 2024; Sonck-Rautio 
et al. 2024; Zhang et al. 2024).

The food packaging

From traditional to smart food packaging

Food packaging is increasingly important in modern society 
to preserve food quality and safety regarding smart delivery 
of nutrients, improvement of nutritional value, consistency 
and texture, and protection of aroma, flavour and other 
ingredients (Primožič et al. 2021). While non-biodegradable 
plastic polymers are commonly used in food packaging, they 
pose significant risks to human health and the environment. 
In contrast, biopolymers, derived from abundant natural 
sources such as plants, food and agricultural wastes, offer a 
sustainable and safe alternative. These biopolymers, based 
on polysaccharides like starch, cellulose, alginates, gums, 
pectins, and chitin/chitosan, or lipids like beeswax, carnauba 
wax, oils, and free fatty acids, are not only environmentally 
friendly but also provide the necessary properties for 
adequate food packaging (De Paola et al. 2021a, b, 2022; 
Liu et al. 2021; Matheus et al. 2023; Parreidt et al. 2018), 
proteins (gluten, soy proteins, zein, casein, whey, gelatin, 
collagen) (Chen et al. 2019) or lipids (beeswax, carnauba 
wax, oils, free fatty acids) (Atta et al. 2022a). Biopolymers, 
with their mechanical, thermal, wetting, sensory, barrier, 
and water vapour permeability properties, find various 
applications in food preservation. They are particularly 
suitable for packaging fruits, vegetables, cheese, meats, 
poultry, and seafood, effectively extending the shelf-
life and maintaining the safety and quality of these food 
products. These biopolymers can be either derived from 
natural sources or synthesized from bioderived monomers 
or produced directly from microorganisms, offering a 
versatile and sustainable solution for food packaging needs 
(Azeredo et al. 2019; Cazón and Vázquez 2021; Mangaraj 
et al. 2019; Nilsen-Nygaard et al. 2021). Therefore, new 
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packaging materials and their application technologies have 
recently been developed for food packaging. Edible coatings 
and nanocomposites are emergent biomaterials that extend 
the shelf-life, safety and quality of food during its life cycle 
(Kumar et al. 2021). Smart food packaging is emerging as a 
novel technology capable of enhancing and monitoring the 
quality and safety of food during its shelf life. It comprises 
active and intelligent packaging systems to provide more 
accurate information about the conditions of food products 
to the consumer. Also, it displays a protective effect over 
the food product through the use of, e.g., antioxidant and 
antimicrobial agents (Rodrigues et al. 2021).

Active food packaging

The demand for convenient, transparent and more sustain-
able packaging has led to developing new packaging tech-
nologies, such as improved packaging. These innovative 
solutions, including active food packaging that incorpo-
rates active agents into packaging materials, are crucial in 
enhancing food safety, stability, functionality and shelf-life, 
reassuring consumers (Yildirim et al. 2018). Typical active 
packaging systems include antimicrobial packaging, antioxi-
dant packaging, carbon dioxide emitters, moisture absorb-
ers, ethylene absorbers, and freshness indicators (Guo et al. 
2023), as summarized in Fig. 4.

For instance, antimicrobial packaging is based on 
the addition of antimicrobial agents—such as essential 
oils, plant extracts, chitosan, enzymes, bacteriocin, and 

inorganic nanoparticles—into films to suppress the growth 
of pathogenic microorganisms and limit or avoid food 
contamination (Chawla et al. 2021; Ju et al. 2019; Sharma 
et  al. 2021; Sung et  al. 2013). Antioxidant active food 
packaging is an alternative to more traditional strategies 
(such as direct addition of antioxidant compounds and 
modified atmosphere) to limit lipid oxidation and consequent 
loss of sensory and nutritional food quality (Gómez-Estaca 
et al. 2014; Sharma et al. 2021).

Bio-composite films based on hydrocolloids as 
biopolymers, clays as reinforcement agents, natural 
antimicrobials, and antioxidants are effective active 
biodegradable packaging materials. (Pinto et  al. 2021). 
Gelatin-based films can be used as active and smart edible 
films thanks to their good mechanical and barrier properties, 
biodegradability, low production cost, and compatibility 
with incorporating antimicrobial and antioxidant agents 
(Said et al. 2023). The addition of essential oils, phenolics 
and other fruit extracts to chitosan-based films effectively 
improves their mechanical, barrier, antimicrobial and 
antioxidant properties (Flórez et al. 2022; Wang et al. 2018). 
Cellulose derivatives—including cellulose acetate, cellulose 
sulfate, cellulose nitrate, methylcellulose, ethyl cellulose, 
carboxymethyl cellulose, and nanocellulose—were 
extensively investigated (Atta et al. 2021a, b, 2022b; Liu 
et al. 2021). They can be carriers of several food additives, 
antimicrobial agents and antioxidants (de Souza et al. 2018). 
In addition, active (antioxidant and antimicrobial) protein-
based materials guarantee food safety and prolong the food 

Fig. 4  Active agents for dif-
ferent active food packaging 
applications (Vilela et al. 2018)
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shelf life by inhibiting or delaying microorganism growth 
and lipid oxidation (Chen et al. 2019).

Nanotechnology has significantly impacted science 
and technology, and its potential in food packaging is 
increasingly being explored. Chitosan and cellulose, which 
have been extensively used in bioplastics production, are 
now being investigated as nanoparticles to reinforce the 
structure and enhance the antimicrobial properties of 
biocomposites. This exploration of nanotechnology in 
food packaging opens up a world of possibilities and will 
intrigue the audience (Garavand et  al. 2022; Vilarinho 
et al. 2018). Bio-nanocomposites are bio-based polymers 
composed of a biopolymer acting as a matrix and a nano-
particle or nano-fibre added as a reinforcement agent to 
improve thermal and mechanical properties, flexibility, gas 
barrier characteristics, biocompatibility, biodegradability, 
eco-friendliness, and cost-effectiveness (Atta et al. 2022a; 
Chawla et  al. 2021; Sharma et  al. 2020; Youssef and 
El-Sayed 2018). Various nanostructures can provide active 
properties to food packaging systems, such as nanoparticles, 
nanoplatelets, nanotubes, nanofibers and nanowires 
(Youssef and El-Sayed 2018). The most investigated bio-
nanocomposites for food packaging applications derive 
from starch and cellulose, PLA, PHB, polycaprolactone 
(PCL) and poly-(butylene succinate) (PBS). Metal (mostly 
Ag) and metal oxide (mostly ZnO and  TiO2) nanoparticles 
are widely used to functionalize polymeric materials and 
obtain innovative food packaging for their thermal stability, 
antimicrobial, optical and catalytic properties (Rhim et al. 
2013). The most promising nanoscale fillers are layered 
silicate nanoclays such as montmorillonite and kaolinite. 
Melanin nanoparticles are other functional materials that 
improve the characteristics of nanocomposites thanks to 
their properties of photosensitivity, light barrier action, free 
radical scavenging, and antioxidant activity (Roy and Rhim 
2022). Moreover, inorganic and metal nanoparticles allow 
to reduce the use of preservatives and inhibit the microbial 
growth (Hoseinnejad et al. 2018). Emergent technology is 
the nano-encapsulation of anti-microbial compounds by 
nano-carriers (Bahrami et al. 2020).

Potential health effects and safety aspects of active 
food packaging systems

Edible films and coatings for food packaging are mainly 
polysaccharides, lipids or proteins, with no negative 
impact on human health. Among them, nano-based food 
packaging has several advantages over traditional packaging 
(Sharma et al. 2017). Nevertheless, the overall effects of 
nanomaterial on human health and environmental safety are 
still not entirely known. The safety of metal and inorganic 
nanoparticles in food packaging needs more research and 
clinical trials before their commercialization. Indeed, the 

direct contact between food and nanocomposites makes the 
migration of nanoparticles from packaging materials into 
food possible, but few studies have focused on this topic. 
The nanoparticle toxicity increases as particle sizes decrease 
(Nile et  al. 2020). Moreover, nanoparticles are highly 
reactive in contact with biological components (Pereda 
et al. 2019), and their specific biokinetics could favour their 
migration from packaging materials to food. It is not fully 
understood if nanoparticles can enter and accumulate in the 
human body, causing cytotoxicity, genotoxicity, apoptosis, 
necrosis, and breakage of DNA strands (Khanna et  al. 
2015). In addition, the behaviour of nanoparticles in the 
environment depends not only on the physical and chemical 
character of the nanomaterial and their concentration but also 
on the characteristics of the receiving environment (Silvestre 
et al. 2011). Due to their small sizes, nanoparticles can be 
released into air, soil and water. Therefore, the toxicological 
effect of nano-based materials on environmental ecosystems 
needs more investigation (de Azeredo et al. 2018; dos Santos 
et al. 2020). Therefore, the risk assessment requires further 
research and detailed analysis before its application (Huang 
et al. 2015; Sufian et al. 2017).

In addition, other active reagents can be released into 
food products, affecting their colour, flavour and toxicity.

Intelligent food packaging

For the food industry, it is essential to guarantee high levels 
of quality and safety. Therefore, it is necessary to have 
technologies capable of ensuring precision and sensitivity at 
the service of product quality, detecting the presence of any 
chemical or biological contaminants quickly and reliably. 
This technology uses indicators and sensors applied to 
the packaging and provides important information on any 
alterations to the food and the degree of freshness of the 
packaged product. Despite this, the sensors most in use are 
made with synthetic materials, which harm the environment 
and the habitat of fauna and flora. Industries and consumers 
are increasingly characterized by a growing level of 
awareness, especially concerning environmental protection 
and food waste reduction. Therefore, as with food packaging, 
the application of bio-based materials as indicators and 
sensors is also emerging.

Classification and application of bio‑based sensors

Intelligent food packaging performs a remarkable task for 
food preservation; it must increase and maintain the shelf 
life of packaged foods by detecting any changes in the con-
ditions of the foods (Sobhan et al. 2021). The latest studies 
have highlighted the development of various bio-based sen-
sors and indicators, such as temperature integrators (TTIs), 
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freshness indicators, pathogen biosensors, etc., with promis-
ing results (Fig. 5).

A bio-based sensor used for food packaging must allow 
real-time monitoring of any degradation of the packaged 
food.

Some of the most used bio-based sensors in food 
packaging are mentioned and described below.

Gas sensors

Suppose the expiry date written on the packaging provides 
fundamental information on the shelf life of the food. In that 
case, the gas sensor can detect and signal any premature 
rancidity of the packaged food. These sensors are suitable 
for monitoring the quality and safety of food by detecting 
and tracking the presence of spoilage gases, such as  CO2 or 
oxygen (Park et al. 2015). The operating principle is simple. 
Generally, sensors are composed of a receptor (whose 
function is to transform physical or chemical information 
into a form of energy) and a transmitter (which converts 
the energy into an analytical, optical, electrical, or thermal 
chemical signal). Carbon dioxide sensors are one of the 
most used gas sensors to determine the level of  CO2 inside 
food packaging. It is primarily used for perishable foods, 
mainly fish and meat; it can be inserted into the package 
and checked with the naked eye (Osmólska et al. 2022). 

Ammonia, a crucial indicator in the meat decomposition 
process, is commonly used to evaluate the freshness of meat. 
Zhou et al. have developed a reliable ammonia sensor based 
on Polyaniline/CuTsPc/AgNPs. Their research has shown 
that the PANI/CuTsPc/AgNPs flexible gas sensor boasts a 
rapid response time (61 s), a quick recovery time (19 s), a 
low theoretical detection limit (0.234 ppm), a high response 
rate (3.6 towards 500 ppm  NH3), and excellent stability at 
room temperature. This system, with its real-time detection 
and monitoring capabilities, offers a dependable solution for 
the food packaging industry, making it a highly promising 
tool for future applications in smart packaging (Zhou et al. 
2024).

Bio‑based sensors for food freshness

Food spoilage has become a significant problem and is 
currently one of the most pressing concerns as it is risky 
to health. The most important quality to measure to ensure 
food safety is its freshness (Faradilla et al. 2021; Felicia 
et al. 2023). The freshness of food can be detected with the 
help of some biosensors suitable for the purpose. These 
bio-based sensors are sensitive, observable with the naked 
eye, and measurable through electronic devices. They are 
designed for fresh foods, such as fruit and vegetables that 
have been recently harvested and processed, and poultry, 

Fig. 5  Classification of smart 
devices used for food spoilage 
detection and monitoring in 
innovative packaging
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meat, and dairy products that have been recently processed 
or slaughtered (Dirpan et al. 2023).

In previous studies, several biosensors have been used 
to determine the freshness of foods; they may be able to 
detect changes in pH, humidity, and temperature. For this 
purpose, various reagents and indicators can be used, 
including bromothymol blue (BB), curcumin, bromocresol 
green (BCG), and enzyme-based reagents.

Fish, for example, is sold globally for its high protein 
content and availability of omega-3 fatty acids. However, 
with today's busy lifestyle, the consumption of packaged 
meals has increased dramatically and you need to be 
sure that packaged fish is still fresh. Sriramulu et al. used 
temperature-based synthesis in combination with microwave 
hydrothermal techniques to synthesize CuO nanoflakes, thus 
solving the fish freshness problem (Sriramulu et al. 2024). 
Despite their usefulness, bio-based sensors that detect the 
freshness of food have some limitations due to their cost.

Time–temperature indicators

Time–temperature indicators (TTIs) are instruments used 
in food packaging to monitor the cumulative exposure of 
a product to specific temperature ranges over time. These 
devices help ensure the quality and safety of food during 
its distribution and storage (Forghani et al. 2021). TTIs 
exploit chemical, enzymatic or physical reactions sensitive 
to temperature and time. The rate of these reactions varies 
with temperature, allowing the TTI to record cumulative 
exposure to different temperatures over time. These reactions 
cause a visible change, such as a colour change, which can 
be easily monitored. The change is gradual and progressive, 
indicating not only whether the food has been exposed to 
high temperatures but also for how long (Gao et al. 2020).

They are generally easy to read and interpret, requiring 
no complicated tools or technical expertise to use effectively. 

TTIs can be produced relatively cheaply, making them 
accessible for various applications in the food industry. 
TTIs are not free from limitations. Indeed, each of them is 
designed for specific temperature ranges and times, which 
may limit their universal applicability. Choosing the appro-
priate TTI type for the particular product and transportation 
conditions is necessary. TTI indicators can be classified in 
Table 2 based on the operating principle.

Biosensors for food contamination

Biosensors are now ubiquitous in various sectors, such 
as biomedical diagnosis for disease monitoring and 
progression. The use of biosensors in the clinical field 
presents numerous advantages compared to traditional 
clinical diagnostics; they have been used as investigation 
tools for recognizing numerous pathologies, monitoring vital 
parameters and dietary-pharmacological therapies through 
the measurement of appropriate biomarkers.

In particular, environmental monitoring and food control 
are two sectors in which the use of biosensors is continually 
growing (Koval et al. 2023). In recent years, an imperative 
need has emerged to improve the sustainability of food 
packaging; the choice of sensors must also reflect this 
essential requirement (Bhalla et al. 2016).

A biosensor is a device made up of a biologically active 
material in contact with a transduction element to detect 
the activity of chemical species present in a given sample 
(Kheyraddini Mousavi et al. 2012).

It comprises a bioreceptor and a transducer, as depicted in 
Fig. 6. A bioreceptor is a molecule (enzymes, cells, micro-
organisms or antibodies) that specifically recognizes the 
analyte. The process of generating the signal (it can be in 
the form of heat, light, pH, change in charge or mass, etc.) 
following the interaction of the bioreceptor with the ana-
lyte is called biorecognition. The transducer converts the 

Table 2  Classification and characterization of the main TTI systems in food quality monitoring (Mohammadian et al. 2020)

TTIs type Function principle Activation conditions Storage conditions Potential drawbacks

Chemical Polymerization-based TTIs Room temperature Low temperature Cost, toxicity
Photochromic-based TTIs Light Room temperature Inaccuracy
Redox reaction-based TTIs Oxygen Oxygen free Inaccuracy

Physical Diffusion-based TTIs Mixture Low temperature Inaccuracy, cost
Nanoparticle-based TTIs Mixture Low temperature Cost, toxicity
Electronic TTIs Mixture Low temperature Inaccuracy, cost

Enzymatic Acid–base reaction-based TTIs Mixture Low temperature Inaccuracy
Redox reaction-based TTIs Mixture Low temperature Inaccuracy

Biological Yeast-based TTIs Mixture Room temperature Inaccuracy
Lactobacillus-based TTIs Mixture Room temperature Inaccuracy

Others Thermochromic polymer/dye blends based TTIs – – –
Photonic lattice changes-based TTIs – – –
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biorecognition event into a measurable signal. This energy 
conversion process is known as the signalling (Sanponpute 
and Wattong 2017).

Depending on the mechanism used, different types of 
transducers can be distinguished (Vasu naik et al. 2017).

Electrochemical transducers. They are further divided 
into:

1. Potentiometric: such transducers consist of a metal wire 
wrapped on an insulating support and a mobile contact 
capable of moving along the conductor. Its operating 
principle is based on the variation of resistance in an 
electrical circuit determined by the movement of the 
object whose position you want to measure;

2. Voltammetric (amperometric): in this case, an 
increase (or decrease) in potential is applied to the 
electrochemical cell until an oxidation (reduction) of 
the substance to be analyzed is observed. This causes a 
peak in the current of the electrochemical cell, the height 
of which will be proportional to the concentration of the 
electroactive material;

3. Conduction: the reaction type measures the conductivity 
and concentration of a substance containing ions.

Optical transducers. They detect light rays and transform 
them into electronic signals. In this case, the main techniques 
used are absorption, luminescence, fluorescence, and SPR 
(surface plasmon resonance) (Vigneshvar et al. 2016).

Thermal transducers’ operating principle involves 
measuring the heat produced or absorbed by the chemical 
or biochemical reaction.

Food safety principles are due to the particular advantages 
of using biosensors. This is thanks to their unique features, a 
reasonable price considering their high efficiency, and low 
energy consumption (Pourmadadi et al. 2023).

With the increase in environmental pollution, another 
concern is the possible contamination of foods caused by 
contaminants, bacteria, and toxins (Curulli 2021), which can 
enter the food chain during the production phases. A risk that 

should not be underestimated is the presence of heavy metal 
compounds, such as lead or mercury, especially in fish. Not 
only that, pesticides and veterinary drug residues are also 
widely used in agriculture, leading to food contamination. 
Rapid detection of food contaminants has become necessary, 
and biosensors are a valid alternative for screening foods before 
the end of their production process. In nature, there are different 
types of bacteria, including pathogenic and beneficial ones, 
and they exist in various habitats: plants, animals and humans. 
Pathogenic bacteria must be detected in the early stages of 
infection. In this regard, new detection approaches involving 
bacteriophages as recognition elements are receiving enormous 
consideration due to the high degree of specificity, accuracy 
and short analysis time (Hussain et al. 2021). Furthermore, 
phages are quickly produced and are sensitive to extreme pH, 
temperature, and organic solvents compared to antibodies. In 
excellent recent work, recent advances in phage-based bioassays 
and biosensors, such as the development of a phage-based 
biosensor for rapid detection of E. coli in water (Farooq et al. 
2018), have been described. The developed procedures based 
on molecular biology make phages a distinctive biomaterial 
for use in diagnostic and research areas, including in the food 
field, especially in bacterial detection. The sensitivity of phages 
towards target bacteria makes them ideal candidates for their 
application in sensor development. Xia et al. developed a 
fluorescence-based biosensor, using DNA molecules to detect 
 Hg2+ ions (Xia et al. 2019). The latter is, in fact, present in large 
quantities in lakes and fresh water, and inevitably, this metal 
will easily be found on our plates, endangering our health.

Food safety is a critical public health issue, with bacteria 
like Staphylococcus aureus posing a significant threat by caus-
ing foodborne illnesses. In response to this, Farooq et al. have 
dedicated part of their research to the detection of S. aureus in 
food samples. Their work, which involves the creation of an 
electrochemical biosensor based on high-density phage parti-
cles in surface-modified bacterial cellulose, has the potential 
to significantly improve food safety by distinguishing live S. 
aureus in a mixture of live and dead cells (Farooq et al. 2020).

Regardless of the technology used, however, all these pack-
aging systems aim to provide the customer and brand with 
the best experience and complete control over product qual-
ity. Although several significant advances have been made in 
several studies regarding the use of biosensors in this field, and 
although there is great promise, the challenges in developing 
smart food packaging are still daunting.

Conclusion and future prospective of smart 
food packaging

Innovative technology in developing smart biodegradable 
food packaging is the trend shortly to meet consumers’ 
demand, ever more sensitive to environmental issues and 

Fig. 6  Basic scheme of a biosensor based on a bioreceptor and a 
transducer, converting the detected analyte information into a signal
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eco-friendly products. Intelligent packaging monitors and 
provides information about the quality of the packaged 
food or its surrounding environment to predict or decide the 
safe shelf life to alert consumers to any food deterioration 
and contamination. Such packaging systems contain three 
types of devices: external time–temperature indicators 
attached outside the package; internal oxygen, carbon 
dioxide, microbial, and pathogen indicators placed inside 
the package; and indicators that increase the efficiency of 
information flow and communication between the product 
and the consumer.

Smart packaging is strongly attractive and requires a 
multi-disciplinary approach for the commercialization 
step, requiring the cooperation of food technologists, 
microbiologists, chemists, polymer technologists, chemical 
engineers, and environmental scientists. Most studies on 
smart food packaging have been conducted at the laboratory 
scale, and commercial applications are still very limited. 
Therefore, scale-up production is an essential current 
challenge, and further research should focus on the industrial 
implementation of such packaging.
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