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Abstract

This paper reports the natural radioactivity of some igneous rocks used as dimension stones, following the trend of other
studies on the evaluation of the risks to human health caused by the rock’s natural radioactivity as a consequence of their
use as decorative stones and building materials in residential or occupational settings. The whole rock composition of the
studied samples was determined using Induced Coupled Plasma Mass Spectrometry ICPMS. Gamma-ray spectrometry has
been utilized to determine the *° K, 2°Ra, and 2*Th activity concentrations in 96 rock types collected from 18 localities. The
following activity concentration range was found: 14.88—4148 2*°Ra, 4.78-192.08 **2Th, and 206.34-2128.61 “°K Bq/kg.
These data were used to measure Raeq, H,, and Iy, besides other parameters, which were compared with the threshold limit
values recommended by UNCEAR. They have been exceeded in samples of Qatar, EIDib, and ElGara ElSoda. The results
indicated that most of the studied rocks do not present a risk to human health and may be used indoors. The rocks yielded
indices above the threshold limit values recommended and could be used outdoors without any restrictions. These findings
contribute valuable insight into decision-making processes when using the examined material in the construction of schools,
hospitals, museums, factories, and monuments, particularly regarding material safety and radiological risk management.
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Introduction

There is no place on earth that is free from radioactivity.
Radionuclides such as 2*8U, 2%2Th, and *°K emit gamma
radiation and their activity concentrations vary from place
to place. Soil that contains naturally occurring radionu-
clides above the maximum permitted exposure limit can be
very dangerous and can affect people’s health living in that
place. This can pose a serious hazard if they are present
in high concentrations. Industrial processes such as cement
production, mining, oil and gas exploration, and fertilizer
production enhance the concentration of the radionuclides
(Abbady 2004; Abdul Aziz and Khoo (2018). Consequently,
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it is crucial to measure the radioactivity levels in rock mate-
rial to assess their radiological hazards. The knowledge of
the amount of natural activity present in rocks used for any
application is of prime importance in determining their
appropriateness. Public concern led to the engagement of
many research teams to measure the natural radioactivity in
building materials, underground water, minerals etc. These
studies include the works of Abdel Gawad et al. (2023),
Taalab et al. (2023), Abed et al. (2022), Awad et al. (2022),
Kammar et al. (2022), Agbalagba et al. (2014), Ravisankar
et al. (2014), Merle and Enn (2012), Viruthagiri (2011), El-
Taher et al. (2010), Prasong and Susaira (2008), Zalewski
et al. (2001), among others.

In crystalline rocks, most of the uranium is incorporated
into accessory minerals such as monazite, allanite, sphene
and zircon so that uranium is not readily accessible for solu-
tion and available to secondary mineralization processes
(Speer et al. 1981).

The occurrence of naturally occurring radionuclides in
construction materials leads to radiation exposure both in
outside environments and inner buildings. This is mainly
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due to gamma radiation of *“°’K and members of the U and
Th decay series.

Igneous rocks have been extensively used in Egypt as
building materials, with granites representing the majority
of them. In general, granites are widely recognized to exhibit
high levels of U and Th due to the characteristics of the
genetic magma and associated tectonic environment.

Rocks generated in the crust are more enriched in radio-
elements than those formed in the mantle, as a consequence
the magma’s partial melting and fractional crystallization
concentrated them in the liquid phase enhanced in silica.

This paper aims to contribute to a better understanding of
the radioactivity of some igneous rocks provided by distinct
tectonic environments and commonly used as ornamental or
building materials.

General geology

The Eastern Desert of Egypt is a part of the Arabian Nubian
Shield. It was classified into three provinces (north, central
and south) depending on the variation in lithology and tec-
tonic environments (Stern and Hedge 1985; El Gaby et al.
1988). The border between the NED and CED is demar-
cated by an intrusive contact, while an extensive shear zone
separates the CED from the SED (Stern and Hedge 1985;
Fowler et al. 2006). The NED is characterized by ample gra-
nitic plutons (syntectonic granitoids) with different gneissic
compositions (Windley 1977). This part is devoid of the
ophiolitic ultramafics and pillowed tholeiite basalts (Abdel
Meguid 1992; El Gaby et al. 1988; El Gaby et al. 1990;
Ries et al. 1983; Stern 1981). Lithologically, the CED is
composed of larger volumes of ophiolitic sequences and
mélanges, ultramafic rocks and pillowed tholeiite basalts,
as well as significant portions of arc-type volcanic and vol-
canogenic sediments (Sims and James 1984). The pre-Pan-
African medium-grade gneisses characterized the SED ter-
ritory. It includes continental shelf facies (meta-sedimentary
rocks) which have been intruded by a series of calc-alkaline
granitoids (O’Conner et al. 1993).

Most of the southwest of Egypt is a cuesta (small to
medium-high escarpment landscape) of Late Jurassic to
Cretaceous clastics, with extensive sand and gravel sheets.
The Precambrian basement is exposed in some places, cov-
ering an area of about 40,000 km?2 (Klitzcsh and Schandle-
mier 1990). The basement separating the deep intra-cratonic
Dakhla basin (Egyptian side) from the shallower basins of
North Sudan is called “Oweinat- Bir Safsaf- Aswan Uplift”,
this is the oldest tectonic event “Permo-Triassic” in age
(Frantz et al. 1987; Schandlemier and Darbyshire 1984). The
uplift is represented by four large enclaves and numerous
smaller ones: (1) G. Uweinat (35,000 km?); (2) Bir Safsaf
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(2500 km?). (3) G. El Asr (900 km?). (4) G. Umm Shaghir
(600 km?).

Geological settings

Our samples were collected from the younger granites of
the Eastern and Western Deserts (Figs. 1, 3).The samples
covered an area from latitude 27° 52' 55.00” N and longi-
tude 33° 0" 46.90" E (north Eastern Desert NED) to latitude
24° 35" 57.80" N and longitude 34° 9’ 1.60" E (south the
Eastern Desert SED). In the Western Desert, the samples
were collected from latitudes 23° 24’ 8.09” N-23° 11’ 19.
00" N and longitudes 31° 23’ 29.10" E-31° 49" 52.20" E.
Accordingly, it is difficult to give detailed geological settings
for the eighteen localities where the rock samples were col-
lected. Therefore, only outlines of the geological settings and
geochemical characteristics of the granitic samples collected
will be presented here.

Granites are widely distributed in the Neoproterozoic
rocks of Egypt. They constitute about 60% of its plutonic
assemblage (Hussein and EIRamly 1982). The main gra-
nitic masses are exposed in the Eastern Desert of Egypt,
where the granite plutons intruded into the pre-existing
country rocks. Based on their composition, color, and rel-
ative age, the granitoid rocks of Egypt are classified into
older (750-610 Ma) and younger (620-540 Ma) granites
(Akaad and Noweir 1979). They were further classified
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Fig. 1 Google Earth view for the samples’ location
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(Hussein et al. 1982) to (1) subduction-related older gran-
ites; (2) suture-related or post-orogenic younger granites
and (3) intraplate anorogenic younger granites. The older
granites comprise mainly tonalites and granodiorites, with
minor trondhjemite and quartz diorites. According to their
geological setting (Akaad et al. 1979), the younger gran-
ites are classified into: phase (I) granodiorites with minor
monzogranites, phase (II) monzogranites and syenogran-
ites and phase (III) alkali feldspar granites. Recently,
Liégeois and Stern (2010) classified the younger granites
(phase III). A major tectonic transition for the younger
granites was proposed by Stern and Hedge (1985) from
a compressive to an extensional regime at 600 Ma. They
concluded that the Egyptian granites belong to two main
phases of the Pan-African Orogeny: (1) an older group
(715-610 Ma) comprises syn- to late-tectonic granites
forming batholithic masses with wide compositional vari-
ations (trondhjemites to granodiorites with minor gran-
ites), and (2) a younger group (600-540 Ma) includes
post-tectonic pluton to stock-sized granitic bodies (rich
in K-feldspars). Bentor (1985) classified the granites of
the Arabian Nubian Shield into two groups: older syn- to
late-orogenic granites (880-610 Ma), and younger post-
orogenic to orogenic granite (600475 Ma). Loizenbauer
et al. (2001) identified three magmatic pulses in the
Central Eastern Desert, dated at 680 Ma; 620 Ma; and
585 Ma.

Topographically, the collected younger granites in
this study form high relief. They are intruded with sharp
contacts and possess steep walls. They show oval or
elongated shapes enclosing mafic xenoliths, enclaves
and roof pendants of the country rocks. The granites are
pink to red, and medium to coarse-grained (Fig. lA-D).
The younger granites studied are mainly alkali feldspar
granite, followed by syenogranite, monzogranite and
rare granodiorite. Mineralogically, they are composed of
quartz, k-feldspar and plagioclase as essential minerals,
with subordinate biotite, muscovite, hornblende (Fig. 2g),
riebeckite and arfvedsonite (Fig. e). Allanite, zircon,
apatite, sphene, monazite and opaques (iron oxides and
pyrite) are the main accessory minerals. Quartz occurs
as anhedral large crystals interstitial to other mineral
constituents. The potash-feldspars are presented by tabu-
lar orthoclase and microcline perthite crystals. Primary
K-feldspar minerals are usually altered to sericite and clay
minerals (Fig. 2h). The former is corroded by quartz and
plagioclase. Plagioclase forms subhedral tabular crystals
with albite-lamellar twining to oligoclase composition. In
the alkali feldspar granite, quartz is actively intergrown
by feldspar leaving blebs of quartz inside the replacing
alkali feldspar forming micrographic and myrmekitic tex-
tures. Biotite is subordinate (Fig. 2f) and occurs as platy
crystals.

Experimental techniques
Samples collection and preparation

A total of 96 fresh samples were collected from eighteen
localities in the Eastern and Western Deserts. Forty-eight
out of the 96 samples were chemically analyzed, their sam-
pling location is shown in Figs. 1, 3 and Table 1. Samples
from the northern part of the Eastern Desert (NED) were
gathered the (Gebel G.) G. Um Mongul (Mo), G.ELDib
(D), G. El Dokhan (Do), G. Al Reddah (R), and G. Qatar
(Q). The samples from the central part covered the areas:
G. Missikat (M), G. Gidamy (Gd), El Dokhan Volcan-
ics (Wadi ElQueh) (Dv), G. Abu El Tiyur (At), G. Sibai
(Sb), G. Um Naggat (Un), G. Abu Dabbab (Ad), and G.
El Bakreya (Bk). The rocks studied from the southern
part were assembled from G. Hamash (H). In the West-
ern Desert, the samples were chosen from the southern
part where igneous rocks are outcropping: G. El Garra El
Hamra (Gh), G. El Garra El Soda (Gs), G. Um Shagher
(Us), and around Bir Safsaf (Sf).

For the chemical analysis, the representative collected
samples were crushed into a fine powder using a jaw
crusher and then sieved to pass a 75 pm mesh screen. All
samples were dried at a temperature of 110 °C. For gamma
measurement, the samples were sieved by a 200 um mesh
screen. Each sample was weighted and transferred into
an airtight cylindrical plastic container (47.6 mm radius,
82 mm height and 0.5 mm thickness). The samples were
saved for 4 weeks to attain a secular equilibrium between
parents and their short-lived progenies in natural decay
chains.

Geochemical analysis

Chemical analysis for the studied rocks was carried out at
the commercial laboratories OMAC (Loughrea, Ireland).
The major, minor and trace elements were analyzed using
Induced Coupled Plasma Mass Spectrometry (ICP-MS).
Below the detailed analytical technique is given.

The samples were digested with a concentrated mixture
of HNO;, HF, HC1O, and HCI. The digestion was carried
out in two steps. In the first step, the concentrated mixture
of HNO; (3 mL), HF (2 mL) and HCIO, (0.5 mL) was
used. In the second step, the mixture of HNO; (3 mL) and
HF (1 mL) was added. This is followed by digestion using
Aqua Regia (HCI (3 mL): HNO; (1 mL) at 200 °C for 2 h
in a fume hood. After complete evaporation, the residue
was dissolved in 10 mL of 6 M HCI and then dried. The
sample solution was prepared in 20 mL of 3% HNO;. A
blank solution was prepared in the same way. An internal
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Fig.2 a—d Field photos and e-h photomicrographs for some of the studied rocks
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Fig.3 a-d Google Earth views
for samples’ location for Qattar
(NED), Abu El Tiyur (CED),
Hamash (SED) and ElGara
ElSouda (SWD)

standard was spiked into each diluted sample for signal
attenuation correction, due to the presence of various ele-
ments in the samples as well as for possible changes dur-
ing ICP-MS measurement. The instrument was operated in
a gas mode with He (flowing at 5 mL/min) to remove ion
interferences. The ICP-MS detection limit was calculated
as three times the standard deviation of the calibration
blank measurements (n=15). The detection limits varied
from 5 to 0.03 ppm for all elements.

For the gamma-ray spectrometry, each sample was
weighted and transferred into an airtight cylindrical plastic
container. The samples were saved for 4 weeks towards a
secular equilibrium action between parents and their short-
lived progenies in natural decay chains.

Gamma ray spectrometer

Measurements of the activity concentrations of 28U, 2*Th and
40K in Bq.kg™! for the studied samples were performed using
gamma-ray spectrometry. The spectrometer employed for this
analysis was a 33 inch (Nal (T1) Model 802 with a 2048
multichannel analyzer (MCA). Its assembly were sealed tight,
including a high-resolution Nal (T1) crystal, a photomultiplier
tube, an internal magnetic/light shield, an aluminum housing,
a 14-pin connector, a preamplifier, a main amplifier, and an
analogue-to-digital converter with Genie 2000 software. The

detector used had the following specifications: a resolution
of 7.5% as specified at the 662 keV peaks of 137Cs, and an
aluminum window (thickness 0.5 mm, density 147 mg/cm?).
The oxide reflector (thickness 1.6 mm, density 88 mg/cm?).
The magnetic/light shield is composed of concentric lined
steel. The gamma-ray photo peaks corresponded to 1.46 MeV
(40 K), 1.76 MeV (214Bi) and 2.614 MeV (208T]1) for the
activities of *°K, 238U and**?Th, respectively. The sample
measuring time (counting spectrum) was approximately in
the range between 8 and 24 h. The gamma-ray photopeaks
corresponding to 1.4608 MeV (*°K) were taken into account
to compute “°K activity in the samples. These gamma-ray pho-
topeaks 0.6093, 0.1120, and 1.7645 MeV (**Bi) and 0.2952
and 0.3519 MeV (214Pb) were considered in reaching the 28y
activity in the samples. 2**Th activity was reached through
the gamma-ray photopeaks corresponding to 0.3383, 0.9112
and 0.9689 MeV (**®Ac) and 0.5832 and 2.6145 MeV (*®*T1)
and 0.2386 MeV (*'’Pb). The detection limit of the detec-
tor for “°K, 238U and %*°Th was 8.50, 2.21 and 2.11 Bq.kg™!,
respectively. The overall uncertainty of the radiation levels
was calculated using the propagation law of systematic and
random measurement errors. Systematic errors of 0.5-2%
existed in the efficiency calibration, and random errors of up
to 5% existed in the radioactivity readings (Papadopoulos et al.
2017).
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Table 1 The coordinates of the collected samples from the Eastern and Western Deserts

Localities/sym- Rock type Sample no. Plutonic/Volcanic Latitude (N) Longitude (E)
bols
G. Um Mongul  Granite Mo 1 Plutonic 27° 52" 55" N 33°0'46.9"E
Mo Granite Mo 2 Plutonic 27° 52" 55" N 33°0'46.9"E
G. EDib D Pegmatitic D1 Plutonic 27°34'23.3" N 32°55'59.2" E
(Frisch and Syenite
Abdelrahman  Granite D2 Plutonic 27°34'23.3"N 32°55'59.2" E
1999) Granite D3 Plutonic 27°34'23.3" N 32°55'59.2" E
Granite D4 Plutonic 27°34'23.3"N 32°55'59.2"E
Quartz D5 Plutonic 27°34'23.3" N 32°55'59.2"E
Syenite
Syenite D6 Plutonic 27°34'23.3" N 32°55'59.2" E
Older Tra- D7 Volcanic 27°34'23.3" N 32°55'59.2"E
chyte
Younger D8 Plutonic 27°34'23.3" N 32°55'59.2" E
Trachyte
Older Tra- D9 Volcanic 27°35'11.2" N 32°56'1.4"E
chyte
Granite D 10 Plutonic 27° 34" 14.8" N 32°56'7.9"E
Younger D11 Volcanic 27° 34" 14.8" N 32°56'7.9"E
Trachyte
G. Gabal Granodiorite Do 1 Plutonic 27° 16" 50.8" N 33°16'33.9"E
ElDokhan —  gpyolite Do 2 Volcanic 27°17'28.3" N 33°17"1.9"E
]2)5’0(31\)40’51““ Rhyolite Do 3 Volcanic 27°18'23.5" N 33°19'27.2"E
Biotite Do 4 Plutonic 27°18'32.2" N 33°20'9"E
Granite
Granite Do 5 Plutonic 27°18'32.2" N 33°20'9"E
G. AlIReddah R Granite R1 Plutonic 27°10"41" N 33°20' 59" E
Qattar Q (El- Granite Ql Plutonic 27°6.6'31.5" N 33°15'42.6" E
Kammar et al. - Granite Q2 Plutonic 27°6.6'31.5" N 33°15'42.6"E
1997) Quartz Q3 Plutonic 27°5'56.7" N 33°14'472" E
Diorite
Granite Q4 Plutonic 27°5'56.7" N 33°14'472" E
Granite Q5 Plutonic 27°5'56.7" N 33°14'472" E
Granite Q6 Plutonic 27°4'42.6" N 33°14' 527" E
Granite Q7 Plutonic 27°4'47.3" N 33°14'57"E
Granite Q8 Plutonic 27°4'47.3" N 33°14'57.5"E
Granite Q9 Plutonic 27°4'47.3" N 33°14'57.5"E
Granite Q10 Plutonic 27°4"47.3" N 33°14'57.5"E
Rhyolite Q11 Volcanic 27°7"12.2" N 33°17'6.8" E
Granite Q12 Plutonic 27°7"12.2" N 33°17'6.8" E
Granite Q13 Plutonic 27° 7 50.9" N 33°17'579"E
G. Missikat M Granite M1 Plutonic 26°27'28.8" N 33°24'549"E
Awad (2022)
G. Gidamy Gd  Rhyolite Gd1 Volcanic 26°26'6.2" N 33°25'157"E
El Mezayen
(2017)
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Table 1 (continued)

Localities/sym-  Rock type Sample no. Plutonic/Volcanic Latitude (N) Longitude (E)

bols

G. Dokhan Latite Dv 1 Volcanic 26°6'42" N 34°10'57.6"E
zg?,f;[glcéu ony Latite Dv2 Volcanic 26°6' 42" N 34°10'57.6" E
Dv (Ressetar  Trachyte Dv 3 Volcanic 26°6' 42" N 34°10'57.6" E
and Monrad
1982) Rhyolite Dv4 Volcanic 26°6' 22" N 34°12' 14" E

Andesite Dv5 Volcanic 26°6' 22" N 34° 12" 14" E
Andesite Dv 6 Volcanic 26°20' 14.6" N 34°3'35"E
Andesite Dv7 Volcanic 26°19'48.7" N 34°2'54.4" E
Trachyte Dv 8 Volcanic 26°19'48.7" N 34°2'54.4"E
Trachyte Dv9 Volcanic 26°19'48.7" N 34°2'54.4" E
Andesite Dv 10 Volcanic 26°19'48.7" N 34°2'54.4" E
Trachy- Dv 11 Volcanic 26°19'48.7" N 34°2'544"E
Andesite
Rhyolite Dv 12 Volcanic 26°20'14.1" N 34°4' 184" E

G. Abu ElTiyur Granite At Plutonic 25°45'42.6" N 34°12'47.11"E
At (Sidique  Granite At2 Plutonic 25°42'44.1" N 34° 14'42.5"E
etal. 2021) Granite At3 Plutonic 25°43'57.1" N 34°14'10.8" E

Granite At4 Plutonic 25°45'42.6" N 34°12'47.11"E

Sibai Sb Abdel- Granite Sb1 Plutonic 25°41'57.8" N 34°11'56" E
Rahman and Syenite Sb2 Plutonic 25°41'57.8" N 34°11'56" E
El-Kibbi
(2001)

Um Naggat Un  Granite Unl Plutonic 25°29'02.6" N 34°15'21.2" E
(Abdallah Syenogranite  Un 2 Plutonic 25°29' 02.6" N 34°15'21.2"E
et al. 2000) Granite Un 3 Plutonic 25°29'02.6" N 34°15'21.2"E

Granite Un 4 Plutonic 25°29'17.1" N 34°15'24.1"E
Granite Un5 Plutonic 25°28'17.8" N 34°14'20.2"E
Granite Un 6 Plutonic 25°28'17.8" N 34°14'20.2"E
Granite Un7 Plutonic 25°27'54.9" N 34°14'6.5"E

Granite Un 8 Plutonic 25°27'54.9" N 34°14'6.5"E

Granite Un9 Plutonic 25°27'31.5" N 34°14'38.2"E
Granite Un 10 Plutonic 25°28'14.3" N 34°15'52.5"E

Abu Dabbab Ad Granite Ad 1 Plutonic 25°6'12.6" N 34°39'3.8"E

Heikal (2019)  Granite Ad2 Plutonic 25°7'32.7"N 34°37' 46" E
Granite Ad3 Plutonic 25°18'49.7" N 34°31'57.5"E
Syenite Ad4 Plutonic 25°18'58.2" N 34°31'50.2" E
Andesite- Ad 5 Volcanic 25°19'24.3" N 34°37"18.5"E
Basalt
Syenite Ad 6 Plutonic 25°19'48.8" N 34°38'354"E

ElBakreya Bk Granite Bk 1 Plutonic 25°18'46.3" N 33°42'53.1"E
(Abd El-Fatah  Granite Bk 2 Plutonic 25° 18’ 46.3" N 33°42'53.1"E
etal. 2023) Syenite Bk 3 Plutonic 25°18'46.3" N 33°42'53.1"E

Granite Bk 4 Plutonic 25°18'21.2" N 33°42'43.5"E
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Table 1 (continued)

Localities/sym-  Rock type Sample no. Plutonic/Volcanic Latitude (N) Longitude (E)
bols
Hamash H Andesite- H1 Volcanic 24°40'9" N 34°5'8"E
(Gharib et al. Basalt
2021) . .
Andesite H2 Volcanic 24°44' 10.7" N 34°08' 40" E
Andesite H3 Volcanic 24°44'2.4" N 34°09'8.1"E
Basalt H4 Volcanic 24°43'24.9"N 34°08'55.5"E
Andesite- HS5 Volcanic 24°41'459"N 34°07'14"E
Basalt
Basalt H6 Volcanic 24°36'41.6" N 34°00'11.9"E
Trachy-Basalt H7 Volcanic 24°35'57.8" N 34°09'1.6" E
Trachyte HS Volcanic 24°38'9.4"N 34°08'31.3"E
El Garra El Quartz Gh 1 Plutonic 23°23'38.9"N 31°23'29.1"E
Hamra Gh Syenite
Syenite Gh 2 Plutonic 23°23'55.1"N 31°24'1.3"E
El Garra El Syenite Gs 1 Plutonic 23°21'51.0"N 31°18'38.2"E
Souda Gs Syenite Gs2 Plutonic 23°21'51.0" N 31°18'38.2"E
Latite Gs3 Volcanic 23°21'51.0" N 31°18'38.2"E
Latite Gs 4 Volcanic 23°21'51.0" N 31°18'38.2"E
Quartz Gs5 Plutonic 23°21'51.0" N 31°18'38.2" E
Syenite
Syenite Gs 6 Plutonic 23°21'51.0" N 31°18'38.2"E
Granite Gs7 Plutonic 23°21'51.0" N 31°18'38.2"E
Granite Gs 8 Plutonic 23°22'4.8"N 31°19'34.3"E
Latite Gs9 Volcanic 23°22'15.7" N 31°20'18.8" E
Um Shagher Us  Syenite Us 1 Plutonic 23°15'57.3"N 31°28'203"E
Assran (2015)  Granite Us 2 Plutonic 23°16'4.1"N 31°36'21.9" E
Bir Safsaf Granite Sf1 Plutonic 23°11'19.0" N 31°49'52.2"E
Sf(Assran  Granite Sf2 Plutonic 23°11'19.3" N 31°49'33.8" E
(2015)
Granite Sf3 Plutonic 23°11'37.9"N 31°49'254"E

Analytical method

Activity concentration

Radiological hazard

The activity concentration (A) of the rock samples, meas-
ured in Becquerel per kilogram (Bq.kg™!) was determined
using the following equation:

_ Npx 100
g xTxmxI, 1

Np represents the peak counts of the sample minus
the peak counts of the background (BG), Iy denotes the
emitted gamma ray intensity, 7 is the counting time, 1 the
measured efficiency for each gamma line, and m the sam-
ple mass in kilograms (Uosif and El-Taher 2008).
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The radium equivalent activity (Ra,,)

To assess the radiation hazard associated with the build-
ing materials used, the Raeq was estimated, where all the
decay products of *U and ?**Th are in radioactive equi-
librium with their precursors. Ra, is calculated according
to the formula (EC 1999):

Ra,, = Ay + 1.43Ap, +0.0077A, @)

where Ay, Aty,, and Ag speak for the radium equivalent activ-
ity of 238U, 232Th, and “°K in Bq.kg™!, respectively.
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This formula is based on: 1 Bq.kg™! of 23U, 0.7 Bq.
kg™! of 2*’Th and 13 Bq.kg™! of “°K, producing the same
gamma-ray dose rate. This index (Ra,) is related to both
internal (due to the radon) and external gamma doses, it
should have the value of 370 Bq.kg™" for the safe use of
the building materials.

The absorbed dose rates (D) resulting from gamma radia-
tion in the air at a height of 1 m above the ground surface
(UNSCEAR 2000) to fulfil the uniform distribution of the
naturally occurring radionuclides 238y, 232Th, and “°K.
Conversion factors were applied to compute the absorbed
gamma dose rate (D) in air per unit activity concentration
in Bq.kg~! which is 0.462 nGy.h~! for 38U, 0.604 nGy.h~!
for 2*2Th, and 0.042 nGy.h~! for “°K. The calculation of D
can be carried out using the Eq. (KnezZevi¢, et al. 2020).

D = 0.4624,, + 0.604A;, + 0.0417A 3)

where Ay, Apy,, and Ag represent the concentration of 238,
232Th, and “°K in Bq.kg™!, respectively.

The world average (UNSCEAR 2000) value of Dis
reported as 57 nGy.h.™!

The internal hazard index (H;,) quantifies the exposure
to radon and its daughter products. It is determined from
the equation (EC 1999).

g o= Av A Ak
"= 185 T 259 T 4810

“

The External Hazard Index (H,,) assesses exposure to
external gamma radiation. It is calculated using the Eq.

Ay A Ak

H, = i
7370 1 259 4810 )

where Ay, Ay, Ag represent the concentration of 2°8U,
232Th, and “°K in Bq.kg™!, respectively (Beretka and Mat-
thew 1985).

The Gamma Activity Concentration Index (Iy) is used
to evaluate radiation hazards (European Commission).It is
computed according to the Eq.

Ay An Ak

I = — 6
Y300 200 4000 ©)

where Ay, Ap,, and Ay stand for the concentration of 3%U,
232Th, and *°K in Bq.kg™", respectively. The Iy value is cor-
related with the annual dose rate resulting from the excess
external gamma radiation caused by surface materials. Iy
values <2 correspond to a dose rate criterion of 0.3 mSv.
y~!, while Iy values <6 correlated with a criterion of 1 mSyv.

y~L. Iy should be used as a screening tool to identify mate-
rials of concern for construction purposes. Materials with
Iy > 6 should be avoided as it is associated with a dose rate
exceeding 1 mSv.y~!, which is the maximum recommended
for human exposure (El-Taher et al. 2022).

Annual effective dose (AEDE) This parameter examines
the conversion coefficient from the absorbed dose in the
air to the effective dose and the indoor and outdoor occu-
pancy factors. A conversion coefficient of 0.7 SvG.y~! was
utilized for the absorbed dose in air to the effective dose
conversion received by adults. The indoor occupancy fac-
tor was set at 0.8, to indicate that 20% of the time was
spent outdoors and 80% indoors on average worldwide.
This parameter is calculated using Eqs. (7) and (8):

AEDE,,,(uSvy™") = D(nGyh™") x 8760h X 0.7SvGy™" x 0.2 x 10~
(N
AEDE,,(uSvy™") = D(nGyh™") x 8760h X 0.7SvGy™" x 0.8 x 10~
®)
where D and AEDE express the absorbed dose rate and
annual effective dose, respectively. The World average val-

ues (UNCEAR 2000) for indoor and outdoor AEDE are
reported as 450 pSv.y~! and 70 pSv.y~!, respectively.

Excess lifetime cancer risk (ELCR) This index is computed
using the Eq.

ELCR = AEDE x DL x RF C)]

where AEDE substitutes for the annual effective dose, DL
speaks for the duration of life (70 years), and RF serves as
the risk factor for fatal cancer risk per Sievert. A value of
0.05 is commonly used (ICRP 1991) by the public to account
for the probabilistic effects that occur by chance.

The annual gonadal dose equivalent (AGDE) This param-
eter results from the specific activities of 2381y, 232Th, and
40K. It is computed using Eq. (10)

AGDE (puSv.y™") = 3.09A, + 4.18Ap, + 0314A,  (10)

where, Ay, Ap, and Ay, are the concentrations in (Bq.kg™")
for 238U, 2*2Th and *°K respectively.

Results and discussion
Geochemical characteristics of the studied rocks

The chemical composition of representative samples from
the studied localities is given in Table 11. They are highly

@ Springer



Euro-Mediterranean Journal for Environmental Integration

evolved rocks, judging from the elevated SiO, contents. They
show an enrichment in Al,O5. The rocks’ nomenclature was
carried out using the TAS plot (NaO, + KO,/Si0,) (Mid-
dlemost 1994) (Fig. 4a) as well as the Streckeisen diagram
(1979) based on the normative amounts of potash feldspar,
quartz and plagioclase. As shown in Fig. 4a that the rocks
are mainly granite. The rocks plotted in the diorite and gab-
broic diorite fields are actually the volcanic rocks of Dokhan
and Hamash. They are andesite and basaltic andesite. The
rocks magma is mainly ferroan in composition, while the
volcanics plot in the magnesian field (Fig. 4b). The rocks
are peraluminous in composition (Fig. 4c). The majority of
the rocks plot in the high K calc-alkaline field (Fig. 4d). On
the Ga/Al versus Na,O + KO diagram, the rocks occupied
the A-type granites. Some rock samples were plotted within
the I-type granites (Dokhan volcanic and Hamashvolcanics)
(Fig. 4e). On the tectonic setting diagram, they plot mainly
within a plate and few points occupy the volcanic arc field

(Fig. 4f).

The activity concentrations of the studied
radionuclides

Tables 2, 3, 4, 5 list the results and mean values of the activ-
ity concentrations of 238(, 232Th, and *°K for the rock sam-
ples collected from the northeastern, central, southeastern
and southwestern deserts, respectively.

In the North Eastern Desert, G. Qatar (sample Q10)
exhibited the highest activity concentrations of 2381y, 2327,
and *’K measured at 4148.79 +256.38, 192.08 + 13.68, and
2314.01 +478.67 Bq.kg™!, respectively (Table 2).

Moving to the Central Eastern Desert, the highest activ-
ity concentration for ***Th was noted in G. El-Gidamy
(sample Gd1) measured at 58.93 +5.8779 Bq.kg™'G. Um
Naggat, (sample Un7) showed the highest activity con-
centrations for 23U and “°K, measured at 89.64 + 8.79 and
1305.07 +270.16 Bq.kg™!, respectively (Table 3).

In the Southern Eastern Desert, among the rock samples
of G. Hamash, the highest values were recorded in sample
(H2) 20.30+2.88, 20.30+2.88 and 266.51 +55.25 Bq.kg™!
for 28U, 2%2Th, and “°K, respectively (Table 4).

In the Southern Western Desert, G. El Garra El Souda
(sample Gsl) showed the highest activity concentra-
tions for 2*¥U, **Th, and “°K, noted at 183.52+15.15,
159.95+11.13, and 2128.61 +441.54 Bq.kg™!, respectively
(Table 5).

In the following, we compare the activity concentrations
of 238U, 232Th, and *° K, individually, in the studied rock
samples.

The average activity concentrations of >*3U (Tables 2,
3, 4, 5) in the North Eastern Desert rocks (NED) meas-
ured at Um Mongul, EIDib, G. El Dokhan, El Reddah and
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Qatar) were 144.86+11.55 Bq.kg™!. The rocks collected
at Missikat, Al-Gidamy, Volcanics (Wadi EIQueh), Abu El
Tiyur, El Sibai Um Naggat, Abu Dabbab and El Bakreya
in the Central Eastern Desert (CED) showed average val-
ues of 49.48 +5.43 Bq.kg™'. In the Southeastern Desert
(SED), the average measured values for Hamash (H) were
12.68 +2.59 Bq.kg™!, whereas in the Southwestern Desert
(SWD) rocks El Gara El Hamra, El Gara El Soda, Um
Shagher and Bir Safsaf measured 69.46 +7.08 Bq.kg™!. 28U
showed the highest activity concentration in the rocks from
the north, southwest, and central-eastern desert and the least
activity was in the SED. Thus the rock samples studied from
the NED, CED and SWD exceeded the World average value
of 28U (35 Bq.kg™ ).

232Th average activity concentrations of the rock samples
from the North Eastern Desert (NED) was 61.95+5.83 Bq.
kg~!, while the rock samples showed an average of
28.49 +2.88 Bq.kglin the rocks of the Central Eastern
Desert (CED). The average values for the rocks Southeastern
Desert were 6.93 +1.15 Bq.kg™'. Whereas, in the South-
western Desert (SWD), the average values measured were
58.02 n+5.06 Bq.kg™'. The concentration of **Th in the
rocks studied is like that of >*U where they are enriched in
the north and impoverished in the southeastern desert. The
mean value of *Th reported in the rocks of the northeast-
ern desert NED (Missikat, Al-Gidamy, Volcanics (Wadi El
Queh), Abu El Tiyur, El Sibai Um Naggat, Abu Dabbab
and El Bakreya) and southwestern desert SWD El Gara El
Hamra, El Gara ElSoda, Um Shagher and Bir Safsaf sur-
pass the value of the World Reference Standard (50 Bq.kg™")
(UNCEAR 2008).

The average activity concentrations of “’K in the rocks of
the North Eastern Desert (NED) were 1099.88 +227.69 Bq.
kg_l, while in the Central Eastern Desert (CED) rocks,
the average values were 877.85+182.27 Bq.kg™!. In the
Southeastern Desert (SED), the measured values for the
rocks showed an average of 108.87 +23.48 Bq.kg™!, while
in the South Western Desert (SWD), the computed values
were 1144.37 +237.49 Bq.kg™!. The values of *°K in the
rocks under investigation exceeded the Worldwide average
(UNCEAR 2008) of K (400 Bq.kg™") except for the vol-
canic rocks of Hamash in the SED.

Table 6 and Fig. 5 show the results of the natural radio-
activity levels of the investigated granites versus the previ-
ously studied granites compared to those from Egypt and
other countries.

As shown in Table 6, the comparison revealed distinct
patterns of radionuclide concentrations among the rocks
studied. Specifically, the concentration of 233U exceeded the
global average in all regions except in the rocks from SED,
due to the enrichment of uranium-rich accessory minerals
like monazite, zircon, and xenotime in these rocks. On the
other hand, **Th concentrations are higher than the global
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Table 2 Activity concentrations of 228U, 232Th and “°K (in Bq.kg™!) in the Northeastern desert rock samples

Localities Samples Activity concentration in [Bq.kg™!]
Rock D B8y 2Th K
G. Um Mongul Mo Granite Mol 71.34+7.47 44.03+4.46 1028.10+212.86
Granite Mo2 55.09+6.05 57.55+4.42 961.43 +£199.06
Mean 66.21+6.76 50.79+4.44 994.77 +£205.96
G. EDib D (Frisch and Abdelrahman 1999) Pegmatitic Syenite D1 184.49+17.94 120.80+13.71 1496.98 +309.91
Granite D2 63.47+£6.45 38.97+4.38 824.81+170.83
Granite D3 69.90 +6.60 4748 +£4.72 959.46 +198.69
Granite D4 55.39+5.26 35.71+3.03 1244.50 +257.66
Quartz Syenite D5 39.86+2.94 23.45+2.16 1490.36 +308.29
Syenite D6 65.14+6.35 65.12+5.32 1259.70+260.70
Older Trachyte D7 68.01+7.03 67.77+5.41 1287.63 +£266.54
Younger Trachyte D8 115.02+11.46 124.96 +13.97 1262.06 +261.29
Older Trachyte D9 73.43+£6.65 34.72+3.60 947.79 +£196.25
Granite D 10 69.04 +6.89 48.27+4.66 671.20+139.07
Younger Trachyte D11 133.12+12.57 161.17+19.96 1244.78 +257.69
Mean 85.17+8.19 69.86+7.36 1153.57 +238.81
G. Gabal ElDokhan Do (Moghazi 2003) Granodiorite Dol 70.00+6.68 29.37+2.85 932.48 +193.09
Rhyolite Do2 68.02+5.88 42.88 +4.28 1310.00+271.15
Rhyolite Do 3 80.02+7.35 56.28+5.77 1313.19+271.83
Biotite Granite Do 4 74.62 +7.64 84.09+6.94 1198.16 +248.02
Granite Do5 76.49+7.83 93.57+8.06 1203.67 +£249.05
Mean 73.83+8.19 61.24+7.36 1191.50+238.81
G. AlReddah R Granite R1 69.15+6.90 64.39+6.03 1091.40+£225.93
Mean 69.15+6.90 64.39+6.03 1091.40+225.93
Qattar Q (El Kammar et al. 1997) Granite Ql 124.35+10.73 76.86+7.70 1533.18 +317.44
Granite Q2 84.03+8.22 44.40+4.27 1037.07£214.72
Quartz Diorite Q3 81.36+6.41 52.24+5.25 1031.49+213.57
Granite Q4 84.29+7.86 48.81+£5.27 998.22 +206.64
Granite Q5 101.87+£9.79 43.12+4.49 1045.58 +£216.49
Granite Q6 76.49+7.45 72.31+£5.76 908.42+188.11
Granite Q7 58.56+5.73 46.43+£5.76 990.71£205.13
Granite Q8 435.41+£27.09 96.51+£6.72 471.04£97.44
Granite Q9 231.98 +£21.17 32.68+4.35 1126.88 +233.35
Granite Q10 4148.79+256.38 192.08 +£13.68 2314.01 +478.67
Rhyolite Q11 48.86 +4.80 51.75+4.55 998.43 +£206.58
Granite Q12 98.44+6.58 63.39+6.26 1081.24 +223.85
Granite Q13 14.88 +2.23 4.78£0.84 349.73 +72.57
Mean 429.95+28.80 63.49+5.76 1068.15+221.12
Minimum 14.88+2.23 4.78+£0.84 349.73 +72.57
Maximum 4148.79 +256.38 192.08 +£13.68 2314.01 £478.67
Mean 144.86+11.55 61.95+5.83 1099.88 +227.69

average in the rocks of the NED and SWD, but lower in the
CED and SED rocks, suggesting enrichment of the acces-
sory minerals allanite, and monazite minerals in the rock
samples of both parts. Furthermore, “°’K concentrations are
exceled in all studied parts of both desserts, due to the high
concentration of potash feldspars in rocks.
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Radiological hazard parameters

The activity concentrations of naturally occurring radionu-
clides in building materials have been reported in several
publications, which can vary according to the type and ori-

gin of the building material.



Euro-Mediterranean Journal for Environmental Integration

Table 3 Activity concentrations of 2**U, 232Th and “°K (in Bq.kg™") in the rock samples from the Central Eastern Desert

Localities Samples Activity concentration in [Bq.kg™!]
Rock type ID By 22Th 40K
G. Missikat M Awad (2022) Granite M1 64.46+6.24 28.35+3.00 1027.30+£212.69
Mean 64.46 +6.24 28.35+3.00 1027.30+212.69
G. Gidamy Gd El Mezayen (2017) Rhyolite Gd 1 80.99+7.81 58.93+5.87 988.23 +£204.63
Mean 80.99+7.81 58.93+£5.87 988.23 +£204.63
G. DokhanVolcanics (WadiEIQueh) Dv (Ressetar Latite Dv 1 17.61+£3.67 3.22+0.70 361.03 +74.87
and Monrad 1982) Latite Dv2 8.89+4.34 6.73+2.94 319.01:£66.21
Trachyte Dv 3 278 £0.15 8.76 +£1.67 119.24 £32.52
Rhyolite Dv 4 24.37+3.35 10.97+1.38 752.12+155.79
Andesite Dv 5 1.28+1.85 1.28+£0.52 65.55+14.89
Andesite Dv 6 21.98+4.02 7.05+4.97 560.67£116.20
Andesite Dv7 32.14+3.51 13.01+1.30 579.19£120.03
Trachyte Dv 38 8.86+3.79 2.39+1.87 26.28 +£5.62
Trachyte Dv9 8.00+5.63 0.12+0.69 63.48+13.36
Andesite Dv 10 20.55+2.10 20.46 £2.05 550.86+£114.20
Trachy-Andesite Dv 11 22.71+3.07 14.01+1.83 794.30+£164.50
Rhyolite Dv 12 13.89+1.86 11.90+1.60 306.85 £ 63.69
Mean 15.26 +3.11 8.23+1.79 374.88 +£78.49
G. Abu ElTiyur At (Sidique et al. 2021) Granite Atl 41.76 +4.04 28.74+1.78 971.27£201.08
Granite At2 29.64+2.51 11.67+£1.57 887.63+183.66
Granite At3 26.56+2.40 18.71£1.50 933.37+£193.24
Granite At4 38.53+4.18 17.90+£1.74 959.65+198.70
Mean 34.12+3.28 19.25+£1.65 937.98 £194.17
Sibai Sb (Abdel-Rahman and EI-Kibbi 2001) Granite Sb 1 74.30+7.10 54.31+£5.28 1129.10£233.69
Syenite Sb 2 71.46+7.31 52.41+5.03 972.82+201.42
Mean 72.88+7.20 53.36x5.15 1050.96 +£217.56
Um Naggat Un (Abdallah et al. 2000) Granite Un 1 26.80+2.57 12.89+1.64 1041.28 +£215.54
Syenogranite Un 2 42.22+4.39 25.74+2.52 1047.47+216.87
Granite Un3 36.29+3.21 26.03+2.41 1093.04 +£226.28
Granite Un 4 42.59+3.85 28.71+£2.19 1101.94 +228.12
Granite Un5 70.14+5.27 39.39+3.39 1029.70£213.17
Granite Un 6 44.23 +4.71 26.29+1.75 1008.17 +208.74
Granite Un7 89.64+8.79 21.49+1.67 1305.07 £270.16
Granite Un 8 2297+2.19 23.97+2.51 1043.10+215.94
Granite Un9 25.51+1.68 15.55+1.64 1127.96 +233.38
Granite Un 10 66.48 +£6.76 40.63+3.74 880.21£182.27
Mean 46.69+4.34 26.00+£2.35 1067.79 +£221.05
Abu Dabbab Ad Heikal (2019) Granite Ad 1 22.43 +£2.65 7.56+1.54 802.43 +£166.16
Granite Ad2 9.42+3.88 1.42+£0.28 148.41+30.92
Granite Ad3 26.48+2.45 25.61+2.57 862.38+178.52
Syenite Ad 4 22.19+2.38 5.34+£0.95 761.08 +157.60
Andesite-Basalt Ad 5 69.69+19.29 0.02+£0.00 92.82+39.20
Syenite Ad 6 18.93+7.71 5.20+3.26 843.25+174.59
Mean 28.19+6.39 7.52+1.44 585.06+124.50
El Bakreya Bk (Abd El-Fatah et al. 2023) Granite Bk 1 71.68 +6.48 32.83+2.41 997.84 +£206.41
Granite Bk 2 46.73 +4.68 29.82+1.70 962.71£199.35
Syenite Bk 3 54.79+5.10 25.21+£2.76 960.41+198.88
Granite Bk 4 39.85+3.97 16.81+1.50 1041.27£215.57
Mean 53.26+5.06 26.17+2.09 990.56 +205.05
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Table 3 (continued)

Localities Samples Activity concentration in [Bq.kg™']
Rock type ID sy *2Th YK
Minimum 1.28+1.85 0.02+0.001 26.28 +5.62
Maximum 89.64 +8.79 58.93+5.87 1305.07 £270.16
Mean 49.48 +5.43 28.49+2.88 877.85+182.27
Eggﬁ& gﬁzzzdc‘?‘?]zi?;raﬁons Localities Samples Activity concentration in [Bq.kg’l]
Bq.kg™!) in the rock samples Rock type ID By B2Th 40K
from the Southeastern Desert
Hamash H (Gharib Andesite-Basalt H1 15.59+3.40 8.84+0.55 24.49+11.43
etal. 2021) Andesite H2 20.30+2.88 12.81+1.44 266.51+55.25
Andesite H3 9.12+2.33 4.60+3.55 213.94+44.48
Basalt H4 16.47+2.33 9.11+1.21 39.81+8.48
Andesite-Basalt HS 17.35+2.63 9.81+0.82 214.06 +44.53
Basalt H6 1.95+2.26 0.08+0.22 0.20+0.16
Trachy-Basalt H7 6.87+£2.99 1.67+£0.34 0.11+0.16
Trachyte H8 13.82+1.89 8.53+1.06 111.82+23.37
Average 12.68 +2.59 6.93+1.15 108.87 +23.48
Minimum 1.95+2.26 0.08+0.22 0.20+0.16
Maximum 20.30+2.88 12.81+1.44 266.51+£55.25
Average 12.68+2.59 6.93+1.15 108.87+23.48

Table 5 Activity concentrations of 28U, 222Th and “°K (in Bq.kg™!) in the rock samples from the Southwestern Desert

Localities Samples Activity concentration in [Bq.kg™!]
Rock type ID B8y 232Th 40K
El Garra El Hamra Gh Quartz Syenite Ghl 55.30+5.25 49.20+4.04 1211.17 £250.73
Syenite Gh2 43.51+4.29 14.89+2.12 977.52+202.38
Mean 49.40+4.77 32.05+3.08 1094.35+226.56
El Garra El Souda Gs Syenite Gs 1 183.52+15.15 159.95+11.13 2128.61+441.54
Syenite Gs2 74.03+5.61 29.92+2.71 1299.88 +269.04
Latite Gs3 92.86+10.29 114.98 £8.00 1102.64 +228.30
Latite Gs4 13.09+3.50 7.52+£3.42 528.32+109.35
Quartz Syenite Gs 5 38.01+3.93 14.63+£1.31 1379.31£285.54
Syenite Gs 6 87.82+8.59 87.83+5.79 1342.00£277.84
Granite Gs7 52.96+4.78 28.74+£5.85 1351.85+£279.82
Granite Gs 8 50.95+5.33 4491+2.85 1173.72£242.98
Latite Gs9 4.73+£9.96 0.71+1.22 206.34 +50.86
Mean 66.44 +7.46 54.35+£4.70 1168.07 £242.81
Um Shagher Us Assran (2015) Syenite Usl 79.93 +8.36 83.98+5.92 1276.04 +£264.19
Granite Us2 81.13+7.83 87.86+7.49 1149.72 £238.01
Mean 80.53+8.09 85.92+6.70 1212.88 +£251.10
Bir Sa (fsaf Sf (Assran (2015) Granite Sfl 87.89+8.86 75.96+6.11 1080.88 +£227.78
Granite Sf2 86.63+8.35 50.24 £5.59 1020.87£211.35
Granite Sf3 69.82+6.73 53.07+5.52 1204.77 £249.39
Average 81.45+7.98 59.76 +£5.74 1102.17£229.51
Minimum 4.73+£9.96 0.71+1.22 206.34+50.86
Maximum 183.52+15.15 159.95+11.13 2128.61+441.54
Average 69.46+7.08 58.02+£5.06 1144.37+£237.49

@ Springer
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Table 6 The average activity
concentrations of the
investigated rock samples

Country/region

Activity (Bq.Kg™") References

238U 232Th 40K

from the Eastern and Southern
deserts compared with other
countries and world average
values

Central Eastern Desert (CED)
South Eastern Desert (SED)
South Western Desert (SWD)
Saudi Arabia (Granitic Rocks)
South Eastern Desert of Egypt

Saudi Arabia (Igneous and Sedimentary Rocks) 11 12 1172

Nigeria (Granites)
Turkey (Granites)
Egypt (Commercial Granites)

Italy (Commercial Ornamental Stones) 112 107 1063
United States (Commercial Granites)
Greece (granites used as building materials) 64 81 1104

Brazil (commercial granites)

Cyprus (imported granites)

Egypt (Altered Dokhan Volcanics)

Worldwide

Egypt North Eastern Desert (NED)

145 62 1100
49 28 878
13 7 109
69 58 1144

319 487 726

610 110 1157

Present work

Present work

Present work

Present work

Fathallah and Khattab (2023)
Adel et al. (2022)
Al-Zahrani et al. (2020)
Orosun et al. (2019)
Papadopoulos et al. (2017)
Amin (2012)

Marocch et al. (2011)
Kitto et al. (2009)
Pavlidou et al. (2006)
Anjos et al. (2005)
Tzortzis et al. (2003)
Kammar et al. (2022)*
UNSCEAR (2000)

43 18 571
264 207 2542
138 82 1081

31 61 1210

31 73 1648
77 143 1215
2161 495 1086
35 50 400

*Kamar MS, Salem IA, El-Aassy IE, El-Sayed AA, Zakaly HM, Alzahrani AM, Lasheen ESR (2022) An
Investigation of High-Level Natural Radioactivity and Geochemistry of Neoproterozoic Dokhan Volcanics:
A Case Study of Wadi Gebeiy, Southwestern Sinai, Egypt. Sustainability 2022, 14, 9291. https://doi.org/

Activity Concentrations

10.3390/5u14159291
Fig.5 Comparison between the
mean activity concentrations of 10000
the studied radioisotopes from
the rocks from the four parts of
both Deserts compared with the 1000

World average

100 -~

muU

10 +

NED

Tables 7, 8, 9, and 10 exhibit the radiation hazards associ-
ated with the rock samples collected from the North, Cen-
tral, Southeastern, and Southwestern Deserts. The calcula-
tion intends to provide a comprehensive assessment of the
potential radiation risks posed by the investigated rocks.

The radium equivalent (Ra,,) values for the samples
under consideration were carefully examined following
the recommended safety limit of 370 Bq.kg™' (UNSCEAR
2000). The majority of the samples demonstrated activity
Ra,, values below the safety threshold, indicating an accept-
able level of radiation. However, several exceptions were
observed, as the samples from G. El Dib (D1, D§, and D11)

CED SED SWD

HTh

mK

World Average

were estimated at 472.50, 390.88 and 459.44 Bq.kg™!) and
G. Qatar (Q8 and Q10) (609.69 and 4601.65 Bq.kg™") from
the Northeastern Desert exceeding the safe limit. In contrast,
the rock samples studied from the Central and Southeastern
Desert did not surpass the limit. The rocks of G. El Garra El
Souda (sample Gs1) (576.16 Bq.kg'l) in the Southwestern
Desert showed an elevated activity of Ra., which is attrib-
uted to the higher concentrations of 2**U in rocks.

The absorbed dose rates (D) nGy-h™!. It is important to
note that the mean D values for all measured rocks exceeded
the global average soil value of 59 nGy-h~! reported by
UNSCEAR (2000), except those of Dokhan volcanics (Wadi

@ Springer
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El Queh) and G. Abu Dabbab (27.40 and 41.51 nGy-h_l)
in the Central Eastern Desert, as well as the rocks of G.
Hamash (14.51 nGy-h_l) in the Southeastern Desert. This
indicates a significant radiological risk associated with these
particular types of rocks.

The Outdoor Annual Effective Dose Equivalent (AEDE
ou) (1SV-y~1). All the examined rocks surpassed the World
average value of outdoor AEDE (70 pSv-y™') reported by
UNSCEAR (2000). Except those rocks of Dokhan Volcan-
ics (Wadi EIQueh) and G. Abu Dabbab (33.63 and 50.94
pSv-y~!) in the Central East Desert, as well as the volcanics
of G. Hamash (17.81 pSv-y~!) in the Southeastern Desert.

Concerning the indoor annual effective dose equivalent
(AEDE,,) (uSv-y~'). This parameter showed that many
samples in different localities in the Northeastern Desert
and Southwestern Deserts manifested higher AEDE val-
ues compared to the World average value of indoor AEDE
(450 pSv-y™1), except for the rocks of G. El Gara El Hamra
(427.33uSv-y™!) in the Southwestern Desert. Conversely, in
the Central and Southeastern Desert, all localities displayed
values lower than the World average, except G. El-Gidamy
and G. El Sibai (557.31 and 535.03 pSv-y~!) respectively,
in the Central Eastern Desert.

The excess lifetime cancer risks (ELCR) utilized the cal-
culated annual effective dose equivalent (AEDE) results
for the estimation of the risk associated with the studied
rock samples. Remarkably, the mean ELCR values for most
examined rocks exceeded the World average value of out-
door ELCR (1450) (Qureshi et al. 2014) except Dokhan vol-
canics (Wadi ElQueh), G. Abu Dabbab and G. Abu Eltiyur
(588.46, 891.44 and 1414.28 pSv-y~!) in the Central Eastern
Desert, as well as the rock samples from G. Hamash (311.61
pSv-y~!) in the Southeastern Desert.

Internal and External Hazard Indices (H;,) (H,,). The aver-
age values for the studied rocks (Tables 7, 8, 9, 10) were
below unity, which is the recommended safe limit. However,
the rocks of G. Qatar exhibited mean H;, and H,, values
of 2.79 and 1.63, respectively, indicating a higher level of
internal and external radiological hazards.

Moreover, the Iy values for the rock samples under
investigation are found to be less than 2, suggesting that the
gamma dose originating from these rocks does not exceed
0.3 mSv-y~'.

Annual gonadal dose equivalent (AGDE) (mSv-y~')
mean values exceeded the Global average soil value of
0.3 mSv-y‘1 (Xinwei et al. 2006), except for the Dokhan
Volcanics (Wadi El Queh) (0.20) in the Central Eastern

@ Springer

Desert and the volcanics of G. Hamash (0.10) in the South-
eastern Desert (Tables 11, 12).

The contribution of 228U, 222Th and *°K
in the studied rock samples

Figures 6a—d illustrate the average contribution of 2*%U,
232Th, and “°K for the rock samples from the North, Cen-
tral, Southeastern, and Southwestern Deserts, respectively.
The analysis revealed that the input of **U, 2**Th, and *°K
were 7.65%, 4.81%, and 87.54%, respectively in the rock
samples from the Northeastern Desert. In comparison, they
supplied 5.90%, 2.82%, and 91.28%, respectively to the rock
samples from the Central Eastern Desert. For the Southeast-
ern Desert, the additions were 31.54%, 8.95%, and 59.51%
respectively and for the Southwestern Desert 5.29%, 4.29%,
and 90.42%, respectively. As shown in (Fig. 6) that the high-
est contribution originated from *°K. This isotope occurs in
the potash feldspars in all studied rocks, followed by 23U
(Fig. 6¢), which is the most common isotope of uranium

found in nature, with a relative abundance of 99%. Zircon

mineral (ZrSiO,) contains ppb amounts of >*°U and ***U.
This accessory mineral is the most predominant one in all
igneous rocks, especially granitic rocks. The contribution of
232Th (Fig. 6) was relatively small due to the relative deple-
tion of the accessory minerals bearing thorium in the studied
rock samples.

Pearson correlation between the natural
radionuclides

Pearson correlation for the natural radionuclides (238U,
232Th, and 4OK) are illustrated in Figures A, B, C, and D
for the rocks under investigation. These correlations were
performed to determine the interrelation between the natural
radionuclides and the calculated radiological hazard param-
eters (Fig. 7).

The correlation coefficients between (U, Th), (U, K), and
(Th, K) were found to be 0.622, 0.628, and 0.589 in the rocks
from the North Eastern Desert (NED), while they calcu-
lated 0.761, 0.610, and 0.663 in the Central Eastern Desert
(CED) samples. The correlations between the radioactive
elements in the samples of the Southeastern Desert (SED)
were 0.988, 0.558, and 0.600 and 0.918, 0.817, and 0.677 in
the Southwestern Desert (SWD) samples, respectively. It is
reported (Bashir et al. 2019) that ***U and ***Th are usually
found together in nature, and a good correlation between
them is indicative of common sources, i.e. associated in the
same mineralogical phase. >®U and 2*2Th are positively cor-
related with all calculated radiological parameters. This is
due to the enrichment of *®Uand 232Th, as both play impor-
tant roles in determining the hazards associated with the
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Table 8 (continued)
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Springer

0.35

1027.22

0.32 0.31 0.37

95.03 47.83 58.70 234.79 0.26

1

Ad

Granite

Abu Dabbab Ad Heikal (2019)

0.08

236.47

06 0.09 0.07 0.11

0.

22.21 11.01 13.51 54.05

Ad2

Granite

0.46

1354.25

35 0.42 0.43 0.63

0.

309.54

77.39

63.06

129.50

Ad3

Granite

0.33

959.69

24 0.30 0.29 0.33

0.

88.44 44.69 54.84 219.36

Ad 4

Syenite

0.24

773.28

0.40 0.26 0.65

1

76.84 36.01 44.19 176.75 0.2

Ad5

Andesite-Basalt

0.34

997.72

25 0.30 0.30 0.31

0.

91.29 46.46 57.01 228.05

Ad 6

Syenite

0.30

891.44
2015.72
1726.37

0.40

0.28
0.65
0.56
0.55
0.48
0.56
0.02
0.81
0.53

0.30
0.72
0.58
0.59
0.50
0.60
0.02
0.88
0.56

50.94 203.76 0.23
0.

41.51

83.88

Mean

67
8
8

0.

1.14
0.90
0.89
0.66

53
45
45

k1 195.46 93.86 115.18 460.74
80.38

Bk2

Bk 3
Bk 4

Granite

ElBakreya Bk (Abd El-Fatah et al. 2023)

0.5

394.60 0.

98.65

166.61

Granite

0.5

1716.44
1530.37
1747.23

98.08 392.33 0.

87.45
99.84

79.92
71.26
81.35

164.80

Syenite

0.52

0.39
0.

349.80

144.07

Granite

0.59

0.90
0.02
1.54

0.88

45

399.37

167.73

Mean

0.03
0.

75.10
2445.69
1635.73

0.02
0.65

0.

17.16
559.01

4.29
139.75

3.50
113.88

76.16

6.90
241.35

Minimum

82
55

Maximum

0.

373.88 43

93.47

158.06

Mean

building materials. The poor correlation between 2*>Th and
40K from one side and **®U and 40K from the other were
attributed to the presence of minerals that greatly affect the
mobility of the radionuclides (Stockdale and Bryan 2013).
40K is the most common radionuclide in continental rocks
(such as granitic rock) and dominant in many light and non-
carbonate minerals (Ergiil et al. 2013; Wang et al. 2020). The
concentration of “°K showed significant variability, indicat-
ing that there are notable differences in “°K levels among the
rock samples, due to variations in mineral composition and
geochemical characteristics.

Conclusions

The ??°Ra, 2?Th and “°K activity concentrations in 96 sam-
ples of igneous rocks collected at eighteen areas in Egypt
allowed estimation of the radium equivalent activity (Ra,,),
the absorbed dose rates (D), outdoor annual effective dose
equivalent (AEDE_ ), the excess lifetime cancer risks
(ELCR), internal and external hazard indices (H;,) (H,),
annual gonadal dose equivalent (AGDE). Some rocks (sam-
ples Q8, Q10, D1, D8, D11 and Gs11) from the Qatar, El
Dib, El Garra El Souda areas exhibited values of Raeq>
370 Bg/kg and H,, "1, which are the threshold limits recom-
mended globally, corresponding mainly to high K calc-alka-
line granites. The index of gamma radiation has been related
to the effective dose rate, indicating that the radioactivity
emitted in all studied samples did not exceed the guideline
value of 1 mSv/yr. The exhalation rate of Rn and daughters
varied between < 1, except for one sample from Qatar (Q10).

The results reported here suggest that most of the stud-
ied igneous rocks can be utilized in closed indoor envi-
ronments. In contrast, those exhibiting values of Raeq
370 Bg/kg and Hex "1 could be used in outdoor environ-
ments and indoors with ample ventilation to avoid any risk
of human exposure to *>’Rn and daughters due to their
radiotoxicity.
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Table 9 Radiological hazard parameters of the Southeastern Desert rock samples

Localities Samples Ra,, D AEDEout AEDEin Hex Hin Iy) (I) (ELCR) AGDE
Rock type ID BqKg! nGyh™' pSvy™! pSv.y™! mSv.y~!
Hamash H Andesite-Basalt H1 30.11 13.54  16.62 66.49  0.08 0.12 0.10 025 290.88 0.09
(Gharibetal.  Apdesite H2 59.14 28.05 3442 13767 0.6 021 020 036 60232 0.20
2021 Andesite H3 32.17 1576 1934 7738 0.09 0.11 0.11 0.16 33852 0.11
Basalt H4 3255 1474 18.09 7236  0.09 0.13 0.11 027 31657 0.10
Andesite-Basalt HS5 47.86 2272 27.88 111,52 0.13 0.18 0.16 030 487.90 0.16
Basalt H6 2.08 0.96 1.17 469 001 001 001 002 2054 0.01
Trachy-Basalt H7 9.27 4.19 5.14 20.55 0.03 0.04 003 008 89.92 0.3
Trachyte H8 34.63 1612 19.79 79.14  0.09 0.13 0.12 024 34626 0.11
Mean 30.98 1451  17.81 7123 008 0.2 0.10 021 31161 0.10
Minimum 2.08 0.96 1.17 469 001 001 001 002 2054 001
Maximum 59.14 28.05  34.42 137.67 0.16 021 020 036 60232 020
Mean 30.98 1451  17.81 7123 008 0.2 0.10 021 311.61 0.10

Table 10 Radiological Hazard parameters of the studied rock samples from the Southwestern Desert

Localities Samples Ra,, D AEDEout AEDEin Hex Hin (Iy) (I) (ELCR) AGDE
Rock Type ID Bq.Kg_l nGy.h™! pSV.y‘1 pSV.y‘1 mSv.y_1
ElGarraElHamra Gh Quartz Syenite Gh1 218.92 104.92 128.77 515.07 0.59 0.74 0.73 1.21 225342 0.76
Syenite Gh2 140.08 69.18 84.90 339.59 0.38 0.50 0.46 0.66 1485.72 0.50
Mean 179.50 87.05 106.83 42733 0.48 0.62 0.60 0.93 1869.57 0.63
ElGarraElSouda Gs Syenite Gs1 576.16 268.67 329.72 131890 1.56 2.05 1.94 3.80 5770.17 1.90
Syenite Gs2 21690 105.57 129.56 518.22 0.59 0.79 0.72 1.15 2267.23 0.76
Latite Gs3 342.18 157.56 193.36 773.43 092 1.18 1.16 2.34 3383.77 1.11
Latite Gs4 64.52 32.25 39.58 158.30 0.17 0.21 0.21 026 692.58 0.24
Quartz Syenite Gs5 165.14 82.95 101.80 407.20 0.45 0.55 0.54 0.64 1781.49 0.61
Syenite Gs6 31675 148.65 182.42 729.70 0.86 1.09 1.07 1.98 319242 1.06
Granite Gs7 198.15 97.25 119.35 477.40 0.54 0.68 0.66 0.95 2088.64 0.71
Granite Gs 8 205.55 98.79 121.24 48495 0.56 0.69 0.69 1.11 2121.64 0.71
Latite Gs9 20.62 10.65 13.07 5226 0.06 0.07 0.07 0.06 228.66 0.08
Mean 234.00 111.37 136.68 546.71 0.63 0.81 0.78 1.37 2391.84 0.80
Um Shagher Us Assran (2015) Syenite Us1 29827 13997 171.77 687.10 0.81 1.02 1.01 1.86 3006.05 1.00
Granite Us2 29530 137.69 168.97 67590 0.80 1.02 1.00 1.91 2957.06 0.98
Mean 296.78  138.83 170.37 681.50 0.80 1.02 1.00 1.88 2981.56 0.99
Bir Sa(fsaf Sf Assran (2015) Granite Sf1 279.74 130.80 160.52 642.10 0.76 0.99 0.94 1.82 2809.19 0.93
Granite Sf2  237.08 112.22 137.72 550.90 0.64 0.87 0.80 1.49 2410.18 0.80
Granite Sf3 23848 113.71 139.55 558.20 0.64 0.83 0.80 1.39 2442.11 0.82
Mean 251.77 11891 145.93 583.73 0.68 0.90 0.85 1.57 2553.83 0.85
Minimum 20.62 10.65 13.07 5226 0.06 0.07 0.07 0.06 228.66 0.08
Maximum 576.16  268.67 329.72 131890 1.56 2.05 1.94 234 5770.17 1.90
Mean of WD 240.51 114.04 139.95 559.82 0.65 0.84 0.81 1.44 2449.20 0.82
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