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Abstract
Microalgae have many characteristics that make them an excellent choice for use as a renewable energy source. Many recent 
studies have focused on obtaining lipids from microalgae, by stress conditions such as reducing the availability of nutrients 
in culture media, particularly nitrogen and phosphorus. This is a key step in the production of biodiesel feedstocks from 
microalgae that needs to be better understood. In this study, a strain of Chaetoceros sp. isolated from seawater off Morocco 
was investigated under different concentrations (0%, 50%, 100%, and 150%) of nitrogen and phosphorus for accumulation 
of fatty acids. Cell growth was observed over the course of 14 days, resulting in a final cell density of 1.03 ×  107 cells  mL−1 
in the nitrogen starvation medium, with an initial  NaNO3 concentration of 112.5 g  L−1 and a maximal lipid level of 29.9% 
when subjected to complete nitrogen deprivation. For a 7.50 g  L−1 initial  NaH2PO4 concentration in the culture medium, a 
maximum cell density of 1.07 ×  107 cells  mL−1 was achieved with 21.82% lipid yield in the absence of phosphorus. According 
to these findings, a high concentration of phosphate and nitrate sources aided in the concentration of biomass. The current 
study also shows that, as the medium's phosphorus or nitrate content falls, the lipid content increases. Nutrient stress for 
Chaetoceros sp. cultivation was found to have a significant impact on biomass and lipid accumulation. It is suggested that 
wastewater with limited nutrients could be used as a medium for growth to stimulate lipid accumulation in this microalgae.
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Introduction

The development of environmentally friendly, sustainable 
energy sources is the solution to the problem of the petro-
leum crisis and its impacts (Bi and He 2020; Zhao et al. 2022). 

Biodiesel produced from renewable sources such as fats from 
animals and oils from plants have been developed and are eco-
nomically viable (Santori et al. 2012). Biodiesel in its third 
generation relies on microalgae (Ananthi et al. 2021; Ferreira 
Mota et al. 2022). These species, unlike terrestrial energy 
crops, have high lipid productivity per unit area on marginal 
land, are able to recycle carbon from fossil resources with sun-
light and other nutrients, and have a positive environmental 
impact (Li et al. 2020; Tang et al. 2010). Although microalgae 
lipids could be transformed into biodiesel, large-scale com-
mercial production is limited by a variety of technological and 
economic restrictions (Chu et al. 2019). As a result, optimiz-
ing the productivity of microalgal biomass in addition to lipid 
production is critical for making this route competitive and 
economically viable (Joseph et al. 2017). These parameters 
can be affected by different culture conditions such as nitrogen 
and phosphorus stress followed by mode of cultivation, tem-
perature, light intensity, light/dark period, salinity, and pH (Ji 
et al. 2021; Rehman et al. 2022; Viruela et al. 2021; Wu et al. 
2021; Yaakob et al. 2021).
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Microalgae have recently proved their efficiency in the 
absorption of nitrogen and phosphorus from wastewater as 
well as the generation of bioenergy (Wágner et al. 2021; 
Zhang et al. 2021; Greses et al. 2022). These macronutrients 
are required to promote the growth of algae; in addition, if they 
are given in an adequate ratio, they control metabolic activity 
(Su 2021). The variation in the concentration of these two 
nutrients in the culture medium of microalgae can influence 
the yield of lipids and fatty acids (Xin et al. 2010; Yaakob 
et al. 2021). Rios (2015) showed that increasing the quantity 
of nitrogen generates a rise in the amount of lipid accumulated 
in the microalgae Desmodesmus sp., but absolute removal of 
nitrogen from the culture medium caused the maximum accu-
mulation of lipids with a percentage of 23%. Zarrinmehr et al. 
(2020) discovered a similar finding for the microalgal spe-
cies Isochrysis galbana, where the content of saturated fatty 
acids was greater under nitrogen shortage, 75.79%, than under 
nitrogen sufficiency, 36.63%. Roopnarain (2014) found that 
decreasing phosphorus concentrations below 25% resulted in 
lipid storage in Isochrysis galbana U4. Under low amounts of 
phosphorus in the medium, the lipid content of Scenedesmus 
sp. improved. This species cultivated in phosphorus (50 mg/L) 
had a lipid composition of 22.3%, whereas the lipid yield was 
42.5% in phosphorus (1 mg/L) (Yang et al. 2018).

Morocco’s potential for microalgae research has not yet 
been fully realized, despite the country’s good climatic 
circumstances and unique geographic location: with the 
Mediterranean Sea to the north, and the Atlantic Ocean to 
the west (Hassi et al. 2023). Somany studies have screened 
microalgae that can produce biodiesel (Asli et al. 2019; Ben-
hima et al. 2018; El Arroussi et al. 2015, 2017). One such 
work was carried out by El Arroussi (2017), in which 57 
strains isolated from the Moroccan coasts were evaluated 
for biodiesel production. Benhima (2018) studied the effect 
of nitrogen stress on lipid accumulation of Dunaliella ter-
tiolecta. Despite these studies, there is still a lack of studies 
related to stress conditions and the production of biodiesel 
by microalgae isolated in Morocco.

In light of this, the aim of this study is to evaluate the 
effect of nitrogen and phosphorus stress conditions on 
growth, biomass production, and lipid accumulation as well 
as the fatty acid composition of the isolated marine water 
brown microalga, Chaetoceros sp., grown in f/2 medium.

Materials and methods

Algae source, culture medium, and conditions

The strain of the diatom Chaetoceros sp. studied in this 
research was isolated from seawater in the coastal area of 
Sidi Moussa Beach in the Town of Sale in Morocco. The 
seawater samples were collected and filtered before being 

transported to 100-mL beakers. An optical microscope 
(Nikon ECLIPSE E200) was used to identify microalgae. 
To obtain a pure culture, serial dilution was used. A sterile 
loop was used to generate parallel streaks on the agar growth 
medium by placing a loop of sample culture from the high-
est dilution tubes on the agar growth medium. Parafilm was 
used to cover the Petri dishes, which were then incubated 
at 25 °C.

The diatom Chaetoceros sp. was obtained after 25 days of 
cultivation. Medium f/2 was employed in the maintenance 
of the culture of this species in 100-mL Erlenmeyer flasks.

The medium used for culture was f/2 medium (Guillard 
and Ryther 1962) with the composition presented in Table 1. 
The medium was sterilized in an autoclave at 121 °C for 
15 min. The microalga was cultivated in 500-mL Erlenmeyer 
flasks under four different variations of nitrate (N) and phos-
phate (P) of the f/2 medium (0%, 50%, 100%, and 150% N or 
P) with an initial concentration 1 ×  105 cells/mL of inocula, 
and incubated at 25 °C with 87.75 μmol photons  m−2  s−1 
light intensity and a 12 h (light–dark) photoperiod. Aeration 
was provided by an air pump (Table 2).

The effects of nitrogen and phosphorus were evaluated 
out separately. We thus have two experiments, the first with 
varying starting nitrogen content and the second with vary-
ing initial phosphorus concentration in the culture medium.

Measurement of cell growth parameters

Cell growth was determined by counting using a Malassez 
cell. In our case, the cells were mixed gently to dissociate 
the cell aggregates. The microalgae were then counted on 
six squares of 0.01 µL, and the concentration is reported as 
the number of cells per mL.

During the exponential phase, the dry weight of the 
microalgae cells was measured. A volume of 10 ml was fil-
tered by the use of a GF/F filter (Whatman GF/F) with a pore 
size of 0.7 µm, and the cell concentration was determined 
(Elyakoubi et al. 2020; Zhu et al. 1997). The biomass was 

Table 1  The composition of 
the f/2 medium (Guillard and 
Ryther 1962)

Compound Concentra-
tion (g.  L−1)

NaNO3 75.0
NaH2PO4·H2O 5.0
Na2SiO3·9H2O 30.0
FeCl3·6H2O 3.5
Na2EDTA·2H2O 4.36
CuSO4·5H2O 9.8
Na2MoO4·2H2O 6.3
ZnSO4·7H2O 22.0
CoCl2·6H2O 10.0
MnCl2·4H2O 180.0
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washed three times with distilled water after the filtering 
phase. The filter was dried for 72 h at a temperature of 60 °C.

The cellular dry weight (g.  cell−1) was obtained using the 
Zhu and Lee (Zhu et al. 1997) formula, as shown in Eq. (1):

W1 is the total weight of the filter containing microalgae 
biomass after drying (g),  W0 signifies the weight of the dry 
filter alone (g), filtered volume (mL), and cell concentration 
(cells  mL−1).

Extraction of biomass oil

The biomass was harvested by adjusting the pH of each 
Erlenmeyer flask to 10.5 with NaOH (1 M), then drying at 
60 °C for 72 h (Zhu et al. 1997).

Total lipid extraction from dry biomass was carried out 
using the Bligh and Dyer technique (Bligh and Dyer 1959). 
Dry cells (100 mg) were maintained in 3.5 mL of a chloro-
form/methanol/water (2/1/0.5 v/v/v) mixture. The mixture 
was centrifuged for 15 min at 4000 rpm after vortexing, and 
the organic phase was extracted and deposited in a tube that 
has been previously dried and weighed.

The lipid content was determined by using the following 
equation:

where ML is the mass of the extracted lipids (corresponding 
to the difference in mass of the empty tubes and containing 
the dry lipids), and MA is the mass of dry algal biomass.

Fatty acid characterization

Chloroform (500 µL) was used to resuspend the extracted 
lipids. A total of 100 µL of this mixture was combined with 
800 µL of 10% boron trifluoride–methanol solution in a 
screw tube, and the combination was then heated to 100 °C 
in a water bath for 15 min. A quantity of 750 µL of the 
solvent (100 µL of heptadecane in 10 mL of hexane) and 
1.5 mL of water were added after cooling, and the mixture 

(1)Dry weight of cells =

net weight(W1)−net weight(W0)

filtered volume

cell concentration

(2)Lipidcontent(%) =
ML

MA
× 100

was vortexed for 2 min. The upper phase was retrieved with 
a Pasteur pipette, and 10 µL of it was injected into an Agi-
lent gas chromatography (6850) system to characterize the 
methyl esters.

Statistical analysis

This microalga was cultivated in triplicate (n = 3) batch 
experiments. For statistical analysis, one-way analysis of 
variance (ANOVA) was employed (Graphpad Prism, ver-
sion 8.0) to determine differences between the means of 
four levels of each treatment (nitrogen concentration/phos-
phorus concentration) on the final day of culture (day 14). 
The results are provided as mean value ± standard deviation 
(SD).

Results and discussion

Stress conditions affect lipid accumulation in microalgae, 
by increasing or decreasing the proportion of lipid produc-
tion or even the quality of the biodiesel produced (Ji et al. 
2021; Rehman et al. 2022; Viruela et al. 2021; Wu et al. 
2021; Yaakob et al. 2021). In this work, we investigate how 
varying the nitrate and phosphate concentration affects the 
lipid accumulation in a Chaetoceros sp. diatom isolated from 
seawater in the coastal area of Sidi Moussa Beach in the 
Town of Sale in Morocco. The results that we found are 
displayed below.

Growth assessment

The intracellular chemical composition of different microal-
gae species varies. As a result, some species become P-lim-
ited in one habitat while others become N-limited in another 
(Harrison et al. 1990). Because cell development is typically 
restricted by deficiency of N and P, the continuation of cell 
division seen in this situation may be achieved by the pro-
vision of N and P from cell store reserves (Horiuchi et al. 
2003). This is consistent with the species’ capacity to absorb 
and store nitrogen and phosphorus, as well as its subsequent 
utilization of these reserves to promote cell development 
when external N and P in the surrounding media have been 
depleted.

The effect of these nutrients on our strain Chaetoceros sp. 
was studied. A photomicrograph of this species is shown in 
Fig. 1. From measurements of 30 distinct cells, an average 
length of 9.03 ± 1.45 µm was determined. The growth curves 
for the four cultures were generated with varying initial con-
centrations of  NaNO3 and  NaH2PO4·H2O are shown in Fig. 3 
and 4, respectively.

All of the kinetics exhibit the typical S-curve form of 
microorganism’s growth: from the beginning to day 3, there 

Table 2  Variations in the 
culture media used in the 
experimental design for  NaNO3

Nitrogen 
variation

Initial concentra-
tion of  NaNO3 (g 
 L−1)

0 0
50 37.5
100 75
150 112.5
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is a phase of adaptation to the medium (latent period), dur-
ing which the species displayed identical cell densities in 
cultures rich and deficient N. Following that, the N-depleted 
cultures had a higher cell density than the N-replete cultures 
until day 7, while after that the cell concentration decreased 
to the lowest level for the rest of the trial of nitrogen effect. 
From day 3 to day 11 the exponential growth phase (log 
phase) appears. The stationary phase begins after day 11.

Figure 4 shows that, until the fifth day, the cell density 
of the P-depleted cultures was similar to the P-repleted cul-
tures, but after that, this density became the lowest when 
compared with the other levels of phosphorus content in the 
f/2 medium.

Under conditions both rich and deficient in nitrate (N) and 
phosphate (P), a rise in dry weight concentration was found 
in all trials. But when the species was deprived of nitro-
gen, it grew significantly differently than when deprived of 
phosphorus. Under depletion, the cell density initially rose, 
confirming prior research findings (Benvenuti et al. 2015; 
Rios et al. 2015; Van Vooren et al. 2012; Yaakob et al. 2021; 
Zarrinmehr et al. 2020). This is due to the fact that new bio-
mass is generated in the absence of nitrogen and phosphorus, 
indicating that the cells are still photosynthetically active to 
some extent and that the photosynthetic efficiency period is 
very specific to a species (South et al. 1987). The maximum 
rise under deprivation was attained on day 11 for either P 
deprivation or N deprivation, but the increase under N depri-
vation was twice as large as that under P deprivation (Fig. 2).

As seen in the graphs (Figs. 3, 4), increasing the con-
centrations of  NaNO3 and  NaH2PO4·H2O increased the 
growth rate. Low growth was seen during nitrogen depriva-
tion (0% N), and cells appeared bleached, with a maximum 
cell density of 3.2 ×  106 cells/mL. On day 11, the culture 
with 50% nitrogen reached a high cell number concentra-
tion of 6.6 ×  106 cells/mL. The rest of the 100% and 150% N 

Fig. 1  Microscopical observation of the microalgae Chaetoceros sp. 
used in the research (×40)
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Fig. 2   Nitrogen and phosphorus absence’s impact  on  cell growth of 
Chaetoceros sp.
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Fig. 3  Growth curve of Chaetoceros sp. grown on f/2 medium with 
different initial  NaNO3 concentrations
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Fig. 4  Growth curve of Chaetoceros sp. grown on f/2 medium with 
different initial  NaH2PO4·H2O concentrations
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cultures had the maximum cell density, with 1.0 ×  107 cells 
per mL and 1.03 ×  107 cells per mL, respectively.

During the experiment, the effect of changing the phos-
phorus content on the cell density of the strain was shown 
in each case. In contrast to the other levels of 50% ,100%, 
and 150% P, deprivation of P (0%) resulted in the lowest 
cell density of 1.6 ×  106 cells/mL, yielding concentrations 
of 8.0 ×  106, 1.0 ×  107, and 1.07 ×  107 cells/mL, respectively.

The findings of the current investigation show that a high 
concentration of nitrogen and phosphorus sources promoted 
the biomass increase (Figs. 5, 6). This is consistent with 
Yeesang and Cheirsilp’. When the microalgae Botrycoccus 
spp. was subjected to nitrogen-depletion conditions, they 
reported a decrease in biomass (Yeesang and Cheirsilp 
2011). Roopnarain (2014) had also reported the same con-
clusion regarding Isochrysis galbana U4, under phosphorus 
limitation and starvation conditions.

The microalga Chaetoceros sp. isolated from seawater 
cannot survive without nitrogen and phosphate, and its 
growth is related to the concentration of these two compo-
nents in the culture medium. Many microalgal strains have 
been reported to show an increase in biomass concentration 
after early nitrogen and phosphorus deprivation (Yaakob 
et al. 2021; Benvenuti et al. 2015; Roopnarain et al. 2014; 
Breuer et al. 2012; Pruvost et al. 2011). This rise in biomass 
concentration might be justified by the buildup of storage 
molecules such as triglycerides (TAGs) (Msanne et al. 2012; 
Pal et al. 2011).

Measurement of lipids

One of the major aims of a microalgae-based oil production 
process is to achieve a high lipid yield per area (resulting 
from the biomass areal productivity and lipid content), as 
this has a significant impact on production costs. In outdoor 
culture, the chosen microalgal strain should be very produc-
tive, have a high lipid content in its natural state and/or be 
able to respond to nutrient deficiency with a significant accu-
mulation of lipids, be robust enough to withstand mixing-
induced shear stress, and be flexible enough to respond to 
inevitable changes in the physicochemical characteristics of 
an outdoor environment. In this study, the isolated micro-
algae Chaetoceros sp. was evaluated in the laboratory for 
oil production capacity under nitrogen and phosphate stress 
conditions (Table 3).

Using the Bligh and Dyer technique, lipids were obtained 
from the biomass collected from each culture of the experi-
ment after 14 days. Tables 4 and 5 present the results. The 
lipid content in the 0% N culture is the maximum among the 
lots. Other cultures had a range of lipid content from 17.55% 
(37.5 g/L  NaNO3) to 19.2% (112.5 g/L  NaNO3) and 17.25% 
(2.5 g/L  NaH2PO4·H2O) to 18.95% (7.5 g/L  NaH2PO4·H2O).

The influence of modifying the N and P concentrations in 
the f/2 medium on lipid depends on the microalgal species. 
The lipid content of the isolated strain increased gradually 
with increasing nitrogen and phosphorus concentrations, 
although this rise was smaller than the yield achieved in 
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the two nitrogen and phosphorus deprivation conditions. It 
was increased dramatically in the stationary phase, reaching 
29.90% and 21.82% respectively.

Biomass, as well as lipid content, are significant factors 
in the cost-effective generation of biofuel from microal-
gae (Bi and He 2020; Zhao et al. 2022). The findings of 
this study show that, in contrast to the lipid content, a high 
concentration of nitrogen or phosphorus sources promoted 
biomass concentration. The current study also shows that, 
as the nitrate or phosphorus concentration in the medium 
falls, the lipid content increases (Fig. 7). Algal cells acquire 
carbon metabolites in the form of lipids in nitrogen-deficient 
circumstances, according to Yeesang and Cheirsilp (2011). 
Rios (2015) demonstrated that increasing the amount of 
nitrogen causes an increase in lipid accumulation in the 
microalgae Desmodesmus sp., while 100% removal of nitro-
gen from the culture medium generated the greatest accumu-
lation of lipids (23%). Zarrinmehr et al. (2020) reported a 
similar discovery for the microalgal species Isochrysis gal-
bana, where the amount of saturated fatty acids was higher 

in nitrogen deficiency (75.79%) than in nitrogen sufficiency 
(36.63%). Scenedesmus sp. lipid content increased in the 
presence of low phosphorus levels in the medium. This 
species exhibited a lipid content of 22.3% when grown in 
50 mg/L phosphorus, but the lipid yield was 42.5% when 
grown in 1 mg/L phosphorus (F. Yang et al. 2018).

Table 3  Variations in the culture media used in the experimental 
design for  NaH2PO4·H2O

Phosphorus variation Initial concentration of 
 NaH2PO4·H2O (g.  L−1)

0 0
50 2.5
100 5
150 7.5

Table 4  The impact of varying nitrogen level on the biomass and 
lipid content of Chaetoceros sp. on the 14th day of culture

Variation of  NaNO3 
(g/L)

Biomass (g/L) Lipid percentage (%)

0 0.97 ± 0.01 29.90 ± 0.13
37.5 1.02 ± 0.03 17.55 ± 0.21
75 2.75 ± 0.04 18.80 ± 0.15
112.5 2.70 ± 0.01 19.20 ± 0.71

Table 5  The impact of varying the phosphorus concentration on the 
biomass and lipid content of Chaetoceros sp. on the 14th day of cul-
ture

Variation of 
 NaH2PO4·H2O (g/L)

Biomass (g/L) Lipid percentage (%)

0 0.89 ± 0.03 21.82 ± 0.41
2.5 1.05 ± 0.02 17.25 ± 0.03
5 2.73 ± 0.03 18.87 ± 0.02
7.5 2.81 ± 0.04 18.95 ± 0.07
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Fig. 7  Lipid content of Chaetoceros sp. grown on modified f/2 
medium with  NaNO3 concentration (0–150N) and  NaH2PO4·H2O 
concentration (0P–150P)

Table 6  Fatty acid values (mean ± SD) for Chaetoceros sp.

Cultures in 100% N and P, 0% N and 0% of P. Results are presented 
as the percentage of fatty acids with SFAs saturated fatty acids and 
PUFAs polyunsaturated fatty acids

Fatty acids Control (100% nitro-
gen and phosphorus)

0% nitrogen 0% phosphorus

14:0 11.62 ± 0.73 8.67 ± 0.21 10.75 ± 0.29
15:0 0.35 ± 0.04 0.45 ± 0.03 0.37 ± 0.01
16:0 13.83 ± 0.18 18.54 ± 0.15 15.40 ± 0.16
17:0 0.05 ± 0.01 0.12 ± 0.01 0.10 ± 0.01
18:0 0.15 ± 0.01 0.19 ± 0.01 0.14 ± 0.01
20:0 0.27 ± 0.03 0.39 ± 0.02 0.25 ± 0.06
Total SFAs 26.25 ± 0.91 28.35 ± 0.15 27.01 ± 0.40
16:1w7 21.65 ± 0.01 25.57 ± 0.13 24.33 ± 0.38
16:1w5 0.34 ± 0.01 0.42 ± 0.03 0.31 ± 0.02
16:3w4 11.39 ± 0.66 10.32 ± 0.25 11.08 ± 0.56
18:1w9 23.50 ± 0.05 32.20 ± 0.07 29.19 ± 0.04
18:4w3 0.87 ± 0.03 0.20 ± 0.02 0.30 ± 0.02
20:4w6 0.17 ± 0.02 0.05 ± 0.02 0.15 ± 0.01
20:5w3 23.37 ± 0.75 20.27 ± 0.07 21.75 ± 0.34
22:6w3 1.25 ± 0.03 2.54 ± 0.16 2.24 ± 0.23
Total PUFAs 60.88 ± 0.13 66.00 ± 0.28 65.03 ± 0.53
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Fatty acid characterization

Using gas chromatography analysis, the fatty acid com-
position of Chaetoceros sp. under various concentrations 
of nitrogen and phosphorus was determined. In compari-
son with control (100% nitrogen and phosphorus in f/2 
media), the compositions of the fatty acids are shown in 
Table 6 and Fig. 8. For saturated fatty acids, the experiment 
with total nitrogen starvation showed the largest percent-
age (28.35 ± 0.15%) compared with phosphorus starvation 
(27.01 ± 0.40%), and f/2 medium without modification 
(26.25 ± 0.91%) as the lowest concentration. These stress 
conditions also affect the concentration of polyunsaturated 
fatty acids, increasing their percentage compared with the 
control condition (60.88 ± 0.13%). Chin (2023) reported 
that high oleic acid concentrations will balance fuel char-
acteristics such as viscosity, ignition quality, lubricity, and 

combustion heat. In the current study, at nitrogen starvation, 
oleic acid content showed an increase from 23.50 ± 0.05% to 
32.20 ± 0.07, indicating that the strain Chaetoceros sp. iso-
lated from seawater in the coastal area of Morocco can pro-
duce high-quality biodiesel under nitrogen stress condition. 
The dominant fatty acids under nitrogen and phosphorus 
starvation conditions are palmitic acid (16:0), palmitoleic 
acid (16:1w7), oleic acid (18:1w9), and eicosapentaenoic 
acid (20:5w3, EPA).

In the future, microalgae are projected to act as a source 
of long-chain n-3 polyunsaturated fatty acids such as EPA 
as well as a green energy source, e.g., biodiesel production 
in biorefinery systems coupled with wastewater treatment 
(El Bakraoui et al. 2022; Kim et al. 2022; Tokushima et al. 
2016). Diatoms are well known for being extremely prolific 
microalgae that store a lot of neutral lipids in their cells 
under various stress conditions (Tokushima et al. 2016). In 

Fig. 8  By comparing the results with the control (f/2 medium without modification), gas chromatography analysis was used to assess changes in 
the fatty acid content of Chaetoceros sp. The mean values are plotted (n = 3), and each fatty acid is represented as a percentage of total fatty acids
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this experiment, Chaetoceros sp. accumulated a high oleic 
acid under nitrogen starvation, but eicosapentaenoic acid 
was decreased compared with the control culture, although 
its concentration remains high compared with other poly-
unsaturated fatty acids (22:6w3). Hence, this strain isolated 
from seawater off Morocco could be a suitable candidate for 
biodiesel production as well as a source of long-chain n-3 
polyunsaturated fatty acids.

Conclusions

Limiting the amount of nitrogen and phosphorus in Chaetoc-
eros sp. cultures was found to have a significant impact on 
cell development and fatty acid accumulation. The current 
research shows that growing the isolated strain Chaetoceros 
sp. autotrophically in a nitrogen-depleted growth medium is 
the most effective way to improve the lipids, resulting in an 
11.1% increase compared with control. In addition, nitrogen-
depleted culture increased oleic acid from 26.87% to 38.69% 
of fatty acids, indicating that the lipids from this species can 
be used to obtain a high quality of biodiesel.
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