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Abstract
This study aims mainly to examine the potentiality of using raw natural adsorbent (bentonite) as an inexpensive solid adsor-
bent for the adsorption of rhodamine B (RhB), which is essentially a cationic dye, in a batch system. The physicochemical 
properties of bentonite have been determined by X-ray fluorescence, X-ray diffraction, scanning electron microscopy, and 
Fourier transform infrared spectroscopy. The natural bentonite contains montmorillonite, illite, quartz, and calcite as major 
phases. The influence of operating conditions such as the solution pH, the dye concentration, the adsorbent mass, the particle 
diameter, and the temperature of the reaction medium was investigated. The maximum adsorption efficiency of up to 97% for 
50 min was obtained at a low initial RhB concentration of 30 mg/L, pH 10, a temperature of 328 K, and a granulate diam-
eter of 63 µm. The kinetic rate of the RhB adsorbed onto the bentonite was well modeled by a pseudo-second-order model. 
Additionally, the results illustrate that the Langmuir model perfectly describes the adsorption process with R2 = 0.99. The 
thermodynamic (ΔG°, ΔH°, and ΔS°) parameters indicate that the adsorption processes were spontaneous, endothermic, and 
random in the adsorption process. The adsorption of the RhB dye on the bentonite surface could be carried out by electrostatic 
attractions and hydrogen bonds. On the other hand, Monte Carlo coupled with the simulated annealing algorithm (SAA) is 
used. The simulation was carried out to more clearly, on an atomic scale, reveal the interfacial interactions between RhB 
molecule and adsorbent surface. It was found that the simulation data correlate well with actual results.
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Introduction

Nowadays, a large quantity of wastewater contains dyes 
that come largely from the textile industry (Mbognou 
et al. 2022). Therefore, textile dyeing processes as well 
as the chemical content of dyeing components are very 
important (Haounati et al. 2021a). The dye wastewater 
contains acids, bases, dissolved solid toxic compounds, 
and considerable color pollutants. Moreover, many dyes 
are toxic, obstruct catalytic effects, and also cause severe 
damage to human bodies, preventing light penetration, 
reducing photosynthetic activity, and inhibiting biota 
growth (Baskaralingam et al. 2006; Alakhras et al. 2020; 
Tanji et al. 2023a). Rhodamine B (RhB) has the proper-
ties of mild washing and light fastness on wool. This is 
also an effective analytical reagent for metal identification 
(Ahmad et al. 2015; Vakili et al. 2014; Heibati et al. 2014; 
Oyekanmi et al. 2019). Nevertheless, the use of RhB as 
a food color has been banned for many years because of 
its alleged carcinogenic and hormonal disturbance effects 
in addition to being neurotoxic and genotoxic (Combes 
and Haveland-Smith 1982; Azeez et al. 2020; Rabti et al. 
2019). Wastewater that comes from the textile, leather, 
paper, and printing industries contains toxic dyes that 
have been discharged into the environment without or 

with insufficient treatment (Haounati et al. 2022; Kassimi 
et al. 2021).

Many researchers have examined dye removal from 
aqueous solution using catalytic wet peroxide oxidation, 
photocatalytic degradation (Belghiti et al. 2022; Gaidoumi 
et al. 2021; Dra et al. 2020a; Fahoul et al. 2022; Haounati 
et al. 2021b; Tanji et al. 2023b, 2023c), coagulation/floc-
culation (Verma et al. 2012), etc. Although the adsorption 
process has been employed extensively with various natu-
ral materials, according to the literature, few studies have 
been performed to investigate the removal of RhB by using 
raw bentonite as a natural adsorbent. The most widely used 
adsorbents are the following: zeolites, goethite, clays (Hadri 
et al. 2022; Dra et al. 2020b; Thiam et al. 2020), and bac-
terial biomass (Jiang et al. 2020; Ouachtak 2020; Cheng 
et al. 2020). Bentonite is increasingly used as an adsorbent 
in wastewater treatment due to its wide availability, low cost, 
and good intrinsic adsorption characteristics. It is one of the 
most commonly used adsorbents due to its net negative sur-
face charge, making it an efficient adsorbent for the removal 
of cationic dyes and other organic pollutants (Toor et al. 
2015; Mrabet et al. 2021a).

Morocco is a North African country, bound to the north 
by the Mediterranean Sea and to the west by the Atlantic 
Ocean. This transitional location between the African, 
European, and American plates provides it with richness, 
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diversity, and geomorphological complexity (Fullea 
et al. 2010). Over time it has undergone several orogenic 
cycles, each involved, through its geodynamic context 
and its scope, in the shaping the three major structural 
areas, which permit us to classify Morocco as an excellent 
natural geology laboratory. The formation of mineralized 
bodies is sometimes intimately mixed with that of host 
rocks and is often accompanied by meteoric or hydrother-
mal alteration of these rocks with the sharing of elements. 
On the other hand, mineralized bodies such as bentonites 
appear as an intruder in the middle of their geological 
surroundings. As an important clay mineral, bentonites 
consist of mainly montmorillonite, which is also the main 
component of weathered crust elution-deposited rare earth 
ores; they have been widely used in industrial applications 
(Haounati et al. 2021b) because of their specific charac-
teristics including large surface area, high selectivity, 
chemical stability, adsorption properties, low cost, and 
high abundance (Ouachtak et al. 2020). In addition, clays 
can retain inorganic and organic pollutants and stop the 
circulation of contaminated fluids in both aquatic and soil 
environments (Kausar et al. 2019; Mrabet et al. 2021b).

To the best of our knowledge, and according to an exten-
sive literature review, no previous studies have been carried 
out on the combination of experimental and theoretical data 
on the adsorption of RhB dye on Moroccan bentonite clay. 
The novelty of this study is based on the use of abundant and 
inexpensive (bentonite) for the removal of hazardous RhB 
dye and the theoretical explanation of the mechanism of 
adsorption by molecular dynamics simulation, to study the 
dynamic behavior of bentonite/RhB water systems to bet-
ter understand the adsorption mechanism. It is well known 
that the removal of organic-based pollutants is generally 
related to their adsorption onto the used support surface, 
which underlines the key role of adsorbate/adsorbent interac-
tions in this process (Achour et al. 2018; Souza et al. 2018). 
Recently, computational modeling has been served to inves-
tigate, at atomic and electronic scales, several adsorbate/
adsorbent depollution systems (Haouti et al. 2019). Among 
applied modeling tools, Monte Carlo simulation was cou-
pled with the simulated annealing algorithm (MCS-SAA) 
(Abdellaoui et al. 2021a, 2021b). This modeling approach 
is employed to evaluate explicitly the interfacial adsorbate/
adsorbent interactions at an atomic scale via the adsorption 
energy and the adsorption geometry (Laabd et al. 2021).

The present paper aims to investigate the adsorption 
capacity of a natural adsorbent, and its characterization as 
an eco-friendly element to remove hazardous RhB from 
aqueous solutions. The effect of operational parameters on 
RhB adsorption such as the amount of natural adsorbent, 
initial dye concentration, particle size, temperature, pH, and 
toxicity tests was investigated. Alongside the experimental 
study, the adsorption mechanism of RhB on the employed 

clay substrate was computationally explored by Monte Carlo 
simulation coupled with the simulated annealing algorithm.

Materials and methods

Materials

The studied natural bentonite as adsorbent for RhB removal 
was taken from North Region of Morocco (Fig. 1). This type 
of clay mineral originated from different types of weathering 
of Neogene volcanic and volcano-sedimentary formations 
(Ddani et al. 2005). From a mineralogical point of view, 
the bentonites are basically composed of kaolinite/smectite, 
illite, and montmorillonite, wherein the crystallochemical 
composition ranges from montmorillonite to beidellite 
(Lamrani et al. 2021). Indeed, the bentonite ore deposits of 
the eastern Rif Belt are commonly distributed around several 
volcanic eruptions, such as the Gourougou stratovolcano and 
its satellite massifs (e.g., Tidiennit rhyolitic massif), with 
significant economic potential (Lamrani et al. 2021).

The dye examined in this study is rhodamine B (RhB). 
The characteristics of the dye are summarized in Table 1.

Characterization techniques

X-ray fluorescence (XRF) was used to explore the chemi-
cal composition of raw bentonite. The X-ray diffractometer 
(X'PERT PRO) was equipped with a detector operating at 
40 kV and 30 mA with CuKα radiation (λ = 1.540598 Å), 
and the FTIR spectra were recorded with a VERTEX 70 at 
a resolution of 4 cm−1 with 20 scans in the 4000–400 cm−1 
wavenumber range. Scanning electron microscopy 
(QUANTA 200) was used to identify the composition and 
the morphological surface of the natural adsorbent.

The average crystallite sizes (D) were calculated using 
the Scherrer equation:

where K = 0.9 is the shape factor, λ is the X-ray radiation 
wavelength, FWHM is the full width at half maximum of all 
characteristic peaks, and θ is the diffraction angle.

pHPZC determination

The pHPZC, the pH at which the bentonite surface has zero 
net charges, was determined by stirring 0.15 g of natural 
adsorbent and 50 mL of 0.01 M NaCl solution for 48 h. The 
initial pH values were adjusted (in the pH range from 2 to 
12) using HCl or NaOH solutions. The final pH was meas-
ured after 48 h under agitation at room temperature. The 
point of zero charges of the natural adsorbent (pHPZC) is the 

(1)D = K�∕(FWHM × cos �)
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point where the curve pHfinal versus pHinitial crosses the line 
pHinitial = pHfinal (Mragui et al. 2017).

Adsorption study

The adsorption batch experience was executed by introduc-
ing a mass of the adsorbent in the solution of RhB under 
magnetic stirring. A sample was collected each 5 min to 
measure its residual concentration using a UV–visible spec-
trophotometer (VR-2000) at a wavelength of 554 nm. Never-
theless, before the measure, the suspension was centrifuged 
to separate the natural adsorbent from the RhB liquid. The 
RhB removal was calculated using Eq. (2) (Senthil Kumar 
et al. 2010), where, C0 and Ct are the concentration of RhB 

at t = 0 and t ≠ 0, respectively. The adsorption capacity of 
the sediment for RhB removal was obtained by applying 
Eq. (3), Where qe (mg/g) is the adsorption capacity at the 
equilibrium; C0 (mg/L) is the initial concentration of RhB; 
Ce (mg/L) is the equilibrium concentration of RhB; V (L) 
is the RhB solution volume; m (g) is the natural adsorbent 
mass (Lian et al. 2009).

Computational details

To clarify the interfacial interactions between the RhB mol-
ecule and the employed clay substrate (i.e., bentonite), the 
MCS-SAA is used (Kirkpatrick et al. 1979). The heating 

(2)Removal (%) =

(

Co − Ct

)

Co

× 100

(3)qe =

(

Co − Ct

)

Co

× V

Fig. 1   Geological map of northeastern Rif Belt (Bakkali et al. 1998)

Table 1   Properties and molecular structures of rhodamine B

Properties RhB

Chemical formula C28H31ClN2O3

Wavelength 554 nm
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process consisted of three heating cycles with 15,000 steps 
per cycle. As the clay essentially contained montmorillonite 
(Mt), a cell of 25.9 Å × 44.9 Å × 96.6 Å including 60.0 Å as 
a sufficient vacuum region above the substrate composed of 
three Mt(001) layers was used. The appropriate (hkl) Miller 
index for the Mt substrate was determined using the Bra-
vais–Friedel–Donnay–Harker algorithm (Bourzi et al. 2020). 
The molecular modeling process was conducted under the 
periodic boundary conditions and setting atom- and Ewald-
based summation as methods to estimate Van der Walls and 
electrostatic interactions, respectively. The geometry opti-
mization was carried out using the smart algorithm with 
0.001 kcal/mol, 0.5 kcal/mol/Å, and 0.015 Å as convergence 
criteria for energy, force, and displacement, respectively. 
Prior to starting adsorption, the geometry of RhB was opti-
mized using the COMPASS force field. Excepting the above 
indications, the rest of the parameters’ values were default 
ones in Materials Studio 6.0 software. The adsorption energy 
(Eads) of the target pollutant inhibitor on Mt(001) surface is 
calculated using the following formulae:

where, EMt(001), ERhB
Ads

 , and ETotal energetic components denote 
the energy of Mt(001) substrate with preadsorbed species, 
adsorbed RhB molecule, and energy of the whole system, 
respectively.

Results and discussions

Adsorbent characterization

The mineralogical characterization of the raw bentonite as 
a natural adsorbent was investigated using X-ray diffraction 
as a rapid analytical technique. As can be seen in Fig. 2, 

(4)EAds = ETotal −
(

EMt(001) + ERhB
Ads

)

and according to JCPDS file N° 012–0232, the bentonite is 
essentially composed of montmorillonite with the character-
istic peak located at 2θ = 5.742° corresponding to the basal 
spacing of 15.160 Å. However, the other peaks are impuri-
ties corresponding to illite at 2θ = 8°, calcite (CaCO3) at 2θ 
equal to 35.15°, and quartz (SiO2) at 2θ equal to 25.50° and 
37.43°. The low peak located at 2θ equal to 14.27° reveals 
the presence of kaolinite fraction (Qlihaa et al. 2016; Miz 
et al. 2017). The calculated average crystallite size of the 
bentonite is 11 μm.

The scanning electron microscopy (SEM) analysis 
(QUANTA 200), made on the natural adsorbent before 
adsorption (Fig. 3a and b), shows that the natural adsorbent 
has a homogeneous surface, which could favor the RhB mol-
ecules’ fixation on the natural adsorbent surface. Hence, the 
selected SEM images after the RhB adsorption display an 
irregular adsorbent surface that could be explained by the 
saturation of the adsorbent active sites (Fig. 3c and d).

The purpose of the FTIR analysis is to confirm the struc-
ture of the adsorbent before and after adsorption. Figure 4 
shows the characteristic bands of the natural raw adsorbent. 
These bands are attributed to the Si–O, Si–O–M, M–O–H 
(M = Al, Fe, and Mg) bonds existing between the anions and 
cations located in octahedral or tetrahedral sites, as well as a 
large number of OH groups. The absorption bands observed 
clearly confirm the presence of the bonds characterizing 
bentonite. The band located in the interval 3200–3600 cm−1 
corresponded to OH frequencies of the water molecule (Ala-
barse et al. 2011). The spectrum of bentonite shows two 
absorption bands, one in the range of 800–1200 cm−1 and 
the other centered on 500 cm−1 characteristics of the stretch-
ing vibrations of the Si–O bond. Usually, in bentonite, this 
band appears at 1100 cm−1. This slight shift toward low fre-
quencies is due to the presence of trivalent ions (Al3+) in 
the tetrahedral sites substituted for silicon and ferric ions in 
octahedral sites. Moreover, the displacement of the peaks 
exceeds the field of 900 cm−1, thus characterizing the iron 
at 3600 cm−1, which proves the presence of Mg in the struc-
ture of the analyzed bentonite adsorbent (Reddy et al. 2009; 
Qabaqous et al. 2014). After the adsorption of hazardous 
RhB dye into bentonite, as can be seen in the FTIR spectrum 
two bands appeared at 1586 cm−1 and 1365 cm−1, which are 
attributed to the C=C stretching vibration of the RhB ben-
zene ring and to the C–C aromatic stretching of RhB dye, 
respectively. Thus, it can be concluded that the adsorption of 
hazardous RhB dye is due to the interactions between RhB 
molecules and the adsorbent active sites.

Analysis of the X-ray fluorescence results obtained for the 
fractions of the raw bentonite with a diameter of less than 
63 μm shows that the predominant oxide is SiO2 (58.92%), 
Al2O3 (25.21%), Fe2O3 (3.63%), and other impurity oxides 
(Na2O, K2O, MgO, and CaO) present in a small percentage 
(Table 2).Fig. 2   X-ray diffraction of the raw natural bentonite
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Effect of different parameters on the adsorption 
efficiency

This study evaluates the influence of adsorbent mass to 
determine its role in the adsorption process. Figure 5 illus-
trates the RhB removal variation as a function of the absor-
bent’s dose, which varies from 0.5 to 3 g/L, using 40 mg/L 
as the RhB concentration at room temperature displays an 
enhancement in RhB removal with the increase of the natu-
ral adsorbent mass from 53% to 92% when the mass of the 
adsorbent increases from 0.5 to 3 g. This result could be 
explained by the increase in the mass of the adsorbent, as 
more adsorbent active sites are provided for RhB adsorption, 
resulting in improved adsorption of RhB molecules into the 
active sites of the adsorbent (Dhahir et al. 2013).

Furthermore, Fig. 5b illustrates the intersection point of 
the adsorption capacity and the removal efficiency of RhB 
at different adsorbent mass values (0.5–3 g) that correspond 
to 1 g/L. This mass was taken as an optimal adsorbent mass 
used in the other tests.

Fig. 3   SEM images of raw natural adsorbent: a ×1000 and b ×4000 before adsorption; c ×1000 and d ×4000 after adsorption
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Fig. 4   FTIR spectrum of raw bentonite adsorbent
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The initial RhB concentration is one of the most signifi-
cant parameters influencing the adsorption efficiency. To 
study this factor, the initial RhB concentration effect was 
monitored at varying initial RhB concentrations between 10 
and 60 mg/L, using 1 g of natural adsorbent at room temper-
ature for 50 min. According to Fig. 6a, in the area of lower 
concentrations, there is a rapid increase in the RhB removal. 
The removal decreases with the increase in the RhB initial 
concentration, which could be explained by the presence 
of solid interactions between the adsorbent surface and the 
RhB molecules; afterward the RhB removal becomes stable 

due to the saturation of the active sites on the adsorbent 
surface, which eventually leads to a decrease in the removal 
efficiency (Dali Youcef et al. 2019). Figure 6b shows the 
intersection point of adsorption capacity and the removal 
curves as a function of the equilibrium concentrations. It 
can be seen that, when the initial concentration increases, the 
adsorbed amount increases while the efficiency of elimina-
tion decreases.

To investigate the adsorbent particle size influence on 
the RhB adsorption efficiency, a series of experiments were 
carried out with different particle diameters (40, 63, 125, 

Table 2   Chemical composition 
of raw bentonite clay

LOI loss on ignition

Constituent SiO2 Al2O3 Fe2O2 CaO MgO Na2O K2O TiO2 MnO P2O5 LOI

Constituent (%) 58.92 25.21 3.63 1.31 2.37 1.89 0.82 0.20 0.01 0.04 5.60
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and 200 µm) using 1 g of natural adsorbent and 30 mg/L 
as RhB initial concentration at room temperature. Figure 7 
illustrates that decreasing particle size enhanced the removal 
of RhB dye: the highest RhB removal (92%) was obtained 
with 40 µm, while the lowest removal (64%) was remarked 
with 200 µm. This result is due to the effect of reducing the 
size of particles increasing the adsorbent surface area and 
thus providing more active sites for RhB adsorption, which 
ultimately ameliorates the adsorption efficiency (Chen et al. 
2018).

Figure 8 shows the influence of temperature on hazard-
ous RhB dye adsorption onto bentonite adsorbent, where 
removal efficiency is enhanced from 74% to 81% by increas-
ing the temperature from 298 to 328 K. This result confirms 
that the adsorption process is endothermic and requires 
high energy to achieve the equilibrium at low temperatures. 
This evolution could be justified by the augmentation of the 
adsorbent active sites or by the decrease in the thickness of 
the adsorbent, and consequently the decrease in the mass 

transfer resistance of the adsorbate in the boundary layer 
(Hu et al. 2006).

The effect of solution pH on the adsorption efficiency 
was investigated by varying pH values from 4 to 10, using 
optimal conditions. The obtained result displayed in Fig. 9 
indicates that the RhB removal increases from 50% to 90% 
by increasing the pH from 4 to 10. The natural adsorbent 
surface charge depends on the solution pH: in basic pH, the 
surfaces are negatively charged because of the abundance of 
OH− ions, which cause an electrostatic attraction between 
the negatively charged natural adsorbent surface and the 
cationic RhB dye to ameliorate the adsorption of RhB onto 
the adsorbent. As a result, maximum removal of RhB by 
natural adsorbent occurred at basic pH of 10 (Hu et al. 2006; 
Gupta et al. 2004; Singh et al. 2003).

The effect of solution pH could be explained by the 
change in the surface charge of bentonite as a function of 
pH. At a pH higher than pHPZC (pH > pHPZC) the surface 
charge of bentonite is negative, which promotes attraction 
between the RhB and the adsorbent. At pH lower than pHPZC 
(pH < pHPZC) the surface charge of bentonite is positive 
(same charge as the dye RhB), which explains the small 
adsorbed quantity of RhB by the effect of electrostatic repul-
sions (Haouti et al. 2019; Akhouairi et al. 2019). Figure 10 
shows that the point of zero-charge pHPZC of the raw ben-
tonite adsorbent is 8.01. The effect of solution pH could 
explain that the natural adsorbent surface was negative at its 
pH greater than pHPZC, which favored the attraction between 
the RhB and the adsorbent.

Kinetic models

The pseudo-first-order model is presented by Lagergren’s rela-
tion in the form of Eq. (5), if the Lagergren relation is verified, 
by carrying ln(qe − qt) as a function of time. The pseudo-
second-order (PSO) kinetic model was also investigated using 
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Eq. (6), in which qe is the adsorption capacity at equilibrium, 
qt is the adsorption capacity at different times, k is the kinetic 
constant, and t is the time (Leodopoulos et al. 2012).

(5)ln
(

qe − qt
)

= ln
(

qe
)

− k1 t

It can be seen in Fig. 11a, b and Table 3 that the values of 
the pseudo-first-order (PFO) R2 were 0.67, 0.59, 0.79, 0.71, 
and 0.81; and the values of the pseudo-second-order (PSO) 
R2 were 0.997, 0.998, 0.981, 0.992, and 0.991. According 
to these results, the adsorption process is in good agree-
ment with (PSO) kinetic, which was the main kinetic pro-
cess as long as it gives the best prediction for the kinetic 
data. Therefore, the rate-limiting step may be chemisorp-
tion, which involves valence forces by sharing or electron 
exchange between the adsorbent and the adsorbate (Taylor 
et al. 2014).

Isotherm adsorption

Concerning the adsorption isotherm study, the Langmuir and 
Freundlich models were examined and applied to describe 
the adsorption process. The Langmuir isotherm is one of 
the models that describe monolayer adsorption. It assumes 
a homogeneous adsorption surface with binding sites hav-
ing equal energy. The linear form of the Langmuir isotherm 

(6)
t

qt
=

1

k2q
2
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+
t
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Fig. 11   Kinetic models for adsorption RhB dye onto bentonite. a Pseudo-first order mode; b pseudo-second order model

Table 3   Pseudo first-order and 
pseudo second-order parameters 
for adsorption of Rhodamine 
B molecules onto bentonite at 
different concentrations

RhB Concen-
tration (mg/L)

qe, experi-
mental 
(mg/g)

Pseudo-first order Pseudo-second order

k1 (min−1) qe, calcu-
lated (mg/g)

R2 k2 (g/mg.min) qe calcu-
lated (mg/g)

R2

10 9.87 8.7.10–3 3.78 0.67 9.10–4 8.84 0.99
20 18.67 7.2.10–3 9.25 0.59 8.9.10–4 18.07 0.99
30 24.73 1.9.10–2 15.13 0.79 6.2.10–4 22.39 0.98
40 32.11 4.9.10–2 19.39 0.71 5.1.10–4 31.38 0.99
50 35.7 6.4.10–2 24.01 0.81 3.10–4 34.45 0.99
60 38.97 9.4.10–2 26.67 0.75 1.6.10–4 37.67 0.98



312	 Euro-Mediterranean Journal for Environmental Integration (2023) 8:303–318

1 3

can be expressed as Eq. (7), where Ce is the equilibrium 
concentration (mg/L), qe and qm are the equilibrium and 
maximum adsorption capacity (mg/g), respectively, and KL 
is the Langmuir constant (L/mg) (Foo and Hameed 2010; 
Ayawei et al. 2017).

The Freundlich model describes non-uniform and mul-
tilayer adsorption on heterogeneous surfaces; Eq. (8) is its 
corresponding equation, where, Kf is the adsorption capac-
ity, and 1/n is the intensity of adsorption (Foo and Hameed 
2010; Ayawei et al. 2017; Mohamed and Ouki 2011); these 
constants are associated with the Freundlich isotherm model. 
The exponent (1/n) gives an indication about the capacity 
and the favorability of the adsorbent/adsorbate system; the 
increasingly large Kf value indicates greater adsorption 
capacity (Azeez et al. 2018, 2022a, 2022b). The correspond-
ing data of the two models are presented in Table 4 and 
Fig. 12. Concerning adsorption isotherm study, the Lang-
muir and Freundlich models

Based on the higher value of R2 and the lowest χ2, which 
is considered an indicator of the good fitness of experimental 
data with the isotherm models, the obtained results from 

(7)
Ce

qe
=

Ce

qm
+

1

KL.qm

(8)log qe = logKf +
1

n
logCe

isotherm adsorption indicate that the adsorption process 
of RhB onto the bentonite correlated more with Langmuir 
isotherm (χ2 = 71.026, R2 = 0.998) (Eq. (7)) than Freundlich 
(Eq. (8)) isotherm. This result indicates that the RhB dye can 
be adsorbed homogeneously by active receptor sites on the 
surface of the bentonite adsorbent and a saturated adsorp-
tion capacity is expected due to limited adsorptive sites on 
the surface.

Adsorption thermodynamic studies

The effect of temperature on the removal efficiency was car-
ried out in the temperature range of T = 298–328 K. How-
ever, the type of sorption could be investigated through 
such thermodynamic quantities as Gibbs free energy (ΔG°, 
kJ/mol), the enthalpy change (ΔH°, kJ/mol), and entropy 
change (ΔS°, kJ/mol/K), and the experimental data were 
obtained using the following equations:

where Ke° is the adsorption equilibrium constant that is 
obtained from the Langmuir model, R is the universal gas 
constant (8.314 J/mol/K), and T is the absolute temperature 

(9)ΔG◦ = − RT lnKe

(10)lnKe =
ΔS◦

R
−

ΔH◦

RT

(11)ΔG◦ = ΔH◦ − TΔS◦

Table 4   Adsorption isotherm 
constants for RhB adsorption 
onto the raw natural adsorbent 
(related to Fig. 12)

Langmuir isotherm parameters Freundlich isotherm parameters

qm (mg/g) KL R2 χ2 1/n Kf R2 χ2

29.33 1.268 0.998 71.026 0,953 1.482 0.756 97.631
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Fig. 12   Isotherm model for adsorption of RhB onto bentonite. a Langmuir; b Freundlich



313Euro-Mediterranean Journal for Environmental Integration (2023) 8:303–318	

1 3

(K). As can be observed in Fig. 13a, the adsorption capacity 
of RhB dye has significantly increased from 5 to 15.5 mg/g 
as the temperature increased in the range of 298–338 K. 
Therefore, this behavior indicates that the RhB adsorption 
reaction occurring on the bentonite’s surface is endother-
mic, which explains that at each temperature increase, the 
removal of hazardous RhB dye becomes more and more 
favorable. As it is shown in both Fig. 13b and Table 5, the 
obtained negative values of free energy ΔG° at 298, 308, 
318, and 328 K indicate the spontaneous nature of the 
adsorption (Bulut and Aydin 2006). The positive ΔH value 
of 5.78 kJ/mol confirmed the endothermic adsorption nature 
of RhB, while the slightest ΔS value of 0.018 kJ/mol/K 
reveals an increase of the randomness at the RhB–natural 
adsorbent solution interface during the adsorption process 
(Namasivayam and Kavitha 2002).

Proposed adsorption mechanism

The mechanism of rhodamine B adsorption into ben-
tonite can be investigated by electrostatic interactions 
(Fig. 14). As previously mentioned, bentonite clay was 
shown to contain many kinds of functional groups such 
as silanol Si–OH and aluminol Al–OH. However, the 
electrostatic interactions between the positively charged 
RhB dye (–N+–(CH3)2) and the negatively charged groups 
(Si˗O− and Al˗O−) present at the edges of bentonite sur-
face sites. The hydrogen bond between the H+ atoms of 
the layer (Si–OH and Al–OH) and the nitrogen atoms of 
rhodamine B can also explain the mechanism adsorption 
phenomena of the RhB dye by bentonite clay. Therefore, 
the excellent adsorption capacity of bentonite for RhB 
is due to the presence of both functional groups silanol 
Si–OH and aluminol Al–OH.

Reutilization studies

The frequent reusability of adsorbents to remove organic 
pollutants in wastewater is a key factor for judging its effi-
ciency and reducing wastewater treatment cost. In the pre-
sent work, the reuse tests were performed during four suc-
cessive adsorption/desorption cycles for the removal of RhB 
with an initial concentration of 30 mg/L from an aqueous 
solution onto 1 g/L bentonite using 50% ethanol–water (v/v), 
at 25 °C during 2 h. However, before its reuse, it is neces-
sary that the adsorbent be washed several times with water. 
The desorption percentage was calculated on the basis of 
the analysis of dye concentration recovered after the wash-
ing step.

As can be seen in Fig. 15, the adsorption efficiency 
after four cycles runs was decreased from 91% to 42%. 
This behavior was attributed to the fact that the adsorbate 
molecules (RhB) that are positively charged were strongly 
attached to the bentonite surface, which is negatively 
charged possibly via chemical adsorption.

Computational results

To investigate the adsorption process of RhB dye on the 
Bt-based adsorbent, leading to its removal from the solu-
tion, molecular modeling at the atomic scale was performed 
employing Monte Carlo simulation coupled with SAA. In 
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16
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Fig. 13   a The effect of temperature on the adsorption of RhB dye onto bentonite; b Van’t Hoff plot of removal of RhB dye onto bentonite

Table 5   Thermodynamic parameters of RhB adsorption onto the ben-
tonite

ΔH (kJ/
mol)

ΔS (kJ/
mol/K)

ΔG (kJ/
mol) 298 
(K)

ΔG (kJ/
mol) 308 
(K)

ΔG (kJ/
mol) 318 
(K)

ΔG (kJ/
mol) 328 
(K)

21.68 0.12  −14.08  −15.28  −16.48  −17. 6
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this regard, the interfacial RhB@Bt interaction is discussed 
in terms of its energetic and geometric aspects in the current 
subsection. Based on the most stable RhB@Bt adsorption 
geometry, the calculated adsorption energy is −764.179 kcal/
mol. The magnitude and sign of this energy value confirm 
the stability of the acquired adsorption system and also indi-
cate the affinity of the RhB molecule to adsorb onto Bt(001) 
surface. This can be explained by the implication of strong 
electrostatic interactions in this process between the RhB 
molecule and the substrate surface, which reinforce the 
adsorption of the target pollutant on the bentonite surface 
(Abdellaoui et al. 2021a, 2021b). Figure 16 shows the most 

stable adsorption geometry of the RhB molecule onto the 
bentonite surface, as well as its field density. As a result, the 
RhB molecule is found to be placed on the substrate surface 
through a flat adsorption orientation (i.e., parallel adsorp-
tion), which indicates its affinity to adsorb onto the used 
adsorbent. Furthermore, it can be seen that almost all heter-
oatoms (O and N) speared on the RhB molecule are directed 
toward the substrate surface, which signifies their effective 
implication on the interfacial RhB@Bt(001) interactions, 
leading to strong adsorption (Laabd et al. 2021). Meanwhile, 
the inspected adsorption configuration runs in parallel with 
the discussed energetic aspect of the adsorption process of 
RhB on the Bt surface. Overall, the present computational 
findings confirm the acquired experimental data from which 
higher RhB removals are attained using bentonite adsorbent.

Comparison of the treatment efficiency 
and cost analysis with literature studies

Table 6 presents the adsorption efficiency of RhB using dif-
ferent clays reported by some literature studies (Khan et al. 
2012; Hou et al. 2011; Huang et al. 2017; Khudhair and Al-
Rudaini 2017; Singh et al. 2018) compared with the results 
obtained in the present work. The results obtained by other 
works showed that the dye removal varies between 19% and 
94.2% within a contact time range of 40–80 min. Hence, 
Moroccan natural adsorbent could be a promising natural 
adsorbent for the elimination of RhB in aqueous solutions 
with RhB removal of 97% during 50 min.

Fig. 14   Proposed mechanisms 
for the adsorption of rhodamine 
B dye on bentonite
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Fig. 15   RhB adsorption during the regeneration cycles of the benton-
ite
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The cost analysis of the application of natural ben-
tonite was assessed and compared with previous works 
using natural and prepared adsorbents for the removal of 
RhB (Table 7). As natural bentonite is freely available, 
the purchase cost is 0 US$; however, the cost of trans-
portation was found to be 5 US$/kg. Hence, the cost of 
bentonite was highly competitive compared with other 
adsorbents’ costs (Inyinbor et al. 2016; Bello et al. 2019, 
2020; Adegoke et al. 2022). Moreover, it is about 55 times 

cheaper than commercial activated carbon, which costs 
only 273 US$/kg.

Conclusion

The present paper reveals that the natural adsorbent ben-
tonite, unlike other absorbents, has potential to be used for 
removing RhB. The experimental results have shown that 

Fig. 16   a Top and b side views 
of the most stable adsorption 
configuration of RhB onto 
Bt(001) surface. c Density of 
the adsorbate component (grid 
resolution 0.4 Å)

Table 6   Comparison of the treatment efficiency of RhB on different adsorbents with some literature studies

Adsorbent Adsorbent dose 
(g/L)

RhB concentra-
tion (mg/L)

Adsorption capac-
ity (mg/g)

Removal (%) Contact time 
(min)

Reference

Moroccan bentonite 1 30 29.33 97 50 Present work
Kaolinite 3 90 46.08 83 80 Khan et al. 2012
Gaozhou natural adsorbent 1.5 10 N.A 19 40 Hou et al. 2011
CTAB-natural adsorbent 1 350 173.5 94.2 40 Huang et al. 2017
Rhamnus stone 0.35 20 9 83 70 Khudhair and Al-

Rudaini 2017
Banana peel powder 13.33 25 3.8 81.07 60 Singh et al. 2018

Table 7   Comparison costs 
of adsorbents used for RhB 
removal

Adsorbent Cost (US$/kg) Reference

Epicarp of Raphia hookerie fruits 0.021 Inyinbor et al. 2016
Activated carbon prepared from locust bean husk 42.52 Bello et al. 2019
Activated carbon derived from Gmelina aborea leaves 36.34 Bello et al. 2020
Acid-modified mango pod (AMMP) 34.30 Adegoke et al. 2022
Natural bentonite 5 The present study
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the maximum removal is obtained at an initial RhB concen-
tration of 30 mg/L, pH of 10, equilibrium contact time of 
50 min, temperature of 298 K, and natural adsorbent dose 
of 1 g/L. Experimental data were adequately interpreted by 
Langmuir isotherm and pseudo-second-order kinetics. The 
thermodynamic study has shown that the adsorption process 
is endothermic and spontaneous for the tested temperatures. 
It would be interesting to continue testing other compounds 
having an attractive potential on the surface of the natural 
adsorbent and the RhB in an aqueous solution. The affin-
ity of the target dye to adsorb onto the used adsorbent was 
confirmed using Monte Carlo simulation, revealing an high 
adsorption energy of −764.179 kcal/mol. Finally, this study 
proved the efficiency of a natural adsorbent RhB dye, which 
encourages its use as a cost-effective and eco-friendly adsor-
bent for the removal of RhB dye from wastewater.
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