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Abstract
Solar irradiance during daylight hours was calculated using the Iqbal formula, taking into account total and aerosol optical 
thicknesses extracted from AERONET to determine the attenuation by the atmosphere and by aerosols. Comparison of the 
results for sites in the equatorial zone (Singapore, San Cristobal and Mbita) and temperate zone (New Delhi, Carthage and 
Laguna) shows that a cloudless atmosphere weakly reduces solar irradiance in the equatorial zone, which is characterized 
by more regular meteorology, in comparison to the temperate zone, which is characterized by more human activity. The 
attenuation in the clear sky (without aerosols) seems to be independent of the region and approximately 8 ± 1% on average, 
except for New Delhi, for which maximum attenuation by aerosols (46%) was observed due to the high diversity of seasonal 
and anthropogenic sources. Attenuation by the atmosphere does not exceed 24% at sites far from industrial pollution sources 
(Laguna and San Cristobal). For Singapore and Carthage, where anthropogenic aerosol emissions are weak, the attenuation 
by the atmosphere is around 30%.
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Introduction

The use of incident solar energy normal to the surface of a 
given site requires the precise determination of the amount 
of annual radiation that reaches that site after penetration 
of the corresponding atmospheric column. The introduction 
of the total optical thickness of the seasonal cycle in the 
absence of clouds makes it possible to obtain an accurate 
estimate of this solar radiation (Ben-tayeb et al. 2020, 2021).

The sun produces the necessary heat and light for all life 
on Earth. Due to the increasing global demand for energy, it 
is necessary to study all aspects of the exploitation of solar 

radiation (Bai and Wang 1994), in particular the atmosphere 
and its effects, to determine suitable sites to realize solar 
farms and avoid and anticipate natural and industrial con-
straints. The aim of chemistry and material sciences is to 
develop efficient ways to exploit solar energy and to study 
the effect of matter on solar radiation through the devel-
opment of photo-catalysts in solar radiation receptors (Al-
Musawi et al. 2018; Touati et al. 2019). Remote sensing is 
a critical factor in exploiting renewable energies as it ena-
bles the study of the components of the atmosphere and to 
plan, operate and maintain energy infrastructure (Kadhim 
et al. 2016). Gueymard (1993) developed a model to predict 
solar radiation at the Earth’s surface, but the values are only 
approximate and there is much uncertainty because each 
area has its own atmospheric particles, gas molecules, aero-
sols and clouds. These components are distinct, especially 
in terms of the concentrations of aerosols which attenuate 
radiation and affect the climate (Diouri 2018); quantifica-
tion of the direct effect of aerosols in mega-cities; phenom-
ena of diffusion and absorption of solar radiation (Meziane 
et al. 2020); and the quantification of the indirect effect of 
aerosols that modify optical properties of clouds (Steli et al. 
2016, 2017). Weather conditions affect the optical proper-
ties of aerosols in the atmosphere (Diouri et al. 2009; Tahiri 
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et al. 2016, 2018); for example, frequent dust seasons lead 
to a predominant contribution of coarse particles, especially 
in dry periods (Che et al. 2015; Yusuf et al. 2020). Aero-
sols have been included in atmospheric models since the 
beginning of this century; this allows a better estimate of the 
evolution of atmospheric components according to climatic 
conditions (Diouri 2018; Snoun et al. 2019). The sources of 
natural and anthropogenic particulate matter in air pollution 
and the resulting climatic effects have been studied (Hamed 
et al. 2018). Analysis of the optical properties of aerosols in 
East Asia has shown that the greatest aerosol loading occurs 
during the dry season and leads to significant warming of 
the atmosphere and cooling of the surface, with a reduction 
caused by humidity after precipitation (Mai et al. 2018). In 
eastern–northern India, increasing aerosol optical thickness 
in winter and pre-monsoon seasons leads to high aerosol 
radiative forcing (Dhar et al. 2017). Aerosol optical studies 
carried out in the Mediterranean region, which is character-
ized by different types of aerosols (Esteve et al. 2014; Di 
Biagio et al. 2018), have confirmed the same trend, with 
maximum values recorded in summer and minimum values 
in winter. Natural intensities are greater in southern regions 
and anthropogenic ones are greater in northernones (Marsli 
et al. 2019). 

This work is based on optical measurement data obtained-
from the AERONET network, which constitutes a very 
important technological development that allows greater 
competitiveness. These are computational and empirical 
data associated with parasitic techniques which a fortiori 
allow faster development (Coccia 2017, 2019, 2020). In this 
study, we quantify the attenuation of solar radiation by due 
to aerosol emission for six sites representative of the equato-
rial and temperate zones. To this end, we integrate the data 
on the aerosol optical thicknesses (AOT) and total optical 
thicknesses (TOT) measured by the network AERONET/
PHOTONS into the calculation of the attenuated radiation 
using the PSIX program, based on the Iqbal formula of solar 
irradiance during the day, taking into account the position 
of the sun and the latitude. The determination of the parti-
cle size distributions (PSDs) and the volume concentrations 

allows an appreciation of the linearity between the deter-
mined concentrations and the attenuations obtained (Ben-
tayeb et al. 2020).

Methodology

Sample and data

The study periods and characteristics of each study site are 
given in Table 1. Three sites were chosen as representa-
tive of the equatorial zone and three as representative of the 
temperate zone.

The selected sites are dispersed in their respective zone 
and can be considered to representative of that zone. They 
also are located in different regions of the world: the three 
sites in the equatorial zone (Ecuador, Kenya and Singapore) 
are very distant from each other and in different climates, as 
are the three sites in the temperate zone (La Laguna in the 
the Canary Islands [Atlantic], Carthage in the Mediterranean 
region and New Delhi in the Indian peninsula). All sites dif-
fer in terms of the composition of the atmosphere.

Equatorial zone

San Cristóbal is located on an island near Ecuador in the 
Pacific Ocean, far from all sources of industrial pollution. 
Some traces of carbon-rich aerosols were detected, such 
as smoke and biomass burning aerosols, most likely trans-
ported to this region by continental wind currents from 
Africa, Western Europe and eastern South America (García 
and Tatiana 2019). The ICIPE (International Centre of Insect 
Physiology and Ecology) Mbita site is located in Kenya 
along the shores of Lake Victoria, near one of Kenya’s main 
cities. Mbita is influenced by the lake–land air exchange 
affected by aerosols caused by traffic and the burning of bio-
mass from neighboring rural areas (Zachary et al. 2018). An 
analysis by Ngaina et al. (2014) showed that aerosols mainly 
of dust and sea salt reaching Kenya are transported from the 
Arab or Indian subcontinent or from the western parts of the 

Table 1   Site characteristics 
and period of the study 
(AERONET)

Site Latitude Longitude Altitude 
(m a.s.l.)

Period

Start End

Equatorial zone
 San Cristóbal USFQ (Ecuador) 0.89 S 89.6 W 22 12 January 2019 31 December 2019
 ICIP Mbita (Kenya) 0.43 S 34.20 E 1152 1 January 2013 31 December 2013
 Singapore (Singapore) 1.29 N 103.78 E 30 1 Janurary 2018 31 December 2018

Temperate zone
 La Laguna (Spain) 28.48 N 16.32 W 568 1 January 2013 31 December 2013
 Tunis Carthage (Tunisia) 36.83 N 10.19 E 10 1 January/2019 31 December 2019
 New Delhi (India) 28.63 N 77.17 E 240 1 January 2009 31 December 2009
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Indian Ocean. Singapore is characterized mostly by aerosol 
particles in the fine mode, with a small optical thickness, 
that result from urban pollution (Salinas 2009). Data indicate 
the presence of particles resulting from the combustion of 
biomass, with the period July–September coinciding with 
the typical biomass combustion season (Chew 2013).

Temperate zone

La Laguna is characterized primarily by marine aerosols, 
with the maximum AOT recorded in June–August due to the 
mixture of dust and sea salt transport (Rodríguez et al. 2011, 
2012). Analysis of the dust episodes in North Africa indicate 
that mineral dust is the main contributor too the dominance 
of the aerosol coarse mode. In Carthage (Tunisia), secondary 
aerosols are produced during the summer by atmospheric 
photochemistry (Saad et al. 2016). The megalopolis New 
Delhi very polluted and heavily populated. It is character-
ized by the seasonal variability of AOT, with the maximum 
observed in June and November and the minimum in March 
and September. The highest AOT is observed after the mon-
soon and is attributed to the significant contribution of urban 
aerosol and biomass combustion. During the pre-monsoon 
season, most mixed types of dust and aerosols dominate. 
The maximum AOT at short wavelengths is observed in 
June and November, and the maximum AOT at long wave-
lengths appears in June (Tiwari 2016). Between April and 
June, desert aerosols dominate with 1.17 ± 0.65 of AOT at 
0.5-µm diameter (Sachchidanand et al. 2005).

Measures used

The spectral total optical thickness at 0.5 µm (TOT0.5) is the 
sum of the contributions of Rayleigh interactions, aerosols 
and gas, given by AERONET. The value generally varies, 
with the monthly mean ranging from 0.1 to 0.6 except for 
New Delhi, where the average value is 0.8 (Fig. 1).

The equatorial sites are characterized by a relative con-
stant and regular seasonal TOT0.5 of around 0.6 for ICIP 
Mbita, 0.4 for Singapore and 0.3 for San Cristóbal. In con-
trast, the three sites in the temperate zone are more variable, 
with the lowest TOT0.5 of 0.2 at La Laguna, a site located 
far from pollution sources, and the highest (> 0.6) always 
at New Delhi due to the high abundance of both natural and 
anthropogenic aerosols; the TOT0.5 is 0.4 at Carthage where 
there are few human activities.

Data analysis procedure

Most observation networks of climate use the sun photom-
eter as a monitoring device; in this context, AERONET pro-
vides a wide range of parameters from daily measurements, 

including the optical thicknesses of all components of the 
atmosphere, volume particle size distributions, spectral 
refractive index and single scattering albedo (Holben et al. 
2006). Based on an analysis of AERONET data collected 
in Eastern Europe, natural factors were found not to have a 
significant effect on temporal variations in the optical thick-
ness of aerosols in mega cities, such as Moscow (Chubarova 
et al. 2016). In the West African region, a study of the prop-
erties associated with the absorption and size distribution 
of aerosols identified the four sources of aerosols: desert 
dust, biomass burning aerosols, urban aerosols and gas flar-
ing (Fawole et al. 2016). These parameters were determined 
from almucantar and direct solar measurements. The uncer-
tainties of AOT and TOT vary according to the wavelength 
of the solar radiation (Holben et al. 1999; Eck et al. 1999).

In this study, the monthly average AOT was stable during 
the study year for ICIPE-Mbita at around 0.2 at the wave-
length 0.5 µm, except for in the dry season (June–August) 
when there was a small increase and it did not reach 0.5 
(Fig. 2). Due to the distant sources of pollution at San Cris-
tóbal, low AOT was registered at this site during the study 
year, with the monthly average AOT just above 0.2 dur-
ing the period of February–April and September. In Singa-
pore, the AOT remained almost stable during the study year 
except for two periods of February–April and July–October 
when there was a slight increase. In New Delhi, the diversity 
of major aerosol sources implied extreme changes and high 
values throughout the study year, with maximum values in 
November and January. La Laguna seemed to be relatively 
clean site because it is located far from all sources of pollu-
tion, but it is influenced by desert aerosols advections from 
the Sahara, which reach a maximum in August. In Carthage, 
the AOT increased from the beginning of spring to the end 
of the summer, with a decrease to 0.16 at 0.5 µm in the 
precipitation period; the maximum of AOT0.5 reached 0.32 
in April.
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Fig. 1   Monthly variation of total optical thickness at 0.5  nm 
(TOT0.5 µm)
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The size of particles is one of the most important cri-
teria to characterize the behavior of aerosols. The particle 
size distribution can be determined from many inversion 

algorithms (Diouri and Sanda 1997; Diouri et al. 1997) 
using data of AOT. Based on previous studies, Dubovik 
et al. (2000) modeled particle volume size distribution by 
the bimodal lognormal as given in Eq. 1:
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Fig. 2   Monthly average of aerosol optical thickness at study sites in the equatorial zone (left) and in temperate zone (right)
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where rf and rc are respectively fine and coarse mode median 
radius and Vf and Vc are their respective amplitudes, as rep-
resented in Table 2. We represent the total volumetric con-
centration of the particles by Vt.σc and σf, which are coarse 
and fine mode standard deviation, respectively.

AERONet al.lows the volume PSDs to be determined. 
Here, we present the monthly average volume PDDs at all 
six study sites (Fig. 3). The bimodality variation of the dis-
tribution at all sample sites should be noted. The peak is 
for particles in the fine mode, between 0.04 and 1 µm; the 
second peak is for particles in the coarse mode, between 1 
and 10 µm.

The concentrations vary from site to site depending on 
the aerosol sources. At ICIPE Mbita, a maximum of coarse 
particles with a mean radius of around 2.55 µm (Table 2) 
occur as a result of mineral dust throughout the year and 
especially during the summer. Very low concentrations of 
the two modes of particles are recorded at San Cristóbal, 
with a small increase in the volume concentration of coarse 
particles in February, reaching 0.04 μm3/μm2 (correspond-
ing to a mean radius of 5 µm). The average concentrations 
of fine and coarse particles seem to be equal in Singapore 
(Table 2). In La Laguna, very low average concentrations 
of fine particles are found; in contrast, notable concentra-
tions of coarse particles (0.22 μm3/μm2) relative to the mean 
radius of 2.2 μm are observed in August. In New Delhi, the 
large concentration of fine particles recorded in November 
and January coincide with large biomass combustions; for 
coarse particles, the maximum concentrations are observed 
in the April–August period, reaching 0.25 μm3/μm2 (cor-
responding to a mean radius of 4 µm) in April. At Carthage, 
there is a predominance of coarse particles in the dry season 
(June–August), with the maximum concentration reaching 
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0.074 μm3/μm2 in June (corresponding to a mean radius of 
1.7 µm).

Solar irradiance on the Earth’s surface is related to the 
geographical latitude (φ), the eccentricity factor of the 
earth’s orbit (E0), the solar declination (δ), the solar constant 
(Isc) and the hour angle of the sunrise (ωs) (Iqbal 1983). The 
extraterrestrial irradiance on a horizontal surface during the 
day from sunrise to sunset is given by Eq. (2):

Due to aerosol extinction, molecular scattering (or Ray-
leigh) and gas absorption, solar irradiance is attenuated. 
This attenuation may be expressed with the Bouguer law 
by Eq. (3):

where mair is the relative air mass expressed by Kasten et al. 
(1989).

To determine the monthly attenuations of solar irradiance 
by the atmosphere and by the aerosols, we calculated the 
solar irradiance at the top of atmosphere I0 and inserted TOT 
and AOT values through the PSIX program, obtaining the 
atmospheric attenuation (TE) and aerosol attenuation (AE), 
respectively, as shown in Fig. 4.

Results and discussion

The results show that solar energy generation decreases 
with deterioration of the air quality and that compared to 
other atmospheric parameters, the rate of solar irradiance 
attenuation due to aerosols is the dominant factor driving 

(2)I0 = (24∕�)IscE0 cos� cos �[sin�S − �S cos�S]

(3)I(�) = I0(�). exp[−mair.TOT(�)]

Table 2   Annual mean particle 
size distribution parameters: 
fine and coarse median radius, 
fine and coarse volume 
concentrations and total volume 
concentration

rf, rc, Fine and coarse median radius, respectively; Vf and Vc, fine and coarse volume concentrations, 
respectively; Vt total volume concentration

Site Fine mode Coarse mode Vt (μm3/μm2)

rf (μm) Vf (μm3/μm2) rc (μm) Vc (μm3/μm2)

Equatorial zone
 San Cristóbal USFQ (Ecuador) 0.16 0.014 2.68 0.039 0.053
 ICIP Mbita (Kenya) 0.16 0.026 2.55 0.102 0.128
 Singapore (Singapore) 0.19 0.046 2.76 0.059 0.105

Temperate zone
 La Laguna (Spain) 0.16 0.010 2.13 0.061 0.071
 Tunis Carthage (Tunisia) 0.14 0.020 2.62 0.080 0.100
 New Delhi (India) 0.15 0.060 2.83 0.292 0.352
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this deterioration (Yu et al. 2020). A study in which a predic-
tion model of solar radiation in a clear sky was based on four 
climate parameters (ozone, water vapor, nitrogen dioxide 
and the Ångström turbidity) showed that air pollution with 
aerosols can lead to a loss of > 20% of the collectible solar 

energy (Calinoiu et al. 2013). The Global Climate Model 
(Bergen et al. 2017) shows that aerosol particles reduce solar 
energy by 15–25% in Singapore during agricultural burn 
events and by more than 25% in the Arabian Peninsula due 
to dust, and that in China anthropogenic particles in polluted 
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Fig. 3   Monthly average volume particle size distributions at study sites in the equatorial zone (left) and in temperate zone (right)
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areas contribute to a decrease of 17% of the solar irradiance. 
A study targeting the New Delhi site noted that aerosols 
reduce solar radiation by 40% (Millstein and Fischer 2014).

The annual TE and AE attenuation rates (Table 3) are 
highest when the attenuation by aerosols is large, thereby 
confirming the attenuation dominance of aerosols over other 
components of the atmosphere.
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Fig. 4   Monthly solar irradiance at the top of the atmosphere (TA), with aerosol extinction (AE), and with total extinction (TE) at study sites in 
the equatorial zone (left) and in temperate zone (right)
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At the equator, the incident solar irradiance at the top 
of the atmosphere (I0) is relatively the same every day of 
the year. The monthly attenuation of solar irradiance by the 
atmosphere and by aerosols in Singapore and their devia-
tions remain almost constant. For ICIPI Mbita, the attenu-
ation of the solar irradiance is high during April, June and 
July, corresponding to the appearance of the desert aero-
sol. Small monthly attenuation rates of solar irradiance are 
recorded at San Cristóbal. The maximum attenuation of 
the solar irradiance by the atmosphere in Carthage, 38%, is 
recorded in April. For La Laguna, the maximum attenuation 
is recorded in August and July. The influence of the com-
bination of desert and urban aerosols attributed to human 
activity and biomass combustion emissions at New Delhi 
lead to a very strong atmospheric attenuation of the solar 
irradiance. Finally, the temperate sites (Fig. 4, right side) 
show seasonal attenuation irregularities, with an increase 
in the spring and summer, which is most notable as a steep 
increase in New Delhi, and flat-shaped histograms relative to 
equatorial sites (Fig. 4, left side) where monthly attenuation 
of the solar irradiance seems more regular and low.

Conclusions

Solar irradiance depends on constant geographic factors, 
such as altitude, latitude and season, and on variable factors, 
such as atmospheric load, presence of clouds and aerosols; 
the latter are considered to be the most important factors 
influencing the attenuation solar irradiance. The inclusion 
of TOT and AOT data from six AERONET sites (three in 
the equatorial zone and three in the northern temperate zone) 
in the PSIX calculation program allows the attenuation of 
solar irradiance by aerosols and by the atmosphere to be 
quantified. The difference between the two zones lies in the 
altitude of the atmosphere, which is greatest in the equator, 
and in the length of the day, which is regular all year round 
in the equatorial zone, while it lengthens in summer and 

shortens in winter in the temperate zone. The most signifi-
cant difference observed is related to the effect of pollution 
and desert aerosols.

Monthly average of the volume particle size distribution 
shows low concentrations for both fine and coarse modes 
throughout the year for the equatorial zone. For the temperate 
zone, La Laguna and Carthage register a noticeable rise in 
the concentration of particles of the coarse mode during the 
summer due to the influence of the desert mineral dust advec-
tions, while there is a very low concentration of particles of the 
fine mode. In New Delhi, high concentrations of particles of 
both modes, but especially those of the coarse mode, are found 
from April to August. The large increases in AOT observed 
depend on seasonal phenomena of aerosol production from 
desert storms and biomass combustion. The solar irradiance 
attenuation by the total atmosphere is directly linked to aerosol 
volume concentration, as reported earlier by Ben-tayeb et al. 
(2020).

The monthly solar irradiance in the equatorial zone is 
almost constant, while in the temperate zone, the atmospheric 
attenuation is stronger in the summer and autumn or spring 
depending on the appearance of desert aerosol advections. The 
highest attenuation—around the order of 50%—was recorded 
in Delhi where the desert aerosol combines with the urban one 
attributed to human activity and aerosols emitted by biomass 
combustions. The results of direct attenuation of solar irradi-
ance by aerosols are comparable to those determined by other 
models and techniques. The study of the attenuation of solar 
irradiance by atmospheric components presents a degree of 
uncertainty due to the changing nature of the atmosphere.

The results of this study can be generalized to specific areas 
of the Earth that have the same optical properties of aerosols 
as well as the same source of aerosols, taking into account that 
while other cloudless atmospheric components (molecules and 
water vapor) affect the attenuation of solar irradiance relatively 
less than aerosols, they do so at almost a constant level. For 
example, in the North African region, the mean attenuation of 
solar irradiance by aerosols is of the order of 22% due to nearly 
identical air quality conditions dominated by desert aerosols 
transported by seasonal air masses coming from the Sahara. 
This value can be generalized to the rest of North Africa’s 
sites in the southern Mediterranean. It is necessary to study 
the optical properties of aerosols for each site.

This study is the start of a comprehensive study of the 
effect of atmospheric components on solar radiation, includ-
ing the effect of clouds, the study of which remains a chal-
lenge in this field.
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