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Abstract
Nanotechnology has paved the path into our daily lives in the form of consumer products, ranging from food products to the 
textile we wear. With this huge inflow of nanoproducts, research has been able to draw conclusions that these products are 
environment friendly and sustainable for our planet. This particular chapter will bring out the intrinsic arenas, where the 
usage of nanotechnology and its products has led to a green future and eco-friendly living. There are numerous nanoproducts 
which are a remedy to the existing scenario of pollution and miseries of human. To add to it, nanotechnology has been of 
importance to revamp clean energy movement and bring about various techniques to limit the pollution. The basis of green 
nanoproducts is to make earth less hazardous and less toxic planet to live in. We have put up various intriguing case studies 
and contemporary research on nanotechnology that is of great importance in the view of sustainability and green future. 
The upcoming times are waiting for better improvised techniques to deal with existing dreadful pollution and the deadly 
climate change. Nanotechnology and the products built through nanoscience will play a crucial role in mitigating the issues 
of our blue planet.
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Introduction

Nanoproducts are the products derived from the intensive 
use of nanotechnology in order to gain specific physical, 
chemical, and structural properties. Consumer nanoprod-
ucts have been of significant importance in the economy 
of the nation; the ultimate motive has been to reduce the 
impact of nanoproducts on the environment by making the 
process green and sustainable. Earlier studies and reports 
have proved that nanotechnology is potentially the next great 
commercial opportunity offering investors a good deal to 
bag some commercial potential. The global market for nano-
products is estimated to reach 125 billion USD in 2024, as 
nearly all daily usage products can be enhanced by using 
nanoparticles in them. Commercialization for nanoproducts 
ensures that it will not only meet the performance and reli-
ability requirements but will also fulfil economic needs [50, 

80, 81]. The use of nanoproducts implementing engineered 
nanoparticles can be proved cost-effective, green, and sus-
tainable alternative to using traditional materials. The engi-
neered nanoparticles used in manufacturing various nano-
products and their life cycle can be obtained by applying that 
particle within that particular product. Relevant exposure, 
ageing, and transformation are firmly subject to the life cycle 
of nanoproducts  [58]. The primary property of nanopar-
ticles which is a larger surface area to mass ratio is what 
makes them advantageous.

Nanotechnology will open up the horizon of new prod-
ucts, keeping in mind environmental concerns. It may 
include making solar cells better in terms of efficiency of 
electricity generation and cleaning polluted water. It is the 
process of creating and utilizing materials, devices, and 
systems by manipulating matter on a nanometer scale. Con-
sumer nanoproducts have been commercialized and their 
usage has greatly increased in number over the last two dec-
ades. The increase in the use of nanoproducts for cosmet-
ics, paints, polymers, food packaging, medical, electronics, 
aeronautics, sports, and textiles has shown an equal rise 
and thousands of nanoproducts are available commercially. 
Along with the development of nanoproducts, development 
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of databases and inventories containing information related 
to engineered nanomaterials used for manufacturing [64]. 
Various inventories, like nanotechnologies project, and 
nanoproducts data bank are there which provides the infor-
mation about the nanomaterials and nanoproducts which 
are currently in existence in European Association for the 
co-ordination of consumer representation in standardization 
[62]. Other aspect for the development in this field is the 
sustainable manufacturing of the nanomaterials.

Sustainable development through nanoproducts still has 
some hurdles to overcome like lowering the price of nano-
materials, incorporating nano-based technology in the indus-
try, making it acceptable socially and studying the risk of 
nanomaterials to our environment. With an increase in the 
use of engineered nanomaterials, their trivial, inadvertent 
and deliberate release in the environment has increased, and 
nano-aggregates of silver and titanium dioxide have already 
been found in the environment. Wastewater treatment and 
waste management are not equipped with technologies able 
to remove the engineered nanoparticles [72]. Another impor-
tant area is construction; one of the most widely utilised 
construction materials is concrete. There is a need for rapid 
development in understanding the cementitious material at 
the micro-level. The strength and durability of the concrete 
can be enhanced if the porosity is reduced by nano-additives. 
Substances like nanotubes or fibres, nano-clay and nanoscale 
spherical materials are used to improvise the strength and 
durability of the concrete. The construction industry will be 
one of the most important industries using nanoparticles but 
most of the materials are at a laboratory scale [63]. Nano-
materials have their applications in almost every field; we 
will take some of the important fields and see the usage of 
nanomaterials in that field.

Food packaging is an important field where nanoproducts 
can be used. Materials like biopolymers, paper, glass and 
metals have been used as packing products till now. Cur-
rently, a wide range of engineered nanoparticles has been 
introduced for food packaging. Materials like silver NPs 
(AgNPs), nano-clay, nano-zinc oxide, nano-scaled cellu-
lose, nano-starch, carbon nanotubes and nano-silica are used 
in food packaging as they have properties like flexibility, 
durability, flame resistance, barrier properties and recycling 
properties [15]. Nano-packaging also serves as a foodborne 
disease barrier; they are smart toxin-detector that alarms 
with the signs of non-uniform quality [73].

Agriculture acts as an important pillar in developing the 
country’s economy. Nanoproducts-based sustainable devel-
opment is also possible in the agricultural sector and food 
science, as it is an urgent requirement to satisfy the global 
nutrition demand as by conventional farming almost one-
third of the crop gets damaged due to natural phenomena 
or by pesticides, poor soil quality and microbial attacks. 
Nano-based products are becoming new age materials to 

transform modern agriculture practices. Nanomaterials can 
be employed as a smart coating for agricultural feed such as 
pesticides and efficient soil management can also be imple-
mented [57, 85]. Nanoproducts in the food manufacturing 
sector could help market mediators and also lower the pro-
duction costs by generating non-fouling surfaces that prevent 
congestion in process machinery [77]. With supplemented 
nutrients of various flavours, certain nanoproducts could 
increase bioavailability [30, 46]. As the population of the 
world is increasing there is a need to produce almost 50% 
more to match the requirements, nanotechnology plays a 
vital role in satisfying the needs [89]. Nanosilver can also 
be used as a nanoproduct in medical applications, as the size 
of nanosilver is smaller than 100 nm and contain 20–15,000 
Ag-atoms. It has strong antimicrobial properties; it is pro-
moted as a water disinfectant and room spray, used for treat-
ing wounds and burns or as a contraceptive. Thus, the use of 
nanosilver as medical-related work is increasing more and 
more. Nanosilver is also used as a detergent, incorporated 
in textiles, water purification and wall paints. Furthermore, 
nanosilvers are generally non-toxic products; it only affects 
people with chronic disease [16].

There are certain disadvantages of using nanoproducts 
such as it is unstable in hostile conditions, toxicity to the 
environment, and the challenge of recycling them. So for 
eco-friendly manufacturing and sustainable products, green 
nanoproducts are manufactured. Green nanoproducts are 
the products that cause the least harm to the environment 
and their synthesis is done using various bioactive agents 
which include plants, fruit peel waste, and various other 
bio-wastes. Sustainable nanoproducts mean nanoproduct 
which uses renewable materials for manufacturing and has 
a low influence on the environment. Nanoproducts used for 
the adsorbent in water treatment are observed to be manu-
factured using plant extract or some bio-wastes which are 
termed green nanomaterials as it does not have any harmful 
effect on the environment. The main of green nanoproducts 
is to reduce the harmful by-products which are produced 
while using conventional nanoproducts. Researchers should 
focus on synthesizing nanoproducts that are based on bioac-
tive agents and are sustainable; doing this, the limitations of 
conventional nanoproducts can be overcome and can aid in 
creating a sustainable and eco-friendly future.

As clean water is utmost essential for human life, its 
quality should be maintained and it should not be contami-
nated. It is observed that green synthesised nanoparticles 
are largely used in the treatment of waste water containing 
inorganic pollutants. Waste water treatment works on the 
principle of adsorption, and it is well known that nanoparti-
cles have a higher surface area which is one of the important 
aspects of adsorption process. Due to its higher specific sur-
face area, unique adsorption phenomenon and wide distribu-
tion of reactive surface sites nanoparticles adsorbent have 
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better adsorption capacity compared to other adsorbents 
[22]. Many such works have been done in finding effec-
tive adsorbents for the removal of contamination such as 
arsenic, fluoride, and nitrates [85] in their research work 
formulated the use of green synthesized iron nanoparticles 
for the removal of nitrate contamination using green tea and 
eucalyptus leaves extract as adsorbent. It was found that it 
was more effective rather than using other materials. Many 
such studies are carried out like [93] used hydrous titanium 
dioxide (TiO2· xH2O) nanoparticles, (S. H. [94] formulated 
usage of Ti-loaded basic yttrium carbonate (Ti-BYC) for 
the removal of arsenic contamination. Along with that for 
fluoride contamination [91] incorporated the use of Lantha-
num–iron binary oxide nanoparticles, [92] used Perovskite 
lanthanum aluminate nanoparticles. Along with all these 
research works, many other studies have suggested nanopar-
ticles are effective when used as adsorbents for the removal 
of water contamination. If these nanoparticle adsorbents are 
synthesized in an eco-friendly manner, they are termed green 
nanoparticles. More such uses of the green nanoparticles are 
incorporated in this paper in different sections ahead.

Along with all the applications of nanoproducts, the end 
of line is the point at which the product no longer meets 
the user's needs. These products cause harm to the environ-
ment, so it is necessary to manage these products and recycle 
them [7]. Nanocomposites in the automobile industry were 
investigated, and it was found that recyclability and repara-
bility are important for these industries. The consumer end 
products used such as cosmetics, textiles, packaging, and 
agricultural products are aimed to be produced in a sustain-
able and eco-friendly manner.

Classification of nanoproducts

Nanoproducts are mainly classified into four different cat-
egories they are as follows. Figure 1 represents a brief 
classification of nanoproducts.

Carbon‑based nanoproducts

Carbon-based nanoproducts have become important prod-
ucts because of their unique combinations in properties 
such as chemical and physical along with it properties 
like mechanical, electrical, thermal and optical properties. 
Extensive research works are going on for using these prod-
ucts for human benefits [14]. Carbon-based nanoproducts are 
mostly used in therapeutics, biomedical imaging, biosensors 
tissue engineering and various other categories. There are 
various nanoproducts which are based on carbon.

1.	 Carbon nanotubes (CNTs)

Carbon nanotubes are cylindrical structures consisting 
of one or more layers of graphene. Perfect CNTs have all 
the carbon atoms bonded in a hexagonal lattice except their 
end. While bulk production of CNTs can have a mixture of 
pentagon, hexagon or other random structures which will 
degrade its quality [55]. The thickness of carbon nano-
tubes is 50,000 times smaller than the width of human 
hair. CNTs are divided into two categories single-walled 
nanotubes and multi-walled nanotubes. It belongs to the 
fullerene family which also includes buckyball [65].

Fig. 1   Represents the classification of nanoproducts
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CNTs can be used for the anode; it may enable the use 
of low grade heat through an osmotic heat engine [55]. It 
is also used in drug delivery systems, atomic force micro-
scope, electrochemical reactions as microelectrodes, and 
it is good media for the storage of lithium and hydrogen. 
It is also used in vacuum microelectronics, energy storage 
and hydrogen storage, used in the formation of ultimate 
carbon fibres [5]. Thus, these are the potential uses of 
carbon nanotubes.

2.	 Graphite

The structure of graphite contains atoms of carbon 
which are connected in a huge flat network and are then 
placed on one another. It is very flexible but it cannot be 
termed as an elastic material. It behaves as both metals 
and non-metals. Along with that, it is greyish black in 
nature, possesses high thermal conductivity and is chemi-
cally inert [13, 20, 76].

Graphite nanomaterials are used as piston rings, thrust 
bearings, journal bearings, vanes, shaft and fuel pumps 
of many aircraft engines. It is also used in carbon raising 
in olten steel and lubricant in dyes to extrude hot steel.

3.	 Nanodiamond

No other material possesses thermal conductivity as 
high as diamond but it has a poor dielectric constant and 
it is most likely that it shows affinity to electrons when 
tested. Along with it, it has great carrier mobility, electric 
field and saturated carrier velocities [67]. Thus, products 
of nanodiamonds can have a lot of benefits when used.

It is used as electrolytic and electroless metal plating, 
also used as chemical vapour dissolution for diamond 
films, magnetic image resonance chromatography, pro-
teomics and spectrometry. Nanodiamonds doped with 
boron have conducting nature and can be utilized for 
electro-analysis, electrochemical double-layer capacitors 
and batteries [61].

4.	 Graphene

Graphene is the basic building block of all graphitic 
forms; it has a closely packed single layer of carbon 
atoms. It has a large surface area, and both sides of the 
sheet are available for molecule adsorption [68]. Gra-
phene can be easily modified by a functional group like 
graphene oxide.

It is mainly used in adsorption processes for different 
sample preparation methods. It is used in the sample prep-
aration methods of chlorophenols, lead, chromium (III) 
glutathione neurotransmitters, etc [90].

Nanocomposites products

Nanocomposites are the materials which are formed by 
nanosized particles into a matrix of standard materials. 
Nanocomposites consist of hydrogels [95]; this will show 
a drastic change in properties of that material which will 
include mechanical strength, toughness and electrical or 
thermal conductivity. Nanoparticles and hydrogel form 
advanced materials with different properties which were 
earlier absent in the individual particles. One of the earli-
est investigations of such materials was done by (Yissar 
et al., 2001), in which they immobilized gold in poly-
acrylamide (PAAm) by swelling the hydrated gel with 
Au-NP solution present, which resulted in the gold nano-
particles being uniformly distributed in the gel matrix. 
Such unique approaches are reported by researchers and 
are used in biomedicine and optics. There are different 
types of nanocomposites. The first one is micro- or nano-
gels which stabilize single or multiple nanoparticles, the 
second is immobilized and non-covalently nanoparticles 
in a hydrogel matrix and the last one is covalently immo-
bilized nanoparticles hydrogel matrix [80]. Their highly 
crystalline nature, high specific ratio, regular shape and 
low cost are the major properties of nanocomposites. 
Nanocomposites are classified in the following ways.

1.	 Ceramic matrix nanocomposites—it consists of ceramic 
fibres embedded in ceramic matrix.

2.	 Metal matrix nanocomposites—it is reinforced metal 
matrix composites, metal embedded in metal matrix

3.	 Polymer matrix nanocomposites—nanoparticles added 
to the polymer matrix

4.	 Magnetic nanocomposites—it includes matrix dispersed 
nanoparticles, core shell nanoparticles, colloidal crys-
tals, macroscale spheres and Janus type nanostructure 
[10, 11].

5.	 Heat Resistannce nanocomposites- it is used ot with-
stand higher temperature, for example, the carbon dots 
in polymer matrix [69].

As we know, nanocomposites have great application 
in medical science; their higher surface area to volume 
ratio allows increased loading of therapeutics. (G. Wang 
and Su, 2011). Nanocomposites are also used as fillers 
for superior elasticity and dermatological patches. When 
materials like CNTs and graphene oxide are placed in 
hydrogels, they work as a light absorbing material which 
is useful for photothermal drug delivery [80]. Nanocom-
posites can also be used in handling tasks while dealing 
with acid and oxide, it will also avoid the environmental 
complications of chemical treatment [41].
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Dendrimers

Dendrimers are one of the most crucial classes of nano-
fraternity. They have a wide scope of use in medicine, 
biotechnology and the biochemical sector. Dendrimers 
are nanoparticles that are radially symmetrical, hyper 
branched and have three-dimensional polymeric struc-
ture. There is a high crowding of the functional group 
present on the dendrimers’ surface. The dendrimer has 
three domains present, namely core, dendrons and terminal 
functional group. Dendrimeric crevices are cavities cre-
ated between dendrons that can contain the guest molecule 
through hydrophobic or electrostatic interactions [9]. The 
term “Dendrimer” is used as a motif for the peculiar struc-
ture. They are synonymous to “cascade molecules” [2]. 
Their structure consists of a central atom that is the core, 
dendrons are the branches attached to the central atom and 
there may be numerous functional groups attached trailing 
to these branches. The core, the interior (or branches), and 
the perimeter are the three distinct regions of a dendron (or 
end groups) [47]. Dendrimers are either highly ambiguous 
or have a very restricted structural variety. The dendrim-
ers can be manipulated in the context of their molecular 
weight and chemical composition, during the synthesis 
period. With increasing dendrimer generation, dendritic 
macromolecules tend to grow in diameter and take on a 
more globular form. Dendrimers are used for applications 
such as drug carrier, anticancer drugs, and stabilizers. 
Pharmacokinetic qualities are considered when using den-
drimers in biomedical usages such as drug delivery, imag-
ing, photodynamic therapy, and neutron capture treatment. 
Dendritic polymers are functionalized in the same way 
that proteins, enzymes, and viruses are. Dendrimers and 
other molecules can be enclosed in their interior voids or 
connected to the periphery. Metal chelates based on den-
drimers are used as contrast agents in magnetic resonance 
imaging [65]. Other applications of dendrimers include 
gene delivery, enhancement of solubility, photodynamic 
therapy, water purification, anti-tumour therapy, catalysis, 
separating agents and printing inks and paints.

Metallic

Metallic nanoparticles are metals having dimensions 
(length, breadth, and thickness) between 1 and 100 nm. 
These nanomaterials can be made and controlled to attach 
to the antibodies, ligands, and drugs using a variety of 
chemical functional groups. Metal nanoparticles are 
important because of vast medicinal, consumer, industrial, 
and military applications. Hence, metal NPs have attracted 

a lot of attention. Although the same material is largely 
benign in its bulk form, several metal-based nanoparticles 
demonstrate enhanced toxicity as particle size decreases 
(e.g., Cu, Au and Ag). Some of the peculiar properties 
of metal nanoparticles are enhanced Rayleigh scattering, 
surface enhanced Raman scattering, strong plasma absorp-
tion, biological system imaging, and determining chemi-
cal information on the metallic nanoscale substrate [83]. 
New reactive metal nanomaterials are being developed 
because of their potential use in propellants, explosives, 
and pyrotechnics.

The aluminium nanoparticles are used as a fuel-propel-
lant, ablation resistant coating additive and as explosives. 
Gold nanoparticles find their use in photochemotherapy and 
cellular imaging. Oxides of iron are needed in order to reme-
diate the environment and are used in magnetic resonance 
imaging. Silica dioxide is used as catalyst supports, drug 
carriers, adsorbents and in the making of electric/thermal 
insulators. Silver nanoparticles are used in photography, 
electrical equipment, batteries and also possess antibacte-
rial properties. Copper nanoparticles have medicinal use as 
they are antimicrobial in nature and are also used in lubri-
cation and as catalysts. Cerium dioxide (in nano-form) is 
used in polishing, computer chip manufacturing and as a fuel 
additive to decrease emissions. Nanoparticles of oxides of 
manganese are used in batteries and for catalysis. Ni-oxides 
are good conductors and possess great magnetic properties. 
Titanium dioxide nanoparticles are needed in photocatalysis, 
sterilization, paints and cosmetics. Zinc oxides are used to 
make skincare products.

These are the specific types of nanoproducts classified 
according to terms of their usage, structure and properties.

Synthesis and manufacturing 
of nanoproducts

Carbon nanotubes (CNTs)

Carbon nanotubes are of two types, single-walled nanotubes 
(SWNTs) and multi-walled nanotubes (MWNTs). Mainly 
CNTs are formed by four different methods they are as 
follows.

Electric arc discharge

This method uses a higher temperature, i.e., above 1700 °C 
for the synthesis of CNT. This manufacturing method helps 
the expansion of carbon nanotube with lesser defects in its 
structure compared to other processes. High purity graphite 
electrodes and water cooled electrodes are used in this method 
in a chamber having helium. Cathode and anode of graphite 
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are incorporated, along with the metal catalysts, electrodes 
and evaporated carbon molecules. Direct pressurized current 
is passed through the chamber and when the chamber gets 
heated, half of the carbon atoms will be solidified and depos-
ited on the cathode. In this process, the anode is consumed and 
cigar type structure is formed at the cathode. Generally in this 
method, the preparation of SWNTs catalyst is needed, while 
for MWNTs there is no need for a catalyst [25].

Laser ablation method

In this method, laser-vapourization at high power along with 
block graphite having quartz tube is heated in a furnace at 
1200 degrees Celsius in Ar atmosphere [2]. The use of laser 
will vapourize the graphite in the quartz tube. If the laser 
power is increased, the diameter will be thinner (Yacaman 
et al. 1993); it is proved that laser pulses help in creating a 
large amount of single-walled nanotubes [46]. This method 
gives a higher yield compared to any other method; plus it 
has lower metallic impurities. However, the only disadvan-
tage is that this method can give some branched nanotubes. 
But this method is not economically viable as it requires 
high purity of graphite rods and the productivity is less com-
pared to the arc discharge technique.

Chemical vapour deposition (CVD)

It is the most used method for the synthesis of carbon nano-
tube. Catalytic chemical vapour deposition (CCVD) [26], 
plasma enhanced (PE), oxygen-assisted CVD [37], water-
assisted CVD [26, 35, 42], microwave plasma (MPECVD), 
and radio frequency (RF-CVD) [12] are the different types 
of CVD available. Amongst all these, CCVD is the most 
used technique for the manufacturing of CNT. This tech-
nique involves the hydro carbon substrate’s chemical break-
down. It can reach 90–95% selectivity for single-walled 
nanotube at optimized conditions [17, 49]. Secondly, using 
high melting point alloys as catalysts provides higher yield 
up to 99% of SWNTs, as due to the high melting point the 
catalyst remains in solid state [23]. CNTs can be prepared 
in horizontal furnaces and fluidized beds. CVD is used for 
large-scale production and is used worldwide as a production 
technique. It is used on large scale because it provides uni-
form heat and mass transfer, sufficient space for the growth 
of the material and continuous operation [39].

Graphene nanoproducts from graphite 
exfoliation

Graphene and graphene-based nanoproducts are synthesized 
in such a way that their properties can be altered and can be 
used for different applications. The production of graphene 

can proceed in two ways; bottom-up and top-down prepared 
by alternative carbon sources and separation of stacked lay-
ers, respectively. There are several methods which are devel-
oped over the years to synthesise graphene [19], they are as 
follows.

Liquid-phase exfoliation for the synthesis of graphite is 
done by wet chemical dispersion and later, in an appropriate 
solvent sonication-induced exfoliation is done, it may or may 
not include surfactants. By this method, the graphite is con-
verted to a graphene sheet [34]. Nowadays, a green method 
is developed for the synthesis of graphene containing few 
layers; it is prepared by using pure water without any sur-
factants or chemicals [22]. In this technique, they have used 
facile liquid exfoliation with vapour pre-treatment for the 
preparation of edge hydroxylated graphene. Water dispersed 
in graphene is used to get an ultrathin conductive film made 
of graphene nanoplatelets. This method was cost-effective 
and has environmental friendly synthesis of graphene-based 
nanoproducts with due real-life application.

Exfoliation is the process in which there is a breaking of 
layered materials of graphite forming a 2-dimensional sheet, 
flat and having atomic thickness. The first attempt at the syn-
thesis of graphene was made by doing exfoliation of highly 
oriented pyrolytic graphite with scotch tape [43]. Another 
method is also used where natural graphite is reduced to 
graphene oxide by Hummer’s method [47].

Synthesis of nanodiamond

Nanodiamonds can be produced from the molecules of 
explosives which can provide both a source of carbon and 
energy for the conversion. This is the most viable and envi-
ronmental friendly method [61].

Among various techniques for the synthesis of nanodia-
monds, detonation is a widely used technique; it has three 
variants. Transformation of the phase of graphite along 
with energy shock waves is the first variant used in manu-
facturing; this process happens in a closed chamber. It is a 
popular technique for the synthesis of polycrystalline nano-
diamonds. The other variant is done by using explosives 
such as hexogen, octogen, trinitrotoluene or a mixture of all 
such explosives, along with it sometimes a mixture of TNT/
RDX is also used. This explosive provides high energy for 
the nanocrystalline particles to be formed [51]. There are 
two types of processes occurring in the synthesis of nano-
diamonds based on the amount of coolant used; processes 
are categorized as wet or dry processes [82]. The yield of 
the process increases based on the coolant used in the series 
hydrogen < argon < nitrogen < CO2. The third variant was 
developed in USSR and is less known [29]. In this method, 
various explosives are used in different compositions for the 
formation of nanodiamonds [44].
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Nanocomposites

Reinforcement in composites are classified into micro-
scopic, macroscopic or nanoscopic particles, woven, 
continuous and short fibres and particles or morpho-
logically, based on their physical size. By the addition 
of nanoparticles or nanoproducts, the properties can be 
improved because of higher specific surface area. Proper-
ties of materials can be enhanced by the addition of nano-
reinforcement because it possess higher specific surface 
area [56]. Ceramic matrix composites are synthesized by 
various techniques. Hot pressing is conventional technique 
used for the synthesis of ceramic and nanocomposites. In 
this technique, carbon fibres are used as additives [6].

There are various methods for the preparation of 
ceramic nanocomposites; amongst them, solid-phase 
technology is the least widespread one. In this method, 
the powder form of matrix component is mixed with rein-
forced filler in the form of short fibres or whiskers; poly-
mer binder is also added in a small amount. The mixture 
formed is then pressed and sintered at high temperature. In 
this method, the use of whiskers tends to form agglomer-
ates and can reduce the work-piece density. Figure 2 rep-
resents the process flow for solid-phase technology [31]. 
Liquid-phase preparation of ceramic nanocomposites and 
its vapour- and gas-phase methods are also used for the 
synthesis of ceramic nanocomposites.

Metal matrix nanocomposites possess improved physi-
cal properties as compared to the alloy they are derived 
from; these properties are added by different types of 
addition of reinforcement of different shapes, sizes etc. 
There are various techniques used for the manufacture of 
metal matrix nanocomposites; they are as follows. One of 
them is the self-lubricating metal matrix composites. In 

this method, properties like water control, controlled heat 
dissipation, controlled dissipation of energy, and lubricant 
usage reduction are the strategies for efficient, sustainable 
and green products. Silicon carbide is an additive which is 
used with aluminium to reduce wear resistance. This can 
help in increasing the life of transportation equipment; 
aluminium graphite solid lubricant can cause a significant 
decrease in frictional energy loss and can also eliminate 
size-related concerns such as piston, cylinder liners and 
bearing applications. Self-heating metal matrix is the 
materials that either by outside or independently repair 
the damages such as voids and cracks on the materials 
they are applied [70].

Polymeric nanocomposites are synthesized by dispersion 
of fillers in a polymer matrix [45]. They are synthesized by 
to approaches top-down or bottom-up.

The overview of these methodologies is mentioned in 
Figs. 3 and 4

Dendrimers

Dendrimers straddle the line between molecular and pol-
ymer chemistry. They are related to molecular chemistry 
because of their step-by-step regulated production, and they 
are related to polymers because of their repeated monomer 
structure. Dendrimer synthesis allows for the creation of 
monodisperse, structure-controlled macromolecular archi-
tectures that are similar to those found in biological systems 
[2].

Dendrimers are typically made using either a divergent 
or convergent approach. Dendrimer expands outward from 
a multifunctional core molecule in each approach. The first-
generation dendrimer is formed when the core molecule 
combines with monomer molecules having one reactive and 

Fig. 2   Represents the process 
flow diagram for solid-phase 
technology [27]
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two inactive groups. The molecule's new periphery is then 
activated for reactions with additional monomers [71].

The foundation of dendrimer production is cascade reac-
tions. The divergent technique, which was popular in the early 
eras, began with the innermost of the dendrimers, where the 
arms are connected, and proceeded to add blocks in step-by-
step exhaustive manner. Synthesis in the convergent approach 
begins on the outside, by considering molecular structure 
which will eventually become the final dendrimer's outermost 

arm. The final generation number is predetermined in this 
technique, which necessitates the synthesis of branches of 
various sizes in advance for each generation [3].

Fig. 3   Figure represents of a top-down and b bottom-up approaches

Fig. 4   Summary of nanocomposites preparation methods adopted from [45]
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Metals

The manufacture of n-Al can be divided into two catego-
ries: vapour-phase condensation and liquid-phase chem-
istry. Bulk aluminium samples’ evaporation or aerosized 
micron-sized powders and then followed by vapour con-
densation in a controlled manner are two more methods 
for producing n-Al. Most metal nanopowders are made 
utilizing one or more of the same procedures used to make 
aluminium nanopowders. Vapour condensation techniques 
are made possible by intense energy sources such as lasers 
or arcs, which can evaporate virtually any metal. Another 
typical method for making metal nanopowders is to reduce 
different metallic complexes in solution. Nanopowders are 
relatively expensive in both applications, and their manu-
facturing is also not much wide spread. Boron powders are 
generally not promoted as nanoparticle [24].

The use of organisms to produce metal nanoparticles 
is one of the most often considered ways. Plants appear 
to be the best choices among these creatures, and they are 
well-suited to large-scale nanoparticle production. Plant-
produced nanoparticles are more stable and have a higher 
rate of synthesis than microorganism-produced nanoparti-
cles [38]. These type of nanomaterials are also sustainable 
and cause the least harm to the environment.

Review of recent works

Some recent works by researchers who have used dendrim-
ers and iron oxide-based nanomaterials in their work are 
reviewed in this summary and tabular form. [25, 66] dis-
cuss the biomedical application of dendrimers. They state 
that dendrimers can be substitutes for blood as they pos-
sess similar properties to nanoparticles. One such example 
is polyamidoamine dendrimers.

(Sampathkumar et al. 2007) concentrated over the 
ability of dendrimers to deliver controlled and specified 
drug delivery, which is relevant to nanomedicine, is per-
haps their [43] most promising promise. Improved phar-
macokinetic qualities of cancer medicines are one of the 
most fundamental concerns facing modern medicine.

 discusses that since their inception, biodegradable den-
drimers have been regarded as attractive candidates for drug 
delivery due to their combination of biodegradability and 
dendrimer characteristics such as numerous internal voids 
and extensive surface functions.

Patel et. al. focuses on the fact that metal chelates based 
on dendrimers are used as contrast agents in magnetic res-
onance imaging. Because of their qualities, dendrimers are 
an excellent choice for image contrast media.

[29] states that PAMAM dendrimers are believed to have 
benefits in improving drug delivery system solubility. The 
unimolecular micelle characteristic of dendrimers is due to 
their hydrophilic exteriors and interiors. Dendrimer-based 
carriers have the potential to improve the oral bioavailability 
of difficult-to-absorb medicines. As a result, dendrimer nano-
carriers have the potential to improve the bioavailability of 
poorly soluble medicines and/or efflux transporter substrates.

There have been numerous instances of transition metal 
nanoparticles enclosed in dendrimers acting as industrial cata-
lysts. (Gross et al. 2012) discovered a novel homogeneous 
catalyst. This nanocluster catalyst is made by enclosing Au 
nanoparticles inside a dendrimer, and it has a high yield for 
catalysing the cyclopropanation rearrangement.

 Discusses that dendrimers are one of the most useful non-
viral gene delivery systems, and they play a key role in the 
development of non-viral vectors for gene delivery because of 
their ability to transfect cells without causing toxicity, as well 
as their high charge density and tunable surface functional 
groups, which allow optimal condensation and formation of 
nanostructures with DNA, known as "dendriplexes."

[62] talks about dendrimers' selective activity has been uti-
lised to minimise the toxicity of amphotericin B in the treat-
ment of leishmaniasis and toxoplasmosis. Dendrimers were 
developed as a vaccine carrier for the prevention of schistoso-
miasis infection, which is characterised by an IgG2a antibody 
response and elevated IL-2 and IFN- production in vivo. Fur-
thermore, dendrimers have demonstrated a distinct targeting 
mechanism for plasmodic red blood cells compared to unin-
fected red blood cells in the treatment of malaria.

(Zhang et al. [90] published a paper in 2015 that described 
bioinspired tryptophan-rich peptide dendrimers as a new form 
of dendritic peptide medication for effective tumour therapy. 
The tryptophan residues (indole rings and amino groups) 
demonstrated extraordinary supramolecular interactions with 
DNA, and the dendrimers revealed considerable anticancer 
activity both in vitro and in vivo. Despite the lack of informa-
tion on whether this dendrimer is biodegradable, it has paved 
the path for the development of new therapeutic dendrimers.

Some iron-based nanoparticles used for removal of water 
contamination, for gene delivery system, MRI and optical 
imaging, and as anticorrosive coating are summarized below 
in tabular form in Table 1

Challenges and future scopes

Nanoproducts are emerging as the next industrial revolu-
tion, enabling enhanced functionality of the products cur-
rently being manufactured as well as manufacturing new 
products with higher scopes of application. It is clear that 
with increasing technologies, needs and the wide area appli-
cations of nanoproducts, the demand will certainly increase. 
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With its wide application, there are various challenges while 
using them in different industrial branches. Firstly, the health 
and safety concerns which are raised because of unique 
physiochemical properties of nanoproducts [18]. There has 
been a lot of publication which highlighted on the exponen-
tial growth of the nanoproducts but the nanowaste manage-
ment is still a huge concern with more usage of nanoprod-
ucts. Failure in addressing these concerns have enhanced 
the discharge of nanomaterials in the environment. This 
leads to contamination of soils, surface and ground water 
resources. If there is no control on the discharge knowing 
its side-effects, it will increase cleaning cost along with it 
lack of suitable technologies for remediation and finding out 
the contaminated areas. One of the important sector where 
nanoproducts are used the most is cosmetics, cosmetics 
constitute the largest number of nanoproduct which is more 
than 50% of currently available in the market [80]. With that 
high usage, it is more likely that nanowaste of that products 
will be discharged in the environment and due to that tox-
icity, health-related issues and contamination of water and 
soil will be more [64]. As the size of nanoproducts is very 
small, it can easily penetrate into plant and animal tissues, 
also having high surface to volume ratio their reactivity and 
toxicity increases [74]. Silver nanoparticles when used in 
medical application, it was found that nanoparticles induces 
toxicity due to release of silver particles in human lungs. 
This is harmful to human cell [3]. Carbon nanotube used in 
various application such as medical, cosmetics, electronics, 
sporting equipment and in food industry can cause respira-
tory toxicity, water contamination, seeds germinations and 
inflammation [88]. Moreover, the cost of such nanoproducts 
is also very high; along with it, the reuse of waste nanoprod-
ucts should be enhanced. Developing nanoproducts have 
challenges like developing power system with higher effi-
ciency and with keeping in mind the size factor. Insufficient 
data, infrastructure and facilities are also important factors 
in developing nanoproducts. More investment and funding 
should be provided in order to scale up the production [27]. 
To overcome the toxicity factor and the health-related issues 
arising due to the discharge of nanomaterials, environmental 
friendly nanoproducts are produced which will eliminate the 
toxicity in water resources and soil contamination. There 
are numerous future aspects and research areas related to 
developing green and sustainable nanoproducts.

Nanomaterials' limitless potential has already had a 
significant impact on human lives. However, the potential 
negative effects of nanomaterials on human health and the 
environment have always been a source of concern. Con-
cerns about the safety of nanoparticles in terms of human 
health and the environment have prompted the development 
of green nanotechnology, which combines green chemistry 
concepts with nanotechnology. Many of the severe prob-
lems of nanotoxicology could be addressed using green 

nanotechnology in the long run. Material synthesis design 
improvements and careful handling could greatly increase 
safety levels. Safer products have been designed using green 
chemical techniques, which are capable of reducing the raw 
materials required in the manufacturing process; along with 
it, harmful chemicals, the energy usage and production cost 
can also be reduced. By studying safer and biocompatible 
raw materials, green and sustainable products can contrib-
ute to develop green and eco-friendly nanoproducts having 
better chemical and physical properties than the existing 
ones. It could pave the way for the creation of a well-defined 
nanomaterial with high purity. Using biomass to make nano-
particles could be an excellent waste management option. 
Another factor to consider is the marketing of new non-toxic 
nanomaterials while assuring their material safety. Green 
chemistry can affect nanofabrication processes by allowing 
for more efficient creation of greener nanomaterials with a 
better throughput. Another future perspective to consider 
is optimizing production environment conditions for better 
and efficient nanomaterial manufacturing approaches, and if 
we are successful in doing so it can lead to more and more 
investment in nanoindustries by demonstrating nanomateri-
als’ limitless potential without troubling people away from 
them [8]. Future perspectives are shaped by new scientific 
ideas and by current societal challenges such as environ-
mental regulations, the need for increased innovation and 
sustainability in industrial processes, and the need to reduce 
ecological biodiversity loss caused by pollution and climate 
change.

Conclusion

From our review and recent research in this field, it is very 
clear that green nanomaterials are very useful in different 
sectors, they can be used in the removal of water contami-
nation, gene delivery system, optical imaging, anticorro-
sive coating and many more can be found with advances 
in research works. Growing frameworks of sustainability 
criteria for producing green nanomaterials is a challenge 
that requires methodological rigour, and proper planning in 
order to match the sustainable growth requirements. For the 
nanotechnology to be sustainable, the waste from nanoprod-
ucts should be managed effectively. We have classified vari-
ous types of consumer nanoproducts in this review, which 
in turn have their own specific use in different sectors. We 
have discussed about the synthesis of various nanoproducts. 
Along with it we have also emphasized on the challenges 
faced by current nano-industries, like toxicity environmental 
issues, health issues and soil contamination. Future scopes in 
enhancing nano-industry, developing green and sustainable 
nanoproducts are also incorporated. The need of the hour is 
to make the synthesis process more and more environment 
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friendly by optimizing the process and minimizing the waste 
making it utmost favourable to environment. Assessment 
of environmental impacts for the usage of nanoproducts is 
required, proper emphasize on the organization of the supply 
chain and increasing the area of its application, and these are 
the areas which can enhance the use of nanoproducts keep-
ing in mind the environmental concerns. Further, researchers 
should focus more on developing engineered nanomaterials 
which in turn have less environmental impacts.
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