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Abstract
Phosphate is considered one of the major natural nutrients associated with the sustainment of life on earth. However, its 
presence in excessive amounts in water bodies may induce adverse environmental impacts. Among the various treatment 
techniques practiced for the removal of phosphate from aqueous solutions, adsorption is considered the most effective. Com-
pared to other phosphate treatment methodologies, adsorption is characterized by its high removal efficiency and economic 
feasibility. Accordingly, many sorbents, specifically nano-sorbents, have been synthesized and modified for application in 
the removal of phosphate from water. Out of the numerously utilized nano-sorbents, metal oxides and chitosan have shown 
to be very effective sorbents when applied for the removal of phosphates from aqueous solutions. The present study covers 
a review of recent developments and applications of nano-sorbents, in particular the fore-mentioned nano-sorbents, for the 
removal of phosphates while discussing the removal mechanisms associated with their application. A critical assessment 
related to the recent studies and their shortfalls is also explored.
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Introduction

Urbanization and industrialization lead to water quality 
deterioration [1], wastewater resulting from agricultural, 
industrial, and domestic water usages are discharged into 
water bodies thus conveying hosted contaminants and pol-
luting the environment and the limited water resources [2]. 
Phosphate is considered one of those contaminants, where 
despite its vitality for living species as a nutrient [3], exces-
sive amounts discharged into streams and rivers would lead 
to the deterioration of water quality [4–7].

The presence of phosphorous can be of tremendous use to 
industries, agriculture, etc.; however, the presence of such a 
compound in water bodies and wastewater effluents pose a 
threat to human health and the entire environment [8]. High 
concentrations of phosphorous in water bodies are mainly 
present in the form of phosphate, which consequently affect 
human and environmental health [9–11]. The increased use 
of phosphate-based fertilizers is a direct effect of high-input 

of modern agricultural performs. In the USA, numerous 
water bodies (42 percent of lakes and 66 percent of rivers) 
are adversely impacted by the excess of phosphorus concen-
tration (with > 30 μg PO4

−3) [8]. At concentrations exceed-
ing 0.02 mg/l, phosphates can cause eutrophication marked 
by massive algal growth which in turn leads to higher water 
turbidity [12], decrease in oxygen levels [13], production of 
bad odors, and harming aquatic life [14]. Due to these del-
eterious impacts, interest in devising methods for phosphate 
removal from aqueous solutions has been growing and as a 
result many methods have been developed including bio-
logical treatment [15], chemical precipitation [16, 17], and 
adsorption [18–22]. Even though biological treatment with 
activated sludge removes most phosphates present in water, 
it is not effective in removing trace level phosphates due 
to the reduction of microbial metabolism. In addition, the 
sludge generated due to chemical and biological treatments 
is considered as a major nuisance. Physical methods, such 
as reverse osmosis and electrodialysis, have been identified 
as too inefficient or costly [23]. Compared to other treat-
ment techniques, adsorption is the most convenient method 
due to its economic feasibility and high phosphate removal 
efficiency even at the nanoscale [24–26].
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The use of nanomaterials in engineering applications is 
gaining huge popularity [27], both natural and synthetic 
nano-based polymers are employed in the synthesis of 
neuron-inspired network materials, tunable sensing mate-
rials [28], healing products, and energy storage materials 
[29]. The use of nanomaterials that are low-cost, facile to 
manufacture, highly abundant in nature, and easy to scale-
up paves the way to reach green electrocatalysts and, in 
turn, opening horizons for the development of innovative 
clean energy technologies [30, 31]. With the increased risk 
of water contamination, the development of cleaner energy 
technologies becomes imperative. To that end, multiple 
carbon core–shell-based nanocatalysts made from read-
ily available materials were developed for the treatment 
of organic matter present in water [32]. According to 
Ahsan et al. [33], the eco-friendly catalytic nano-systems 
are advantageous due to its possibility of control over the 
electron transfer processes at the metal/carbon interfaces 
under various experimental conditions, ultimately control-
ling their trifunctional catalytic performances.

Many sorbents have been developed for phosphate 
removal from water and wastewater [34]. The most widely 
and traditionally used sorbent is activated carbon. The use 
of cheaper and more readily available materials for absorp-
tion has been excessively studied in the literature. Clays 
have been used for thousands of years and continue to be 
among the leading industrial material that are naturally 
available, earthy and fine-grained [35]. Another alterna-
tive is the use of surface-modified biochar which is clas-
sified as cheap, non-toxic and easy to obtain, with high 
specific surface areas, and large pore volumes, allowing 
the chance of physio-sorption and hydrophobic interaction 
and electrostatic adsorption with contaminants proficiently 
[36]. Materials such as chitosan have been modified struc-
turally or chemically with metal, metal oxides, and other 
functional groups to assist it in phosphates removal from 
water where removal capacity exceeded 300 mg of phos-
phates per gram of chitosan [37–41] Semi-metal and metal 
oxides, solely or in mixture, have also aided in the removal 
of phosphate from water reaching high removal efficiency 
of 100% and more than 900 mg/g as an adsorption capac-
ity according to some studies [18, 42, 43]. Additionally, 
nanoscale zero-valent iron was found to be an effective 
adsorbent of phosphates in water [44, 45].

The aim of this manuscript is to conduct a review of 
recent advances in the use of nano-sorbents for phosphate 
removal. In this context, chitosan, metal oxides, combina-
tions of metal oxides and zero-valent iron are reviewed in 
this paper. Besides, this review paper explores the mecha-
nisms of removal of phosphate using the nanomaterials 
under study. The importance of phosphate removal and 
the surge in nanotechnology applications in water treat-
ment calls for perpetual literature reviews that can help 

in assessing recent advances and identifying gaps in this 
field.

The significance of such work is to revisit previously 
reported modification on metal oxides and chitosan-based 
nanomaterials to point out conditions that impact successful 
phosphate removal from water matrices. Furthermore, this 
review classifies the reported materials by type, thus show-
ing a wide overview of the diversity of adsorbents and their 
levels performance that have been prepared so far.

Metals, semi‑metals, and metal oxides 
removal: experimental findings and main 
removal mechanism

Generally, metals like iron, semi-metals like graphene and 
metal oxides similar to iron oxides, magnesium oxides, alu-
minum oxides, zinc oxides and titanium oxides and combi-
nations thereof are used as adsorbents that aid in the removal 
and recovery of various materials and their compounds with 
phosphates being precisely discussed in this paper [46, 47]. 
The advantages offered by these sorbents include their 
highly porous nature, high stability across wide ranges of 
pH, temperature, and their economic feasibility [48]. Their 
performance differs greatly depending on adsorbent dosage, 
ionic interaction, surface area, contact time, temperature and 
pH; however, mainly all have achieved high removal effi-
ciencies [49].

Aluminum oxide

Several attempts at using nanomaterials in the removal of 
phosphates from water and wastewater have been reported. 
One example is related to the utilization of nano-alumina 
as an adsorbent in a batch experiment setup. Parameters 
including contact time, pH, adsorbent dosage, temperature, 
agitation rate and initial phosphate concentration played an 
important role in determining the adsorption rate, with pH 
being the most important due to the fact that the adsorption 
mechanism relies on the amount of -OH groups that will 
be attracted to the protons and are thus adsorbed [50, 51]. 
Results indicated that the pH level at which nano-alumina 
showed the highest adsorption (98%) was 8.1 with a contact 
time of 90 min [52].

Kumar et al. [53] also proved that phosphates are con-
sidered competing species in the presence of nanomaterial, 
a study conducted by Mor et al. [54] in order to compare 
between the efficiency of two nanomaterials of different 
natures, one possessing an amorphous nature (activated car-
bon) and the other possessing a crystalline nature (nano-alu-
mina) but both share a porous nature and are thus classified 
as good adsorbents. Time, pH, adsorbent dosage are major 
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factors that influence the removal efficiency in this batch-
mode experiment, where experimental results exhibited 
a higher removal efficiency of nano-alumina (up to 100% 
in 90 min and pH 6) in comparison to activated charcoal 
(90.2% in120 min and pH 6).

This compares with the study that was presented by 
Yadav et al. [52], which has shown that adsorbents favored 
lower pH levels and achieved optimal removal rates when 
phosphate is used as an adsorbate. Kinetics of the reaction 
were explored to show that phosphate adsorption follows a 
monolayer adsorption process for both nanomaterials [55].

Zinc oxide

Zinc oxide is also a notable candidate that has proven its 
ability to remove various nutrients like phosphates and 
nitrates from water and wastewater [56]. An attempt was 
made by Cervantes-Avilés, Cuevas-Rodríguez [57] to assess 
the removal of orthophosphates using zinc oxide nanoparti-
cles on activated sludge and filtered wastewater, whereby in 
both control groups of water the removal was 78 and 82%, 
respectively. These results were consistent with other long-
term adsorption studies [58]. Though the removal mecha-
nisms remain uncertain, however they could be due to crys-
tallization and precipitation processes that befall phosphate 
compounds in the presence of zinc oxide nanomaterial upon 
forming Zn3(PO4)2, which is a stable product [59]. Another 
study that explored the applicability of layered zinc hydrox-
ide in the removal of phosphorus materials resulted in 95% 
removal which is attributed to the exchangeable anionic 
behavior within the layered structure [60].

It is still unclear how zinc oxides may assist in the 
removal of phosphates (PO4

3−) in the presence of living 
organisms, like green algae, knowing that these oxides might 
induce toxic effect onto living organisms, as most studies 
have been conducted to test the zinc oxides unaccompanied, 
or in combination with other nanomaterials [61–64]. The 
impact of zinc oxide nanoparticles on the removal of phos-
phate in the presence of green algae (Chlorella vulgaris) was 
examined, where PO43− removal got accelerated with the 
presence of high zinc oxide nanoparticles due to the inter-
action between PO43− and Zn2+ that were dissolved from 
zinc oxide nanoparticles forming crystallites and eventually 
leading to sedimentation [65, 66].

Titanium oxide

Titanium oxides have shown their capability to remove vari-
ous nutrients, metals and replace other nanomaterials like 
zirconium oxide due to its higher efficiency when acting as 
an adsorbent [67–69]. A drawback of various studies is that 

they missed out on determining the recovery capabilities 
of the process. It is crucial when studying the removal effi-
ciency of a certain nanomaterial to also determine the ability 
of its recovery as well as its byproducts since it might result 
in the production of even more complex materials [70].

In a study reported by Lee et al. [48], the authors investi-
gated the adsorptive capabilities of titanium oxide and their 
abilities in phosphorus recovery. As titanium oxide is a 
porous nanomaterial, it possesses good potential as an adsor-
bent since it concedes ion exchange on its surface [22]. pH 
and temperature have shown to affect the removal efficiency 
whereby the most suitable pH values for phosphate removal 
were observed to be between the range of 3–7. Higher values 
tend to disturb the exothermic process of adsorption.

In a study conducted by Rad et al. [71], nano-titanium 
oxide, being an oxidizer, was applied as a thin cover over 
a pond body that contained tropical storm water exposed 
to natural ultraviolet rays (UV). The use of nano-titanium 
resulted in improving the storm water outflow quality by 
57% in a time laps of 3 weeks, while the orthophosphate 
group was reduced by 83%. With the aid of ultraviolet rays, 
the pond was converted into a photocatalytic reactor where 
the reactions resulted in the formation of positive holes 
in the nanocomposite which could react and adsorb the 
pollutant.

This removal efficiency can be optimized by experiment-
ing with various adsorbent dosages. An attempt at utilizing 
titanium oxide composite in combination with polyaniline in 
order to adsorb phosphates from wastewater was performed 
by Wang et al. [72]. The study revealed that this composite 
possesses high stability and an adsorption efficiency reach-
ing 98% in 60 min within a wide pH spectrum (1–6). This 
manifestation was attributed to the presence of protonated 
amino groups in the composite whereby titanium oxide acted 
as a binding force via electrostatic interaction with phos-
phates. This procedure has the advantage of being applied 
in larger scale treatment processes.

Iron oxide

Iron-based nanoparticles have been used widely as an adsor-
bent to remove various nutrients and dyes from wastewater 
[73–75]. Table 1 presents the most recent published articles 
for phosphate removal using iron oxides. In a study per-
formed by Cao et al. [76], iron oxide nanoparticles reac-
tivity was improved by incorporating a stabilizer (cetyltri-
methylammonium bromide, CTAB) which greatly improved 
the removal efficiency of phosphate. The reactions were 
dependent on pH, contact time, dosage of phosphate and 
the composite as the results demonstrate that equilibrium 
data fitted well the Langmuir isotherm model. The removal 
activity occurred at different stages, slow and rapid with 
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dual reaction of inner sphere complexing and electrostatic 
attraction taking place. The modified composite possessed 
two active sites (hydroxyl group on iron oxide and posi-
tively charged CTAB) resulting in increased efficiency in the 
removal of phosphates onto the active sites of the iron oxide.

Iron in various forms can have high removal efficiencies 
of nutrients; this was investigated by Kralchevska et al. [77] 
where Ferrate (VI) was selected for use as an adsorbent 
due to it being a strong oxidizing agent, environmentally 
friendly, as well as its recovery potential after being used in 
wastewater treatment. Ferrate has the advantage of having 
highly accessible active sites where the removal mechanism 
occurs solely by surface sorption at near neutral pH; making 
Ferrate (VI) a promising composite to be well utilized in this 
domain [83, 84].

Lai et al. [78] reported on the adsorption of phosphate 
from water by easily separable Fe3O4; in this study, a 99% 
phosphate removal was reported to take place in under 
10 min, The authors further suggested that complete removal 
can be achieved in the future with the help of a NaOH solu-
tion. The composite used in the experimental work was 
composed of hydrous lanthanum oxide functionalized on 
the surface of Fe3O4@SiO2 core/shell magnetic nanopar-
ticles (Fe–Si–La), where the best removal performance was 
observed at a pH range of 5–9. These results are attributed 
to the surface speciation of oxides that contributed to the 
removal of phosphates. In addition to that, Fe-Si-La has a 
great potential because of its high stability even in the pres-
ence of other anions like chloride and nitrate.

Iron oxide-based sorbents have shown great potential in 
the removal of various ions. The adsorptive behavior of sev-
eral iron composites among which are Bay-oxide E33 (E33), 
E33 coated with manganese (E33/Mn) and silver coated E33 
(E33/AgI and E33/AgII) were investigated [79, 85, 86]. 
Chemisorption was found to be the main adsorption mecha-
nism, which was divided into two phases, the first occurred 
rapidly and was delineated by film diffusion and the second 
transpired slowly through intra-particle diffusion. It was 
observed that E33/AgII had a slightly higher adsorptive 
capacity when compared to unmodified E33 implying that 
E33 had a weaker surface which can be enhanced through 
the process of combining it with other nanoparticles [87].

You et al. [80] endeavored to expand the functions of 
iron oxide as a sorbent by generating a selective sorbent 
for phosphate species which was a hybrid fibrous exchanger 
having hydrated ferric oxide nanoparticles abbreviated 
as (HFO). HFO had assets over other iron oxides deline-
ated by its substantial mechanical strength and durability. 
The removal of phosphate anions took place by interact-
ing with the existing Fe-OH group through the replacement 
of the hydroxyl group. Iron oxide nanoparticles perfor-
mance can be enhanced by incorporating other elements 
[45, 88]. In this context, Gan et al. [82] studied the effect 

of cetyltrimethylammonium bromide (CTAB) on the mor-
phology of iron oxide nanoparticles where results showed 
that CTAB improved the aggregation of iron oxide nano-
particles and their dispersion thus enhancing its reactivity. 
Where electrostatic interaction occurred between CTA + and 
phosphate anions, a complex was formed; suggesting that 
CTAB is a stabilizing agent and an enhancer for removal of 
phosphates when added to iron oxides.

In another study conducted by You et al. [81], hybrid 
anion exchangers, containing hydrated ferric oxide nano-
particles, were used due to their selectivity for phosphate 
species. The combination gave greater mechanical strength 
and durability while achieving 90% removal of phosphates 
from wastewater following an interaction between phos-
phate groups and ≅ Fe (OH) which existed on the surface. 
The hybrid anion exchanger showed higher selectivity 
toward phosphates while neglecting other ions like nitrate, 
sulfate and chloride; it also had an added advantage where 
its showed high reusability rates after five sorption cycles.

Magnesium oxide

Table 2 summarizes all recent work conducted on phos-
phate removal from water and wastewater using magnesium 
oxides. While studies show that magnesium oxide (MgO) 
has high affinity for phosphate species, enhancing the 
potential of MgO is a promising step that will lead to more 
efficient phosphate abstraction [89]. This was investigated 
by Jung, Ahn [90] where MgO/biochar was electrochemi-
cally modified using an electrolyte (MgCl2) and graphite 
electrode-based electric field to enhance the porosity of the 
composite. Results and analyses showed that the composite 
exhibited a highly enriched crystalline structure with high 
adsorption properties; though the mechanism of action 
remains unknown authors suggested further investigations 
to determine the process of adsorption.

Ahmed et al. [43] replicated the electrochemical enhance-
ment process using a hydrothermal procedure, whereby 
magnesium oxide pores were synthesized by hydrothermally 
adding hexamethylene tetramine (HMT) to MgO, resulting 
in superior adsorption results. The kinetic and isotherm 
analysis underscored that the process of adsorption occurred 
physically and chemically, where negatively charged phos-
phates were attached onto the MgO surface. The authors 
suggested that porosity of MgO can be modified and regu-
lated by adjusting the feed ratio of both HMT and Mg2+. 
Ma et al. [95] also hydrothermally synthesized magnesium 
oxide nanoparticles in several shapes which showcased great 
performance in removing phosphate.

The physical structure of the nanocomposite used to 
remove nutrients plays an important role in removal effi-
ciency, since it delineates the surface area available for 
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contact with the pollutant. Xia et al. [91] manipulated the 
structure by creating a mesoporous magnesium oxide on 
diatomite, where diatomite is an abundant rock formed from 
microfossils of diatoms adding value to the composite due 
to its high porosity and thermal stability (Fig. 1). Experi-
mental results demonstrate that the composite achieved high 

removal rates at a wide range of pH (3–9), where pH had a 
major impact on the struvite crystallization, which is a prod-
uct of phosphate adsorption [96]. The removal process is a 
result of physical adsorption where the shape of the com-
posite was enhanced thus improving physical contact and 
electrostatic attraction, whereby MgO in solution becomes 

Table 2   Research on Phosphate Removal Using Magnesium Oxides

Magnesium 
Oxide

Type of 
Water

pH Temperature Sorbent dose Contact time Equilibrium 
isotherm

Adsorption 
capacity

Treatment 
method

Removal 
efficiency

MgO nano-
composites/
biochar [90]

Phosphate 
solution

20 ± 2 C 0.05 g/50 ml 48 h Langmuir–
Freundlich

620 mg/g Batch experi-
ment

Mesoporous 
magne-
sium oxide 
modified 
diatomite 
[91]

Artificial 
stock solu-
tions

7 25 °C 0.3 g/l 2 h 160.94 mg/g Batch experi-
ment

Porous 
magne-
sium oxide 
prepared by 
hexam-
ethylene 
tetramine 
[43]

Phosphate 
solution

5 30 °C 10 mg/100 ml Freundlich 236 mg/g Batch experi-
ment

MgO-
impregnated 
porous bio-
char [92]

sodium 
phosphate 
monobasic 
monohy-
drate in 
DI water 
and swine 
wastewater

4 22.5 ± 0.2 °C 0.05 g/50 ml 1 h Langmuir 398 mg/g Batch experi-
ment

 > 99.1%

MgO sup-
ported 
palygorskite 
[72]

wastewater 9 – 0.6 g/l 3 h – 69.8 mg/g Batch experi-
ment

hierarchi-
cally porous 
magnesium 
oxide [93]

Phosphate 
solution

5 25 °C 0.01 g/0.1 l 5 h Langmuir 478.5 mg/g Batch experi-
ment

MgO-
modified 
diatomite 
[92]

simulated 
nutrient 
wastewater

7 – 0.3 g/l 12 h – – Batch experi-
ment

–

Na and K 
zeolites and 
magnesium 
oxide [94]

anaerobic 
digestion 
side streams

9.5 – MgO (Mg/P 
(3:1)) and

using 20.7 g 
Na-zeolite/L

in a single 
addition

stage of both 
reactive 
sorbents

 > 3 h Nonlinear 
adsorption 
isotherm

– Stirred reac-
tor experi-
ments

 > 99%

Mgo nanow-
ires [95]

Phosphate 
stock solu-
tion

11 – 10 mg/5 ml – 962 ± 8.6 mg/g Batch experi-
ment
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protonated consequently attracting all negatively charged 
phosphate species [97, 98].

Magnesium oxide removal efficiency was enhanced by 
impregnating it in porous biochar [99]. Analysis of the 
results shows that the modified composite formed carbon 
nanotube-like structure and MgO flakes; the process of rapid 
adsorption occurred through struvite crystallization and 
electrostatic interactions between phosphate anions and the 
positively charged composite surface [100–102].

Further studies have been performed to exploit the prop-
erties of magnesium oxide where Wang et al. [103] syn-
thesized an adsorbent of MgO supported by palygorskite 
(MgO-PAL). This composite was characterized by achieving 
high removal rates of phosphate resulting from the forma-
tion of several precipitates known as struvite, Mg (OH)2 and 
Mg3(PO4)2, through adsorption on the protonated surface of 
magnesium oxide palygorskite. Additionally, Ahmed et al. 
[93] successfully engineered a hierarchically porous mag-
nesium oxide composite aimed at maximizing surface area 
to allow more pollutant adsorption. Adsorption occurred 
through physical contact and resulted in forming magne-
sium hydrogen phosphate and magnesium phosphate. This 
method depicts a procedure that can be adopted in industrial 
applications due to its economic feasibility (low-cost) [104].

To achieve complete stabilization of phosphates in a 
medium using magnesium oxide, system operation needs to 
be optimized in addition to forming a suitable MgO nano-
composite. Hermassi et al. [94] aimed to find the most suit-
able operative conditions while using a blend of reactive 
sorbents consisting of potassium zeolite, sodium zeolite and 

magnesium oxide. Under alkaline conditions, phosphate ions 
precipitated with magnesium ions thus contributing to its 
stabilization in the form of bobierrite. An additional advan-
tage related to this experiment is that recovery procedures 
could generate various stable nutrients which can be used 
later in agricultural applications; a procedure that is environ-
mentally sustainable [105].

Graphene oxides

Graphene oxide is being and will be applied in several nano-
technological applications due to its unique physicochemical 
properties [106–108]. Graphene oxide is a two-dimensional 
carbon-based material with carboxyl, epoxy, and hydroxyl 
groups attached to its edges and surface [102]. Its functional 
groups and its hydrophilicity are the key factors for graphene 
oxide application in water sanitation [109–111]. Graphene 
oxide was also used for phosphate removal from water and 
wastewater but mostly in conjugation with other metal 
oxides which will be discussed in another section [99, 112, 
113]. However, Xu et al. [42]. worked on graphene oxide 
as a sole sorbent for phosphate and europium removal from 
nuclear wastewater and studied the co-removal processes as 
a function of contact time, pH, and temperature. The sorp-
tion process fitted well the Langmuir sorption isotherm, 
while the presence of europium increased the electrostatic 
potential on graphene oxide aiding phosphate adsorption at 
an optimal pH 5.9–9, temperature 293 K, and contact time 
of 1 h.

Fig. 1   Proposed mechanism 
of removal of phosphate using 
MgO-Diatomite [91]
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Zero‑valent iron

Zero-valent iron has been widely used to remove heavy 
metals, organic and inorganic compounds because it exhib-
its large surface area making it apposite for adsorption 
[114, 115]. Table 3 presents recent studies reported on 
phosphate removal using zero-valent iron, and Fig. 2 dem-
onstrates the main mechanism of removal and the effect of 
aging on adsorption capacity.

Chen et al. [112] utilized starch stabilized zero-valent 
iron nanoparticles to remove phosphate from a prepared 
solution using a batch experiment. Analysis showed that 

starch assisted particles to aggregate leading to an increase 
in reactivity and surface area, where the presence of inter-
fering ions had little to no effect on the adsorption but 
changes in temperature and pH had a significant impact. 
The main mechanism of action involved surface adsorption 
where OH groups present in starch stabilized the zero-
valent iron. The phosphate species that had the highest 
affinity to the nanocomposite was HPO4

2−.
Another manipulation of zero-valent iron nanoparticles 

(ZVINPs) that resulted in key magnetic properties was per-
formed by Singh, Singh [116] whereby magnetite (Fe3O4) 
was used to stabilize zero-valent iron nanoparticles. In 
addition to magnetic properties, it supplied ZVINPs with 

Table 3   Research on phosphate removal by Zero-Valent Iron

Zero-Valent 
iron

Type of 
Water

PH Temperature Dose Contact time Equilibrium
Isotherm

Adsorption 
capacity

Treatment 
method

Removal
efficiency

Starch 
stabilized 
zero-valent 
iron [44, 
116]

Phosphate 
solution

12 10 °C 1 g SNZVI 
per

100 g/L of 
phosphate

200 min Langmuir 322.39 mg/g Batch sorp-
tion

81.29%

Fe3O4– Zero-
Valent iron

Phosphate 
solution

3.5 49.2 °C 0.4 g L-1 2 h – 164.92 mg/g Batch sorp-
tion

99.2%

zero-valent 
iron sup-
ported on 
treated 
activated 
carbon [14]

phosphate 
solution

7 25 ± 2 °C 2:1 AC to 
nZVI

2 h Langmuir 1.75 mg/g Batch sorp-
tion

Batch 
II: > 60%

2 h Batch 
III: > 90%

Zero-Valent 
iron/sand 
bed reactor

phosphate 
solution

7.0 ± 0.2 20 ± 3 °C 17 g/L 72 min – 52 mg/g Column 
adsorption

35%

Zero-valent 
iron with 
copper 
chloride 
[117]

phosphate 
solution

12 25 ± 0.5 °C 250 mg/ 
250 L

2 h – 50 mg/ g Batch sorp-
tion

60%

Pectin-
nanoscale 
zero-valent 
iron [118]

phosphate 
solution

5 25 °C 1 g/l 200 min Langmuir 277.38 mg/g Batch 
experiment

–

Freundlich
zero-valent 

iron 
activated 
persul-
fate [119]

Stock solu-
tions and 
Wastewater

pH ≤ 6 25 °C 0.5 g/l 60 min – – Batch 
experiment

91%

zero-valent 
iron [120]

Phosphate 
solution

7 ± 1 20 ± 3 °C 2.5 g/l 8 h – 35 mg/g Batch 
experiment

–

Nanoscale 
Zero-valent 
iron [45]

Phosphate 
solution

6.3 293 K 0.5 g/l – – 16 mg/g Batch 
experiment

99.9%

Column 
experiment
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a larger surface area, reduced agglomeration of particles 
and enhanced removal efficiency [121–123]. Adsorption 
occurred through physical contact and chemical precipita-
tion. Analysis showed that the presence of ions did not inter-
fere with the process while pH had the highest impact on 
removal because it sets the surface charge of the adsorbent. 
At optimal pH, Fe3O4–ZVINPs acquires a positively charged 
surface thus attracting negatively charged phosphates via 
electrostatic attraction rendering magnetite (Fe3O4) an effec-
tive removal method (Fig. 3) [124].

Activated carbon is another adsorbent of added value due 
to its sorption capabilities, especially when utilized in com-
bination with ZVINPs [14, 125]. When zero-valent iron is 

utilized solely, it faces oxidative issues, and activated carbon 
used alone is subject to poor diffusion. Studies have shown 
that when these two composites are integrated, they prevent 
agglomeration and enhance their hydraulic conductivity by 
attracting more anions [126, 127].

Activated carbon represents a support system to zero-
valent iron nanoparticles at which they are immobilized 
and trapped on the surface of AC in addition to acting as 
an electron accepting composite, where physical adsorp-
tion is the main sorption mechanism [72, 128]. This must 
be conducted with a suitable concentration of AC, because 
under increased AC concentration the process of adsorption 
is hindered due to the reduced contact to nano-zero-valent 

Fig. 2   Mechanism of removal 
of phosphate from aqueous 
solution and aging factor effects 
[120]

Fig. 3   pH Effect on removal of 
phosphate anions from aqueous 
solution using iron oxide-zero-
valent iron nanoparticles [116]
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iron (nZVI). The presence of nitrates in solution aid in the 
adsorption of phosphate as they reduce nZVI to form Iron(I) 
hydroxide and Iron (II) hydroxide, thus enhancing adsorp-
tion kinetics [14, 117].

Column adsorption is one method that maximizes the 
chances for the pollutant to encounter the adsorbing medium 
[129, 130]. Sleiman et al. [131] designed a zero-valent iron 
(ZVI)/sand packed column to test its efficiency in removing 
phosphate, where the sand represented a support material 
for ZVI [132]. The effect of column conditioning and aging 
on the adsorption process was tested. The results showed 
that a column that has aged for 1 day displayed the maxi-
mum removal efficiency when compared to 5 and 10 days 
of aging. This was attributed to the fact that increased con-
ditioning and aging leads to saturating the composites in 
advance of the experiment and consequently minimizing the 
adsorbent surface area. The process of adsorption occurred 
through phosphorus trapping and was measured as a func-
tion of oxygen and oxidized outlet which in turn was meas-
ured as a function of pH [131]. Surface adsorption occurred 
after oxygen and water within the solution has formed com-
pounds (Fe–O & Fe–OH) which induced phosphates form-
ing P-OH and O-P [133, 134].

It is not necessarily the ZVI, or the element added to it 
that will function as an adsorbent but in some cases, it is 
their byproduct that does. In this context, Eljamal et al. [117] 
performed a study where copper chloride was added to ZVI 
and results showed that the removal mechanism occurred 
as a result of the copper ferrite spinel that was formed on 
the ZVI particles. It was a challenge to remove phosphate 
without intoxication because ZVI is prone to that, but this 
study has reported better removal values compared to ones 
found in literature [135, 136]. Analysis showed that parti-
cles were aggregated in a necklace-like structure; and due 
to the aerobic conditions, iron got corroded and produced 
ferric hydroxides, which are known to be good adsorbents 
of phosphate, that led to complete removal within the first 
30 min [87, 137–139].

In a batch experiment, Wang et al. [118] used nano-
zero-valent iron coated with pectin for phosphate removal 
in a highly concentrated aqueous solution and studied its 
removal efficacy under varied pH, coexisting ions, and ionic 
strength. The reported results showed the maximum adsorp-
tion capacity to be 277.38 mg-P/g, with physical adsorp-
tion as the dominant removal mechanism rather than redox 
reaction. Perassi, Borgnino [140] reported that in the case 
of a decrease in removal rate of phosphate with increasing 
ionic strength, the outer sphere complexes are responsible 
for the process of adsorption, while Liu et al. [141] noted 
that the inner sphere surface complexes are the dominat-
ing complexes for sorption in case of invariable phosphate 
removal rate with varying ionic strength, which is the case 
in phosphate removal using pectin-nanoscale zero-valent 

iron. By exhibiting larger surface area than nanoscale zero-
valent iron, pectin-nanoscale zero-valent iron achieved a 
higher removal capacity which was mainly affected by pH. 
It favored an acidic environment since at low pH values pec-
tin-nanoscale zero-valent iron would be corroded to ferrous 
ions leading to a decrease in the removal of phosphates and 
inhibiting chemical precipitation [118].

As noted earlier, the products that are formed when 
combining ZVI with other compounds might result in even 
stronger adsorbents than both composites when used solely. 
Zhao et al. [119] activated persulfate by zero-valent iron 
through an oxidation process resulting in the production 
of sulfate radicals which are strong oxidizing agents and 
could degrade phosphates through electron transfer. In this 
process, ZVI gets transformed to a more efficient coagulant 
known as ferric iron [142]. Phosphates existed in the solu-
tion in many forms with the most dominant being H2PO4 
[143, 144].

On the other hand, Sleiman et al. [120] investigated the 
removal abilities of the oxidative products of ZVI and ZVI 
itself. Various factors were taken into consideration while 
assessing the removal efficiency such as ionic strength of the 
solution, presence of various ions as well as aging of ZVI. 
In this study, adsorption occurred via ZVI or its oxidized 
products during an aging time of 2–8 h. This is because fresh 
ZVI does not contain oxidized iron in the form of (Fe3O4) 
which would incorporate phosphates. An oxide film which 
exists on the surface of a fresh ZVI would impede the pro-
cess of adsorption; this film usually consists of goethite and 
crystalline lepidocrocite.

Zhang et al. [45] reported high removal of phosphates, 
especially under an oxic-system. This was attributed to the 
fact that under this system iron can be oxidized and its prod-
ucts can undergo further oxidation (Fe2+). Redox reactions 
increase the solution’s pH promoting the formation of Fe 
(OH)2 and Fe (OH)3 which aid in the removal of phosphates 
via electrostatic interaction and provide more active sites for 
phosphates to bind to.

The effect of the presence of chloride ions on the corro-
sion process was studied where controversial results were 
presented. Reardon [145] stated that an increase in chloride 
ions led to a decrease in iron corrosion, while on the other 
hand, Ruangchainikom et al. [146] reported that chlorides 
promote the formation of rust.

Mixed metal oxides

With the objective of increasing the efficiency of phosphate 
removal from aqueous solutions, metal oxides have been 
synthesized in a mixture of adsorbents. Table 4 presents a 
list of recent studies conducted on phosphate sorption using 
adsorbents composed of mixtures of metal oxides. Metals 
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Table 4   Research on Phosphate Removal by Mixed Metal Oxides

Zero-Valent 
iron

Type of 
Water

pH Tempera-
ture

Dose Contact 
time

Equilibrium 
Isotherm

Adsorption 
Capacity

Treatment 
method

Removal 
efficiency

lanthanum 
oxide 
decorated 
graphene 
composite 
[112]

phosphate 
solution

6.2 Room tem-
perature

2 mg/1 ml 25 min Langmuir 82.6 mg/g Batch 
experi-
ment

100%

Titania-
function-
alized 
graphene 
oxide 
[149]

simulated 
wastewa-
ter

6 Room tem-
perature

25 mg/25 ml 1440 min Langmuir 33.1 mg/g Adsorption 
experi-
ments

–

nanosized 
Fe-Al 
binary 
oxide 
[150]

Phosphate 
solution

4 308 K 0.1 g/50 ml 12 h Langmuir 16.4 mg/g Batch 
experi-
ment

99.86%

nanocrys-
talline 
Fe-Al-Mn 
ternary 
oxide 
nano-
sorbent

Phosphate 
solution

3 Room tem-
perature

0.1 g/25 ml 16 h Langmuir 38.46 mg/g Batch 
experi-
ment

99.50%

nano- com-
posite 
containing 
akaganeite 
nanorods

(β-FeOOH) 
and 
graphene 
oxide 
sheets 
(GO) [99]

Phosphate 
solution

7 30 °C 0.4 g/l 2 h Langmuir 45.2 mg/g Batch 
experi-
ment

–

nanocom-
posite 
magnetic 
particles 
functional-
ized with 
ZnFeZr-
adsorbent 
[151]

spiked 
secondary 
wastewa-
ter effluent

7 50 °C 860 mg/l 20 min Freundlich 3333.3 mg/g Batch 
experi-
ment

99.80%

Fe–Mn 
oxide 
adsorbent 
[152]

Phosphate 
solution

7 308 K 0.5 g/200 ml 200 min Langmuir 18.4 mg/g Batch 
experi-
ment

nanosized 
lanthanum 
hydroxide 
doped 
onto 
magnetic 
reduced

graphene 
oxide 
[153]

river and 
sewage 
media

5–7 313 K 40 mg/40 ml 10 min Langmuir 116.28 mg/g Batch 
experi-
ment

88%
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Table 4   (continued)

Zero-Valent 
iron

Type of 
Water

pH Tempera-
ture

Dose Contact 
time

Equilibrium 
Isotherm

Adsorption 
Capacity

Treatment 
method

Removal 
efficiency

zirconium 
oxide-
based 
superpara-
magnetic 
adsorbents 
[154]

Phosphate 
solution

7 – 0.5 g/l 15 min Langmuir 15.98 mg/g Adsorption 
experi-
ments

–

Zno-Fe3O4 
nanocom-
posite 
[155]

Phosphate 
solution

3.1 25 ± 2 °C 1.35 g/l 53.3 min – – Batch 
experi-
ment

97.60%

La(III) 
coagulated 
graphene 
oxide 
[156]

Phosphorus 
stock 
solution

7 318 K 0.0125 g 20 min Langmuir 141.38 mg/g Mechanical 
Shaker

–

Fe-Ti 
bimetal 
oxides 
on a 
sulfonated 
polymer 
[157]

synthetic 
feed solu-
tion

7.18 ± 0.27 25 °C 300 mg/30 ml
17.5 mg/31.45 ml

24 h
15 min

Langmuir 59 mg/g batch 
experi-
ment 
column 
experi-
ments

–

Magnetic 
zirconium-
iron oxide 
nanoparti-
cles [45]

Phosphorus 
stock 
solution

1.5 293 ± 2 K 20 g/l 1000 min Freundlich 21.3 mg/g Batch 
experi-
ment

CaO–MgO–
Al2O3–
SiO2 
[158]

Phosphate 
solution

– – 0.5 g/100 ml – Langmuir 44.05 mg/g Batch 
experi-
ment

–

Fe/Mn 
oxide 
compos-
ites [159]

Phosphate 
stock 
solution

4 Room tem-
perature

0.02 g/20 ml 90 min Langmuir 26.04 mg/g Batch 
experi-
ment

70%

α-Fe2O3 
decorated 
graphene 
oxide 
[160]

Phosphate 
solution

6 298 K 32.5 mg/50 ml 5 min Langmuir 93.28 mg/g Batch 
experi-
ment

–

Mn-Zn-Ti 
Oxide 
[161]

Phosphate 
stock 
solution

6 Room tem-
perature

0.2 g/l 90 min Freundlich 151 mg/g Batch 
experi-
ment

–

3D 
Fe3O4@
ZnO nano-
cubes 
[162]

Phosphate 
stock 
solution 
Wastewa-
ter

7 25 °C 0.03 g/100 ml 10 min Sips 100.3 mg/g Batch 
experi-
ment

96.70%
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have shown to possess exclusive advantages over other 
adsorbents when mixed. In this context, Chen et al. [112] 
developed a three-dimensional adsorbent made of lanthanum 
oxide and graphene nanocomposite which exhibited a phos-
phate selective adsorption property because it is not influ-
enced by various anionic species in water. The composite 
works well at pH (4–7) because the composite is negatively 
charged whereas the major phosphate species is not result-
ing in an ionic attraction forming an acanthus precipitate, 
making it suitable for large-scale application because natural 
wastewater pH is generally low [10, 147].

Zheng et al. [148] reported highly efficient phosphate 
removal from effluents using recoverable La(OH)3, with the 
pH value of the effluent played the most important role in 
reaching higher efficiencies of 96 percent removal of phos-
phate at pH 4–6.

One element within a large mixture might induce a sub-
stantial difference in the efficiency of removal. This was 
demonstrated by Fang et al. [154] who prepared two core/
shell zirconium oxide-based superparamagnetic adsorbents 
where one contained silicon and the other iron (ZrO2@
SiO2@Fe3O4 and ZrO2@Fe3O4). The nanocomposite con-
taining Fe had much higher selectivity, chemical and mag-
netic stability when compared to the composite containing 
Si and the removal occurred by forming Zr-O-phosphate 
inner-sphere complexation.

Chon et al. [159] addressed the frequently reported advan-
tages provided by multifunctional adsorbents in removing 
multiple contaminants from water environments. Based on 
this premise, they developed four different magnetic Fe/Mn 
oxide composites to be applied for the removal of Zn and 
PO4. According to the reported study, they synthesized the 
composite by a two-step precipitation of Fe2+ and Mn2+ in 
sequential order whereby the highest removal capacity of 
phosphates was attained since it holds the highest point of 
zero charge upon which phosphate removal is favored, as 
reported in the literature. Fitting the pseudo-second-order 
reaction rate model, the main mechanism of removal was 

suggested to be chemical bonding between the adsorbent and 
the targeted ions; however, the composite was successful in 
removing 70% of phosphate ions. Awual et al. [163] and Cui 
et al. [164] both reported that metal oxides surface charges 
can be altered by hydrogen or heteroatom bonding reactions. 
Hence, based on the zeta potential and pH effects, specific 
sorption could have occurred along with electrostatic attrac-
tion as sorption mechanisms.

Bai et al. [160] were successful in engineering a 3D 
α-Fe2O3 decorated graphene oxide that was able to sustain 
removal efficiency on a wide range of pH and remove phos-
phates rapidly from phosphate polluted water. By reaching 
equilibrium in 5 min, this renders α-Fe2O3 decorated gra-
phene oxide the fastest metal oxide to achieve phosphate 
removal. Ion exchange and electrostatic attraction were the 
dominant mechanisms of adsorption according to kinetic 
reaction studies.

On the other hand, a composite of three metal oxides 
(Mn-Zn-Ti) has been fabricated for the removal of phos-
phate from aqueous solutions [161]. Adsorption of phos-
phates on Mn-Zn-Ti oxides composites occurred after the 
protonation of the hydroxyl group present on the surface of 
this composite below the point of zero charge (pH = 6.2). 
After that phosphate anions replaced these hydroxyl groups 
leading to the formation of monodentate and bidentate com-
plexes. Metal oxides can last for five cycles of adsorption 
and desorption, and this nanocomposite was also successful 
in phosphate removal from industrial effluents indicating its 
practicality at a commercial level.

Ultrafast sorption of phosphate ions (94.8% phosphate 
capturing in 5 min) was attained using 3D Fe3O4@ZnO 
nano-cubes aided by an extra magnet applied at the bot-
tom of the adsorption system creating a weak magnetic field 
[162]. There are two main causes behind the fast capturing 
of phosphates, the first being that the endowed Lorentz force 
by the weak magnetic field pointed phosphate ions to the 
center of the mixer and secondly the weak magnetic field has 
triggered electrostatic interactions by exposing the sorbent to 

Table 4   (continued)

Zero-Valent 
iron

Type of 
Water

pH Tempera-
ture

Dose Contact 
time

Equilibrium 
Isotherm

Adsorption 
Capacity

Treatment 
method

Removal 
efficiency

La(III)-
coordi-
nated 
3-meth-
acrylox-
yethyl-
propyl

bi-func-
tionalized 
graphene 
oxide 
[113]

Phosphate 
solution 
Wastewa-
ter

3 25 °C – 40 min Langmuir 104.3 mg/g Batch 
experi-
ment

–
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a superior activity. Accordingly, this led to bypassing a rate 
limiting step and resulted in rapid phosphate sorption [165]. 
However, the adsorption capacity slightly decreased because 
of the presence of other anions in the mixture.

La(III)-coordinated 3-methacryloxyethyl-propyl bi-func-
tionalized graphene oxide was prepared to achieve excellent 
phosphate removal from water [113]. The aforementioned 
polymer operates optimally under neutral to acidic pH con-
ditions, for adsorption of phosphates [166]. At a pH range 
of 2–7, the prevalent phosphate form in aqueous solutions 
is dihydrogen phosphate, when high removal efficiency is 
reported under these conditions; this indicates the high affin-
ity of La ions to monovalent phosphates anions.

The controlling factor for ligand exchange process is the 
pH value, when pH < 8 (point of zero charge), the protonated 
La-OH2

+ is displaced by hydroxyl groups in acidic medium 
where it can interact with negative charged phosphate ions 
via electrostatic forces, leading to the uptake of phosphates 
on the ligand surface. Finally, La(III)-coordinated 3-meth-
acryloxyethyl-propyl bi-functionalized graphene oxide has 
shown excellent selectivity and good reusability rendering 
it a good candidate for phosphate removal from wastewater.

Tofik et al. [150] assessed the phosphate sorption capacity 
of a synthesized Fe–Al binary oxide nano-sorbent, and the 
experimentation resulted in a high phosphate removal effi-
ciency of approximately 99.8%. The mechanism of adsorp-
tion favored lower pH values (99.8% removal efficiency at 
pH 4), where protonation of metals took place under acidic 
conditions thus providing more active sites for the uptake 
of phosphates. Additionally, under similar conditions, the 
major species of phosphates were determined to be H2PO4, 
which is negatively charged and known to have a higher 
sorption affinity compared to other phosphate species [139, 
167]. On the other hand, at higher pH values, the exact oppo-
site occurs, since both the composite and the phosphates are 
negatively charged; this leads to the repulsion of phosphates 
ions. Even though this study achieved high removal efficien-
cies, it remained lower than other values reported in similar 
studies [168].

The effect of pH variation on the mechanism of phos-
phate adsorption was also reported by Abebe et al. [169]; the 
study tested synthesized Nanocrystalline Fe-Al-Mn ternary 
oxide; as a result, a pH range of 3–7 returned the highest 
adsorption efficiencies. Similar results were presented by 
Harijan, Chandra [99] where phosphate groups adsorbed 
well to the akaganeite nanorods and graphene oxide sheets 
nanocomposite (β-FeOOH nanorods/GO) at lower pH; how-
ever, under highly acidic conditions (pH < 3) the dissocia-
tion of the nanocomposite  lead to a decrease in adsorption 
efficiency.

Du et al. [152] and Szlachta, Chubar [170] claimed that the 
removal of phosphorus by Fe–Mn oxide was highly dependent 
on the pH level as it dictates whether phosphate removal occurs 

via the replacement of OH groups or not. Whereas Drenkova-
Tuhtan et al. [151] and Drenkova-Tuhtan et al. [171] suggested 
otherwise, where the synthesized adsorbent (ZnFeZr- Fe3O4/
SiO2 particles) worked well under a wider range of pH. While 
the mechanism of action was still being investigated, yet it was 
suggested that the mechanism possibly was that of complexa-
tion of inner-sphere surface, outer-sphere surface and hydrogen 
bonding.

Several studies reported good adsorption under acidic con-
ditions, which is attributed to the protonation of the adsorbent 
surface. Sakulpaisan et al. [149] functionalized titania with 
graphene oxide which led to a synergistic effect especially 
under acidic solutions, where the surface of the composite 
is positively charged, and the phosphate charge (H3PO4 and 
H2PO4) is negative thus leading to adsorption by electrostatic 
attraction. Similarly, [153] utilized lanthanum hydroxide 
doped onto magnetic reduced oxide as an adsorbent where 
electrostatic interaction was the key criterion responsible in 
the adsorption process, which occurred between negatively 
charged H2PO4

− and the positively charged composite. Analy-
sis also showed a decrease in sorption at pH values above 8 
due to the electrostatic competition between hydroxides and 
phosphates.

Similar results were reported on using ZnO-Fe3O4 com-
posite where the highest adsorption occurred at pH 3.1. To 
enhance this outcome, Park et al. [157] used polymer beads 
coated with mixed metal oxides with titanium being one. It 
was revealed that Ti+4 attracted negatively charged phosphates 
to the surface where at acidic pH the composite had high selec-
tivity to phosphates, which contradicts studies reported in the 
literature [171, 172]. In addition, a study by Zhang et al. [45] 
provided more evidence on how low pH (3–7) promotes higher 
phosphate removal. Upon using magnetic zirconium oxide as 
the adsorbent, phosphate was removed via inner-sphere com-
plexing mechanism at low pH and decreased with increas-
ing pH due to the increase in hydroxyl groups that compete 
with phosphates. Zirconium oxide played a major role in the 
removal of phosphates as was also reported by Long et al. 
[173].

Contradictory to the studies cited above, a study was con-
ducted by Chen et al. [156] to assess the removal efficiency of 
lanthanum coagulated graphene oxide as an adsorbent. Analy-
sis of this study showed that positively charged lanthanum acts 
as the binding force and coagulates phosphates to graphene 
oxide which works efficiently under neutral to alkaline pH and 
with reduced efficiency under acidic conditions.



623Nanotechnology for Environmental Engineering (2022) 7:609–634	

1 3

Chitosan experimental setup and main 
mechanism of removal

Nanotechnological literature showcases the ascendancy of 
chitosan as an adsorbent over other nanomaterials, due to 
its organic origin, easy biodegradability, fusion abilities, 
and disincentive properties against a wide range of pollut-
ants including nutrients, bacteria and metals [10, 174, 175]. 
Table 5 presents recently published studies on phosphate 
removal from water and wastewater.

Generally, the efficiency of chitosan’s disincentive prop-
erties is highly dependent on initial dose of the chitosan 
composite, initial concentration of pollutant, contact time, 
surface area, ionic concentration, and pH. The presented 
studies that follow highlight the recently conducted research 
on the use of chitosan as an adsorbent for the removal of 
phosphates.

Chitosan has been used as an adsorbent to remove nutri-
ents such as phosphates and nitrates. Work on this process 
was conducted and reported by Zhao, Feng [40] where 
chitosan was modified into microspheres which allowed 
adsorption to occur both chemically and physically as was 
denoted by the pseudo-second-order kinetic model and 
Dubinin–Radushkevich isotherm model. At first, adsorption 
occurred at the surface of the microspheres and eventually 
diffused through the pores. Analysis showed that the adsorp-
tion rate is dependent on pH, contact time, initial solution 
concentration and adsorbent dosage.

Chitosan could be manipulated into different structures. 
In doing so, Bozorgpour et al. [176] prepared two different 
structured adsorbents: Chitosan/Al2 O3 /Fe3 O4 in the form 
of a fibrous adsorbent and another in the form of beads, 
whereby their removal efficiencies were compared. Tem-
perature, contact time, initial concentration of phosphate 
and the presence of other ions in solution played a role in 
the adsorption rate, where lower pH values favored higher 
adsorption while at higher pH the electrostatic interactions 
were negligible. Pseudo-second-order kinetic model was 
used to fit the kinetics of adsorption. The adsorption behav-
ior was a result of the protonation of the functional groups in 
the chitosan (NH2 and OH). Results finally showed a higher 
removal potential of the nanofibrous composite compared 
to the bead composites, which may be justified due to the 
larger surface area available for adsorption in the nanofi-
brous composite.

In this context, Kumar, Viswanathan [179] formed amine 
grafted chitosan beads in order to remediate phosphate in 
a batch mode experiment, where certain parameters like 
pH, contact time, co-ions presence and temperature were 
optimized. The phosphate species that was dominant in the 
sample was H2PO4

− where it had high affinity to electrostati-
cally bind to the protonated surface of the sorbent forming a 

complex. An additional advantage is that the composite can 
be regenerated and reused for up to six cycles, giving it an 
edge over conventional methods.

As noted earlier, chitosan could be manipulated into dif-
ferent structures as well as combined with other compounds. 
Yazdani et al. [177] performed an experiment to study the 
abatement ability of a bio-sorbent (chitosan-Zinc (II)) in a 
batch mode. Adsorption was favored in a pH range of 4–7, 
since at this range the bio-sorbent surface charge is driven to 
neutrality or positivity. In addition, the higher the volumes 
of adsorbent the higher is the removal rate, due to the pres-
ence of higher surface areas for the phosphates to encounter; 
especially that it was revealed that the presence of other ions 
in the solution had low to no effect on phosphate adsorption.

Selective adsorption is a leading edge method, due to the 
magnetic properties of chitosan [37, 39]. Zavareh et al. [178] 
attempted to deploy a chitosan-based magnetic adsorbent, 
where Cu–chitosan/Fe3O4 was the nanocomposites used 
which was characterized by having a porous surface with 
high specific area (Fig. 4). According to the Langmuir iso-
therm, the developed magnetic adsorbent had higher adsorp-
tive capacity compared to raw chitosan/Fe3O4 composite. 
Neutral pH values depicted the highest removal rates due 
to high selectivity for phosphates; this occurs when Cu(II) 
forms a complex with phosphate.

Because chitosan is an eco-friendly adsorbent, it formed 
an attractive material for many researchers to experiment 
on its nutrient removal abilities [187, 188]. To make use 
of chitosan’s properties and those of bentonites, Kumar, 
Viswanathan [189] combined the two composites into one 
with the addition of metal ions (Zr4+, Fe3+, and Ca2+). The 
mechanism of action followed many processes that included 
ion exchange and electrostatic attraction to the composite 
while controlling pH, initial phosphate concentration, agi-
tation time and presence of anions. The metals with higher 
valence ions had a higher tendency to attract phosphate to 
the composite leading to their removal.

Applying iron oxide to chitosan nanoparticles was per-
formed by Kim et al. [180] to enhance the properties of chi-
tosan by taking advantage of the characteristics of iron. The 
study showed low sensitivity to pH changes, were removal 
occurred initially by diffusion through the pores leading to 
ligand exchange between iron oxide and phosphates, it was 
reported that  phosphates replaced the OH group attached to 
iron achieving a phosphate removal of 52.3%.

The main experimental configuration utilized when test-
ing for chitosan as an adsorbent is a batch mode process, 
the reason being to allow enough contact time to achieve 
maximum phosphate removal [190, 191]. Banu, Meenak-
shi [181] adopted the same experimental procedure using 
the composite chitosan grafted quaternized resin. Removal 
showed to be an exothermic process. Many parameters were 
controlled because of their impact on adsorption like initial 



624	 Nanotechnology for Environmental Engineering (2022) 7:609–634

1 3

Table 5   Research on Phosphate Removal Using Chitosan

Modified 
Chitosan

Type of 
Water

pH Temperature Chitosan Dose Contact 
time

Equilibrium
Isotherm

Adsorption
Capacity

Treatment 
method

Removal 
Efficiency

modified 
chitosan 
micro-
spheres 
[40]

distilled 
water

3 303.15 °K 1 g/l 90 min Langmuir 33.9 mg/g Batch 
experiment

chitosan/Al2 
O3 /Fe3 
O4

composite 
nanofi-
brous and 
bead [176]

distilled 
water

3 20 °C 2% 60 min for 
nanofibers

120 min for 
beads

Freun-
dlich for 
nanofibers

Langmuir 
for beads

151.1 mg/g 
(nanofibers)

61.9 mg/g 
(beads)

Batch 
experiment

zinc(II)–
chitosan 
complexes 
[177]

Reverse 
osmosis

water

4 20 °C 0.5 mg/l 180 min Sips and 
Freundlich

6.55 mg/g Batch 
experiment

97.63% for 
1 mg/l

of phosphate

Cu–chitosan/
Fe3O4

nanocom-
posite 
[178]

distilled 
water

7 Room
Temperature

2 g/l 2 h Langmuir 88 mg/g Batch 
experiment

Zr-Chitosan 
Bentonite

Fe-Chitosan 
Bentonite

Ca-Chitosan 
Bentonite 
[179]

Double 
distilled

water

3 323 °K 0.1 g/100 ml 40 min Freundlich 40.86 mg/g
22.15 mg/g
13.44 mg/g

Batch 
experiment

Iron oxide 
nanopar-
ticle-chi-
tosan [180]

Stream 
Water

5–9
–7.1

45 °C
–

50 g/l
420 g
135 g/l

12 h
–
6 min

Redlich–
Peterson

and Freun-
dlich

0.04 mg/g
0.143 mg/g
0.059 mg/g

Batch 
experiment

Column 
experiment

Field experi-
ment

100%
–
52.3%

chitosan 
quater-
nized resin 
[181]

Stock Solu-
tion

4–10 303 °K 0.1 g 45 min Freundlich 181.29 mg/g Batch 
experiment

90%

Unicellular 
cyanobac-
terium

Synechocys-
tis sp.

And chi-
tosan [182]

Water from
recirculating
fish tank

7.5 Room
Temperature

20 mg/l 90 min – – Flocculation  > 90%
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Table 5   (continued)

Modified 
Chitosan

Type of 
Water

pH Temperature Chitosan Dose Contact 
time

Equilibrium
Isotherm

Adsorption
Capacity

Treatment 
method

Removal 
Efficiency

hydrogel 
chitosan 
sorbent 
ionically

cross-linked 
with 
sodium

citrate and 
covalently 
cross-
linked

with 
epichlo-
rohydrin 
[183]

nutrient 
solution

3 0.2 g 2 h Langmuir 1.23 mmol/g Batch 
experiment

Tri-ethylene 
tetramine-
functional-
ized

magnetic 
graphene 
oxide 
chitosan 
composite 
[45]

Stock Solu-
tion

3 298 °K 0.1 g/250 ml 50 min Langmuir 353.36 mg/g

Modified 
carbon 
nanotubes

with chi-
tosan [184]

Ultrapure 
water

3 293 °K 0.05 g/300 ml 30 min Freundlich 36.1 ± 0.3 mg/g Batch 
experiment

3-chloro-
2-hydroxy-
propy

l trimeth-
ylam-
monium 
chloride- 
carboxy-
methyl 
chitosan 
[41]

Distilled 
water

 + stock 
solution

4 – 58 min – Jar test 97.80%

amine-func-
tionalized 
magnetic

chitosan
composite 

beads 
[185]

Stock Solu-
tion

varied
pH

323 °K 0.1 g/50 ml 40 min Freundlich 42.95 mg/g Batch 
experiment

lanthanum 
(III) 
encapsu-
lated

chitosan-
montmo-
rillonite

composite 
[186]

Double 
distilled

water

3–7 Ambient
Temperature

0.1 g/50 ml 30 min Freundlich 45 mg/g Batch 
experiment

92%
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concentration of phosphate, chitosan dosage, pH, pres-
ence of anions, temperature, and contact time. The removal 
mechanism was similar as that of other studies which fol-
lowed the pattern of electrostatic attraction leading to ion 
exchange, at which phosphates replaced the Cl− ion located 
in the quaternary site of the composite. Analysis showed 
that hydrogen bonds were formed and acted as the removal 
mechanism. Overall, the experimental results best fitted a 
pseudo-second-order and Freundlich isotherm models.

Chitosan may potentially be used in combination with 
living microorganisms to remediate polluted water bodies. 
In this context, Rojsitthisak et al. [182] attempted to remove 
phosphate using cyanobacteria in combination with chitosan 
flocculants. In treating water recirculated from a fish tank, 
the flocculation efficiency of chitosan was observed while 
controlling the pH, concentration of chitosan as well as bac-
terial cells; this resulted in phosphate removal levels of over 
90%.

Chitosan has dominance over other nanocomposites 
because it can be combined with ions covalently and ioni-
cally [192–194]. Chitosan was cross-linked ionically with 
sodium citrate and covalently with epichlorohydrin forming 
a hydrogel by Jóźwiak et al. [183]. Compared to other stud-
ies, the effects of pH and contact time were studied because 
of their ascertained impact on sorption efficiency. Nutrients 
like phosphates were adsorbed physically on the gel’s sur-
face because of the amine groups, which could be proto-
nated, i.e., attach to hydrogen ions found in some phosphate 
species occupying the active sites within the gel’s pores. 
Removal of phosphate species reached 72% thus concluding 

that cross-linked chitosan can be a potential applicant to be 
used in the removal of various nutrients.

As noted in several studies, metals have been combined 
with chitosan to form functional adsorbents. A study was 
conducted by Zhang et al. [45] in which they combined mag-
netic graphene oxide with chitosan. The process was deter-
mined to be highly dependent on pH. This can be attributed 
to the presence of -NH2 group on the composite material, 
and in a matter like that discussed earlier, the phosphates are 
strongly attracted to the -NH2 group at lower pH because of 
electrostatic interaction. Analysis of the model well-fitted 
the Langmuir isotherm; this composite has established its 
functionality in the nanotechnology field because it can be 
reused for about three cycles.

Studies remain to be limited when it comes to the applica-
tion of chitosan in combination with carbon nanotubes; thus, 
a need exists for further investigations in this area [195]. A 
study was conducted by Huang et al. [184] to functional-
ize multiwalled carbon nanotubes with chitosan in which 
98% removal of phosphates was achieved. The removal was 
attributed to electrostatic attraction because the adsorbent’s 
surface is positively charged leading to the attraction of 
phosphate anion; results further show that the reaction fits 
well the Freundlich isotherm model.

Flocculation is another area where chitosan is being 
applied. In a study performed by Agbovi, Wilson [41], an 
amphoteric flocculant (3-chloro-2-hydroxypropyl trimeth-
ylammonium chloride onto carboxymethyl chitosan, CMC-
CTA) was developed for use in the removal of phosphates 
from water. Result showed that the removal of phosphorus 
followed the pseudo-first-order model where the flocculation 

Fig. 4   Proposed Mechanism of 
Removal of Phosphate by Cu-
chitosan/nano-Iron Oxide [178] 
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process involved neutralization of the charges resulting in 
the formation of polymer bridges leading to adsorption. The 
presence of Fe+3 metal improved the removal of phosphates.

Thagira Banu et al. [186] developed a lanthanum (III) 
encapsulated chitosan-montmorillonite composite (La-CS-
MMT) that effectively removes phosphates, and which has 
reusability advantages which was maintained at 70% adsorp-
tion of phosphates after five cycles of usage. The proce-
dure behind the adsorptions lay in the fact that the La-CS-
MMT surface is positively charged with the predominant 
form of phosphates in the sample being negatively charged 
(H2PO4

−), by forming hydrogen bonds through electrostatic 
attraction phosphate is adhered to the surface.

Conclusion

A comprehensive review of recent studies related to the 
removal of phosphates from aqueous solutions using adsorp-
tion processes was conducted. Different types of adsorbing 
materials, with emphasis on metal oxides and chitosan and 
combinations of same, were probed for removal efficien-
cies and removal mechanisms, leading to their technical 
feasibility and efficacy for application as viable materials 
for the removal of phosphates from water and wastewater. 
Moreover, research gaps were identified in some studies and 
discussed. The main limitations depicted during the study 
were related to the lack of modelling studies on the kinetics 
of the removal mechanisms as applied in the presence of 
ionic species hindering the removal of the adsorbate.

The evaluated studies, invariably conducted on a bench 
scale, have shown adequate removal efficiencies of phos-
phate through the application of different combinations of 
chitosan and metal oxides, though scaling up of the treat-
ment techniques to the industrial level, on which studies are 
lacking, might show different results. Moreover, the sustain-
ability of the synthesized sorbents requires further study and 
evaluation.

Even though several studies have considered applying the 
synthesized sorbents for the removal of phosphates in the 
presence of different pollutants, many other studies lack this 
scenario. The existence of other pollutants may impede the 
removal efficiencies and thus negatively impact the appli-
cability of such nano-sorbents. Consequently, future stud-
ies should take into consideration the typical constituents 
present in the water to be treated, especially in the case of 
wastewaters which harbor a vast variety of pollutants.

Additionally, a comprehensive understanding of the 
mechanisms associated with phosphate removal when uti-
lizing metal oxides and chitosan as nano-sorbents requires 
the application of universal parametric variations, through 
varying all the key parameters that have an impact on the 
process removal efficiency. Based on that, a suitable kinetic 

model and proper understanding of the competence of the 
synthesized sorbent may be attained for most environmental 
applications.

Phosphate compounds contaminations are on the rise 
in water bodies and wastewater, and thus, it is critical to 
develop methods for removal of these compounds. Finding 
better and more effective sorbents to remove phosphates 
from water bodies is imperative. From this literature review, 
we could conclude that both metal oxides and chitosan nano-
sorbents showed exceptional potential in the removal of 
phosphates from water under various conditions. As stated, 
multiple studies conducted on the removal of phosphates 
using the material found great success, with removal per-
centages reaching as high as 99.8 percent in certain batch 
runs. The major limitation common to most of the surveyed 
literature is the lack of pilot studies and commercial applica-
tions. Almost all the literature report on the removal under 
controlled experimental conditions.

Without a doubt, given the high demand on the applica-
tion of chitosan-based materials in removal of phosphates 
from water and wastewater, the fabrication and develop-
ment of such adsorbents will continue to evolve. Addition-
ally, future research should focus largely on the develop-
ment of cheaper alternatives and cleaner technologies based 
on nanomaterials, and it is critical to prove the application 
feasibility of such material and should not be limited to 
controlled experimental conditions. The regeneration and 
re-use of metal oxides and chitosan-based nano-sorbents 
should be addressed as well; this is imperative in limiting 
the waste generated from large- and small-scale applications 
of these processes. Running batch tests with contaminated 
wastewater (with phosphates, nitrates, and natural organic 
matter) allows the assessment of adsorptive selectivity of 
these processes.

In concluding, it would be reasonable to classify metal 
oxides and chitosan nano-sorbents and their combinations 
as promising materials to be applied for the removal of phos-
phate from aqueous solutions. Nevertheless, the application 
of these materials at the industrial level calls for further 
investigations and research to cover the gaps in knowledge 
related to field applicability, sustainability, cost effective-
ness, and environmental/human health impacts.
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