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Abstract 
Heavy metals (HMs) constitute one of the most detrimental environmental constraints putting at risk diverse life-forms includ-
ing plants. HMs profoundly hinder plant metabolism, by disrupting the functioning of imperative cellular biomolecules result-
ing in severely affected crop yields. Among the diverse strategies adopted to alleviate heavy metal (HM) toxicity, application 
of nanoparticles (NPs) constitutes a comparatively recent, efficient and promising approach as compared to conventional 
plant growth regulators. The competence of NPs as stress alleviators is endorsed to their ability to decrease the mobility of 
HMs in soil thereby reducing their availability, improved ability of apoplastic barrier which hinders their translocation in the 
plant, fortified plant antioxidant system by boosting the activities of the different enzymatic and non-enzymatic antioxidants, 
mimetic activities of certain NPs as antioxidants and increased production of secondary metabolites particularly phenols. 
Plant phenolics, in addition to other chemo-ecological roles, serve as potent stress alleviators. The current article encom-
passes the role of NPs in remediation of HMs from contaminated agricultural soils and aquatic ecosystems. This article also 
focuses on the role of different types of NPs in alleviating HM toxicity in plants and the possible underlying mechanism.
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Introduction

Factors that render ecosystems unfit for survival of life-
forms include continuous addition of hazardous contami-
nants, mainly through anthropogenic activities, and their 
penetration into diverse aquatic and terrestrial life-forms 
Kahlon et al. [62, 72]. Amid the sum total of contaminants, 
HMs, being non-biodegradable and toxic, are remarkably 
dreadful, inflicting a terrible threat to the existence of dif-
ferent life-forms in view of their chief role in health-related 
complications [55, 134]. Heavy metal pollution ranks second 
among the most perilous pollutions and is expected to pull 
ahead of chief hazardous pollutants notably sulfur dioxide, 
carbon dioxide and pesticides in near future [22, 72].

HMs are discharged into the ecosystems predominantly 
through various anthropogenic activities notably smelt-
ing, mining of metals, foundries and leaching of metals 

from diverse sources notably automobiles, landfills, waste 
dumps, excretion, runoffs, chicken manure and road-works 
[16, 57, 139, 162]. Natural sources like geological weath-
ering, water and sediment re-suspension, metal corrosion, 
soil erosion and volcanic eruptions also add to the HM 
contamination [16, 86, 162]. Besides, agricultural sector, 
where-in the use of fertilizers, insecticides, pesticides has 
escalated alarmingly, is considered as secondary source of 
HM pollution [16, 86, 139]. The concentrations of HMs 
(Hg, Cd, Pb, Cr, Cu, As) are continuously mounting in the 
surface water and sediments where-from these find entry 
into different food chains leaving grave concerns on differ-
ent life-forms including humans [57, 37, 139]. HMs induce 
genotoxicity, cytotoxicity, and mutagenicity in humans, 
animals as well as in plants  [24, 114]. Some of the deadly 
diseases in humans due to HM contaminants include dif-
ferent types of cancers, kidney failure, lung congestion, 
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liver damage and reproductive dysfunction [39]. Prolonged 
exposure to HMs like As also lead to cardiovascular and 
neurological disorders, and various types of skin cancers 
[59, 75, 110]. Millions of people worldwide fall victims 
to HM contamination chiefly through consumption of con-
taminated food and drinking water [87, 112].

Plant growth and metabolism are also severely disrupted 
by HM contamination. Once inside the plant, HMs impede 
metabolic functions by disrupting protein functioning by 
forming complexes with their sulfhydryl groups [33], dys-
functioning enzymes cofactors [5, 50], malfunctioning cel-
lular molecules and pigments [50] and severely disrupting 
the integrity of membranes [5, 33]. These physiological and 
metabolic disruptions ultimately repress the fundamental 
primary as well as secondary metabolism pathways in plants 
including photosynthesis, respiration, nutrient assimilation, 
etc. [4, 62].

The existing challenges of climate change, diverse envi-
ronmental constraints, food and energy security, and sus-
tainability compel researchers to explore novel competent 
technologies to conquer these potential challenges in a pro-
ficient manner [131, 146]. Among various such approaches 
adopted for the purpose, nanotechnology is acknowledged 
as one of the most imperative, swiftly emerging fields with 
copious potentialities, contributing to sustainable competi-
tiveness and development in numerous fields including the 
agricultural field [11, 36, 104, 107, 145, 173]. Application 
of NPs repairs the perturbed and contaminated ecosystems 
where traditional agricultural practices have proven unsuc-
cessful [131, 146, 173]. Nanotechnology is proving to be 
a boon in the agricultural field with copious advantages 
through the application of nanofertilizers, nanopesticides, 
and elicitors [19, 78, 151, 155, 173]. Improved performance 
in plants has been reported due to application of different 
NPs both under normal as well as perturbed environmental 
conditions [3, 7, 35, 118, 126, 136, 144]. NPs as elicitors 
have proven as innovative and efficient resolution to myriads 
of abiotic environmental pressures including HM toxicity 
[131, 173]. Application of different NPs  (TiO2NPs, SiNPs) 
alleviates oxidative stress by reducing the content of MDA, 
 H2O2, superoxide radicals by up-regulating the activities of 
enzymatic and non-enzymatic antioxidants like SOD, CAT, 
guaiacol and ascorbate peroxidases, GR, GSH [7, 74, 118, 
172, 174]. Moreover, NPs also conserve chloroplast struc-
ture, improve content of chloroplast pigments, and photosyn-
thetic rate and preserve membrane stability in HM-affected 
plants [27, 28, 36, 54, 58, 78, 133, 137, 144]. NPs regulate 
a variety of physiological phenomena in plants notably  CO2 
fixation, nutrient assimilation, increased activities of impera-
tive primary metabolism enzymes and secondary metabo-
lite production in addition to abiotic stress alleviation [2, 7, 
74, 95, 126, 143, 159]. This current review is an attempt to 
encompass the role of different NPs in regulation of diverse 

physiological and biochemical phenomena in different plants 
exposed to HM toxicity.

Impact of nanomaterials on plants

Adequate literature is available on the subject of NPs-medi-
ated impact on plants and studies reveal both positive as well 
as deleterious effects [26, 102, 144, 145]. For example, exog-
enously sourced titanium dioxide nanoparticles  (TiO2NPs) 
reduce the oxidative stress imposed by UV-B radiations 
[74], improve net photosynthesis [46], enrich acquisition of 
nitrate and assimilation by incorporating inorganic nitro-
gen into organic molecules in spinach plants [165]. Moreo-
ver,  TiO2NPs-treated spinach chloroplasts show improved 
light absorption by chlorophyll a molecules and enhanced 
electron transfer efficiencies, PSII fluorescence quantum 
yield and rate of evolution of oxygen [89, 166]. Tomato and 
spinach plants exposed to  TiO2NPs have been reported to 
improve transfer efficiency and light absorption capacity of 
PSII [73, 111].  TiO2NPs-triggered enhancement in photo-
synthesis is attributed to large specific surface area, high 
photo-catalytic capacity and high thermal conductivity of 
these NPs [73, 89, 166]. Application of  TiO2NPs also serves 
an essential role in kidney bean in the modulation of enzy-
matic antioxidant gadgets [56]. Likewise, MnNPs improve 
activity of PSII by boosting the photolysis of water and 
evolution of oxygen and also bring an enhancement in the 
photophosphorylation activity of the electron transport chain 
in mung-bean [110]. Carbon nanotubes, another important 
type of NPs, have been observed to potentially enter the seed 
coat of tomato plants thereby facilitating the water acquisi-
tion required during germination [63]. However, no reports 
of apparent carbon nanotubes induced toxicity in plants 
are present, except in rice plants in which flowering time 
has been observed to be delayed by one month [80, 142]. 
Moreover, carbon nanotubes up-regulate the expression of 
stress-related genes in tomato plants [66] and increase activ-
ity of POX in the seedlings of sainfoin [135]. This feature of 
carbon nanotubes regulating the expression of stress-related 
genes in plants can prove handy in the regulation of plant 
growth and development [71].

Besides the positive effects, deleterious effects of some 
of the NPs are also documented. Asli and Neumann [10] 
showed that transpiration is blocked by  TiO2NPs and ben-
tonite NPs declining the pace of hydraulic conductivities 
in maize. Musante and White [97] reported that exogenous 
application of AgNPs decreased the transpiration rate in 
Cucurbita pepo. Mukherjee et  al. [96] established that 
ZnONPs application resulted in decreased chlorophyll con-
tent in pea. Higher concentration of NPs proves inhibitory 
to the plants as revealed from the application of  CeO2NPs at 
the concentrations of 1000 and 2000 mg  L−1 which recorded 
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a decrease of 60 and 85%, respectively, in the chlorophyll 
biosynthesis [85]. Likewise, contents of chlorophyll and 
carotenoids were reported to be significantly decreased by 
increased concentrations of AgNPs in rice seedlings [100]. 
 TiO2NPs have also been observed to reduce the content of 
chlorophyll in kidney bean and tobacco [56, 125]. Exog-
enous supplementation of  AlO2NPs reduce the activities of 
two important enzymes (dehydrogenase and oxido-reduc-
tase) in tobacco [108]. ZnONPs application has also been 
observed to hinder the translocation process in plants like 
cowpea [153]. Moreover,  TiO2NPs have been known to 
markedly reduce the water absorption and transpiration rate 
[10]. There are also reports of  TiO2NPs-induced cytotoxic 
impacts in plants and such cytotoxicity in diverse plant cell 
systems has been endorsed to ROS overproduction [167]. 
Likewise, ZnONPs are also known to trigger phytotoxic 
effects in ryegrass which is attributed to membrane lipid 
peroxidation and ROS production [81]. Improved antioxi-
dant enzymes activities like catalase, SOD have been shown 
by NiONPs application in tomato [34]. NPs have the abil-
ity to impair different growth and developmental aspects in 
plants as a number of events like flowering, fruiting, timing 
of senescence, abscission and dormancy are influenced by 
them [141, 149]. Manufactured NPs can lead to membrane 
lipid peroxidation by ROS generation [18]. Engineered NPs 
can significantly impinge on the membrane permeability and 
fluidity and as a result will affect the acquisition kinetics of 
the nutrients. So it evolves that the existing literature gives 
us mixed prospectus as far as the responses of plants to NPs 
is concerned. Nonetheless, the NMs mediated phytotoxic 
effects are the focus of most of the prevailing literature, 
the present review has, therefore, shed-light especially to 
uncover the NPs-induced remediation of HMs from aquatic 
ecosystems and HM stress tolerance in plants and the associ-
ated underlying mechanisms.

Remediation of HMs from aquatic 
ecosystems using nanomaterials

Rational water resources’ utilization has emerged as one 
of the most critical environmental crisis, the resolution to 
which chiefly lies in the efficient treatment of the contagious 
wastewater from varied sources. One of the efficient treat-
ment methods is to control the contents of different HMs [9] 
which are included among the most biologically hazardous 
and noxious components of the wastewater effluents. Trace 
elements (metals and metalloids) having atomic density 
greater than 4 ± 1 g  cm−3 are included in the list of HMs 
and are believed to be the most prevalent toxic soil and water 
mineral contaminants [17, 92]. Heavy metal accumulation 
into different soil and water ecosystems signifies a massive 
threat to the living systems and their bioaccumulation at 

consecutive trophic positions via biomagnification is add-
ing to its severity [5]. Contrary to the organic pollutants, 
bulk of the metal/metalloid contaminants are incessantly 
accumulated in the soil as they are not decomposed and/or 
degraded chemically or microbially ending in long-term soil 
eco-toxicity [1]. The invariable enhancement of such toxic 
contaminants in soil and water ecosystems is a principal 
global disquiet [106, 129], and the expedition of inventive 
technological advances has amplified its severity leading to 
extinction of various living beings and questioning the sus-
tained existence of others dwelling in such contaminated 
ecosystems by causing noxious ailments [31, 70]. So, it 
becomes indispensable to find resourceful means of detoxi-
fying/remediating such toxic contaminants. Nevertheless, 
nanotechnology owns immense potential as environmental 
cleaner including mitigation of diverse HM toxicities [30]. 
Several studies of the kind have been spotted in literature 
dealing with the metal NPs-induced amelioration of heavy 
metal/metalloid toxicity [152]. A variety of chemical tech-
nologies have also been utilized for the remediation purpose, 
among which, adsorption is incredibly common as well as 
efficient in view of its cost-efficiency, treatment stability and 
simplicity [13].

A few techniques are currently accessible to sequester the 
heavy metals/metalloids from different ecosystems; however, 
employing nanomaterials is sprouting as a promising option 
in view of substantial efficiency. Amid the diverse application 
of NMs in different fields, purification of water so as to trim 
down the concentration of the toxic contaminants has opened 
new doors of anticipation toward developing a comparatively 
feasible environment to thrive in [122]. NPs of different ele-
ments are also promisingly effective in remediation of differ-
ent toxic metal ions from soil ecosystems as well.  Fe3O4 NPs 
impregnated with silica have successfully removed bulk of the 
toxic contaminants from different ecosystems [161]. Addition-
ally, nanosilica alone has also been applied to eliminate heavy 
metal ions from the contaminated wastewater (Xin Rong et al. 
2001). Zero-valent iron NPs (nZVFe NPs) effectively trims 
down the concentration of chromium (Cr-VI) and arsenic (As-
III) contaminants from waste water [13, 20, 38, 109, 130, 156]. 
The recent decade has witnessed comprehensive application of 
ZVFe NPs for the remediating different noxious environmental 
contaminants [38, 130, 169, 168]. The properties like high 
surface area and reaction activity permits their employment 
for rapid decontamination of various aquatic contaminants 
including toxic metals/metalloids [14]. Furthermore, litera-
ture supports that FeONPs scavenge various toxic HMs nota-
bly As(III), Cd(II), Cr(VI), Cu(II), Pb(II) and Zn(II) [23, 60, 
67, 79, 121, 147, 169]. Moreover ZVFeNPs have been docu-
mented to improve plant biomass by decreasing heavy metal 
contamination of the soil [101, 138]. Environmental engineers, 
nevertheless, are making relentless efforts to remediate the 
soil and water ecosystem contaminants, particularly the toxic 
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metal/metalloids through the application of nanomaterials 
though much more is needed in this regard [41, 84].

Among the most successful NMs widely utilized for the 
remediation of noxious HMs from the industrial wastewater 
are single and multi-walled carbon nanotubes, the fullerenes, 
and graphene oxide [17]. Large surface area and fairly low 
aggregation capacity of fullerenes makes them ideal to serve as 
adsorbents for the removal of HMs from industrial wastewater 
[83, 123]. Significant sorption capacity and competence of 
oxidized CNTs for [Cd(II), Pb(II)] and [Cr(VI)] ions makes 
them ideal for removal of these contaminants [17, 76, 119]. 
In view of their high specific surface area, increased func-
tional groups and active sites on their surface, and reasonably 
superior chemical stability, the last decade has witnessed a 
manifold increase in the use of graphene and graphene-based 
materials for treatment of wastewater [43]. Moreover, gra-
phene is oxidized to add hydrophilic groups for the effective 
remediation of HMs [14]. Graphene-based materials have a 
very strong sorption capacity for different metals/metalloids 
[25, 52, 171]. Heavy metal remediation by ZVFeNPs is pre-
dominantly dogged by redox potential of the metal pollutant. 
Compared to Fe, metal contaminants having more negative 
or analogous standard redox potential (e.g., Zn and Cd) are 
eliminated by adsorption capacity with ZVFeNPs; contrarily, 
metals having positive standard redox potential (e.g., Ni and 
Pb) are eradicated through reduction as well as adsorption. 
Cd-spiked soil can be reclaimed using ZVFeNPs (0.01% and 
Cd accumulation in seeds and leaves of rice grown on such 
soil gets reduced [158]. Reduced Cd toxicity is endorsed to 
reduced bioavailability due to the adsorption of the metal 
contaminant to the nanoparticle surface. Moreover, Liu et al. 
[82] reported that supplementation of FeNPs under Cd-spiked 
soils immobilizes Cd leading to reduced bioavailability for the 
plants. Further support comes from the study of Houben and 
Sonnet [51] which reveals 45–63% reduction in the amounts of 
Cd and Zn after the application of powdered FeNPs to the soil.

Substantial attention has been focused on the potential ben-
efits of different nanomaterials in water treatment processes. 
However, concerns with regard to their looming effects on 
humans and other ecosystems have arisen. If these concerns 
are addressed cautiously, NMs can possibly play a cardinal 
role to ascertain excellent soil and water quality to congregate 
the escalating demand for clean and safe water and soil for 
agricultural practices [12, 140].

Nanoparticles‑induced heavy metal stress 
alleviation in plants and the underlying 
mechanism

Plant resistance against HM stress can be improved 
through application of NPs which can be applied in the 
form of aqueous solutions through foliage in addition to 

application through soil; for example, alleviation of Cd 
and Pb stress in oryza sativa L. through leaf-applied sele-
nium and silicon NPs [54]. Foliar application of NPs has 
been reported to be more efficient in HM stress alleviation 
than their soil application [78]. Although to minimize the 
detrimental trajectories caused due to HM stress, plants 
have established varied homeostatic mechanisms that reg-
ulate the accumulation and uptake of metals/metalloids, 
besides, managing their detoxification as well as traffick-
ing; nevertheless, the ability of HM detoxification varies 
and can be improved. The critical approaches adopted to 
improve HM resistance in plants comprise; decrease in the 
quantity of bioavailable metal contaminants, regulation 
of expression of genes involved in metal/metalloid trans-
port, recuperating the capability of apoplastic barricade to 
intercept metal contaminants, supplying more nutrients to 
the plant under stress, fortifying the enzymatic and non-
enzymatic antioxidant gadgets and amplified biosynthe-
sis of defensive agents (organic acids, osmolytes, phyto-
chelatins and root exudates) [19, 54, 78, 94, 151, 155]. 
Apoplastic barrier, though not a complete contaminant 
blockade, serves vital protective functions in plant roots, 
controlling the flow ions, oxygen and water [21, 36, 54]. 
Entry of HMs in plant roots is checked by the apoplastic 
barriers and their efficiency can be enhanced by the NPs 
[54, 120]. NPs stick to the HMs in the cell walls forming 
complexes, thereby making them unavailable. Interaction 
of NPs with the HMs is crucial while studying the dif-
ferent characteristics of HM stress alleviation. Reduced 
mobility and, therefore, bioavailability of metal contami-
nants in the soil has been endorsed to NP application. For 
example, application of mercapto SiNPs and  Fe3O4 NPs 
increases the stability of Cd, thus, decreasing its mobility 
[66, 124, 155]. NP-HM complexes, once adsorbed, become 
immobile, obstructing the mobility of the HMs inside the 
plants which in-turn reduces their biological activity [28, 
154, 173]. Moreover, certain organic acids functioning 
as metal chelators are bio-concentrated in the cell walls 
which trim-down the HM-induced damage by chelating 
the metal contaminants. Biosynthesis of such protective 
organic acids is known to be improved by NPs as has been 
reported in case of SiNPs-application reducing the dam-
age caused due to Cd [7, 28, 36, 54, 118, 173]. Moreover, 
NPs improve soil characteristics; for example, release of 
phosphate and increased soil pH as a result of hydroxyapa-
tite NPs application in-turn reduces HM toxicity [29, 54]. 
Furthermore, NPs having high surface to volume ratio are 
capable of interacting with certain cell biomolecules and 
elicit different biochemical pathways [30].

ROS production being an indispensable phenomenon of 
various plant metabolic processes like photosynthesis and 
respiration, have been reported to act as a defense signal reg-
ulating miscellaneous aspects of growth and development. 
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Nevertheless, disproportionate ROS accretion during stress-
ful conditions, damages cell membranes, impairs the struc-
ture and functioning of different cellular components as 
well as proteins [160, 173]. Up-regulation of genes related 
to various primary physiological phenomena including anti-
oxidative metabolism as well as genes involved in HM stress 
tolerance requires an optimum concentration of NPs [154, 
173]. NP-induced activation of the antioxidative defense 
gadget of the plant reduces and/or mitigates the HM-induced 
excessive production of ROS [160, 173].

Among the various types of NPs, role of  TiO2NPs has 
been comprehensively studied in plants. Improved plants’ 
performance in terms of growth, photosynthesis (net pho-
tosynthetic rate, stomatal conductance, rubisco activity), 
enzyme activities, nutrient status and yield has been worked 
out in response to the  TiO2NPs application both under nor-
mal as well as non-biotic pressures [3, 35, 40, 133, 170]. 
 TiO2NPs have been reported to enhance the activities of 
different antioxidative enzymes (SOD, CAT, APOX, GPOX) 
in S. olereacea and L. minor (Song et al. 2012); [74]. Moreo-
ver,  TiO2NPs reduce Cd and free radical accretion and lipid 
peroxidation by improving enzymatic and non-enzymatic 
antioxidants and relative water content, conserve chloro-
plast structure, improve content of chloroplast pigments, and 
photosynthetic rate and preserve membrane stability in HM 
affected plants [46, 58, 78, 133] (Table 1). Lei et al. [74], 
tested the efficacy of  TiO2NPs on Spinach and reported the 
significant decrease in  O2

•− and  H2O2 accumulation, and 
consequently lipid peroxidation in chloroplasts under oxi-
dative stress. Application of  TiO2NPs prevents electrolyte 
leakage in the chickpea cultivars [74, 91]. Similar results 
have been validated by Sharma et al. [128] in mustard due 
to the application of AgNPs (25 and 50 mg  L–1). Studies on 
Spinach have disclosed that  TiO2NPs limit oxidative stress 
by reducing the content of MDA and  H2O2, and superoxide 
radicals and fortify antioxidant enzymatic activities (SOD, 
APOX, GPOX and CAT) [74, 172]. Application of ZnONPs 
alleviated Cd-toxicity in Leucaena leucocephala [148]. 
Likewise, Cd toxicity in mustard by nano-scale hydroxyapa-
tite has been reported [77]. Venkatachalam et al. [148] sug-
gested that ZnONPs-induced mitigation of Cd toxicity is 
accredited to decreased ROS production which prevents 
membrane damage as can be confirmed by reduced MDA 
content thereby increasing plant growth rate, mineral accre-
tion and biomass accumulation. The study also suggested 
that ZnONPs lead to increased activities of the antioxidative 
enzymes by enhancing the level of isoenzyme pattern and 
improved genomic alterations to conquer the heavy metal-
induced genotoxicity.

SiNPs alleviate Cr and As toxicity in wheat and maize 
cultivars [27, 144, 143]. Compared to the organic Si, SiNPs 
were observed to be more efficient in the study and the 
authors’ report more efficient protective impact of SiNPs in 

maize seedlings under  AsV stress [27, 137, 144], blockade 
of As entry leading to reduced  AsV accumulation due to 
blockade in the root endodermis, improved activities of plant 
antioxidants (SOD, APX, GR, DHAR, GSH) which in-turn 
re-establishing the redox status and reduces MDA content 
in As-treated maize [27, 144]. A similar type of protective 
mechanism has been observed in SiNPs-treated pea seed-
lings affected with Cr toxicity and the study revealed that 
SiNPs successfully alleviated the toxic effects induced by 
Cr [27, 143]. The up-regulated activities of enzymes and 
the reduced MDA content in the HM-affected plants after 
their treatment with NPs, is noteworthy [143, 148] (Table 1). 
SiNPs-induced alleviation of As, Cd, Cr(VI), Pb toxicity 
has also been reported in different plants [27, 36, 42, 54, 
66]. The studies unveil that SiNPs improve the activities 
of antioxidant enzymes, nitrogen assimilation and maintain 
the cytosolic homeostasis by optimizing  K+/Na+ ratio which 
is imperative for the stimulation of essential ROS detoxi-
fying enzymes (Alsaeedi et al. 2018; [61, 132, 143]. In a 
similar study, increased expression of POX, CAT, and Cu/
ZnSOD mRNA has been observed in Arabidopsis treated 
with CuONPs [99]. Likewise,  TiO2NPs-induced increase in 
the activities of CAT and GR on has been reported in an 
aquatic macrophyte, Hydrilla verticillata, [105]. Similarly, 
enhancement in the SOD activity has been reported in A. 
cepa after exposing the plant to  AlO2NPs [113].

Reduced oxidative damage in response to  CeO2NPs has 
been validated in rice seedlings by the free radical scav-
enging ability of the NPs at lower concentrations; however, 
at higher concentrations,  H2O2 concentration has been 
reported to increase steadily which is endorsed to the SOD 
mimetic activity of  CeO2NPs [44, 47, 116, 117, 163]. Lower 
 CeO2NPs concentrations (200 and 100 mg/L) enhance cel-
lular resistance to metal-induced oxidative stress by reduced 
oxidative stress suppression of ROS [41]. The ROS scaveng-
ing capability of  CeO2NPs has been studied in detail com-
pared to other NPs. The surface lattice of  CeO2NPs encloses 
unoccupied oxygen sites which aids them to change their 
oxidation states [+ 4  (Ce4+) and + 3  (Ce3+], which in-turn 
facilitates them to trap the membrane damaging toxic free 
radicals  (O2

•− and  HO•−) [15]. Fascinatingly, the ability 
of various NPs to mimic the activity of natural antioxidant 
enzymes has been previously reported (reviewed by [159]. 
For example, CuONPs and AuNPs mimic POX activity; 
 Fe3O4NPs,  Co3O4 NPs and  CeO2NPs, imitate CAT and 
POX activities;  CeO2NPs, fullerene and Pt NPs, displays 
the mimetic activity of SOD [159]. Effect of various NPs on 
the activities of various antioxidative enzymes is presented 
in tabulated form (Table 1).

Proteomic study of AgNPs on rice has been an important 
breakthrough as it has revealed the up-regulation of about 
twenty-eight responsive proteins including those involved 
in oxidative stress tolerance,  Ca2+ signaling, protection of 
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Table 1  showing the effect of different nanoparticles on antioxidant enzymes of different plants exposed to heavy metal stress

S.NO Type of NPs Plant Effect on plant metabolism Reference

01 nTiO2 Spinach Improved the activities of SOD, CAT, APX, and GPX [74]
02 MWCNT Tomato Upregulation of stress related Genes [66]
03 CuO Elodea Activities of CAT and SOD enhanced by 1.5 to 2 times [105]
04 nAg Mustard Significant reduction in  H2O2 accumulation and lipid peroxidation [128]
05 MWCNT Onobrychis Increased POX activity [135]
06 nTiO2 Lemna Increased activities of antioxidant enzymes (SOD, CAT and POD) Song et al. (2012)
07 Fe3O4, αFe2O3, γ-Fe2O3 Carrot, 

lettuce, 
cucumber

Alleviation of Cd-toxicity in the plants studied [152]

08 nTiO2 Chickpea Reduced in electrolyte leakage and MDA content [91]
09 nTiO2 Cucumber Increased CAT activity [125]
10 nZnO Banana Increased activities of antioxidant enzymes (SOD, CAT and POD) [57]
11 Hydroxyapatite-NPs Pak choi Improved growth attributes, chlorophyll and vitamin C content, activi-

ties of antioxidants (SOD, CAT, POD); decreased MDA, EL, Cd 
accretion in leaves

[77]

12 n-SiO2 Rice Reduced Pb toxicity, improved growth and biomass production [82]
13 SiNPs Rice Improved mineral content (Fe, Mg, and Zn), activities of antioxidants 

(GSH content, SOD, POD, CAT); reduced Cd accumulation in shoot
[156]

14 n-SiO2 Pea Reduced Cr(VI) accumulation, up-regulated antioxidant defense system 
and nutrient assimilation

[143]

15 n-TiO2 Glycine Restrict Cd toxicity by increasing the photosynthetic rate [133]
16 SiNPs maize Lowered accumulation of As and oxidative stress markers, and 

enhancement AsA-GSH cycle in maize
[144]

17 SiNPs Rice SiNPs improve growth in Cd-stressed plants by reducing oxidative 
stress

[28]

18 ZnO Leucaena Improved the activities of SOD, POD, CAT, [148]
19 CeNPs Soybean Cd content in leaves and chlorophyll fluorescence values improved; [120]
20 nTiO2 Rice Decreased MDA content and Cd accretion in leaves and roots. Signifi-

cant enhancement in chlorophyll content, net photosynthetic rate, and 
SOD and POD activities

[58]

21 ZnNPs Wheat Enhanced growth, NPR and the activities of leaf antioxidant enzymes 
(SOD and POD); decreased MDA content, Cd accumulation and EL

[54]

22 SeNPs Rice Enhanced plant biomass, content of chlorophyll, NPR and stomatal 
conductance; reduced Cd accumulation in leaves and grains

[88]

23 CeNPs Rice Improved growth, photosynthetic attributes and the level of 8-hydroxy-
2-deoxyguanosine; reduced MDA

[157]

24 FeNPs Wheat Improved growth attributes, net photosynthesis and activities of antioxi-
dant enzymes (SOD and POD); decreased Cd accretion in grains, 
MDA content and EL

Hussain et al. (2019)

25 SeNPs Mustard Enhanced plant biomass, photosynthetic pigments and activities of 
antioxidant enzymes (SOD and GSH-Px)

Shengrong (2019)

26 SiNPs Wheat SiNPs reduce the Cd concentrations in the grains [7]
27 SiNPs maize SiNPs ameliorate the phytotoxic hazards of aluminum [136]
28 SiNPs,  TiO2 NPs Rice The NPs decreased EL, and MDA content and improved the activities 

of SOD, POX, CAT, and APOX in rice shoots exposed to Cd. NPs 
also improve biomass, photosynthesis and decreases Cd accumulation 
in rice

[118]

29 SiNPs Tomato Antioxidative activity of tomato fruits was increased [42]
30 SiNPs Rice SiNPs alleviates As toxicity by decreasing EL, MDA and root to shoot 

translocation of As
[27]

31 SiNPs Wheat Decreased the content of  H2O2, MDA, leaf Cd and EL. Improved 
growth attributes, photosynthesis and the activities of antioxidant 
enzymes (SOD and POD)

[66]
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nucleic acid (DNA/RNA) damage and proteins contributing 
to the regulation of gene-expression [49, 90]. The enhanced 
activities have been accredited to the NP-induced de-novo bio-
synthesis of proteins or the expression of enzyme isoforms, as 
reveals from different studies. For example, enhanced protein 
content in Bacopa monnieri and Pisum sativum seedlings due 
to the application of AgNPs and SiNPs have been reported by 
Krishnaraj et al. [68] and Tripathi et al. [143], respectively. 
Venkatachalam et al. [148] have reported that ZnONPs treat-
ment to Cd and Pb-affected plants leads to the over-expression 
of a POX isoform as revealed from the peroxidase isoenzyme 
pattern in the study. Over-expression and in-turn over-produc-
tion of such isoforms are believed to be involved in the allevia-
tion of the heavy metal-induced oxidative stress in crop plants. 
The molecular study of Venkatachalam et al. [148] clearly 
indicated that the ROS-induced DNA damage was more pro-
nounced in the Cd and Pb-treated plants, as indicated by the 
disappearance of several normal bands in the RAPD pattern 
of the DNA, whereas new DNA amplicons could be located in 
metal-exposed plants treated with ZnONPs. Moreover, oxida-
tion of proteins is a common HM toxicity symptom as ions of 
HM directly interact with proteins molecules due to their high 
binding affinity with carboxyl- thionyl- and histidyl-, groups 
[48]. Studies have revealed that the NPs within the plant cell 
systems may interact with these sulfhydryl and carboxyl 
groups eventually altering the protein activity by acting and 
reacting similar to the metal ions [48]. As discussed, different 
NPs up-regulate the expression of different genes in plants 
speeding-up the biosynthesis of certain secondary metabolism 
products like essential oils and phenols in addition to the pri-
mary metabolic products [95], Ahmad et al. 2019; [126]. A 
comprehensive survey of the available literature reveals that 
secondary metabolite accumulation, particularly phenolics, 
constitutes a crucial adaptive response of plants against HM 
toxicity [62, 69, 98]. Some additional mechanisms like the 

NPs-induced biosynthesis of abiotic stress regulators (nitric 
oxide, methyl jasmonate, salicylic acid) may also be respon-
sible metal stress alleviation; however, scientists are leaving 
no stone unturned to elucidate such mechanism which may 
possibly be discovered in future. A pictorial representation 
of the mechanism of HM stress alleviation induced by NPs is 
presented in Fig. 1.

Conclusion and future prospects

Adequate literature is in conformity with the elicitor effect of 
NPs on different plants. Alleviation of HMs-induced toxic-
ity by the soil and foliage applied NPs has been attributed 
to the up-regulated activities of imperative primary and sec-
ondary metabolic enzymes. The mimetic activities of NPs as 
antioxidant enzymes, NPs-induced up-regulation of differ-
ent oxidative metabolism enzymes, osmolytes and chelators, 
sequestration of HM contaminants into vacuoles, detoxifica-
tion of HM-induced ROS, increased accretion of secondary 
metabolites particularly phenols have been endorsed to the 
elicitor effect of NPs. However, in-depth understanding at the 
molecular level is the need of the hour to gain insights regard-
ing the absolute mechanism of mitigation of the HM toxicity 
in plants, and advanced research in this regard is advocated.

The mimetic activities of certain NPs to some antioxidant 
enzymes as well as their increased expression have opened 
new doors of anticipation in oxidative stress alleviation. The 
defense system of the sensitive plants can, therefore, be forti-
fied by exogenous sourcing of NPs and the less tolerant can 
be reinforced, though further studies are needed in this regard. 
Further research needs to be conducted at the molecular level 
on the effect of NPs on phytochelatins and metallothioneins 
in the plants and the endogenous concentrations of other phy-
tohormones particularly related to stress.

Table 1  (continued)

S.NO Type of NPs Plant Effect on plant metabolism Reference

32 SeNPs, SiNPs Rice Selenium and silicon nanoparticles alleviates Cd and Pb toxicity by 
increasing the antioxidant enzymatic activities

[54]

33 SiNPs Coriander SiNPs alleviated Pb stress by fortifying enzymatic and non-enzymatic 
antioxidants

[36]
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