
Vol.:(0123456789)1 3

Nanotechnology for Environmental Engineering (2022) 7:393–403 
https://doi.org/10.1007/s41204-022-00225-5

ORIGINAL PAPER

Comparative analysis of PWM techniques for 15‑level cross‑connected 
H bridge inverter

J. Srinivas Rao1 · Suresh Kumar Tummala2 · Narasimha Raju Kuthuri1

Received: 16 November 2021 / Accepted: 19 January 2022 / Published online: 12 February 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
The total harmonic distortion of the voltage plays an important role in selecting filter components. Multilevel inverters are one 
of the solutions for reducing total harmonic distortion and filter components. This paper discusses about third harmonic PWM 
controlled three-phase 15-level cross-H bridge multilevel inverter fed induction motor. The total harmonic distortion and losses 
of switches are calculated for third harmonic PWM, and the same are compared with a single pulse PWM controlled 3-Ø 15-level 
cross-H bridge multilevel inverter fed induction motor. The simulation of the third harmonic PWM and single pulse PWM 
fed 3-Ø 15-level cross-H bridge multilevel inverter fed induction motor is performed in MATLAB/SIMULINK environment.

Keywords  Multilevel inverter · THD · Switch loss · PWM
List of symbols
LV	� Number of levels of output voltage
SN	� Number of power switches
VDCN	� Number of DC voltage sources
NS	� Number of switches conducting
VCE	� Voltage across IGBT
Vf	� Voltage across diode
F	� Fundamental frequency
ES_on	� Turn-on energy loss
ES_off	� Turn-off energy loss
Pcond.IGBT	� Conduction losses of IGBT
Pcond.diode	� Conduction losses of diode
Pcond	� Loss due to conduction
Psw IGBT	� Loss due to switching

Abbreviations
THD	� Total harmonic distortion
MLI	� Multilevel inverter
PWM	� Pulse width modulation

THI	� Third harmonic injection
NPC	� Neutral point clamped
mW	� Milli Watt

Introduction

The need for power is increasing day-by-day and fossil fuels 
are reducing, and environmental impact is more due to fos-
sil fuels, so the research is focused on renewable energy 
sources. The major drawback of renewable energy is power 
generation that is not done at constant voltage and frequency 
so power electronic converters are required to convert to 
the required voltage and frequency. But with power elec-
tronic converters, harmonics are introduced. To minimize 
the harmonics multilevel inverters are one of the options to 
minimize the harmonics in converting power from DC to AC 
at the required voltage and frequency.

Multilevel inverters [MLIs] play an important role in con-
verting the power from DC to AC. MLIs share the inverter 
operating voltage among the switches so low rating switches 
can be used to convert high power/voltage, which reduces 
the cost and size of the inverter. As the level of output volt-
age increases, the total harmonic distortion [THD] will 
reduce at low frequencies, which tends to reduce the cost 
and size of filters [1, 2].

The classical topologies of MLIs are neutral point clamped 
[3], flying capacitor [4], and Cascaded H-Bridge multilevel 
inverters [5]. The major issue with these conventional topolo-
gies is, as the number of levels in the output increases the 
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number of switches also increased, this leads to the complexity 
in implementation of hardware circuits and switching patterns 
increases [6–10]. Based on these topologies, many topologies 
are developed, but in these topologies, some of the switches 
must withstand the total operating voltage of the inverter 
[11–14] (Fig. 1).

Cross‑H bridge

The connection diagram for cross-H bridge inverter is shown 
in Fig. 2 having separate DC voltage sources, and switches 
are connected in a cross manner. This structure can be applied 
to any number of phases and any number of voltage levels by 
switching the proper switches required level of output voltage 
is obtained [15]. The stress on the switches S1, S2, Sn−1 and Sn 
is VDC , and it is 2Vdc for remaining switches and the total stress 
on the switches is equal to 2 ∗ (VL − 1) ∗ Vdc , where VL is the 
level of output voltage.

Advantages of cross-H bridge:

•	 The number of power electronic switches required is less, 
and the number of switches conduct is less, so the losses 
and control circuit complexity are reduced.

•	 The total standing voltage is equal to CHB MLI.

Disadvantages of cross-H bridge:

•	 Structure is not modular
•	 Some switches have voltage rating more than Vdc (i.e., 

2*Vdc).

Mathematical analysis

Following relations are obtained from the proposed model

(1)SN = LV + 1

These equations are used to calculate the number of switches 
required and the total number of output voltage levels that 
can be generated.

(2)LV = 2 ∗ VDCN + 1

(3)SN = 2(VDCN + 1)

(4)NS =
LV + 1

2

Fig. 1   Single-phase 15-level cross-H bridge MLI topology

Fig. 2   Three-phase 15-level cross-H bridge MLI topology

Table 1   Switch losses (total) versus O/P voltage levels

MLI type Total switch losses (mW) for 
15-level o/p voltage

1-phase 3-phase

Third harmonic PWM controlled 
cross-H-bridge

73.96 221.88

Single pulse PWM controlled 
cross-H-bridge

104.71 314.1
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Switch losses

Power electronic switches contain two major losses: one is 
due to conduction (Pcond), and another one is due to switching 
(Psw IGBT) [16–19]; the IGBT switches are considered in this 
paper.

The average conduction losses of IGBT (Pcond.IGBT) and 
diode (Pcond.diode) are given as follows:

The total conduction losses of the proposed inverter for one 
cycle

The switching losses are present during ON and OFF the 
power electronic switches. The switching losses of IGBT 
(Psw IGBT) are given as follows:

(5)Pcond.IGBT = ∫
tcon

P(t)dt =
1

T

T

∫
0

Vce(t) ∗ ice(t)dt

(6)Pcond.diode =
1

T

T

∫
0

Vf (t) ∗ id(t)dt

(7)Pcond =
(

Pcond.IGBT + Pcond.diode

)

× Ns

(8)PSWIGBT =
(

Eswon + Eswoff

)

× f

(9)Es_on = ∫
ton

Vce(t) ∗ ice(t)dt

Fig. 3   Block diagram of 15-level cross-H bridge multilevel inverter 
fed a load using third harmonic PWM technique

Fig. 4   a Generation of third 
harmonic waveform. b Third 
harmonic pulse width modula-
tion for 15-level cross-H bridge 
inverter
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Table 1 represents the comparison of losses of converter 
for various switching techniques. The losses are in mW 
scale. Total switch loss in three-phase system has been 
reduced in third harmonic PWM control by 29.40% when 
the same converter is fed with single pulse PWM technique. 
Similarly, in single-phase system, the total losses are also 
reduced by 29.40%. When looking into switching loss third 

(10)Es_off = ∫
toff

Vce(t) ∗ ice(t)dt

Fig. 5   Three-phase 15-level cross-H bridge MLI fed IM block dia-
gram

Fig. 6   Single-phase 15-level 
cross-H-bridge MLI topology

Table 2   Switching pattern of 
cross-H-bridge 15-level MLI

S. no. O/P voltage Switches ON S. no. O/P voltage Switches ON

1 7 VDC S2S3S6S7S10S11S14S15 9 − 7 VDC S1S4S5S8S9S12S13S16

2 6 VDC S1S3S6S7S10S11S14S15
S2S3S6S7S10S11S14S16

10 − 6 VDC S1S4S5S8S9S12S13S15
S2S4S5S8S9S12S13S16

3 5 VDC S1S3S6S7S10S11S14S16
S2S3S6S7S10S11S13S15
S2S4S6S7S10S11S14S15

11 − 5 VDC S1S4S5S8S9S12S14S16
S1S3S5S8S9S12S13S16
S2S4S5S8S9S12S13S15

4 4 VDC S1S3S6S7S10S11S13S15
S1S3S6S7S10S11S14S15
S2S3S6S7S10S12S14S16
S2S4S6S7S10S11S14S16

12 − 4 VDC S1S4S5S8S9S11S13S15
S1S3S5S8S9S12S13S15
S2S4S5S8S9S12S14S16
S2S4S6S8S9S12S13S16

5 3 VDC S1S3S6S7S10S12S14S16
S1S3S5S7S10S11S14S16
S2S3S6S7S9S11S13S15
S2S4S6S7S10S11S13S15
S2S4S6S8S10S11S14S15

13 − 3 VDC S1S3S5S8S10S12S14S16
S1S3S5S8S9S12S14S16
S1S3S5S7S9S12S13S16
S2S4S5S8S9S11S13S15
S2S4S6S8S9S12S13S15

6 2 VDC S1S3S6S7S9S11S13S15
S1S3S5S7S10S11S13S15
S1S3S5S7S9S11S14S15
S2S3S6S8S10S12S14S16
S2S4S6S7S10S12S14S16
S2S4S6S8S10S11S14S16

14 − 2 VDC S1S4S5S7S9S11S13S15
S1S3S5S8S9S11S13S15
S1S3S5S7S9S12S13S15
S2S4S5S8S10S12S14S16
S2S4S6S8S9S12S14S16
S2S4S6S8S10S12S13S16

7 VDC S1S3S6S8S10S12S14S16
S1S3S5S7S10S12S14S16
S1S3S5S7S9S11S14S16
S2S3S5S7S9S11S13S15
S2S4S6S7S9S11S13S15
S2S4S6S8S10S12S13S15
S2S4S6S8S10S12S14S15

15 − VDC S1S4S6S8S10S12S14S16
S1S3S5S8S10S12S14S16
S1S3S5S7S9S12S14S16
S1S3S5S7S9S11S13S16
S2S4S5S7S9S11S13S15
S2S4S6S8S9S11S13S15
S2S4S6S8S10S12S13S15

8 0 S1S3S5S7S9S11S13S15
S2S4S6S8S10S12S14S16
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Fig. 7   Three-phase output volt-
ages (THI PWM)
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Fig. 8   Stator phase current 
of 3-Ø induction motor (THI 
PWM)
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Fig. 9   Speed response of induc-
tion motor (THI PWM)
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harmonic PWM control is having less loss when compared 
with single pulse PWM.

Third harmonic PWM

For a three-phase load with a floating-point neutral point, 
the third harmonic voltage is absent from the phase volt-
ages and line to line. Therefore, there is no distortion in 
the phase voltages. We might improve the sufficiency of the 
yield voltage waveform by adding a third consonant sign to a 
low-recurrence sinusoidal reference signal [20–24] (Figs. 3, 
4; Table 2).

Results

The simulation of third harmonic PWM controlled 3-Ø 
15-level cross-H bridge multilevel inverter is done. The 
block diagram of third harmonic PWM controlled 3-Ø 
15-level cross-H bridge multilevel inverter and circuit repre-
sentation of 15-level cross-H bridge is represented in Figs. 5 
and 6, respectively. The switch IGBT (FGA15N120ANTD) 
is considered for simulation and for calculating the losses of 
switches. Voltage, current, and speed analysis are discussed 
for third harmonic PWM and single pulse PWM [25] con-
trolled 3-Ø 15-level cross-H bridge multilevel inverter fed 
induction motor drive.

Third harmonic PWM controlled 3‑Ø 15‑level cross‑H 
Bridge fed IM

Figure 7 represents three-phase simulated output voltages 
of third harmonic PWM controlled 15-level cross-H-bridge 

multilevel inverter with the peak output voltage of 140v peak 
to peak. Similarly, the simulated phase current of 3-Ø IM 
is shown in Fig. 8. Figure 9 represents the speed response 
of the motor; the current and the speed are oscillated ini-
tially and settled to 1480 RPM at 0.19 s. Figure 10 shows 
the total harmonic distortion of sinusoidal PWM controlled 
15-level cross-H-bridge MLI. The value of THD is recorded 
as 4.04%. Figure 10 shows the switching pulses of all sixteen 
switches (Fig. 11).

Single Pulse PWM controlled 3‑Ø 15‑level cross‑H 
Bridge fed IM

Figure 12 indicates the 3- Ø output voltages with 140 V 
peak. Figures  13 and 14 represent the 3- Ø induction 
motor stator current of one of the phases and speed. From 
Figs. 13 and 14, it can be observed that the settling time 
of stator current and speed is 0.22 s. Figure 15 shows the 
total harmonic distortion, which is recorded as 6.64%. 
From above wave forms, THD with third harmonic PWM 
is reduced by 39% and settling time of current and speed is 
reduced by 13% when compared with single pulse PWM. 
Comparison of stator current, speed and torque character-
istics are shown in Figs. 16, 17 and 18, respectively.

Conclusion

In this paper, simulation of third harmonic PWM con-
trolled 3-Ø 15-level cross-H bridge and single pulse PWM 
controlled 3-Ø 15-level cross-H bridge is done. THD, 

Fig. 10   THD of third harmonic 
PWM controlled 15-level cross-
H-bridge MLI
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Fig. 12   Three-phase output 
voltages (single pulse PWM)
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Fig. 13   Stator phase current of 
three-phase induction motor 
(single pulse PWM)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (seconds)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

St
at
or

C
ur
re
nt
(A
)

Stator Current

Fig. 14   Speed response of 
induction motor (single pulse 
PWM)
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current, and speed are analyzed with both and PWM tech-
niques. From results obtained, it is found that third har-
monic PWM THD is reduced by 39% and settling time of 
speed and current waveforms is reduced by 13% and total 

losses of switches are also reduced when compared with 
single pulse PWM. When compared both the PWM tech-
niques, third harmonic PWM technique is more reliable 
than single pulse PWM technique.
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Fig. 15   THD of single PWM  
controlled 15-level cross-H- 
bridge MLI

Fig. 16   Stator current compari-
son with THI and single pulse 
PWM
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Fig. 17   Speed characteristics 
comparison with THI and single 
pulse PWM
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