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Abstract
The tribological properties of materials, such as wear, scratch resistance, corrosion resistance, and surface hardness, are 
heavily influenced by surface conditions. Therefore, understanding tribological behavior is a significant challenge in sur-
face engineering. Typically, this behavior is controlled by applying protective coatings or layers post-fabrication of bulk 
components or by adding secondary reinforcements during manufacturing to enhance the performance of utilized bulk 
materials. These secondary reinforcements, including self-lubricating particles, ceramic particles, can also be incorporated 
into coatings to form composite layers. Particularly, developing 2D materials exhibit significant potential as secondary 
reinforcements for boosting tribological performance in both bulk materials and coatings. However, there is a lack of com-
prehensive understanding regarding their role in wear resistance and their interface interactions with various metal, ceramic, 
and polymer matrices. Furthermore, the production methods for incorporating 2D reinforcements into these matrices are not 
well-documented. This review addresses these gaps by emphasizing the importance of tribology and clarifying the essential 
role of 2D materials in enhancing the tribological behavior of composites. It explores the interface connection between 2D 
materials and different matrices, and examines various production techniques used to integrate these materials into bulk and 
coatings. This comprehensive review aims to provide insights that will facilitate the development of advanced tribological 
solutions in surface engineering.
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1 Introduction

1.1  Tribology and its importance

One of the importance of the studying the surface of compo-
nents is to understand the tribology behavior of the system 
including friction, wear, scratch, and corrosion resistance. 
There are different factors that influence of the tribology 
performance, such as surface condition, loading condition, 
working atmosphere, chemical composition, which are well 
investigated in the literature [1–4]. The effect of the load-
ing ratio and surface hardness was previously predicted and 
introduced as Archard equation to predict wear resistance 
as below:

where, Q is wear rate, and W presents the loading ratio and 
H represents the surface hardness. K implies the surface con-
dition. The wear map of steel components, also known as 
Lim-Ashby wear map [5], was plotted by considering the 
normalized applied pressure and normalized velocity of con-
tact surfaces regarding to each other. Three different areas 
can be detected on the wear map including: seizure, severe 
wear and mild wear. The active mechanism in each area 
are different and the severe and mild wears are categorized. 
The active mechanisms are melting, abrasion, adhesion, and 
fatigue wears in severe wear and oxidational and ultra-mild 
wear in the mild wear regime. The factor K in the above 
equation was considered as a constant because there was no 
advanced equipment to study the influence of the surface 
condition on wear rate in that time. The effect of the surface 
condition was investigated recently in reported studies e.g. 
by Tabrizi et al. to predict the wear rate of diffusive and 
precipitated coatings and layers [6–8].

While, there are commonly used approaches to enhance 
tribological behavior, such as surface modification and lubri-
cation techniques, it is important to note that these are just 
a subset of the wide array of methods available for improv-
ing performance. Tribology encompasses a diverse range of 
strategies, including material selection, design optimization, 
surface coatings, and environmental controls, among oth-
ers, each offering unique ways to enhance the efficiency and 
durability of mechanical systems. Frequently, there are two 
main common elucidations to boost the tribology behav-
ior of components; the first one is to applying protective 
coatings such as chromium or nickel electroplating [9–11], 
carburizing or nitriding, oxidizing, plasma treatment, ion 
bombardment [12] and etc. The second solution is to insert 
particular reinforcement particles to the bulk materials fab-
rication procedure or applying a coating to obtained com-
posite bulk and coatings. For this aim, hard particles such 

(1)Q =
K ×W

H

as carbides, nitrides, borides and oxides including SiC [13], 
 TiO2 [14],  Al2O3 [15], TiN [16],  TiB2 [17],  B4C [18] and 
etc. are frequently utilized. Recently, utilization of the high 
entropy powders as a reinforcement is increasing too [19]. 
There is another group of materials, which is introduced 
recently as reinforcement for improving the tribology behav-
ior called 2D materials [20]. Some of the 2D materials like 
h-BN and  MoS2 have self-lubricating feature, which makes 
them good candidate to reduce the friction coefficient and 
enhance the wear resistance [8]. These 2D materials can 
be utilized separately or as a mixture to illustrate the syn-
ergic effect [21]. For example, Xu et al. [22] reviewed the 
utilization of a mixture of graphene and  MoS2 in diverse 
nanocomposites.

Although the types of the reinforcements is effective on 
the tribological performance of the composites, there are 
other effective factors including reinforcement orientation 
and distribution, volume fraction, manufacturing process 
and interface connection between reinforcement and matrix. 
In other words, in the composite materials, friction coeffi-
cient could be categorized in three different terms as below:

where, μt is the total friction coefficient; μr and μm imply 
the share of reinforcement and matrix, respectively. The μi 
indicates the share of the interface between reinforcements 
and matrix. This term, μi, is a function of the average surface 
area of the each reinforcements (A) and the number of them 
(n) as shown in Eq. 3 as below:

From the geometrical aspect of view, the surface area is 
a function of the size of reinforcements and shape of them. 
Therefore, it can be concluded that the size of reinforce-
ments, shape, amount and distribution of them are key 
parameters that should be considered for improving the 
wear resistance of the composites. This statement reveals 
the reason of the eagerness to utilize the 2DMs to improve 
the tribology behavior. In other words, the surface area of 
2DMs is higher compared to conventional reinforcement 
such as SiC due to their nano size, and random shape fea-
tures. Therefore, more area is available at the interface of 
reinforcements/matrix, and a greater number of the 2DMs 
compared to conventional micron size reinforcements at the 
same loading ratio, which influence the μi based on Eq. 3. 
There is another mode of Eq. 2. By addition of the second 
phase reinforcements to the matrix of composites, new inter-
faces are commenced, which can strongly affect the friction 
coefficient. Thus, Eq. 2 can be rewritten as below Eq. 4:

(2)�t = �r + �m + �i

(3)�i = f (A, n)

(4)�t = �r + �m + �Sec.m + �i�
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where, μsec.m indicates the friction between second rein-
forcements and matrix, and the μi’ is the sum of the three 
different formed interface by addition of the 2D reinforce-
ments including interfaces of matrix/reinforcement (μi

m.r), 
matrix/2D reinforcement, (μi

m.2D) and reinforcement/2D 
reinforcement (μi

r.2D). The share of the interface between 
reinforcements and matrix is divided to three different parts 
because by addition of 2D reinforcement, the 2D particles 
placed self-preferably on any location in matrix separately 
or in touch with main reinforcements. The μi’ can be written 
as below as Eq. 5:

On the other hand, the manufacturing process should 
guarantee the bonding of 2D reinforcements with the matrix, 
while modern fabrication processes including wire arc addi-
tive manufacturing (WAAM) [23], additive manufacturing 
(AM), selective laser melting (SLM) [24], and plasma-
enhanced processes, and help toward establishment [25] of 
better tribological performance. In other words, the integra-
tion of 2DRs into composites has demonstrated significant 
promise in improving tribological performance. Conven-
tional manufacturing procedures such as forging, powder 
metallurgy, and casting are having problems in fabrication 
of composites with uniform distribution of reinforcements 
[26]. The employment of the modern fabrication techniques, 
particularly additive manufacturing, has revolutionized the 
fabrication of the composites. The critical challenges are 
related to dispersion and interface bonding, which are less 
understood for SLM [27]. The novel AM methods allow 
for precise control over the facilitating uniform distribution 
of 2DRs, for instance, Guo et al. [28] reported the in situ 
fabrication of Ti–6Al–4V–B4C through SLM. Additionally, 
Zhao et al. [25] elaborated the main mechanisms of friction-
reducing propertied of 3D printed structures are including 

(5)�i� = �
m.r

i
+ �

m.2D

i
+ �

r.2D

i

reduction of actual contact area, availability of storage space 
for wear debris and continuous lubrication due to the forma-
tion tribofilm in the presence of solid lubrications.

2  2D materials

Since, the revolutionary discovery of graphene, the field of 
two-dimensional layered materials (2DLMs) has attracted 
significant scientific and industrial interest due to their 
unique properties and potential applications. 2DMs consists 
of materials that are only one or a few atoms thick, where the 
atoms are covalently bonded within the layers and stacked 
together through van der Waals forces. These materials dem-
onstrate significant electrical, thermal, and optical properties 
that make them suitable for a wide range of applications, 
from electronic to energy storage [29]. Graphene, the first 
discovered 2D material, has established the way for explor-
ing other 2DMs such as transition metal dichalcogenides 
(TMDs)  (MX2, M represents a metal element, X implies 
dichalcogenide like  MoS2 and  WS2), black phosphorus, 
complex metal oxides, and hexagonal-boron nitride (h-BN). 
Each of these materials possesses unique features. For 
instance, TMDs have a direct bandgap, making them excel-
lent for electronic and optoelectronic devices, while h-BN 
is known for its exceptional thermal and chemical stability 
and also its self-lubricating feature and utilized in tribologi-
cal applications. The general family of 2DLMs is shown in 
Table 1. Although there are well structured reported reviews 
available in the literature [30–33], there is a rare study in 
focusing on their applications in the tribology [34]. The 
assembly of these 2DLMs to each other with desired van 
der Waals interactions is called “heterostructure”. In other 
words, a monolayer puts it on top of another mono- or a 
few layers. Indeed, a combination of any 2DLMs with 0D 
(plasmonic nanoparticles, quantum dots), 1D nanostructures 

Table 1  Categorized of known 
family of 2D layered materials 
based on chemical composition 
and structural characterization

Graphene family Graphene
h-BN
BCN
Fluorographene
Graphene Oxide
Borophene

2D chalcogenides MoS2,  WS2,  MoSe2,  WSe2

Semiconducting Dichalcogenides  MoTe2,  WTe2,  ZrS2,  ZrSe2

Metallic Dichalcogenides  NbSe2,  NbS2,  TaS2,  TiS2,  NiSe2

Layered Semiconductors GaSe, GaTe, InSe,  Bi2Se3

2D oxides Micas, BSCCO,  MoO3,  WO3,  TiO2,  MnO2,  V2O5,  TaO3,  RuO2

Layered Cu Oxide
Perovskite-Type  LaNb2O7, (Ca, Sr)2Nb3O10,  Bi4Ti3O12,  Ca2Ta2TiO10

Hydroxides: Ni(OH)2, Eu(OH)2
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(nanowires and nanoribbons), and other 2DLMs shown in 
Table 1 leads to the formation of heterostructures. Further-
more, some definitions considered 2D-3D bulk materials as 
a heterostructure beyond these combinations and developed 
them for diverse applications. The mechanical robustness 
of heterostructures can be engineered to create flexible, 
high strength, materials as reinforcements of composites 
suitable for different applications, where tribology perfor-
mance is important.Wu et al. [35] reviewed the formation 
mechanism of graphene/h-BN heterostructure synthesized 
by in situ chemical vapor deposition method, or Aghjehko-
hal et al. [36] reported the synthesis of CNT/h-BN hetero-
structure through self-assembled hydrothermal technique. 
The specification of some of the well-known and most used 
2DMs for enhancing the tribological properties are shown 
in Table 2. Regarding the aforementioned issue about the 
effect of the interface connection and interaction, surface 
area has a critical impact. A higher surface area provides 
more contact points between interacting surfaces, which can 
distribute the load more evenly and reduce localized stress 
concentrations, which can impact positively on reducing 
of the friction. Additionally, the higher surface areas can 
dissipate heat more effectively, and leads to prevent local-
ized overheating, and avoid the accelerating wear processes 
such as abrasion, and adhesion. Furthermore, the mechanical 
properties including Young’s modulus and tensile strength 
of 2D materials have a critical impact on stiffness, durabil-
ity and wear resistance. On the other hand, higher tensile 
strength ensures the coherency of the materials and less 
prone to delamination or spalling. The nanotribology fea-
tures of 2DMs such as their thin thickness, lubricity and 
chemical stability, have been determined as key factors in 
their effectiveness [37].

Moreover, the frictional behavior of 2DMs at the 
nanoscale level haven investigated with focus on the effects 
of atomic structures and external factors [38]. It is reported 
that the atomic structure of 2DMs has a significant role in 
determining their tribology performance such as interlayer 
interactions, commensurability, defects and functionali-
zation, environmental factors, matrix effects, mechanical 

strength and flexibility, electronic and thermal properties. 
For instance, the thermal properties such as heat dissipa-
tion during sliding contact through in-plane and out-plane 
directions of 2D reinforcements, thermal expansions of uti-
lized 2DRs and phonon-electron coupling may influence the 
friction and wear behavior [34]. The capability of 2DMs to 
resist wear is relatively dependent on their thermal proper-
ties. Materials that can conduct heat away from the contact 
area more effectively may undergo less thermal damage and 
thus exhibit better wear resistance.

2.1  2D materials in metal composites

Metals are the most common engineering materials used for 
diverse applications in bio, automobile, aerospace, chemical, 
petrochemical, etc. Steel, aluminum, copper, and titanium 
are the most common metals and alloys to devote in the fab-
rication of desired parts. Regarding their favorite properties, 
including high mechanical properties and good corrosion 
resistance, they suffer from low wear resistance, limiting 
their applicability [7, 47]. Therefore, applying a protec-
tive coating [48] and adding second elements to fabricate 
a composite [49] are the two most common solutions for 
enhancing wear resistance. As mentioned earlier, graphite, 
 MoS2, and h-BN are the three most widespread self-lubri-
cating additives [8] that drop the coefficient of friction, but 
under humidity, the performance of graphite and  MoS2 is 
diminished.

Moreover, Eqs. 2 and 3 are valid for metal matrix com-
posites, and most studies have been conducted to evalu-
ate the effect of amount, size, shape and distribution of 
the reinforcement on the achieved properties. Sahoo et al. 
[50] fabricated the Al/SiC/h-BN self-lubricating hybrid 
composites and studied the effect of the amount of addi-
tion of h-BN. Results showed that Al-5 wt.%h-BN-4 wt. 
%SiC demonstrated the best wear resistance. The presence 
of hard SiC particles in the composite restricts metal flow 
during sliding, leading to a decrease in the CoF. Addition-
ally, the hBN reinforcement acts as a solid lubricant, reduc-
ing the wear rate by forming a thin solid lubricating layer. 

Table 2  Mechanical properties of 2D materials

2D materials Surface area  (m2  g−1) Density (mg  m−2) Band-gap (eV) Young’s 
modulus 
(GPa)

Tensile 
strength 
(MPa)

Thermal conduc-
tivity (W  mK−1)

Refs.

Graphene 700 0.763 0 250 ± 150 360 2275 [39]
h-BN 260 2.2 6 500–600 20,000 < 400 [40]
MoS2 600 5.06 1–2.5 265 35,000 340 [41, 42]
WS2 600 7.16 1–2.5 302 15,000 350 [43]
MXene 700–1500 2.1–3.5  < 0.2 300–500 10,000 50–100 [44, 45]
2D Oxides 50–300 6.3–7.3 1.55–2.32 100–500 10,000 0.3–50 [46]
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The formation of this thin lubricating layer between the pin 
and the sample during sliding contributes to a decline in the 
wear rate of the composites. The CoF value is lower for the 
hybrid composites compared to aluminum alloy, Al–SiC, 
and Al–hBN composites, with the minimum CoF observed 
for the hybrid composite with 5 wt.% hBN and 4 wt.% SiC. 
This is due to the lamellar hexagonal crystalline structure of 
hBN, which creates a thin lubrication film on the pin surface, 
resulting in reduced friction. The wear rate is also least for 
the Al–SiC–hBN hybrid composites compared to the alu-
minum matrix phase, indicating higher wear resistance. 
The improvement in wear resistance is attributed to the high 
load-bearing capacity of the reinforcement particles and the 
excellent interface bonding between the matrix and rein-
forcement. In another study, Loganathan et al. [51] studied 
the wear behavior of AA2024/h-BN composite synthesized 
by powder metallurgy route and sintering at 525 °C under an 
argon atmosphere. Results demonstrated the rise in micro-
hardness value up to 68%, and wear resistance improved 
even up to 74.9% compared to pristine AA2024. The maxi-
mum hardness and best wear resistance were achieved in 7.5 
wt. % of h-BN. Furthermore, Rajkumar et al. [52] studied 
the mechanical behavior of AA2024/h-BN composite syn-
thesized by stir casting, where the highest tensile and com-
pression strength were obtained with 15 wt. % of h-BN. The 
application of some of the common 2D reinforcements in 
metal matrix composites and coatings are shown in Table 3.

There are several factors, which can be attributed to the 
enhancement of tribological properties. Firstly, the addition 
of the reinforcements increase significantly the hardness and 
strength, which improves the wear resistance. The addition 

of the reinforcements causes the crack bridging, crack pin-
ning and activation of load transfer mechanism, which avoid 
further crack propagation. Additionally, the formation of 
self-lubricating tribofilm in the presence of 2DRs, reduces 
the mass loss within wear. By reviewing the literature data, it 
can be concluded that effectiveness of the 2D reinforcements 
can be categorized in their self-lubricating feature, thermal 
stability and loading ratio. The self-lubricating feature is 
available in all layered structures; however, due to the heat 
generation within the wear, the thermal stability is another 
key factor on enhancing the wear resistance. Finally, the 
amount of the reinforcement, which can be named the load-
ing ratio is a crucial factor, which can influence the mechan-
ical properties negatively by too much addition. In other 
words, there is an optimum amount of the 2D reinforcement 
just before constructing a 3D network in the metal matrix 
and decrease the mechanical properties.

2.2  2D materials in ceramic composites

Ceramic matrix composites (CMCs) have excellent proper-
ties, including corrosion resistance, high hardness, resist-
ance to oxidation, and non-pollution, which expand their 
application with accelerating slope. Nevertheless, their poor 
tribological properties, brittleness, and poor machinability 
limit their application [6, 69, and 70]. One of the most effi-
cient solutions for improving these drawbacks is to use self-
lubricating compounds like graphite, h-BN, or  MoS2 [71]. 
For example, Chen et al. [72, 73] studied the wear behavior 
of  Si3N4/h-BN composite for different applications respec-
tively in the marine atmosphere and against Ti–6Al–4V in 

Table 3  The Summary of the Application of 2DR in MMCs

2D Reinforcement Matrix Manufacturing process Loading ratio Average COF Wear Rate  (10–4 
 mm3.N−1)

Coating 
Thickness 
(µm)

Refs.

Graphene@SiC Al Hot press 5 vol. % 0.0015 0.5 – [53]
hBN/NiTi AI7075 Squeeze casting 3 wt. % 0.20 125 – [54]
Graphene Cu Hot press – 0.25 0.57 – [55]
B4C Al5083 Powder metallurgy 15 wt.% 0.4 0.1 mg – [56]
B4C Cu Powder metallurgy 6 vol.% 0.24 20 – [57]
MoS2 Cu Sintering 20 wt.% 0.27 18 – [58]
WS2 30CrMnSi Laser cladding 10 wt. % 0.3 – – [59]
WS2 Cu Hot press 25 wt. % 0.21 0.15 – [60]
WS2 +  MoS2 Ag Hot press 10 wt.% 0.14 – – [61, 62]
WS2 Ni-W Electrodeposition 0.3 g.l−1 0.14 – 18 [63]
WS2 Al SPS 10 wt.% 0.56 28 – [64]
MgAl Coating 2195 Al-Li Hydrothermal – 0.41 – 17.8 [65]
MoS2 Al Sintering 2 vol. % 0.4 0.25 – [66]
MoS2 Al Plasma sprayed 5 wt. % 0.2 0.25 450 [67]
MoS2 +  B4C Al7075 Stir casting 3 wt. % 0.48 – – [68]
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three other lubricating conditions of simulated body fluid 
(SBF), physiological saline (PS), and bovine serum (BS) 
for simulating the bearing pair in artificial joint prosthesis 
designs. The study revealed that the mechanical properties 
of the composite ceramics decreased with the addition of 
hBN, leading to an improvement in machinability. The opti-
mal hBN content was identified as 20 vol%, which main-
tained the tribological performance of  Si3N4 and improved 
its processability. However, excessive hBN content, such as 
30 vol%, resulted in extensive wear of the ceramic pin due 
to the deterioration of its mechanical properties. The results 
demonstrated that the optimal content of h-BN is 20 vol. % 
and an excessive amount of h-BN leads to extensive wear. 
In another study, Wang et al. [74] studied the wear and cor-
rosion behavior of  Si3N4/h-BN composite in seawater condi-
tions. They reported that  Si3N4-30 wt. % h-BN/Ti64 sliding 
pair displayed friction coefficient as low as 0.403 due to the 
lubricous tribo-chemical films composed  TiO2,  SiO2, and 
Al(OH)3 were formed on the worn surfaces during the slid-
ing process in seawater.

B4C is another known example of CMCs, the third hard-
est artificial material but has poor tribological behavior. 
Studies have been conducted to evaluate the effect of the 
addition of h-BN to the  B4C composite. For example, Li 
et al. [75–79] studied the effect of the addition of h-BN 
and synthesis of  B4C–h-BN ceramic composite by hot 
press method with different ratios of h-BN. The results 
showed that by increasing the h-BN content and due to 
its self-lubricating feature, the coefficient of friction is 
decreased from 0.385 down to 0.008 as the h-BN content 
was raised to 30 wt. % from zero. It is shown that it is a 
tough challenge to accomplish mechanical and tribological 

advantages in a ceramic matrix composite by adding 
h-BN. Thus, the other compounds must be accompanied 
to optimize the desired features. In another study, Kitiwan 
et al. [80] investigated the synthesis of TiN–TiB2–h-BN 
composite through the spark plasma sintering method. The 
optimum sample with 15 wt. % of h-BN illustrated excel-
lent results, including 20.1 GPa as hardness and 4.3 MPa.
m1/2 as fracture toughness.

Tian et al. [81] utilized the nitride boronizing process 
using TiN and amorphous boron as raw material to syn-
thesize TiN–TiB2–h-BN composite. Results showed that in 
this process, B atoms began to diffuse into TiN and sub-
stitute the N atoms to form  TiB2 at a high temperature of 
1400 °C and the replaced N flowed outwards, and upon con-
tact with B, formed h-BN at the surface of  TiB2. Therefore, 
TiN–TiB2–h-BN composite powders with a core–shell struc-
ture of layered h-BN-wrapped  TiB2 were achieved. Misra 
et al. [82] evaluated the optimum range of h-BN and SiC 
additions to obtain the highest improvements in lubrication 
and wear resistance of applied ceramic composite coating 
 TiB2-TiN on AISI 1025 steel substrate. The results showed 
an optimum amount of h-BN addition, and a higher amount 
of h-BN decreases the COF due to the weakening of bond 
strength between coating matrix and reinforcement, which 
overweighs the influence of solid lubrication, causing easier 
dislodgement of particles. The synthesis of hydroxyapatite/
ZrO2/h-BN bio-composite for bone regeneration applica-
tions is also reported by Gautam et al. [83], where excellent 
mechanical, tribological and biological improvement was 
reported due to the addition of h-BN. The application of the 
different 2DMs as reinforcements in ceramic matrix com-
posites are shown in Table 4.

Table 4  The Summary of the Application of 2DR in CMCs

2D Reinforcement Matrix Manufacturing process Loading ratio Average COF Wear Rate  (10–4 
 mm3.N−1)

Refs.

Graphene Al2O3-WC-TiC Hot pressing 0.5 wt. % 0.1 – [15]
Graphene Al2O3 SPS 2.5 wt. % 0.45 1.74E-4 [84]
Graphene FeCoCrNiAl SPS 10 wt. % 0.47 0.22 [85]
Graphene c-BN Sintering 0.01 wt.% 0.38 – [86]
Graphene WC-Al2O3 Hot press 0.3 wt. % 0.28 0.013 [87]
Graphene Si3N4 Sintering 1 wt. % 0.07 0.34 [88]
hBN@Ni CoCrNi Sintering – 0.4 8 [89]
hBN Ni-SiC Electrodeposition 6 wt. % 0.15 2.44 [90]
hBN ZrO2/SiC SPS 30 wt.% 0.54 0.49 [91]
hBN ZrO2/SiC SPS 70 wt. % 0.32 18.9 [92]
hBN SiO2 Hot Press 60 wt. % 0.20 – [93]
WS2 CoCrFeNiMo Laser cladding 10 wt.% 0.25 0.2 [94]
WS2 YW1/NiCoCrAlY Laser cladding 7 wt.% 0.35 – [95]
WS2 NiMoAl-Ag Plasma spray 10 wt. % 0.16 0.9 [96]
WS2 Al-Al2O3-SiC Sintering 9 wt. % 0.13 0.67 mg [97]
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2.3  2D materials in polymeric materials

One of the challenges in the automotive and space industries 
is the development of lightweight components to improve 
fuel efficiency [98]. Weight reduction, specific strength, cor-
rosion resistance, cost-efficiency, formability are some nota-
ble features of polymer matrix composites that make them 
an excellent candidate for the fabrication of components 
in these industries. However, polymer matrix composites' 
poor mechanical properties and especially wear resistance 
restrict their application. Proper fibers should be added to 
the polymeric matrices to compensate for these drawbacks 
and the extent of their application. The 2DRs can be added 
to the reinforced fibers or polymer matrix such as epoxy 
through different techniques like grafting, electrospraying, 
or coating methods. Due to the self-lubricating feature and 
high strength, h-BN, GO,  MoS2 and etc. could be added to 
thermoset and thermoplastic matrices to fabricate compo-
nents with desired mechanical properties [99]. For example, 
Chen et al. [100] studied the effect of the addition of h-BN 
to  Si3N4 ceramic composite to evaluate the wear behavior 
against PEEK in artificial seawater. They reported achieving 
0.05 average COF, which can indicate excellent wear resist-
ance in some special cases.

Huang et al. [101] studied the effect of the addition of 
nanosheets of h-BN and  TiO2 on tribological properties of 
epoxy resin. They showed that the addition of two-dimen-
sional materials like h-BN could provide friction reduction 
by interlayer slippage. Additionally, the results displayed 
the synergic effect of the addition of h-BN and  TiO2. The 
h-BN/TiO2/EP composites demonstrated outstanding wear-
resistant (both lower weight loss and lower coefficient of 
friction) attributed to the load-carrying ability of  TiO2 and 
the reduction of self-lubricating effect on the size of debris. 
In another study, Bijwe et al. [102] studied the synergic 
effect of the addition of h-BN and natural graphite on the 
tribology behavior to the PAEK polymer composite. Both 
h-BN and natural graphite have the self-lubricating feature. 
Although results showed that none of them has a remark-
able effect alone, the best tribological behavior was obtained 
by combining them and observing the synergic effect. The 
Lancaster-Ratner factor is a parameter utilized in the field 
of tribology to predict the wear resistance of materials. It is 
based on the concept that wear resistance is proportional to 
the product of ultimate tensile strength and the elongation 
at break of a material. This factor is often used to correlate 
the wear resistance of a material with its mechanical proper-
ties. The calculated Lancaster-Ratner factors for each ratio of 
h-BN (B) and natural graphite (T) are shown in Fig. 1. The 
highest value was obtained for sample T15B5, indicating 
better wear resistance due to the higher tensile strength and/
or elongation, which can better withstand the mechanical 
stresses and deformations that lead to wear.

Furthermore, Panda et al. [103] studied the synergic effect 
of using simultaneously glass fiber, natural graphite, and 
h-BN in the PAEK matrix, where the friction coefficient was 
0.046. In a study reported by Mittal et al. [104], the effect 
of surface functionalizing of h-BN on the tribological prop-
erties of PMMA/PI composite was evaluated. The results 
illustrated that by applying a silane surface functionalizing 
method on h-BN powders before composite synthesis, the 
friction coefficient was decreased from 0.651 to 0.553. This 
indicates that the matrix becomes more compatible by apply-
ing a silane treatment on h-BN particles. Furthermore, the 
voids were filled by h-BN properly, because the better dis-
persion and interfacial properties were improved. The brief 
study of the application of the 2DRs in PMCs is shown in 
Table 5.

2.4  2D materials in composite coatings

As mentioned in the previous part, applying a protective 
coating is one of the solutions to improve the tribological 
properties, including corrosion, wear resistance, surface 
hardness, and scratch resistance. Combining the applying 
protective coating and adding the second phase leads to 
achieving a composite layer, which causes more improve-
ment in the tribological properties [9]. There are various 
second phases reported to add to different coating like gra-
phene oxide [11],  Al2O3 [114],  TiO2 [115], and SiC [116]. 
Also, h-BN is used to increase oxidation and corrosion 
resistance in the literature. Wang et al. [117] increased 
the oxidation resistance of  Ti2AlNb composite coating by 
applying plasma electrolytic oxidation (PEO) treatment 
and adding h-BN. The pure  Ti2AlNb composite coating 
is not proper for temperatures higher than 800 °C. Still, 

Fig. 1  The calculated Lancaster-Ratner factors for each ratio of h-BN 
(B) and natural graphite (T) redrawn from the data presented by 
Bijwe et al. [102]
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by applying PEO/h-BN to composite coating, oxidation 
resistance is increased up to 1000 °C for 100 h due to the 
formation of dense oxide and nitride layer. These achieved 
layers are avoiding oxygen diffusion. In a reported study 
by Demir et al. [118], the electrodeposited composite coat-
ing of Ni–Cr with the addition of h-BN was investigated 
on AISI 1040 steel. The corrosion resistance of that as one 
of the tribological performance was studied. Among the 
composite coatings (0, 5, 10, 20, and 30 g.lit−1 h-BN), the 
corrosion resistance of the coating with 20 g.lit−1 h-BN 
was measured to be 12, and it is 3.3 times higher than the 
uncoated steel substrate and Ni–Cr alloy, respectively. The 
variation of corrosion rate is shown in Fig. 2. The coating 
has improved corrosion resistance since h-BN particles 
fill cracks, voids, and micron-sized voids on the Ni–Cr 
composite coating surface and avoid the reaching of cor-
rosive agents to the interface of coating and substrates by 
reducing the active surface areas.

Furthermore, adding h-BN particles to the electroplating 
bath plays a significant part in avoiding hydrogen forma-
tion reactions on the cathode surface and diminishing the 
active surface of the particles adsorbed on the cathode sur-
face. Corrosive anodic and cathodic electrochemical reac-
tions are reduced by h-BN particles scattered in the Ni–Cr 
composite coating. Adding h-BN particles displays the 
modification in anodic dissolution and cathodic hydrogen 
formation reaction mechanisms. Reduction of the corrosive 
reactions indicates that the distribution of the added h-BN 
particles and their size are important factors that should be 
considered to increase the desired properties. Improving the 
corrosion resistance by adding h-BN is against what was 
reported by Goncu et al. [119]. No morphology changes 
were seen by adding h-BN to obtain a composite coating of 
hydroxyapatite/h-BN coating by the electrophoretic deposi-
tion method, which was attributed to the size of the utilized 
h-BN particles. It is important to note that by decreasing 
the h-BN particles’ size, diffusion of them to the cracks is 
more accessible and could hinder the diffusion of the cor-
rosive agent properly. Still, parameters should be optimized 
to avoid agglomeration in coating bathes. In another study 
reported by Unal et al. [71, 72], the effect of ultrasonic agi-
tation on Ni–B/h-BN co-deposited composite coating was 
studied and reported that the coating contains 10 g.L−1 h-BN 
has a better corrosion rate equals 0.0045 mm per year (mpy). 
In an additional study, Ao et al. [120] studied the tribological 
properties of  TiO2/h-BN composite coating on Ti–6Al–4V 
achieved by the micro-arc oxidation method. Results dis-
played that by adding h-BN, the less porous coating was 
obtained, which led to improvement of the achieved wear 
behavior of coatings, which is evident in SEM images shown 
in Fig. 3. However, the shown morphology in Fig. 3 demon-
strate the porous structure, which is decreased with addition 
of the h-BN as a 2D reinforcement. The presence of porosi-
ties and pores in the morphology is playing an important 
role, when the component is subjected to wear. While wear 

Table 5  The summary of the application of 2DR in PMCs

2D Reinforcement Matrix Manufacturing process Loading ratio Average COF Wear Rate  (10–4 
 mm3.N−1)

Refs.

– ABS 3D printing – 0.22 – [105]
Carbon nitride ABS Solution casting 0.5 wt. % 0.18 – [106]
Graphene Epoxy Vacuum impregnation 2.9 wt. % 0.20 – [107]
Ti3C2@ZnO PA Spray – 0.65 0.39 [108]
Graphene Epoxy Curing 1 vol. % 0.2 0.2 [109]
GO PPTA/PTFE – 0.5 g 0.061 0.18 [110]
CaAl PTFE Press molding 10 wt.% 0.2 – [111]
Ti3C2 + h-BN PPS + PTFE Hot press 25 Mass Fraction 0.045 0.01 ×  10–6 [112]
MoS2 PTFE Cold press 10 wt.% 0.14 2.5 [113]
g-C3N4 PTFE Cold press 10 wt.% 0.18 1 [113]

Fig. 2  Calculated corrosion rate of Ni–Cr composite coating by addi-
tion of h-BN redrawn from the Data reported by Demir et al. [118]
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debris can be trapped in these pores, reducing the quantity 
and size of pores leads to the wear debris acting as abrasive 
particles, so intensifying wear. Therefore, addition of the 
2D reinforcements have two distinct impacts on the mor-
phology and wear resistance. The first one is to improve the 
wear resistance by reducing the number of pores and the 
second one is to weaken the wear resistance by activating 
the abrasive wear mechanism. Thus, it can be concluded 
that the there is an optimum amount of 2D reinforcements 
that should be added to the matrix to balance these effects 
effectively. Other applications of h-BN coating include seal 
coating of Al/h-BN in the compressor of aero engines [121]; 
h-BN thin film as gate dielectric [122] in metal/insulator/
semiconductor AlGaN/GaN as high electron mobility tran-
sistors (IMISHEMTs) on sapphire were reported in literature 
too.

3  Perspective and outlook

In considering the outlook of tribology research, it is essen-
tial to explore into the field of developing two-dimensional 
materials (2DMs) that have potential beyond those currently 
explored. Alongside established materials like graphene and 
hexagonal boron nitride, exploring the potential of emerging 
2DMs such as MXenes and transition metal dichalcogenides 
could illuminate new pathways in tribology. These materi-
als offer unique structural and chemical properties such as 
high conductivity, excellent mechanical strength, and tun-
able surface chemistry that could change various applica-
tions in friction and wear reduction. By discussing their 
potential benefits and applications, the outlook section gains 
depth, opening paths for further exploration and innovation. 
MXenes, with their metallic conductivity and hydrophilic 
nature, and TMDs, famous for their layered structures and 
semiconducting properties, offer diverse benefits that can 
be exploited to develop advanced solid-state lubrication and 
wear-resistant coatings. Considering their particular proper-
ties and possible applications in detail will provide a more 
robust outlook and promote further investigations.

Furthermore, the concept of synergistic effects presents a 
fascinating prospect in enhancing tribological performance. 
Combining different 2DMs or mixing them with other rein-
forcements could yield composite materials with superior 
mechanical properties. For example, hybrid composites that 
benefit the strengths of both MXenes and graphene could 
result in unique enhancements in wear resistance and fric-
tion reduction. By exploring these possibilities, researchers 
may unlock novel strategies to alleviate friction and wear, 
leading to the development of more robust and efficient tri-
bological systems.

However, alongside opportunities come challenges that 
must be addressed to fully realize the potential of 2DM-
reinforced composites. Significant issues such as dispersion, 
interfacial bonding, and the balance between wear resistance 
and other mechanical properties pose noteworthy obstacles. 
Acknowledging these challenges in the outlook section 
promotes a comprehensive understanding of the field and 
encourages researchers to plan multidisciplinary solutions 
through experimentation of advanced synthesis techniques, 
computational modeling, and advanced characterization 
techniques. By handling these obstacles head-on, the tribol-
ogy community can cover the way for the successful inte-
gration of 2DMs into next-generation composite materials, 
shaping the future of friction and wear mitigation, in other 
words, 2DMs in tribology.

4  Conclusion

Looking ahead, the future of 2DM-reinforced composites 
in tribology is full with potential. Additional research on 
emerging 2DMs and investigating synergistic effects with 
other reinforcements hold enormous capacity for achiev-
ing modified tribological properties. However, addressing 
challenges like dispersion, interfacial bonding, and potential 
trade-offs between properties is crucial. Computational mod-
eling and simulations can be valuable tools in optimizing 
material design and processing techniques.

Fig. 3  Morphology of the TiO2/h-BN composite coating, where it is shown with the increasing h-BN content, less porous structure was formed 
[120]
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By overcoming these challenges and continuing to 
explore new borders, researchers can unlock the full poten-
tial of 2DMs. This will cover the way for the development 
of next-generation tribological materials with exceptional 
performance, leading to advancements in various fields. The 
synergic effects of combining 2D materials can be a practical 
procedure to enhance the tribological performance and bal-
ance the targets features to maximize the advantage of each 
2D reinforcements. For instance, simultaneously applica-
tion of one 2D materials with self-lubricating feature such 
as h-BN and the another one with higher conductivity and 
mechanical properties such as newly developed Mxenes can 
improve friction and wear resistance, respectively. This can 
lead to fabricate components with improved tribological per-
formance like reduced wear rate and enhanced durability 
to surpass the harsh working conditions. Additionally, the 
stability and long-term durability of 2D materials are two 
crucial factors influencing their practical implementation. 
Aforementioned, loading, surface condition and interaction 
and environmental exposure can impact their performance 
over time. For ensuring sustained effectiveness and reliabil-
ity by developing effective strategies, conducting compre-
hensive researches are necessary to assess the degradation 
mechanisms.

Finally, to achieve a reliable tribological performance, 
optimizing manufacturing proves to effectively integrate 
2D reinforcements into composite matrix is an essential 
step. The dispersion and bonding of 2D reinforcements 
within desired matrix should be ensured through produc-
tion method, whether the bulk materials or coatings are 
exploited. Advanced fabrication methods such as additive 
manufacturing (3D printing, wire arc additive manufacturing 
and etc.) and plasma enhanced techniques could facilitate 
the customized scheme for improved tribology properties. 
Furthermore, implementing scalable and economical syn-
thesis routes and optimizing process parameters can help 
diminish production costs without compromising the quality 
or performance of 2D material-based tribological systems.
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