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Abstract

Polyurethane foams are obtained during the reaction of compounds with hydroxyl groups and compounds containing
isocyanate groups and are widely used in the packaging, construction, transportation and electrical energy industries. To
bring benefits to its properties, several types of reinforcement are added to polyurethane foams, such as improvements in
the thermal, mechanical, fire resistance and thermal insulation of the PUF. Thus, this article presents a systematic review
of graphene-modified polyurethane foam composites for acoustic and structural applications with a focus on the last five
years. The investigation followed the PRISMA protocol which provides a meticulous summary of all available research in
response to a research question. After the inclusion/exclusion of the steps, thirty one studies were included in the review.
The results were presented with a focus on PU foam fabrication techniques, polyol types, carbon structured reinforcements
and techniques for fabrication of filled graphene PUFs and sound properties. In short, this methodology helped to identify

the main knowledge gaps in this area.
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1 Introduction and global scenario

Polyurethane foams (PUF) were firstly synthesized in the
1950s and have been used in many areas due to their versa-
tility. Rigid polyurethane foams (RPUF) play an essential
role in many industries, such as construction, refrigeration,
piping and automotive. For instance, in automotive industry
foams are used in parts like the seats, bumpers, the inner
section of the “headliner” roof, car body, spoilers and all
doors and windows. In this regard, mechanical and acousti-
cal properties play a major role for automotive and mobility
sector, and the understanding of these properties mechanism
is fundamental for the manufacturing of cheap and high per-
formance foams [1-3]. Different types of PU foams, rigid or
flexible, may be obtained, depending on the raw materials
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(polyol and isocyanate) and additives employed in the PUF
synthesis [4]. The combination of additives may produce
foams with high, medium or low density and high or low
flexibility.

Briefly, surfactants are employed with the purpose of reg-
ulating the polymer apparent viscosity, aiming to produce
foams with a more stable cell structure and low friability.
Surfactants are generally oils, with inert characteristics and
do not participate in the polymerization or kinetic reaction.
Some silicone oils are commonly used for this purpose,
some examples include poly (dimethylsiloxanes) and poly
(phenylmethylsiloxanes), important in flexible and semi-
flexible foam systems.

Catalysts are used for decreasing the energy required to
start the reaction between hydroxyl and isocyanate groups,
to form the urethane bonds, and then, reduce the time for the
PU synthesis. Tin compounds (such as tin octoate and dibu-
tyl tin dilaurate) are very useful in promoting the gelation
reaction, but they are very sensitive with respect to hydroly-
sis stability. In this sense, amino-based reactants may be
employed. Some examples include triethylenediamine and
4-dimethylaminopyridine (DABCO).

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s41127-024-00073-x&domain=pdf

28

Graphene and 2D Materials (2024) 9:27-46

Usually, chain extenders (molecules with low molecular
weight and functional groups) are employed for the increase
on the foams’ strength and stiffness. Chain extenders are
usually employed aiming to increase the polyol’s chain
extension and the degree of polymerization of the formed
PU. It promotes a high number of branches capable of form-
ing bonds with NCO groups belonging to isocyanate. Some
chemicals used for this purpose include glycols (e.g., poly-
glycols, glycerol and butanediol).

Different blowing agents may also be employed for
PUF expansion. Usually, water is the most blowing agent
employed for PUF expansion. However, if a high control of
cell’s foams morphology is required, trichlorofluoromethane
(137.4 g/mol) and n-pentane (72.2 g/mol) would be used, in
addition to the polymerization conditions [4, 5].

The most common feedstock for PUF synthesis come
from petrochemicals, such as polyesters or polyether polyols
and isocyanates, such as methylene diphenyl diisocyanate
(MDI) and toluene diisocyanate (TDI). On the other hand,
PUF market have been increased in the last few decades,
due its versatility and easiness to obtain different properties,
depending the aforementioned chemicals employed for
its synthesis. In this regard, aiming to obtain a higher
environmental appeal, bio-based polyols have been used
for PUF synthesis. Castor oil, palm oil, soy bean, among
other fat oils are developed day by day aiming to replace
conventional petrochemical reactants [6, 7].

Despite the aforementioned advantages in using oils
from renewable resources, these feedstocks present some
drawbacks. It is well known that bio-based foams present low
mechanical response, thermal stability and sometimes friable
characteristics. Aiming to by-pass these disadvantages,
fillers may be employed, regardless the foam is flexible or
rigid, aiming to produce a material with greater performance
[8-11]. Bio-fillers (fillers from natural resources, without
major chemical modification and/or treatment) may also be
used aiming to manufacture a PUF with high performance
and environmentally friendly characteristics. In addition
to being abundant and renewable resources, bio-fillers are
easily chemically modified, resulting in foams with enhanced
mechanical properties, relatively low cost and greater
thermal stability [9]. Furthermore, structural modification
of polyols is usually carried out by adding flame retardants,
which cause deterioration of mechanical and/or thermal
response. Then, to pay-pass this concern, the addition of
fillers is usually required [7].

For instance, Zhou et al. [9] produced semi-rigid PUF,
using palm oil as polyol and cellulose nanocrystals (CNC)
as reinforcement for the bio-polyol (BPU). The foams’
properties were compared with those produced using a
petrochemical polyol (PPU). According the results, those
PPU presented thicker cell walls and larger cell struts than
those of the BPU foam. The compressive strength (10%
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deformation) of BPU foam is lower than that of PPU foam,
54 and 125 kPa, respectively. On the other hand, with the
addition of 4 phr of CNC, there is a twofold increase in the
compressive strength of the BPU4 foam (117 kPa).

Another vegetable oil widely studied for the production
of PUF is castor oil, in which we find ricinoleic acid as
the main fatty acid. This acid naturally has an enough
content of hydroxyl groups, functional groups important
for the synthesis of PUF. The adequate amount of these
functional groups means that there is no need for chemical
modification and it can be used directly as a polyol for the
PUF’s synthesis. Furthermore, the uniform distribution of
these groups in the castor oil chain enables the synthesis
of PUs with a more uniform cross-linked structure, high
mechanical performance and thermal stability. Also, the use
of this oil becomes interesting for the production of PUF on
an industrial scale because it is a non-food seed vegetable
oil, not competing with food, and can be obtained at a lower
cost [4, 9, 12].

To solve these challenging issues, many efforts have been
paid to develop high performance PUF. The incorporation
of fillers in polymeric matrices improves their mechanical
properties. Several studies bring the incorporation of
different fillers in PUF, such as micro-fibrillated cellulose
[8], rice husk ash [11], cellulose nanocrystals [9], silica
nanoparticles [13], kaolin clay [14], in addition to carbon
structures such as graphene oxide [14-16]. The addition of
graphene oxide gives PUFs greater thermal and mechanical
response, electrical conductivity and a high surface area,
when compared to carbon nanotubes, for example [17].
These foams have characteristics such as flexibility,
lightness, low cost and can be used in different applications,
one of which is acoustic insulation [18].

Sound absorption is influenced by several factors, in
foams, morphology (associated with the cell wall structure)
and pore characteristics (size, quantity, interconnectivity,
tortuosity) are the most important. The airflow resistivity
provided by the cell walls in foams with small interconnected
pore structures provides a better sound absorption
coefficient. Also, porosity, associated with low density,
offers less resistance to sound waves dissipation, resulting
in a low sound absorption coefficient. With the incorporation
of GO, there is an increase in the compression modulus,
and thus the cells are more likely to undergo cell stretching,
bending and buckling without deformation [19].

Based on this, the objective of the present paper is to
discuss the recent progress of the addition of graphene as
reinforcement in polyurethane foams. The type of composite
(if only graphene or hybrid composites) studied, as well as
the methodology of adding reinforcement into PU foams will
be detailed. Besides, the main differences in morphology
and its reflection on the mechanical and acoustic response
are presented and discussed in detail.
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2 Systematic review methodology

The systematic review of recent studies of polyurethane
foam reinforced with graphene oxide was carried out based
on the methodological guidelines outlined by the Transpar-
ent Reporting of Systematic Reviews and Meta-Analysis
(P.R.I.S.M.A.). The papers were select using the Scopus
(www.scopus.com), Web of Science (www.webofknowl
edge.com) and Mendeley (www.mendeley.com) online data-
bases. Figure 1 presents the evolution of publications in the
three data bases used for this work with the keywords previ-
ously listen. It is noteworthy that the total number of papers
in 2011 was only 2 and, in 2019, 44, having an increase in
2100%.

The search terms used were polyurethane and graphene
and foam, need to be at least on the abstract. The results were
limited to English language, only research papers and pub-
lished within 2017-2022. From the articles listed in the three
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Fig.1 Evolution of publications about graphene and polyurethane
foams

Table 1 Relevant/irrelevant criteria for the papers’ analysis

databases, the titles and abstracts were read independently
by two reviewers (Eduardo Kerche and Lidia K. Lazzari) to
identify their suitability.

In agreement with both reviewers, some criteria were
selected as relevant or irrelevant for the analysis of the
papers, they are listed in Table 1. Some analysis and results
that were evaluated and compared between the papers are
listed in Table 1 as relevant criteria for paper inclusion.
Besides, some exclusion criteria are listed since they don’t
attend to the study scope.

3 Results of data collection

The selection of studies (number of studies and stud-
ies included or excluded) is shown in Fig. 2 based on
P.R.I.S.M.A. requirements. The search in the Web of Sci-
ence, Scopus and Mendeley databases resulted in 502 arti-
cles, excluding review articles, in languages other than
English, conferences, and duplicate articles, leaving 160
documents. Considering the relevant and irrelevant criteria
presented in Table 1, at the end of the careful analysis of
each of the 160 articles, 31 articles were considered relevant
to be included in this study.

3.1 Discussion of results

The papers were further classified based on the polyol type,
the reinforcement used, and impregnation process of the
reinforcement, and this is shown in Fig. 3.

Regarding the type of polyol (Fig. 3a), the vast majority of
foams found in this review were produced with commercial
non-bio-based polyol (96%). The authors focused on
evaluating the effect of reinforcement on foam properties
rather than to synthesize the foam.

Regarding the type of reinforcement (Fig. 3b), about 59%
of the articles use graphene oxide (GO) as reinforcement for
polyurethane foams, graphene nanoplatelets are also widely

Relevant criteria

Irrelevant criteria

Density or cellular structure (SEM images or micro tomography)

Flammability
Sound absorption or acoustic properties
Mechanical properties

Different dispersion techniques impact directly on the mechanical
response
Hybrid foams (i.e., if there is more than one reinforcement) were

considered. However, if graphene filler was not the main focus of the
paper, it was not considered

Graphene was not the main objective of the study or when only
comparisons of the paper’s results with other paper from literature
that use graphene is made

No PU cellular foam
PUF for microwave radiation were not considered
Sandwich structures were not considered

When acoustic or mechanical response are not the focus of the paper

Nano-DMA or papers that do not bring a real contribution about
acoustic insulation and the effect on different methodologies and
materials on it
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Fig.2 Systematic review
flowchart, in accordance with
PRISMA protocol
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used, about 23% of the articles use this reinforcement,
reduced graphene oxide, carbon nanotubes and graphite are
also mentioned.

The addition of reinforcements occurs in two ways, the
impregnation of the reinforcements in the polyols (67%)
or deposition on the foams’ cell structure (33%). The
impregnation of the reinforcements in the polyol occurs,
mostly, by mechanical processes, with the mixing of
the reagents by mechanical agitation and two roll mill or
sonication of the reinforcement in the polyol solution, or
chemical modification of the polyol. The second way is to
deposit the reinforcement on the polyurethane foam cell
structure through methods such as dip coating, layer-by-layer
and solvent casting.

The 31 articles referenced in this review are summarized
in Table 2. In addition to the characteristics of the type
of polyol, reinforcement and reinforcement impregnation
methodology, Table 2 also presents the type of foam
produced, the amount of reinforcement used and the main
results found by the studies.

3.2 Polyurethane foam manufacturing techniques

Regarding the manufacturing techniques employed to PUF,
free rise expansion is by far the most used technique for the
fabrication of components, due to its easiness of processing
and not the needing for complex apparatus or machinery for
the production of components in large scale [35]. However,
in current literature, not only simple techniques are
employed for the manufacturing of PUF, but the expansion
and reaction into closed molds are explored.

Polyurethane foams, expanded into closed molds,
present a more regular cellular structure and great cell
size distribution and uniformity [8, 45]. Moreover, the
density’s fitting and adjustment may be due, depending on
the application and final product destination. For instance,
it is possible to manufacture a foam with high density to
be used in structural application with the same formulation
as that used in upholstery. Some models, using statistical
approaches, may also be employed to predict the final
product density and property, in a specific range, this is also
an advantage in using a closed mold to manufacture the
components using PUF [46].

Many methods have been proposed to create TPU foams,
such as in situ polymerization using water as a foaming
agent, gas foaming, salt leaching, phase inversion and water
vapor induced phase separation. The use of supercritical
fluids as blowing agent, and in particular carbon dioxide
(sc—CO,), has become a promising and efficient strategy for
the preparation of microcellular polymeric foams [47].

Indeed, differently from a free rise expansion, using
blowing agents such as water, chlorofluorocarbons,
hydrochlorofluorocarbons and methylene chloride [48]

PUF produced by scCO, present a more controllable
and thinner cell structure rather those freely raised PUF.
Furthermore, this technology is low cost, used in moderate
conditions (T ~ 30 °C, P~ 7 MPa), lowered burden, on
the environment, and greater safety offered, compared
to the aforementioned blowing agents. Finally, this
technology also possesses the great advantage of being
easily scaled-up to industrial level [42].

3.3 Polyol types

Polyols and poly isocyanates are the main sources of raw
materials to produce PUF. There are several types of raw
materials for the PUF production, however, those from
petrochemical industry are the most diffused in industry,
due to their well-known better performance, compared to
bio-based ones, such as higher mechanical and thermal
properties as well as fire resistance. However, with the
use of PUF growth day by day, the generation of waste
is an alarming concern for environmental protection, so
proposals for eco-friendly PUF arise all the time [7].

One way to relieve this problem is the use of raw
materials, derived from renewable sources, such as
vegetable oils [8—11]. In addition to being more abundant,
they are easily chemically modified, resulting in excellent
properties and relatively low cost of final products [9].
This chemical modification of polyols directly affects the
structural and morphological characteristics of the final
PUF. These differences are usually carried out by the
incorporation of additives, such as fillers, flame retardants,
open cell agents and so on. However, some of these
modifications bring a detrimental effect on mechanical
and dynamical mechanical properties as well as in the cell
structure distribution and growth [7].

Castor oil (CO) is one example of bio-based polyol.
CO is composed primarily of ricinoleic acid, a fatty acid
that presents, naturally, hydroxyl groups, a functional
group important for the synthesis of polyurethane, which
react with the isocyanate to form a urethane bond, by
block polymerization. The adequate amount of these
functional groups means that there is no need for chemical
modification, and it can be used directly as polyols, for the
PUF synthesis. Besides, the uniform distribution of these
groups in the castor oil chain enables the synthesis of PUs
with a more uniform cross-linked structure, which enables
high mechanical performance and thermal stability,
desired properties for RPUF. Furthermore, the use of
this oil becomes interesting to produce bio-based PUF on
an industrial scale, because it is a non-food seed oil, not
competing with food, and can be obtained at a lower cost,
contrasting with other oils, such as soybean [4, 12, 49].
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weight), whose tensile strength was improved by about 43%,
compared to pristine PU.

In the study carried out by Jia et al. [20], who produced
RPUF with the addition of nano porous graphene, they
obtained an improvement in morphology and mechanical/
thermal properties compared to non-reinforced foam. By
adding NPG, the average cell size was reduced and the
mechanical properties were affected. When using 0.25 wt.%
of NPG, the compressive strength and compressive modulus
were increased by 10.7% and 66.5%, respectively.

3.4.1 Strategies to decrease the particles’ agglomeration

Due to the well-known trend of graphene agglomeration and
formation of clusters, many authors have been developed
techniques to avoid this issue. The using of nano or micro
particles to increase the distance of GNP or GO is an
interesting technique. In their work, Liu et al. [42] used
hybrid fillers, composed of Hollow glass microspheres
(HGMYS) functionalized with silane and used the fillers to
improve the composites’ compression properties and the
lateral compression deformation. Li et al. [22] used Fe;0,
nanoparticles aiming to intercalate GO layers with high
grafting ratio, resulting in complete exfoliation of GO in
matrix.

From the composite foam point of view, the average
cell size, cell wall thickness and apparent density gradually
decreased along magnetic field direction, forming gradient cell
structure in foam. The aforementioned techniques facilitate
the dispersion and also the manufacturing of the PUF, since
no additional step for the filler dispersion (as sonication) were
required. Figure 4a presents the aforementioned strategies, for
the improvement of dispersion of graphene.

Li et al. [55] also used a GO functionalized with
Isophorone diisocyanate (IPDI), aiming to functionalize
the GO surface (Fig. 4b). According the authors, these —
NCO groups on the surface of modified GO could participate
in the reaction of RPUFs through reacting with polyols
to form polyurethane (PU) bonds, then, the mechanical
and thermal properties were improved, due to the grater
nanocomposite’s interfacial characteristics. Other study
also used a functionalized GO, with APTES. The authors
focused in the improvements of flame retardancy of RPUF
with the silane treatment. Despite the improvements in these
characteristics, decreases in mechanical properties, when
the foams were compared to the neat RPUF were reported
regardless a better interactions between GO and RPUF [55].

3.4.2 Techniques for the filled graphene PUF
manufacturing

3.4.2.1 Mechanical stirring and sonication One of the most
used techniques for the incorporation of carbonaceous par-

@ Springer

ticles in PU foams is the addition of the same directly to
the polyol or isocyanate, using mechanical agitation and/or
sonication (see Fig. 3c). These are simple and easily manip-
ulated techniques for the production of foams. Different for-
mulations of PU foams are found in the literature, usually
the concentration of carbonaceous structures used is from
0.25t0 5% [1, 18, 19, 21, 34, 38, 39, 43].

Another strategy is to disperse the nano particles into
the blowing agents, such as Hui et al. [31]. In the study,
the authors sonified GO into pyromellitic dianhydride
(PMDA). Afterward, TDI was added and under vigorous
stirring. Although the increase in density for all contents of
GO studied, the authors obtained increases in mechanical
and dynamical mechanical properties, as well as in 7.

3.4.2.2 Dip coating and layer-by-layer impregnation of gra-
phene An interesting alternative, used by some authors,
is to coat the foams with graphene solutions. According
Li et al. [15], hierarchically nano-architectured graphene-
polyurethane hybrid foams can be developed, depend-
ing the impregnation technique used for such purpose. A
sound-absorbing material may be developed and different
cell structures can be formed (varying from Wavy to Web
foams™ cells), depending the technique used to coat the
foam, as presented in Fig. 5.

Oh et al. [15] also used an aqueous solution of GO,
using different ratios of compressibility (10 and 20%), for
the manufacturing. Compared with neat FPUF the foam
interconnected with 2D corrugated GO shows a sound-
absorbing capacity of 99.7% at a frequency of 2,236 Hz and
a shock energy absorbing time of 189%, during the impact
loading. Figure 5 presents the cells” morphology of such
foams.

Others studies also addressed this interesting technique,
however, using a silicon-based resin, with GO dispersed. Wu
et al. [54] reported improvements of fire resistance of 14.7%
for the pure foam to 31.5% for PU-RGO-SiR. Moreover,
stable electrical conductivity and high flame retardancy, even
in a variety of harsh conditions (high temperature, flame,
organic solvents and external compression) were reported.
Indeed, coatings, using graphene as filler is a new strategy
to enhance mechanical, thermal and fire resistance of PUF.
Furthermore, self-healing is an interesting characteristic
achieved, when these techniques are employed [56, 57].

Meng et al. [15] obtained self-healing FPUF with
polyelectrolyte complex coating for flame retardant and also
enhanced mechanical properties. Using polyethyleneimine
dissolved in deionized water and added to ammonium
polyphosphate and subsequently adding GO into the
solution, the authors reported a product with the capacity to
self-repair even after the destructive mechanical tests.

According to Jia et al. [37] the principle of the layer-
by-layer process is to arrange materials of opposite
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O O Micro or nano-particles
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@ Particles functionalization (KH550, APTES...)
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f Centrifugation, washing with DMF,
filtered and dried

Fig.4 Schematic diagram of GO nano or micro hybrid filler preparation and functionalization. Adapted from: [15, 23, 54, 55]
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Fig.5 Cells® morphology of hierarchical porous graphene-polyurethane foams. a Web-disordered lattice graphene foam. b Wavy-ordered lattice

graphene foam. Adapted from: [15, 27, 29]

FPF with
impregnated GO

GO suspension
impregnation

./

GO
suspension

/
/

. FPUF
v

HES

e o 0 -— n o
emaine

1% 1] Vecuum solution with a
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Fig.6 Aqueous solution for the coating using the layer-by-layer self-
assembly technique of graphene on the PUF surface. Adapted from
[28, 30, 33, 55, 58]

charge into multiple bilayers so that they are connected
and assembled through a variety of attractive forces
(such as van der Waals forces, electrostatic bonds and
hydrogen bonds). Also, this method is a very effective
and environmentally friendly technology for depositing
flame-retardant coatings without sacrificing beneficial
FPUF properties.

Figure 6 shows the process of impregnation of GO in
PU foams carried out by Hou et al. [30]. Basically, the GO
solution was poured over PU foam, after which negative
pressure (-5 kPa) was applied. After complete immersion
of the foam in the solution, the GO-impregnated PU foam
was dried in air for one day. This step iterated up to 5
times to increase amount of GO impregnation.

@ Springer

3.4.3 Sound mechanism improvement by graphene using

PU foam is widely used in acoustic materials due to its
superior sound-absorbing properties, vibration damping
and robustness. In this application, two main mechanisms
of acoustic energy damping can be considered. In the
automotive industry, there are several different frequency
intervals, from those that originate at engine rotation
(5-50 Hz), to vibrations generated on irregular road
surfaces (500-3000 Hz). So, PU foams are widely used to
absorb sounds and noise and thus provide acoustic comfort
in the interior of the car [28, 33].

Basically, there is two main mechanism that govern the
acoustic energy damping. The first one is related to the
sound energy dissipating by the friction between the air
gas molecules oscillating inside the foam cells. The air
friction can convert the kinetic energy into heat that need
to be dissipated by the cells’ skeleton. Then, the cell’s
morphology (open or closed cells’ content), stiffness and
its capacity to dissipate heat are the primarily responsible
for the amount of sound energy absorbed. In the same way,
the other mechanism is related to the cell wall material
that absorbs sound, also called Intrinsic damping. In
this mechanism, the sound waves propagate within the
material, where the main factor that influences the sound
absorption in flexible PU foam is flow resistance, based on
the measurement of airflow resistivity [29].

As reported in this systematic review, the PUF
sound absorption capacity may be greatly improved
by incorporating particles into the PUF before or after
manufacturing [34]. For this purpose, carbon nanotubes
[59], silica [60] and graphene [15, 27, 33, 42] are the nano
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fillers that presented better properties for the improvement
on PUF’s sound absorption capacity.

OH et al. [42] studied an antagonistic graphene oxide-
polyurethane hybrid aerogel with aligned pores and graphene
oxide face sheets as a novel sound absorber. The authors
reported that the developed material presented a high sound
absorption ability due to the effect of graphene nano layer.
According the authors, the wave propagation was absorbed
by the principle of thermal damping and viscoelastic
frame damping, when passing through graphene oxide
and polyurethane microcellular structures. Furthermore,
tortuosity in wave propagation on the graphene oxide surface
and microvibration of narrow GO layers with heat extraction
also influences on the sound absorption at low frequencies.

Another issue explored by the authors was the influence
of PUF cells’ anisotropy on the dissipation of heat that
comes from the air friction, as aforementioned. Figure 7
presents the mechanism for the perpendicular (Fig. 7a) and
parallel (Fig. 7b) sound energy reflection or absorption on
the cell structure, for the developed Gr—-PUF. The foams here
represented are subjected to the tube impedance test aiming
to measure the sound absorption coefficient ().

Perpendicular G-PUF will produce wave reflections
and transmission while passing through the GO layers.
In addition, as the sound waves enter, the gaps between
GO walls, the fluctuation of acoustic pressure will induce
micro-vibration of aligned GO layers [43]. On the other
hand, when the foam is positioned with cells parallel to the
wave propagation (Fig. 7b) the sound absorption principle
follows the mechanism of entering of sound wave enters to
the inner void. Here, multiple scattering phenomena strongly

reduce the intensity of an acoustic wave passing through
the highly porous GO-PUF, resulting in greatly increased
sound absorption. Besides, as the sound waves approach the
narrow gaps between the GO layers, the air starts to oscillate
considerably, and the kinetic energy of the sound waves is
lost to friction between the air and the GO layers and to the
micro-vibration of the graphene layer [43].

4 Conclusions and future perspectives

This systematic review brings the newest technologies
about graphene-modified polyurethane foams. Different
types of foams may be manufactured by the use of graphene
and its derivatives. Rigid or flexible foams can be reached,
depending the chemicals used for the foams’ synthesis,
additives and technique for the PUF expansion (freely
expanded and using a closed cavity). In the same way, the
use of graphene may be a benefit, depending the properties
desired, which is related to the foam type required for each
application (flexible or rigid).

As presented, the deposition of graphene, following layer-
by-layer technique is an interesting alternative for foams
with high damping properties. On the other hand, sonication
and other dispersion techniques for graphene on the polyol
are required, when a foam with a high stiffness is desired.

Bio-based polyols were used in many studies. However,
new technologies to synthesize foams with polyols from
renewable resources are still required, main when a high
performance PUF is desired.

Fig. 7 Representation of the (a)
cells with graphene oxide incor-

porated and the mechanism for
the sound wave propagation for
the cells oriented perpendicular
to the sound wave emission (a)
and parallel to the sound wave

Sound wave
emission (b). Adapted from [43] .

Partial reflection of sound wave

Residual sound wave

(b)

Sound wave
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Finally, it was presented that the sound absorption as well
as mechanical properties are high dependent on the direction
of property analyzed. Due to the high anisotropy of freely
expanded polyurethane foams, its cells growth influence
directly on the property direction measurement. Then, its
destination and product design need to take into account
these issues.
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