European Journal for Security Research (2021) 6:211-227
https://doi.org/10.1007/541125-022-00079-7

ORIGINAL PAPER

®

Check for
updates

Twin Based Continuous Patching To Minimize Cyber Risk

Fabrizio Baiardi'©® - Federico Tonelli?

Received: 15 June 2021/ Accepted: 3 January 2022 / Published online: 25 January 2022
© The Author(s) 2022

Abstract

Digital twins are virtual replicas to simulate the behavior of physical devices before
they are built and to support their maintenance. We extend this technology to cyber-
security and integrate it with adversary emulation to define a remediation policy that
selects and schedules patches for the vulnerabilities of an information and commu-
nication infrastructure before threat actors can exploit them. Distinct twins model,
respectively, the infrastructure and threat actors. The former twin describes the
infrastructure modules, their vulnerabilities, and the elementary attacks actors can
implement. The attributes of the twin of a threat actor describe its attack surface, its
goals, how it selects attacks, and it handles attack failures. The Haruspex software
platform builds the twins of the infrastructure and those of the threat actors, and
it automates the emulation of an actor. In this way, it can discover the attack paths
the actor implements without disturbing the infrastructure. In each path, the actor
composes elementary attacks to reach its goal. Multiple emulations can discover all
the paths of an actor by covering stochastic factors such as attack success or fail-
ure. The knowledge of these paths enables the remediation policy to minimize the
patches to deploy. Since new vulnerabilities continuously become public, new coun-
termeasures are needed. A twin-based approach supports a continuous remediation
process to handle changes in the infrastructure, new vulnerabilities, and new threat
actors because the platform can update the twins and run adversary emulations. If
new attack paths exist, the platform applies the remediation policy. Experimental
data confirm the effectiveness of this approach.

Keywords Model-based - Adversary emulation - Digital twin - Vulnerability - Patch
schedule

<] Fabrizio Baiardi
f.baiardi @unipi.it

Federico Tonelli
federico.tonelli @haruspex.it

Dipartimento Di Informatica, Universita Di Pisa, Pisa, Italy

Haruspex Srl, Pisa, Italy

@ Springer


http://orcid.org/0000-0001-9797-2380
http://crossmark.crossref.org/dialog/?doi=10.1007/s41125-022-00079-7&domain=pdf

212 F. Baiardi, F. Tonelli

1 Introduction

A digital twin is a digital replica of a physical object or system. The technology
first arose at NASA: a full-scale replica of space capsules, to mirror and diagnose
on the ground problems in orbit. Later this resulted in fully digital twin simula-
tions, and it has expanded to describe large systems, such as buildings, factories,
and smart cities to evaluate properties of interest before building the system. In
2017 Gartner named digital twins as one of the top 10 strategic technology trends
for that year, and it predicted that in at most five years “billions of objects will
be represented by digital twins, a dynamic software model of a physical thing or
system." In 2018 Gartner estimated “21 billion connected sensors and endpoints
by 2020, digital twins will exist for billions of things in the near future." A digi-
tal platform takes an object twin together with data that describe a phenomenon
involving the object and it uses these inputs to predict or simulate how the phe-
nomenon will affect the object. Several fields currently adopt digital twins to sup-
port predictive maintenance and to keep assets in peak operating conditions and
avoid unexpected breakdowns.

This paper describes how to apply the twin technology to manage the risk due
to the discovery of new vulnerabilities in the off-the-shelf software and firmware
modules of an information and communication technology, ICT, infrastructure,
and it defines a remediation policy to select and schedule countermeasures to
stop the threat actors, or at least to reduce their success probability, anytime new
vulnerabilities become public. A long time to deploy countermeasures strongly
increases risk because most attacks occur only after their enabling vulnerability
becomes public. To minimize the deployment overhead, the remediation policy
should minimize the number of selected countermeasures. The problem is critical
due to the large number of vulnerabilities that become public. Even if a twin-
based approach can support a wide class of countermeasures, for the sake of sim-
plicity, this paper focuses on patches, the countermeasures that remove vulner-
abilities by deploying new code to replace flawed one. Patches are among the
cheapest countermeasures, but no effective solution exists to select the patches
to deploy and to schedule their deployment. Therefore, the average time to patch
a vulnerability is steadily increasing and it currently ranges from 60 to 150 days
but with a very long tail. Further confirmation of the lack of effective policies is
the compulsory direction the Cybersecurity & Infrastructure Security Agency, a
federal US agency, has issued in November 2021. The direction lists the vulnera-
bilities federal agencies should patch and some of these vulnerabilities have been
public for more than three years.

The proposed policy is risk-based. Risk-based policies schedule patches
according to the risk each vulnerability poses, and they define metrics to evaluate
this risk (Dey et al. 2015; Manzuik et al. 2006; Roytman and Jacobs 2019). Our
remediation policy evaluates risk through attack paths (Baiardi and Sgandurra
2013; Baiardi 2015; Sarraute et al. 2011) i.e., by sequences of attacks that esca-
late the agent privileges till it controls the modules it is interested in. The risk
depends upon the paths where a vulnerability appears, and the policy computes

@ Springer



Twin Based Continuous Patching To Minimize Cyber Risk 213

the smallest set of patches to stop all the paths. We discover paths through twin-
based adversary emulation (Applebaum et al. 2016, 2017; Eckhart and Ekelhart
2019; Moskal et al. 2018; Strom et al. 2018) and automate it through the Harus-
pex platform (Baiardi and Sgandurra 2013; Baiardi et al. 2013; Baiardi 2015).
The platform uses the twins to run multiple independent adversary emulations to
cover stochastic factors such as the success or the failure of an attack. To mini-
mize the emulation overhead, the twin of the infrastructure is not a fully detailed
replica of the infrastructure. Instead, it consists of an advanced asset inventory
with information on the infrastructure modules, their interconnections, their vul-
nerabilities, and the corresponding attacks. An actor twin models a threat actor,
and its attributes describe actor properties.

The platform can run on the target system or a distinct one, i.e., on a cloud (Theo-
haridou et al. 2013), and it supports continuous remediation i.e., continuous patch-
ing deployment, driven by vulnerability discovery. As soon as some vulnerabilities
become public, the platform includes them in the infrastructure twin, and it runs
the emulations in parallel with, and without disturbing, the normal working of the
infrastructure. Anytime the new vulnerabilities open new paths, the platform applies
the remediation policy. Hence, the proposed policy can be applied to industrial con-
trol systems and, more in general, to infrastructures with operational technology
components.

This paper is organized as follows. Section 2 introduces some terminology and
discusses current solutions to select and schedule patches. Then, Sect. 3 classi-
fies the various agents and describes how the remediation policy computes a patch
schedule based upon attack paths. Section 4 describes digital twins and how they
support the discovery of attack paths through multiple independent adversary emu-
lations. Section 5 introduces continuous remediation and the conditions that fire the
execution of new adversary emulations. Lastly, Sect. 6 presents some experimental
results of the proposed policy, and Sect. 7 draws some conclusions and discusses
future developments.

2 Computing a Patch Schedule: Current Solutions

We briefly review state-of-the-art policies to compute a patch schedule. First, we
introduce some terminology and then review some popular policies. In the follow-
ing, infrastructure and actor denote, respectively, the target ICT infrastructure and a
threat actor.

2.1 Terminology

A vulnerability is a weakness, error, defect, flaw, or bug that enables some attacks
targeting the confidentiality, integrity, and availability of information (CVE https://
cve.mitre.org; National Vulnerability Database, https://nvd.nist.gov/).

The infrastructure is the target of some threat actors. Information about each actor
is known, and it includes its attack surface and goals. An attack surface includes all

@ Springer


https://cve.mitre.org
https://cve.mitre.org
https://nvd.nist.gov/

214 F. Baiardi, F. Tonelli

the attacks the legal privileges of the actor enable. Each goal is a set of privileges on
some modules the actor aims to acquire to control some critical assets. Threat actors
seek advantage of vulnerabilities in hardware, software, and firmware, to attack the
infrastructure. The greater the window of time between the discovery of a vulnera-
bility and the remediation, the patching in our case, the more time an actor has avail-
able to implement an attack. Each attack is paired with a precondition and a post-
condition that include, respectively, the privileges to execute the attack and those
a successful execution of the attack grants. Due to the infrastructure complexity, a
threat actor can reach a goal only by composing attacks in an attack path (Baiardi
et al. 2013; Sarraute et al. 2011) that is in a sequence that escalates its privileges to
those in one goal. After the success of all the attacks in an initial subsequence of
a path, the actor owns the privileges to execute the next one in the path. A path is
minimal if none of its proper subsequences is a path. A path is not minimal anytime
the actor selects and executes a useless attack due to poor information on the infra-
structure. A useless attack does not grant the privileges the actor needs to reach a
goal. In the following, we say a vulnerability appears in a path if it enables an attack
in the path.

2.2 Discovering Vulnerabilities

Any policy to select and deploy patches needs, at least, two databases. The first one
is an inventory that lists all the hardware and software modules of the infrastructure.
The second database lists the vulnerabilities of each module. The simplest way to
build the two databases is by deploying in the infrastructure sensors that run a vul-
nerability scanning (Baiardi et al. 2013). The first step of the scanning runs a fin-
gerprinting to discover the modules each node runs. An active sensor implements a
fingerprint by sending malformed packets to some ports of a node. Then, it analyzes
the node replies to discover the modules the node runs. Instead, a passive sensor
sniffs and analyzes messages among nodes to recognize the modules that exchange
these messages. Passive fingerprinting does not disturb the infrastructure, but it
takes longer because it needs multiple messages to identify a module. However, it
can collect these messages by continuously monitoring the infrastructure. Further-
more, high-performance sensors are not required because missing some messages
is less critical than when monitoring traffic to detect intrusions. In general, passive
sensors should be preferred because they do not add noise or computational load to
the infrastructure. Since active sensors are more accurate, a compromise must be
chosen between the noise due to the sensors and the accuracy of the information
they return.

After identifying the modules, the second step of the scanning accesses some vul-
nerability databases (CVE https://cve.mitre.org; Martin 2019; National Vulnerability
Database, https://nvd.nist.gov/) to discover their vulnerabilities. This may result in both
false positives and false negatives because some vulnerabilities may have been patched
or a module may be affected by some vulnerabilities that do not appear in the data-
base. To minimize the number of false positives, some sensors execute at least one of
the attacks a vulnerability enables. The attack success confirms the existence of the

@ Springer


https://cve.mitre.org
https://nvd.nist.gov/

Twin Based Continuous Patching To Minimize Cyber Risk 215

vulnerability (Chuvakin and Barros 2018). This may damage the infrastructure or
degrade its performances because the sensor behaves like a threat actor and the technol-
ogy requires human assistance to minimize its impacts.

2.3 Computing a Patch Schedule

The knowledge of the infrastructure vulnerabilities suffices to compute a patch sched-
ule only when adopting a patch-all solution. This popular policy suggests patching
each new vulnerability as soon as a patch exists. The policy is often ineffective because
it applies so many patches that most are yet to be deployed when new vulnerabilities
become public.

Risk-based, or scoring, solutions rank vulnerabilities by mapping some of their
attributes into a score that approximates the resulting risk. Then, they only patch the
vulnerabilities with a score larger than a fixed threshold, starting from those with the
largest scores. The most popular risk-based solution is the Common Vulnerability
Scoring System, CVSS (Mell et al. 2006, 2007; Tripathi and Singh 2011) that maps
the main characteristics of a vulnerability into a numerical score in the range from 0 to
10, the largest severity. In principle, CVSS consists of three metric groups: Base, Tem-
poral, and Environmental. The first group represents the intrinsic qualities of a vulner-
ability that are constant over time and across user environments such as the complex-
ity of the attacks the vulnerability enables and the privileges to implement them. The
Temporal group reflects characteristics that change over time such as the availability
of an exploit. It evaluates the likelihood that a vulnerability exists and the one an actor
will exploit it. Lastly, metrics in Environmental group consider the infrastructure char-
acteristics but they are seldom applied because their evaluation cannot be automated.
Hence, the evaluation of the risk due to a vulnerability usually applies metrics in the
Base group only and the CVSS defines a calculator to map attributes into a score.

Scoring solutions like CVSS focus on a vulnerability in isolation rather than on the
whole infrastructure and they neglect how an attacker exploits the vulnerability in paths
to a goal. Even a low score vulnerability results in a large risk if it is the missing link to
chain two attack sequences into one path. On the other hand, a high score vulnerability
does not change the risk if actors cannot acquire the privileges to launch any attack
it enables. Experimental data on attacks confirm the importance of context-dependent
information to discover how actors exploit vulnerabilities even when they have avail-
able accurate information on the infrastructure vulnerabilities. Hence, any scoring sys-
tem independent of the target infrastructure only offers a rough, approximated value for
a risk-based ranking. Lastly, any solution that considers each vulnerability in isolation
can remediate a vulnerability only if a patch exists.

3 An Attack Path Scheduling Policy

This section discusses how the remediation policy uses information on attack paths
to select and schedule patches. First, we classify actors and then discuss how to min-
imize the patches to deploy. Lastly, we propose a solution to increase the resilience

@ Springer



216 F. Baiardi, F. Tonelli

of the schedule. We detail in the next section how to discover the attack paths of an
actor. For the moment being, we assume these paths are known and focus on the
remediation policy.

3.1 Classifying Actors

We partition threat actors into adaptive and fixed.

An adaptive actor has explicit goals i.e., some modules it aims to control. The
actor is rational and tries to minimize its effort to a goal. Furthermore, it reacts to
both updates of the infrastructure and attack failures by implementing distinct
attacks. Hence, the actor can manage an attack failure by executing a distinct path.

A fixed actor aims to control the largest number of infrastructure nodes to down-
load a payload on each one. The payload is a software module that may steal infor-
mation, implement a ransomware attack or connect the node to a botnet i.e., an over-
lay network the actor controls. To reach its goal, the actor chooses a target module
and executes a set of attacks in a fixed order until one of them succeeds and the actor
can replicate onto the node that runs the module. Then, the actor selects another tar-
get and repeats the procedure. The actor selects a new target even after a predefined
number of failures of its attacks. At any time, multiple instances of the same actor
can run on distinct nodes.

We pair each actor with a set of paths. For an adaptive actor, these are the paths
it implements to its goal. For fixed actors, we assume there are some infrastructure
nodes to protect and consider the paths to any of these nodes from the actor attack
surface. The paths paired with an actor depend upon both vulnerabilities and the
actor and they change anytime the infrastructure or the actor changes. As discussed
in the following, this should also consider how adaptive actors react to the patching.

3.2 Stopping Threat Actors

The proposed policy neutralizes an actor by stopping all its paths. This requires
patching at least one vulnerability that appears in each path. Before selecting the
vulnerabilities to patch, the policy removes useless attacks from a path because the
actor does not need them to reach the goal. It also removes a vulnerability if a cor-
responding patch is not available. A reduced path is the subset of the useful attacks
in a path such that there is a patch for the enabling vulnerability. An optimal choice
of the patches to deploy to stop a set of reduced paths Sp privileges shared vulner-
abilities among the paths in Sp because patching each of these vulnerabilities stops
multiple paths.

To minimize the number of patches, the policy computes a max—min patch set
of Sp i.e., the smallest set of patches that targets at least one vulnerability in each
path in Sp. The selection of a max—min patch set for Sp is an NP-hard problem
(Mell et al. 2016). To schedule the deployment, vulnerabilities in the max—min
patch set can be ranked according to the sum of the weights of the paths where
each appears. The weight of a path depends upon the impact paired with the cor-
responding goal.

@ Springer



Twin Based Continuous Patching To Minimize Cyber Risk 217

To stop multiple actors, Sp should include the reduced paths of all these
actors. Even here the policy minimizes the patching overhead through shared
vulnerabilities.

Besides minimizing patches to deploy, the main advantage of a policy focusing
on paths rather than on a single vulnerability is that it can stop a path even if some
vulnerabilities appearing in the path cannot be patched.

3.3 Building a Resilient Schedule

A policy that patches one vulnerability for each path may be ineffective if the actor
knows some vulnerability that the vulnerability scanning does not return. Vulnera-
bilities that are unknown to the affected vendor are commonly referred to as zero-day
vulnerabilities and they are viewed as the greatest prize for cybercriminals because
they pose the greatest threat to information security. These vulnerabilities could
enable an attack that replaces one stopped by the patches. A policy can increase
the probability of stopping an actor that knows some zero-day by patching distinct
vulnerabilities in each path. As an example, k-patch policies patch k vulnerability for
each path (Wang et al. 2014). Even these policies exploit shared vulnerabilities.

4 Twin based Scheduling Solutions

We introduce the Haruspex platform (Baiardi and Sgandurra 2013; Baiardi 2015;
Baiardi et al. 2013) and discuss how it builds the twin of the architecture and those
of the actors. The platform automates adversary emulation and it runs multiple emu-
lations to discover all the paths of the actors.

4.1 The Infrastructure Digital Twin

The choice of running multiple emulations implies that the infrastructure twin can-
not be so detailed and describe the infrastructure modules at the instruction level.
Hence, we have chosen a more abstract description that guarantees that the twin has
sufficient fidelity to allow the implementation of the desired security measure (Eck-
hart and Ekelhart 2019). The infrastructure twin describes all and only those fea-
tures of the infrastructure to emulate adversaries realistically and it consists of two
databases that describe, respectively, assets i.e., modules, and vulnerabilities. The
first database also includes information on the physical topologies, the logical one,
filtering rules in the firewall, and routing rules in the gateways. Lastly, this database
includes information on the trust relationship and the information flow among mod-
ules. A trust relationship implies that an actor that controls a module also controls
those that trust this module. As an example, an actor that controls a hypervisor also
controls the virtual machines running on the hypervisor. A typical information flow
is the one between a web server and the database server with information the server
accesses. An actor that controls the source of an information flow, the webserver in

@ Springer



218 F. Baiardi, F. Tonelli

the example, can transmit malicious information to the flow destination, the data-
base server in the example.

The Haruspex platform collects the information to build the infrastructure twin
by deploying active and passive sensors in the target infrastructure. The platform
uses information from these sensors to populate the module database. Then, it builds
the vulnerabilities database by accessing the Common Vulnerability Exposure data-
base and the National Vulnerabilities Database (CVE https://cve.mitre.org; National
Vulnerability Database, https://nvd.nist.gov/). The platform matches the vulnerabil-
ity descriptions in these databases against some predefined patterns to extract attack
attributes such as pre and post-conditions and the success probability. The emulation
determines the success or the failures of an attack according to a probability distri-
bution that depends upon the attributes of the attack and those of the actor twin.

4.2 Automated Adversary Emulation and Actor Twins

The Haruspex platform adversary emulation mimics the action of an actor to under-
stand how they affect the infrastructure and improve its robustness. Hence, the
abstraction level of the actor twin and its attributes should enable the emulation to
reproduce any of these actions.

Attributes of an actor twin describe the actor attack surface, the resources it can
access, its goals if any, and the information on the infrastructure the actor knows
before starting its attacks. A critical attribute for the emulation is the strategy to
select the action of an actor at a given time. For a fixed actor this strategy is very
simple because it sequentially executes attacks in a predefined order independently
of the target vulnerabilities. Hence, the emulation of these actors is not complex and
their twin simply describes the attack sequence and the initial nodes that execute the
actor.

The emulation of an adaptive actor is much more complex because the platform
mimics the strategies it applies to select and execute an action and it determines the
result, success or failure, of an action. Possible actions for an adaptive actor include,
at least:

(a) collect information on the target infrastructure,

(b) select one of the possible attacks,

(c) select a target for the attack,

(d) implement the selected attack and handle its success or its failure.

When selecting an attack and a target, the infrastructure vulnerabilities and the
current actor privileges constrain the possible choices of the strategy. Some strat-
egies privilege attacks with a large success probability, while others prefer those
returning the largest number of privileges. The strategy to handle an attack failure
may repeat the attack or select another one. Distinct actors apply alternative strate-
gies which, in turn, result in distinct sequences of actions. As an example, an insider
already knows some information on the target infrastructure and so it can privilege

@ Springer


https://cve.mitre.org
https://nvd.nist.gov/

Twin Based Continuous Patching To Minimize Cyber Risk 219

the selection and execution of an attack. Instead, an external attacker needs at first
to collect some information to choose the best attack. Hence, this actor first discov-
ers the IP addresses of some nodes and scans them for vulnerabilities. Some actors
privilege the collection of information to acquire enough knowledge on the infra-
structure to maximize the probability of selecting useful attacks only. Instead, other
actors immediately attack a component as soon as they discover some enabling vul-
nerabilities at the expense of executing a useless attack.

The emulation of an adaptive actor can be described in terms of transitions of
a finite state automaton where the state corresponds to the actor security state, the
privileges, and the information on the infrastructure resulting from the previous
actions of the actor. State transitions depend upon the strategies of the actor. The
platform uses a distinct automaton for each actor twin.

A platform to automate adversary emulation should offer several alternatives for
the mentioned strategies. As an example, the Haruspex platform can emulate, among
others, actors that select attacks randomly and those that privilege, respectively, the
attack with the largest success probability and the one returning the largest num-
ber of privileges. Another strategy ranks attacks according to their cost-performance
ratio that depends upon the number of access privileges the attack grants and its
success probability. Both deterministic and probabilistic strategies are supported and
where the probabilities of selecting an action/a target may depend upon the security
state.

The final output of adversary emulation in a (simulated) time interval is either an
attack path, if the twin has reached one of its goals, or a failure. This assumes the
platform updates the simulated time according to the time it takes to execute each
action or to implement an attack. This time is a further output of the vulnerability
analysis previously discussed.

Since the platform simulates both the success or the failure of an attack and how
the actor handles a failure, the output of a single emulation is stochastic as it depends
on both attack failures and how the actor handles this failure. Furthermore, distinct
emulations of the same actor may discover distinct paths. Hence, in the following,
we use actor simulation rather than emulation.

Information to build the actor twins may be the output of threat intelligence (Bar-
num 2012; Brown et al. 2015; Tounsi and Rais 2018) or the result of worst-case
assumptions. As an example, there are theoretical results on the most effective strat-
egies to select an attack and that correspond to a worst-case for the infrastructure.
The MITRE Att&ck matrix (Strom et al. 2018) is a fundamental source of infor-
mation to model the actors because it is a knowledge base of adversary tactics and
techniques based on real-world observations. We can recover missing or uncertain
information on an actor by emulating distinct actors, each covering a distinct combi-
nation of unknown strategies or parameters to explore the space of possible param-
eters and discover the worst case, i.e., the actor resulting in the larger risk. An auto-
mated adversary emulation can emulate many actors to explore at a low cost and in a
detailed way the space of missing information.

When compared against well-established solutions based upon the Hazop and
the Chazop methodologies, a twin-based automated adversary emulation is focused
not on hazards but on the behavior of a malicious actor that discovers and exploits

@ Springer



220 F. Baiardi, F. Tonelli

vulnerabilities to reach its goals. The proposed emulation requires a larger amount
of information on the actor, but it returns more detailed information on how it can
reach its goals (Cormier and Ng 2020; Dunjé et al. 2010).

4.3 Running Multiple Adversary Simulations

The distinguishing advantage of the Haruspex platform is the ability to run multiple
simulations to discover all the actor paths with any confidence level and without
disturbing the infrastructure. The simulations return a large amount of information
on each actor, such as the information it can collect, the attacks it selects, and the
modules it targets. Further information concerns the probability the actor executes a
path and the path success probability. This information can be used to improve the
robustness and the resilience of the infrastructure.

It can be formally proved that the emulation of the Haruspex platform never
returns a false positive i.e., an attack path that does not exist, provided that all its
input vulnerabilities affect the infrastructure modules. The probability of a false neg-
ative that is the probability the simulations do not discover a path, decreases with
their number. A larger number of simulations improves the confidence level in path
discovery and decreases the probability of a false negative. Our experiments confirm
that in not trivial infrastructures more than one hundred thousand emulations may
be required to reach a confidence level larger than 99% of discovering all the paths.

Both the infrastructure twin and the actor ones can be built from specifications
in the design documentation before building an infrastructure. This supports adver-
sary emulation against an infrastructure still to be deployed to predict its robustness
and resilience and to increase them using the simulation outputs. This satisfies the
security-by-design requirement of some European legislations (Tankard 2016).

4.4 Discovering Any Actor Path

Multiple simulations cannot discover all the paths the remediation policy should
stop even when no false-negative exists because the simulations of an adaptive actor
only discover the paths it implements in the current infrastructure status, i.e., given
the current vulnerabilities and the attacks they enable. Adaptive actors are intelli-
gent, and they will adopt a minimal effort approach. Hence, they will not change
their current paths if they are the most effective ones to achieve their goals. Instead,
an adaptive actor may react to patch deployment by selecting some paths it has pre-
viously neglected due to their low convenience. In brief, an adaptive actor may react
by implementing second-choice paths when patches stop its first-choice ones. Sup-
pose as an example, that at some point an actor A can choose one of A; and A,, two
attacks with the same postcondition but where the success probability of A, is much
larger than the one of A,. If the selection strategy of A privileges success probabil-
ity or the cost-performance ratio, A will choose A; and neglect A,. Anyway, when
a max—min patch set removes the vulnerability enabling A, A will implement the
second-choice path where it executes A,.

@ Springer



Twin Based Continuous Patching To Minimize Cyber Risk 221

The previous discussion shows that to stop all the paths of an actor we have to
discover both first and second-choice paths, stop them, and check by further simula-
tions that no further second-choice plans exist. This is repeated till the actor can-
not implement further paths. For this reason, the Haruspex platform computes the
patches to deploy by iterating three steps:

(a) multiple adversary simulations to discover the paths,

(b) apply the remediation policy to compute the max—min patch set to stop all the
paths the iterations have discovered

(c) update of the infrastructure twin to model the deployment of patches.

The iteration stops as soon as a) does not discover further paths and the plat-
form returns the last max—min patch set the policy has computed. The overall accu-
racy depends upon the confidence level of the simulations in a). A reduction in the
number of simulations in each iteration may not affect the overall confidence level
because an iteration may discover even first choice paths not previously discovered.

Second choice paths show that approaches to discover and stop paths such as pen-
etration tests may be both misleading and ineffective because they discover, at best,
all first choice paths but not second choice ones. Their discovery requires a new
test after deploying the patches. The situation is even worse because some second-
choice plans have a better success probability than first-choice ones (Baiardi 2019).
Hence, patching only the vulnerabilities on the first choice paths a penetration test
discovers can result in the paradox of increasing the actor success probability.

4.5 Computing a Patch Schedule

Formally, if V, and V, are two sets of vulnerabilities and stop(V) denotes the
max—min patch set of V, we have that

[stop(V; U V,)| < [stop(V)] + [stop(V,)](*)

This is the reason why the remediation policy considers all the paths previous
iterations have discovered. This allows the policy to exploit shared vulnerabilities at
best and to minimize the patches to deploy. The policy ranks the patches according
to the success probabilities of the paths they block and their impacts. Usually, this
ranking is not critical due to the low cardinality of a max—min patch set. As detailed
in Sect. 6, experimental data confirm that the average cardinality of the max—min
patch set is at most 5% of the overall number of vulnerabilities. This also implies
that a small number of false-positive vulnerabilities has a neglectable influence on
the number of patches to deploy.

@ Springer



222 F. Baiardi, F. Tonelli

5 Continuous Remediation

The Haruspex platform can support continuous patching by monitoring the infra-
structure and the infrastructure environments to apply the remediation policy and
close the vulnerability window. First, we discuss the changes in the infrastructure
and its environment and then continuous patching.

5.1 Evolution of an Infrastructure and its Environment

An infrastructure evolves by integrating new hardware and software modules or by
deploying newer module versions. Changes may also affect routing or firewall rules.
Active and passive fingerprinting sensors can discover these changes and feed the
information to the Haruspex platform. As an example, an active sensor can scan the
infrastructure at a predefined frequency to discover new nodes and new modules
running on old nodes. Further active sensors may discover updates to the logical
interconnection structure or the physical one. A passive sensor sniffs message traffic
to discover updates to old modules and new ones. Here an address in an IP packet
may reveal the connection of a new node or the creation of a new routing path due to
new routing rules.

Further changes are due to the infrastructure environment because of new vul-
nerabilities or new threat actors. The platform acquires this information from threat
intelligence as well as by monitoring some public and/or proprietary databases. The
probability that a specific vulnerability is discovered and becomes public is almost
unpredictable as it is strongly correlated with the module the vulnerability affects.
As a confirmation, Fig. 1 shows the overall number of vulnerabilities discovered in
the last twenty years according to www.cvecredentials.com.

1999 504
I 2000 1020

M 2001 1677

M 2002 2158

2003 1527

2004 2451

2005 49035

M 2006 3510

M 2007 5520

2008 5632

2009 5728

¥ 2010 4852

W 2011 4155

12174 M 20125207
2013 5101

70 2014 7048

8510 8520 e«.- 8447 2015 8434
529 5101 M 2016 5447

ot 5522 5725 -
- 2158 2451 I l M 2017 14714
it 3'375 I 15" I 2018 16555
2019 12174

Fig. 1 Number of vulnerabilities discovered per year

@ Springer


http://www.cvecredentials.com

Twin Based Continuous Patching To Minimize Cyber Risk 223

Even the number of vulnerabilities discovered in a single module strongly
changes. Consider that for Windows 10 this number jumps from 257 in 2018 to 357
in 2019. A similar jump happens for Windows Server 2016 in the same time frame.
The number of Debian Linux vulnerabilities discovered in 2018 is about three times
those discovered in the previous year.

The previous data and the large differences among the attacks a vulnerability ena-
bles imply that a solution cannot predict when some vulnerabilities become public
to deploy some countermeasures (Leverett et al. 2012). As discussed in the follow-
ing, any decision about the adoption of countermeasures should be fired by the dis-
covery of actual changes according to the risk the owner tolerates.

5.2 Discovering and Stopping New Paths

The Haruspex platform uses information from both the sensors and the vulnerability
databases to update the infrastructure and the actor twins and to fire simulations.
When the simulations discover some new paths, the remediation policy can compute
a max—min patch set immediately or delay the computation, and hence the patch-
ing, after the discovery of further vulnerabilities. Immediate patching closes the
vulnerability window, while a delayed computation of just one max—min patch set
may result in a lower patching overhead than when deploying the sets of patches
returned by multiple invocations of the policy due to property (*) in Sect. 4.4. A
further reason in favor of delayed patching is that experimental data confirm that
threat actors are work averse and tend to exploit a few vulnerabilities for a long time
(Allodi 2021, Allodi 2015 ). Hence, the patching of those few vulnerabilities that
threat actors exploit and are critical for an infrastructure strongly reduces the risk
for a long time. Informally, work-aversion makes it possible to decrease the patching
frequency after stopping current attack paths.

If the owner tolerates a probability 7P,,.. of an actor success, the Haruspex plat-
form can delay the patching of an interval ot if PS(6t), the actor success probability
in 6t is lower than Pt i.e., if

PS(51) < TP

succ

The platform checks this condition through the stress curve (Baiardi 2015) a syn-
thetic evaluation of the infrastructure robustness that it computes through the simu-
lation outputs. The security stress Str g ,, .(?) of an infrastructure S at 7 due to a threat
actor ag with a goal g is defined as the probability that ag reaches g within ¢. The
shape of Str g ,, .(t) depends upon properties of S and how these properties interact
with the strategies and the preferences of ag. Being a probability distribution, Str
$.ag,¢(f) 1s monotone, non-decreasing in 0..t and Str g ,, (7)(0)=0. The stress due to a
set of actors sag is the largest stress due to an actor in sag, i.e.,

StrS,Sag,g(t) = max {StrS,agx,g(t) . agx € sag}
Str g q(1) 18 the worst case for the success probability of ag at ¢ because it

assumes ag starts its attack at 0, while in general ag needs some time to discover

@ Springer



224 F. Baiardi, F. Tonelli

which infrastructures are affected by the new vulnerabilities. Hence, a ¢ delay in the
patching is acceptable anytime that

SIrg sa.0(61) < TP

succ

The platform uses Str g, () to compute the largest delay the owner tolerates.
The assumption an actor starts its attack as soon as a vulnerability becomes public
fails if the actor has an advantage at i.e,. it is informed af units of time before the
owner. Now, a delay 0t is acceptable if

succ

Strg sa,0(61 + at) < TP

As expected, the convenience of immediate patching increases with af and, if it is
very large, patching should anticipate the vulnerability discovery. The only solution
the owner can apply is the k patch policy we previously defined because it stops k
attacks in a path and this decreases the probability that a single vulnerability recre-
ates the path. k increases with at.

6 Experimental Results

We discuss the experimental results of the proposed remediation policy for some
infrastructures. The NDAs with the infrastructure owners prevent a full data disclo-
sure, but we believe the presented results are interesting and confirm the effective-
ness of the proposed approach.

Table 1 shows the results of applying the proposed policy to ten infrastructures
in the last two years. These infrastructures were already deployed and they include,
among others, an ICS to control an energy production system, the one a cloud pro-
vider, a smart factory, and the battlefield of a cyberwar exercise. For each infrastruc-
ture, Table 1 lists:

Table 1 Statistics on the Assessments of Some ICT infrastructures

Vulns Web Vulns Total Attack Paths Max Min ResRisk (%)
Patch size
1 2172 27 15,209 7462 33 0
2 851 245 4235 9428 34 0
3 571 0 2619 6734 122 16
4 6467 0 23,144 43,876 3373 16
5 1049 0 1863 5223 111 0
6 162 390 2496 0 0 0
7 12,446 296 88,051 76,437 2185 18
8 949 0 4284 4122 18 0
9 86 0 1028 8129 30 0
10 89 0 1836 6783 21 0

@ Springer



Twin Based Continuous Patching To Minimize Cyber Risk 225

1. the number of distinct non-web-related vulnerabilities,

2. the number of distinct web-related vulnerabilities,

3. the overall number of vulnerabilities, i.e., the sum of the occurrences of the vari-
ous vulnerabilities,

4. the overall number of attacks paths, including second choice ones,

5. the number of patches to deploy, i.e., the size of the max—min patch set,

6. any residual risk.

The number of threat actors ranges from 6, for the second infrastructure, to 14 in
the last one. Actors differ because of their attack surface and of their strategies.

Some residual risk remains in two cases where no patches were available for
some vulnerabilities i.e., no reduced path exists, see Sect. 3.1. In these cases, the
Haruspex platform suggests alternative countermeasures i.e., a new set of fire-
wall rules or the deployment of a honeypot. In case 6, no patch has been deployed
because no attack path exists. Here, an actor can create a path by stealing some cre-
dentials, i.e., through a phishing message to one of the administrators. The platform
emulates social engineering attacks by describing users and administrators as further
infrastructure modules while their vulnerabilities enable phishing attacks. The suc-
cess probability of these attacks is the one that the user/administrator clicks on the
link in the phishing e-mail. Infrastructure 9 and 10 were in an early development
stage, so both the numbers of distinct and overall vulnerabilities are low. The small
size of the max—min patch set for almost all the infrastructures in Table 1 confirms
the effectiveness of the proposed policy.

An analysis of the number of the public vulnerabilities in these infrastructures
after one year shows the overall number of distinct vulnerabilities increases of a
value in the range from three hundred to one thousand. This results in a high number
of patches to deploy even when adopting a path-based solution. Instead, a continu-
ous assessment spreads this cost among simpler deployments.

7 Conclusion

We have presented a policy that exploits the knowledge of the attack paths of threat
actors to minimize the patching overhead. The Haruspex platform can discover the
information the policy needs through multiple adversary simulations that use the
digital twin of the target infrastructure and those of the actors. The twin detail level
makes it possible to run a large number of simulations in a short time to discover all
the paths with a large confidence level.

Experimental results confirm the large reduction in the number of patches to
deploy that allows the owner to minimize the vulnerability window of the infra-
structure. These results also confirm the effectiveness of continuous remediation to
spread the patching overhead across distinct deployments.

Future work concerns the extension of the number of strategies the platform
supports to cover a larger number of actors. Furthermore, we plan to model the

@ Springer



226 F. Baiardi, F. Tonelli

occurrence of faults in some modules to use the output of the simulation to handle
both malicious actors and random faults.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen
ses/by/4.0/.

References

Allodi L (2015) The heavy tails of vulnerability exploitation. In: Piessens FC, Juan, Bielova N (eds) Pro-
ceeding of Engineering Secure Software and Systems. Springer

Allodi L, Massacci F, Williams J (2021) The work-averse cyberattacker model: theory and evidence from
two million attack signatures. Risk Anal

Applebaum A, Miller D, Strom B, Korban C, Wolf R (2016) Intelligent, automated red team emulation.
In: Proceedings of the 32nd annual conference on computer security. ACM

Applebaum A, Miller D, Strom B, Foster H, Thomas C (2017) Analysis of automated adversary emula-
tion techniques. In: Proceedings of the Summer simulation multi-conference. Soc. for Computer
Simulation Int., p 16

Baiardi F, Sgandurra D (2013) Assessing ICT risk through a Monte Carlo method. Environ Syst Decision
33:1-14

Baiardi F, Coro F, Tonelli F, Guidi L (2013) Gvscan: scanning networks for global vulnerabilities. In:
First international workshop on emerging cyberthreats and countermeasures, Regensburg, Germany

Baiardi F (2015) Haruspex: a suite to assess and manage ICT risk by simulating threat agents. In: Pro-
ceedings of Esrel 2015

Baiardi F, Tonelli F, Bertolini A (2015) CyVar: extending Var-At-Risk to ICT. In: Third international
workshop on risk assessment and risk-driven testing - volume 9488. Springer, Berlin, Heidelberg

Baiardi F (2019) Avoiding the weaknesses of a penetration test. Computer Fraud & Security 4:11-15

Barnum S (2012) Standardizing cyber threat intelligence information with the structured threat informa-
tion expression (stix). Mitre Corporation 11:1-22

Brown S, Gommers J, Serrano O (2015) From cybersecurity information sharing to threat management.
In: Proceedings of the 2nd ACM workshop on information sharing and collaborative security, ACM,
pp 43-49

Chuvakin A, Barros A (2018) Utilizing breach and attack simulation tools to test and improve security,
Gartner

Cormier A, Ng C (2020) Integrating cybersecurity in hazard and risk analyses. J Loss Prevent Process
Industr 64:104044

Dey D, Lahiri A, Zhang G (2015) Optimal policies for security patch management. INFORMS J Comput
27(3):462-477

Dunjé J, Fthenakis V, Vilchez JA, Arnaldos J (2010) Hazard and operability (HAZOP) analysis A litera-
ture review. J Hazard Mater 173(1-3):19

Eckhart M, Ekelhart A (2019) Digital twins for cyber-physical systems security: state of the art and out-
look in security and quality in cyber-physical systems engineering. In: Biffl S, Eckhart M, Liider A,
Weippl E (eds) Security and quality in cyber-physical systems engineering. Springer, Cham

Leverett E, Rhode M, Wedgbury A (2012) Vulnerability Forecasting: in theory and practice. arXiv:2012.
03814

Manzuik S, Pfeil K, Gold A (2006) Network security assessment: from vulnerability to patch. Elsevier

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2012.03814
http://arxiv.org/abs/2012.03814

Twin Based Continuous Patching To Minimize Cyber Risk 227

Martin B (2019) Common Vulnerabilities Enumeration (CVE), Common Weakness Enumeration
(CWE), and Common Quality Enumeration (CQE): attempting to systematically catalog the safety
and security challenges for modern, networked, software-intensive systems. ACM SIGAda Ada Lett
38(2):9-42

Mell P, Scarfone K, Romanosky S (2006) Common vulnerability scoring system. IEEE Secur Priv
4(6):85-89

Mell P, Kent KA, Romanosky S (2007) The common vulnerability scoring system (CVSS) and its appli-
cability to federal agency systems. US Department of Commerce, National Inst. of Standards and
Technology

Mell P, Shook J, Harang R (2016) Measuring and improving the effectiveness of defense-in-depth pos-
tures. In: Proceedings of the 2nd annual industrial control system security workshop (ICSS ’16).
ACM, New York, NY, USA, pp 15-22

Moskal S et al (2018) Cyber threat assessment via attack scenario simulation using an integrated adver-
sary and network modeling approach. J Defense Model Simul 15(1):13

Roytman M, Jacobs J (2019) The complexity of prioritizing after patching. Netw Secur 2019(7):6-9

Sarraute C, Richarte G, Lucangeli Obes J (2011) An algorithm to find optimal attack paths in nondeter-
ministic scenarios. In: Proceedings of the 4th ACM workshop on security and AI, ACM, New York,
NY, USA

Strom BE et al (2018) MITRE ATT&CK™: design and philosophy. Technical report

Tankard C (2016) What the GDPR means for businesses. Netw Secur 2016(6):5-8

Tao F, Zhang H, Liu A, Nee AYC (2019) Digital twin in industry: State-of-the-Art. IEEE Trans Industr
Inf 15(4):2405-2415

Theoharidou M, Tsalis N, Gritzalis D (2013) In cloud we trust: Risk-Assessment-as-a-Service. In: IFIP
international conference on trust management. Springer, Berlin, pp 100-110

Tounsi W, Rais H (2018) A survey on technical threat intelligence in the age of sophisticated cyber-
attacks. Comput Secur 72:212-233

Tripathi A, Singh UK (2011) On prioritization of vulnerability categories based on CVSS scores. In: 6th
International Conference on Computer Sciences and Convergence Information Technology (ICCIT,
IEEE)

Wang L, Jajodia S, Singhal A, Cheng P, Noel S (2014) K-zero day safety: a network security metric for
measuring the risk of unknown vulnerabilities. IEEE Trans Dependable Sec Comput 111:302014

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer



	Twin Based Continuous Patching To Minimize Cyber Risk
	Abstract
	1 Introduction
	2 Computing a Patch Schedule: Current Solutions
	2.1 Terminology
	2.2 Discovering Vulnerabilities
	2.3 Computing a Patch Schedule

	3 An Attack Path Scheduling Policy
	3.1 Classifying Actors
	3.2 Stopping Threat Actors
	3.3 Building a Resilient Schedule

	4 Twin based Scheduling Solutions
	4.1 The Infrastructure Digital Twin
	4.2 Automated Adversary Emulation and Actor Twins
	4.3 Running Multiple Adversary Simulations
	4.4 Discovering Any Actor Path
	4.5 Computing a Patch Schedule

	5 Continuous Remediation
	5.1 Evolution of an Infrastructure and its Environment
	5.2 Discovering and Stopping New Paths

	6 Experimental Results
	7 Conclusion
	References




