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Abstract
Parker (Astrophys J 174:499, 1972) put forward a hypothesis regarding the fun-

damental nature of equilibrium magnetic fields in astrophysical plasmas. He pro-

posed that if an equilibrium magnetic field is subjected to an arbitrary, small

perturbation, then—under ideal plasma dynamics—the resulting magnetic field will

in general not relax towards a smooth equilibrium, but rather, towards a state

containing tangential magnetic field discontinuities. Even at astrophysical plasma

parameters, as the singular state is approached dissipation must eventually become

important, leading to the onset of rapid magnetic reconnection and energy dissi-

pation. This topological dissipation mechanism remains a matter of debate, and is a

key ingredient in the nanoflare model for coronal heating. We review the various

theoretical and computational approaches that have sought to prove or disprove

Parker’s hypothesis. We describe the hypothesis in the context of coronal heating,

and discuss different approaches that have been taken to investigating whether

braiding of magnetic field lines is responsible for maintaining the observed coronal

temperatures. We discuss the many advances that have been made, and highlight

outstanding open questions.
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1 Introduction

A long-standing debate into the nature of equilibrium magnetic fields in

astrophysical plasmas was triggered by Parker (1972). He proposed that if an

equilibrium magnetic field is subjected to an arbitrary, small perturbation, then the

resulting magnetic field will in general not relax towards a smooth equilibrium, if
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the plasma in which the magnetic field is embedded is ideal so that magnetic

reconnection is prohibited (the absence of additional perturbations and the presence

of some damping mechanism are also assumed). He proposed, rather, that the field

should relax towards a state containing tangential magnetic field discontinuities—

thus leading to the onset of rapid magnetic reconnection and energy dissipation.

Parker termed this process ‘‘topological dissipation’’, since its onset is governed by

the field line topology. Parker’s hypothesis—stated more precisely in Sect. 2—has

been referred to variously as the ‘‘Parker problem’’ and ‘‘The Parker Magnetostatic

Theorem’’, amongst other names. It was originally put forward to explain the

absence of observed large-magnitude, small-scale magnetic fields in turbulent

plasmas such as the solar photosphere.

These days, Parker’s topological dissipation mechanism is best known as a key

ingredient in his proposed mechanism for explaining the heating of the solar corona

by ‘‘nanoflares’’ (Parker 1979, 1988). The nanoflare mechanism was proposed as an

alternative to various wave-damping processes, and remains one of the most

promising proposed solutions to the long-standing problem of coronal heating, first

appreciated in the early 1940s. (For a history of the discovery of the hot corona see

the discussions and references in Peter and Dwivedi (2014) and Russell (2018), and

for reviews of our current understanding of the topic see De Moortel and Browning

(2015) and references therein.) There is now little doubt that the coronal plasma is

heated due to the turbulent motions in the convection zone—this energy being

transmitted up to the corona by the magnetic field before being dissipated. Parker

argued that, because the photospheric flows tend to be slow (v� 1�10 km/s)

compared to the communication speed along coronal magnetic field lines

(vA � 1000 km/s), the coronal field should evolve through a sequence of (approx-

imate) equilibria. Due to the small plasma pressure, these equilibria are approximate

force-free fields satisfying ðr � BÞ � B � 0. Now, the idea is that as the field line

footpoints are shuffled around by the photospheric flows, the field topology will

periodically reach a state in which no smooth equilibrium exists. Rather, tangential

discontinuities of the field ‘spontaneously’ form, leading to the onset of energy

dissipation. Each such energy dissipation event is termed a ‘‘nanoflare’’, with the

X-ray corona being formed by a superposition of many such nanoflares occurring

throughout the Sun’s atmosphere. Parker (1988) suggested that a typical nanoflare

should release energy of order 1024ergs or less, with the largest having size less than

1027ergs. Since Parker’s original idea the term ‘‘nanoflare’’ has come to refer to any

small, (observationally) unresolved heating event within a coronal loop, and

substantial efforts have been made to infer the spectrum of nanoflare energies

required to explain the observations (e.g., Reale 2014; Cargill et al. 2015).

In this review we discuss the debate surrounding the topological dissipation

mechanism since it was first proposed by Parker (1979), and the current state of our

understanding. It is worth noting that analogous problems to the existence of smooth

force-free fields exist in other fields of research such as fluid dynamics, with vector

fields satisfying ðr � BÞ � B ¼ 0 often referred to as ‘‘Beltrami’’ fields (see

Sect. 4.1). We also discuss more broadly modelling approaches to understanding

current sheet formation in response to random footpoint motions, and implications
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for coronal heating. The article is organised as follows. In Sect. 2 we state ‘‘The

Parker Problem’’. In Sect. 3 we discuss the energy injection process by footpoint

motions. In Sects. 4 and 5 we present theoretical and computational work on the

existence of force-free fields of arbitrary topology, and various approaches to

demonstrating the formation (or otherwise) of tangential discontinuities in the

geometry of the Parker problem. We go on in Sect. 6 to discuss the energy release

process when magnetic reconnection is permitted to occur in the domain, while in

Sect. 7 we consider formation of current sheets in the complex magnetic field

topology of the corona—when magnetic field structures excluded in Parker’s

original analysis are included. We finish in Sect. 8 with a summary.

2 Statement of the Parker hypothesis

The idea that led to the genesis of ‘‘The Parker Problem’’ is most strongly and

precisely stated by Parker (1994), as the ‘‘magnetostatic theorem’’ (see also the

discussion of Low 2010b). To begin, consider a plasma in force-balance between

pressure forces and magnetic stresses, per

rp ¼ 1

l0
ðr � BÞ � B: ð1Þ

Now, consider such a field in an infinite volume, V, between two parallel, perfectly-

conducting planes, in which all magnetic field lines connect from one plane to the

other. (The normal magnetic field is positive-definite on both planes and no closed

field lines exist in V.) The plasma within V is sufficiently highly-conducting that it

can be treated as a perfectly conducting plasma that evolves according to

oB

ot
¼ r� ðv� BÞ: ð2Þ

The initial equilibrium satisfying (1) is usually taken to be the homogeneous field

B ¼ B0ez and the perfectly conducting boundaries are planes of constant z. We now

consider the perturbation of this equilibrium field by tangential motions on one or

both boundaries. These motions are taken to be smooth and differentiable (in order

to represent, say, flows on the solar photosphere). Since the boundaries are perfectly

conducting, the footpoints of the magnetic field lines are frozen to plasma elements

there. Thus, if the boundary motions are disordered or ‘random’, the magnetic field

lines in V become tangled (see Fig. 1). Some time t ¼ s later, suppose that the

boundary flows stop. The magnetic field in V is now out of equilibrium: we now

allow the field to relax towards a static equilibrium, while holding the magnetic field

line footpoints on the boundaries fixed. Since the plasma is perfectly conducting

there is no magnetic reconnection in V. Thus the topology of the field has to remain

the same (i.e., the magnetic field line connectivity between boundary points is

preserved, as is the relative winding of any pair of field lines). If, however, no

smooth equilibrium of a given topology exists then the process of relaxation must

lead to some form of non-smoothness in the field. Typically in a plasma this non-
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smoothness corresponds to a tangential discontinuity, that is a jump of the tangential

component of the magnetic field across a surface. This corresponds to a singular

current along the surface and hence the name current sheet is used interchangeably.

However, care has to be taken as for many authors a current sheet could also be of

finite thickness (current layer).

Definition 1 (Parker hypothesis, general form) In the above setting the magne-

tostatic theorem (Parker 1994) states that in almost all cases (i.e., for almost all

possible boundary flows) the magnetic field develops tangential discontinuities in V
during the relaxation to static equilibrium, due to the absence of a static equilibrium

that is smooth.

This conjecture by Parker has never been proven or disproven, leading to the so-

called ‘‘Parker Problem’’. One of the principal mathematical difficulties arises from

the need to precisely specify and maintain the magnetic field topology (field line

tangling), as pointed out, for example, by Low (2010b) and Janse et al. (2010).

Note that due to the typically small value of the plasma-b in the solar corona, the

pressure gradient is often omitted from Eq. (1), meaning that the static equilibrium

corresponds to a force-free magnetic field. This gives rise to a stronger version of

the above definition:

Definition 2 (Parker hypothesis, force-free form) For almost all possible boundary

flows the magnetic field develops tangential discontinuities in V during relaxation to

a force-free equilibrium.

For almost all practical applications we are unable to distinguish between the

development of a singular current sheet (tangential discontinuity) and a sufficiently

narrow and strong current layer. Indeed an exponentially growing current would

provide a similarly good argument for the onset of magnetic reconnection in a

Fig. 1 Sketch by E. N. Parker showing the ‘‘arbitrary winding of the field lines’’ in the geometry of the
Parker Problem, beginning with a the uniform field B0, with the field lines becoming ‘‘mixed and
interlaced’’ after a time t in b. Image reproduced with permission from Parker (1994), copyright by OUP
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plasma as the absence of a smooth force-free equilibrium. Thus one could weaken

the above statement to

Definition 3 (Parker hypothesis, weak form) For almost all possible boundary

flows the magnetic field develops current layers in V during relaxation to a (force-

free) equilibrium. The width of the current layers decreases and its strength

increases exponentially with the complexity of the deformation.

This definition requires that we specify what precisely is meant by the

complexity of the deformation. We will make this more precise in Sect. 5.3. For the

moment we just assume that there is a measure of complexity of the boundary

motion defining the deformation, which determines how strong and narrow the

current layers become. The main difference to Definition 2 is that they never

become singular.

The remainder of this article discusses various aspects of Parker’s mechanism for

coronal heating by magnetic braiding. Note that for the majority of this review we

confine our discussions to the geometry originally considered by Parker (as

described above), in which all magnetic field lines connect from one perfectly-

conducting plane to another. In spite of its apparent simplicity, this geometry has

proved the principal focus of studies in the literature, as discussed below. We

emphasise that in this geometry the existence of magnetic nulls, bald patches, and

their associated separatrix surfaces is strictly excluded. The question of current

sheet formation in magnetic fields that include such additional topological

complexity is discussed briefly in Sect. 7.

In Sects. 4 and 5 we look at the different ways in which the above three

hypotheses have been tested. First, in the next section we discuss the background in

the context of the coronal heating problem.

3 Energy injection

In order to maintain the hot corona, sufficient energy must be supplied to balance

the losses due to conduction and radiation. These losses are estimated at around

100 Wm�2 for the quiet Sun, up to around a few times 104 Wm�2 in active regions

(Withbroe and Noyes 1977; Kano and Tsuneta 1996; Schonfeld et al. 2017). It is

generally accepted that the energy source that maintains the corona against these

losses is the solar convection, although how exactly that energy is transported to the

chromosphere and corona and subsequently converted to heat remains a matter of

debate. A clue that the magnetic field plays an important role comes from the

observed correlation between magnetic field strength and temperature within

coronal loops (Fisher et al. 1998; Pevtsov et al. 2003). What’s more, the hottest

loops in active regions appear to be those that have the highest field strengths (being

anchored at one end in a sunspot umbra) while also being subject to perturbations

from convective motions (being anchored at the other end in a penumbral or plage

region), as shown by Tiwari et al. (2017).

As described above, Parker (1972) proposed that the convective motions on the

solar surface tangle the field lines in the corona around one another, increasing the
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magnetic energy which could then subsequently be dissipated as heat. The free

magnetic energy that builds up in the corona is associated with magnetic field

components (B?) perpendicular to the ‘axial’ direction along the coronal

loop. Parker (1988) considered a shear flow applied to a coronal loop, taking

typical values for the magnetic field strength, flow velocity, and loop length of

100 G and 0.5 km s�1, and 100 Mm, respectively. He argued using energy balance

that the average coronal value of the B? field component should be of the order 25%

of the ‘axial’ field along the loop, giving the ‘Parker angle’ of field lines of around

14� to the vertical. It should be noted that this estimate is based on an extremely

simplified flow geometry, and can be expected at best to give a domain-averaged

estimate of B?.
The flow of magnetic energy into (or out of) the solar atmosphere is quantified by

the Poynting flux through the solar surface, obtained by integrating the flux of the

Poynting vector

F ¼ 1

l0
E� B ¼ � 1

l0
ðv� BÞ � B ¼ �ðv � BÞB

l0
þ B2 v

l0
ð3Þ

through the surface, the above equation assuming an ideal evolution on the surface.

The second term on the right-hand side is associated with flux emergence/sub-

mergence, which is excluded from Parker’s model; assuming zero flow through the

solar surface S then the Poynting flux is

FP ¼
Z
S

F � dA ¼ �
Z
S

1

l0
ðvt � BtÞBn dA; ð4Þ

where Bn is the normal component of B to the surface and vt;Bt are the tangential

components of the flow and magnetic field, respectively, and the normal vector to

the solar surface is taken to be upwards. Clearly, this flux may be either positive or

negative depending on the relative orientations of vt and Bt.

One of the inherent problems in coronal physics is that the magnetic field and

flow velocity cannot actually be measured at the coronal boundary, but rather are

measured at the photosphere, below the intervening chromosphere; the nature of the

energy transmission through the chromosphere remains a topic of important study.

This complication notwithstanding, estimates of the Poynting flux through the

photosphere are difficult since measuring the quantities in Eq. (4) with sufficient

accuracy, spatial resolution and cadence remains challenging. Various techniques

do exist that involve reconstructing either the horizontal flows or electric field from

magnetogram and doppler data, that are now becoming more robust (Welsch et al.

2007; Kazachenko et al. 2014).

One approach to the problem of estimating the Poynting flux has been to consider

‘typical’ motions, of either ‘twisting’ or ‘braiding’ type (Berger 1993; Zirker and

Cleveland 1993). From such studies it is argued that certain types of motion are

most efficient at injecting energy into the corona. On the other hand estimates exist

for the Poynting flux based directly on observations. Yeates et al. (2014)

and Welsch (2015) used Fourier Local Correlation Tracking (FLCT) to obtain

photospheric velocities in plage regions, and found net-upward Poynting fluxes of
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around 5� 104 Wm�2, more than sufficient to balance the energy losses as per the

discussion above (see Fig. 2a–c). Welsch (2015) also found that the per-pixel

Poynting flux increased with the measured local magnetic field strength. Yeates

et al. (2014) have compared their estimates with those from convection simulations,

and the fluxes implied by the simulations are found to be slightly higher, but

comparable. Shelyag et al. (2011, 2012) also studied vertical Poynting fluxes in

simulations of the convection zone (see Fig. 2d–f), and identified horizontal

motions of plasma in strong intergranular magnetic flux concentrations as providing

the dominant contribution.

The question whether the stored coronal magnetic energy should in general be

expected to increase in response to random motions (corresponding to net positive

Poynting flux) can also be approached from a topological viewpoint. This stems

from the fact that the tangling of magnetic field lines puts a lower bound on the

magnetic energy (Moffatt 1985). Now, by analogy with the statistics of random

braids, it can be argued that if one applies a random set of motions to the ends of the

field lines, it is more likely that the complexity of the tangling increases (Nechaev

1999). Intuitively, this is because there are are a greater number of paths that lead to

further entanglement than to disentanglement. In other words the probability of

increasing the tangling—and therefore the stored energy—is greater than that of

decreasing the tangling. Since the field lines tend to become progressively more

tangled, then it is to be expected that the free energy of the coronal field should

steadily increase until some threshold for energy release is reached (see later).

All of the above suggests that the Poynting flux through the photosphere is

sufficient to provide the energy to balance the radiative losses of the corona.

However, the mechanism by which the energy conversion takes place, and where

this occurs in the atmosphere, remain open questions. One question that naturally

arises is the extent to which the photospheric motions actually braid the coronal

field lines. Candelaresi et al. (2018) have made a first attempt at addressing this

issue (extending earlier work by Yeates et al. 2012). They used flows extracted

using FLCT of plage-region Hinode/SOT observations (see Yeates et al. 2012, and

references therein), as well as flows taken from the top layer of magneto-convection

simulations. They concluded that the flows from the magneto-convection simula-

tions would induce substantial braiding on a timescale of a few minutes, while for

the flows extracted from the magnetogram series the timescale was around 3 h. It

should be noted, however, that the FLCT may under-estimate the helicity injection

by the flow by as much as an order of magnitude (Welsch et al. 2007). Thus, more

studies of this type with refined data and flow extraction methods are required to

assess the rate at which field line footpoints are tangled by the photospheric flows.

b Fig. 2 a–c Respectively, the large scale magnetogram, a zoom in to the region of interest (with units of

G), and the inferred Poynting flux density (in erg cm�2 s�1). d–f Respectively, the modulus of the
horizontal velocity, the vertical magnetic field, and the Poynting flux density at the photospheric level in
magneto-convection simulations. Images reproduced with permission a–c from Yeates et al. (2014),
copyright by ESO; and d–f from Shelyag et al. (2011), copyright by the authors
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4 Existence and structure of magnetohydrostatic equilibria: theory

4.1 Force-free equilibria: general properties

The original hypothesis by Parker (Sect. 2) was based on an argument against the

existence of equilibria for fields of arbitrary topology. In the following we outline

what is known on the existence and stability of force-free magnetic fields—often

considered due to the small plasma-b in the corona. We begin with some simple

fundamental arguments about the geometry of solutions to the force-free field

equation.

First let us remark that the problem of finding solutions to the equation

B�r� B ¼ 0 ð5Þ

has a long history. It first appeared in fluid dynamics as a condition for a class of

stationary solution to the Euler equation in a paper by Beltrami (1889). Corre-

spondingly, the solutions are also known as Beltrami fields and the particular case of

r� B ¼ aB with a constant is sometimes also called a Trakalian field or linear

force-free field: these are the Eigenfields of the curl operator. One should also note

that the equation

r� BðxÞ ¼ aðxÞBðxÞ ð6Þ

is often used as an equivalent version to (5) although this is strictly speaking not

correct, in that B�r� B ¼ 0 allows solutions where, for instance, r� B has a

non-vanishing value (or even a singularity) at points where B ¼ 0 and hence aðxÞ
does not exist. The original current sheet solution by Syrovatskii (1971) is of this

type. However, as we are interested foremost in the case where B is non-vanishing

in our domain we can work with (6) without restriction of generality. This equation

looks on first sight deceptively simple, but since aðxÞ is a function of the solution it

is a tricky, non-linear partial differential equation. This can be seen by taking the

divergence of (6) to see that the parameter a has to be constant along field lines:

r� B ¼ aB; ) B � ra ¼ 0: ð7Þ

This means that, whenever ra 6¼ 0, field lines lie on flux surfaces of a ¼ const:.
Although the function a, and hence the geometry of these flux surfaces, are part of

the solution of the force-free condition, their mere existence can be a severe

restriction on the topology of the field. In particular, this is the case when we have

recurrent field lines as for instance for a magnetic field in a torus. A simple topo-

logical argument can be used to show that the only closed a ¼ const: surfaces for
fields with B 6¼ 0 are tori (Arnold 1986). This argument is based on the fact that the

torus is the only closed compact surface in R3 with Euler characteristic 0. The

argument extends to the case of magnetohydrostatic equilibria, where field lines lie

on surfaces of constant pressure, which are again constrained to be tori, for rp 6¼ 0.

The typical solution of a force-free field in a toroidal domain (B 6¼ 0) hence has to

consist of regions where the field lines lie on surfaces which are topologically
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equivalent to nested tori. These regions can be separated by surfaces which are not

tori, for which ra ¼ 0. In this geometry any field line is bound to a level surface of

a. This excludes regions of volume filling ergodic field lines, which are a common

phenomenon in fields which have no particular symmetry. Hence, regions with

ergodic field lines can be force-free only with a ¼ const: (Moffatt 1985; Vainshtein

1992). While there are indeed linear force-free fields which show such ergodic

regions (for example the so-called ABC fields), there exist for instance no such

fields in the torus with B 6¼ 0 and zero total helicity (Pontin et al. 2016).

The above considerations provide us with examples of how to prove non-

existence of force-free fields for large classes of fields in a torus, or equivalently a

cylinder with periodic boundaries in the z-direction (see also Tsinganos et al. 1984).

However, this is not the setting Parker addressed. He was considering straightened

out coronal loops, that is a magnetic field B 6¼ 0 with field lines connecting two

opposite boundaries of the domain. In this case the surfaces a ¼ const: end on the

boundaries which is a less restrictive condition than periodicity, and hence the

topological arguments for non-existence given above do not directly apply.

4.2 Linear perturbative analyses

Parker (1972) originally presented his hypothesis by considering small perturbations

of a magnetic field about an equilibrium. Specifically, he took B ¼ B0ez þ bðx; y; zÞ,
with B0 constant, and made a series expansion of b and the pressure p in terms of a

small parameter, �, which is of order jbj=B0:

p ¼
X1
n¼0

�npn; b ¼
X1
n¼1

�nbn; ð8Þ

where r � bn ¼ 0 and jbnj �B0 for all n. That � is small is a result of the assumption

that the footpoint displacements (of order l?) are small compared to the length of

the loop (length of the domain in the z-direction, lz). Inserting into the equilibrium

equation

1

4p
ðr � BÞ � B ¼ rp ð9Þ

and collecting terms in powers of � yields

rp0 þ r p1 þ
B0b1z
4p

� �
� B0

4p
ob1
oz

� �
�

þ r p2 þ
B0b2z
4p

þ b21
8p

� �
� B0

4p
ob2
oz

� b1 � rb1
4p

� �
�2 þ � � � ¼ 0:

ð10Þ

(Note that in this section we use Parker’s original notation in Gaussian (cgs) units to

facilitate comparison with the original paper, as opposed to the SI (mks) units used

above—hence the difference between Eqs. (1) and (9).) In Parker’s analysis,

coefficients of powers of � are set to zero, with the first order term giving
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r p1 þ
B0b1z
4p

� �
¼ B0

4p
ob1
oz

: ð11Þ

Together with r � b1 ¼ 0, Eq. (11) implies r2 p1 þ B0b1z=4pð Þ ¼ 0. Now, since the

length-scale of variations of p1 þ B0b1z=4pð Þ on the boundaries is much smaller

than the loop length, it is argued that the only admissible solution is that

p1 þ B0b1z=4pð Þ is constant throughout the domain (except, perhaps, in a boundary

layer of thickness l?=lz). Inserting back into Eq. (11) shows that ob1=oz ¼ 0. Parker

then goes on to show that obn=oz ¼ 0 for all n. On the basis of this analysis, Parker

(1972) concluded that the existence of a smooth equilibrium requires ob=oz ¼ 0,

where b is the magnetic field perturbation. The natural conclusion is then that any

boundary displacement that is different on the two end-plates, which violates this

condition, does not admit a smooth equilibrium. Similar conclusions were drawn

by Tsinganos (1982).

As first realised by van Ballegooijen (1985), there is an error in the perturbation

expansion outlined above, and used by Parker (1972) to obtain the condition

ob=oz ¼ 0. In particular, van Ballegooijen (1985) argued that the term on the right-

hand side of Eq. (11) is actually of order �. It should therefore show up in the second

order term in the expansion (10) (corresponding terms move from 2nd to 3rd order,

etc.), meaning that Eq. (11) for the first-order term is modified to

r p1 þ
B0b1z
4p

� �
¼ 0: ð12Þ

While we still arrive at the conclusion that p1 þ B0b1z=4pð Þ must be constant, it no

longer follows that ob1=oz ¼ 0. Thus the set of equilibrium solutions is generalised

to include fields that depend on z. Indeed, the analysis by van Ballegooijen (1985)

indicates that the components of the magnetic field perturbation b can be expressed

in a straightforward manner as a function of the boundary displacements. As such—

it is argued—so long as the boundary motions are smooth, a corresponding smooth

equilibrium can be found.

A similar analysis to that of van Ballegooijen (1985) was made by Zweibel and

Li (1987), who considered small perturbations to both a uniform field and a weakly

sheared field (their analysis builds on that of Sakurai and Levine 1981). They use a

Lagrangian approach, writing the magnetic field in terms of the fluid displacement.

This allows the frozen-in condition to be built into the equilibrium equation—

overcoming the major challenge of specifying the topology of the perturbed field.

The method contrasts with the Eulerian approach of van Ballegooijen (1985),

however their conclusion is the same; that the magnetic field resulting from the class

of small perturbations considered is explicitly (and uniquely) determined as a

function of this displacement, and is therefore smooth (the boundary displacement is

assumed to be smooth on physical grounds). Solutions are found to be approxi-

mately independent of z in the majority of the domain, with the notable exception of

thin layers close to the line-tied boundaries, in which much of the stress in the field

is taken up (see also Sakurai and Levine 1981). This conclusion was supported and

expanded upon by Craig and Sneyd (2005), who developed a theory that includes
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arbitrary small footpoint displacements using a Fourier expansion. It should be

noted that the interpretation of these solutions has been called into question by Low

(2010a), though see also Craig (2010). Further examples of smooth equilibria

deriving from small perturbations are presented by Rosner and Knobloch (1982)

and Arendt and Schindler (1988).

One study in which a perturbative analysis does predict the formation of singular

current sheets is the study of Bobrova and Syrovatskii (1979). They considered

perturbations of the one-dimensional force-free magnetic field

B ¼ cosðazÞ; sinðazÞ; 0ð Þ, and demonstrated that the current becomes singular on

certain surfaces in response to rather general boundary displacements in the absence

of plasma pressure. However, it should be noted that the geometry they considered

is very different to the one addressed by Parker’s hypothesis—in particular the

domain is infinite along the direction of the magnetic field, with the perfectly

conducting z-boundaries being tangent to the magnetic field lines.

In summary, various authors have developed solutions demonstrating that the

original argument put forward by Parker (1972) was flawed. These solutions

demonstrate the existence of smooth equilibria for broad classes of small

perturbations to initial force-free fields, in the line-tied geometry envisaged by

Parker (see Sect. 2). However, there remains no universal consensus that this rules

out current sheet formation for generic small perturbations (e.g., Parker 2000; Low

2010b). It is also worth noting that while many of the linear analyses mentioned

above demonstrate the existence of neighbouring smooth equilibria, they fail to

address either the stability of these equilibria or their dynamic accessibility from the

initial (unperturbed) equilibrium. As such they do not preclude the formation of

current sheets during a dynamic evolution when the associated perturbations are

applied. Assessing these issues requires a different approach to those described

above, as discussed in the following sections.

Moreover, referring to the studies of van Ballegooijen (1985), Zweibel and Li

(1987) and others, Parker (1994) notes that ‘‘the known continuous equilibrium

solutions involve either only weak deformation of the field from a uniform state ...or

a symmetry, degeneracy, or invariance (ignorable coordinate) of some form’’. This

is suggestive of a reformulation of the problem; that tangential discontinuities are

expected to form when the footpoint displacements are of sufficient amplitude and
complexity. As noted by Craig and Sneyd (2005), ‘‘this caveat means that the

magnetostatic theorem no longer admits a precise mathematical statement’’, making

it difficult to unequivocally prove/disprove. In the following sections we turn to the

case of finite-amplitude footpoint displacements.

4.3 Arguments against the existence of smooth equilibria

4.3.1 Parker’s optical analogy

A persuasive intuitive argument for the formation of tangential discontinuities was

put forward by Parker, by means of the optical analogy (Parker

1989a, b, 1991, 1994). This optical analogy is based on the notion that a field

123

The Parker Problem Page 13 of 54 5



line in a potential field takes the same path xðsÞ as an optical ray in a medium with

index of refraction equivalent to jBj:
dxi
ds

¼ 1

n

ow
oxi

; ð13Þ

where in the magnetic field case B ¼ rw, n ¼ jBj, in the optical case w is the phase

of the electromagnetic wave and n is the index of refraction, and in both cases s is
the arc-length along the path. This optical analogy is outlined below for the case of a

force-free field. In such a force-free field

r� B ¼ aB; B � ra ¼ 0; ð14Þ

and flux surfaces of the magnetic field and the current density are coincident. Now,

consider a flux surface of r� B. On such a flux surface r� B � n ¼ 0, where n is

the normal to the flux surface, and therefore by Stokes’ theorem
H
B � dl ¼ 0 for any

closed curve lying in the flux surface. This in turn means that in this surface B can

be represented by a (two-dimensional) potential. Note that Parker supposes that the

optical analogy applies only locally to flux surfaces—the global existence of such

surfaces is far from assured, particularly in periodic geometries. Thus the path of the

field lines in the flux surface is determined by Eq. (13).

Now, in optics, Fermat’s principle states that the optical length of a path followed

by a light ray between two points is an extremum, where the optical length is the

integral of the refractive index along the path. By analogy, it is argued, magnetic

field lines in the flux surface should take the path that minimisesZ
jBðsÞj ds: ð15Þ

In order to do this, field lines should tend to avoid regions of high magnetic field

strength. If the field strength is sufficiently high in some location on the flux surface,

it is expected that field lines can be completely excluded from this region, effec-

tively forming a ‘hole’ in the flux surface. This hole allows two bundles of magnetic

flux that are elsewhere separated by the flux surface to come into contact (across the

hole), and presumably the directions of the field lines in these bundles may not

match, leading to a tangential discontinuity—see Fig. 3.

Parker has developed various example of holes or exclusion zones in flux

surfaces based on the use of Fermat’s principle, for imposed local maxima of jBj
with various different geometries (Parker 1989b, 1994). However, while Parker

argues persuasively that tangential discontinuities should form on the basis of these

considerations, the fact that the field strength is specified a priori in the equilibrium

with a particular distribution makes any direct verification of the proposition

difficult to test. One concrete example is presented in Parker (1990); however, it

does not conform to the geometry of the Parker problem, since lateral boundaries

(perpendicular to the line-tied z-boundaries and parallel to B) are assumed to

provide an external pressure force (i.e., these lateral boundaries are ‘‘squeezed in’’

in some range of z between the line-tied boundaries in order to provide a magnetic

field enhancement).
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4.3.2 Work of Low et al. on ‘‘topologically untwisted’’ fields

In a series of papers, Low (2006), Low and Flyer (2007), Janse and Low (2009) and

Janse et al. (2010) considered what they describe as ‘‘topologically untwisted’’

fields (the former two papers dealing with the field outside a sphere and the latter

two the field in a cylinder as per Parker’s hypothesis). These are fields for which the

net circulation on any flux tube cross-section is zero, and thus they are either

potential fields or fields in which the current is confined to sheets of zero thickness

(tangential discontinuities). Janse and Low (2009) focus on the field inside a

cylinder with perfectly-conducting boundaries and zero flux through the curved side

boundary. They begin with a potential field in the volume and perturb the system by

shrinking the length of the cylinder while maintaining the boundary distribution of

B � n. They then crucially argue that since the field is topologically untwisted, and

since no twist has been applied via the boundary perturbation, then the field must

remain topologically untwisted. They proceed to calculate the new potential field in

the compressed volume for specific examples and demonstrate that its topology is

not the same as that of the initial field. Thus, they argue, if a relaxation ensues in

which the topology is preserved, current sheets must form. However, Aly and

Amari (2010) have questioned the assumption in this argument that the field must

remain topologically untwisted. Indeed two counter-examples have been presented

that suggest that the field can in general relax to a smooth equilibrium that is not

topologically untwisted, but rather contains a distributed current—the first of these

is based on a linear expansion scheme in 2D by Huang et al. (2009) (which, as

Fig. 3 Illustration of the ‘‘optical analogy’’, after Parker (1994). a, b Field lines are refracted away from a
local maximum in the magnetic field strength (ellipse centred on the y-axis). In b the maximum is
sufficiently strong to form a hole or exclusion zone for field lines in the surface. c ‘Hole’ formed in a stack
of flux surfaces, through which field lines on either side of the stack may meet to form a tangential
discontinuity

123

The Parker Problem Page 15 of 54 5



pointed out by Janse et al. (2010) does not strictly contradict the claim of Janse and

Low (2009) for fully 3D fields) and the second for the fully 3D field of Janse and

Low (2009) by Pontin and Huang (2012) using a magneto-frictional simulation (see

Sect. 5.2).

4.3.3 Uniqueness of equilibria in reduced MHD

Another argument in support of Parker’s hypothesis (general form, Definition 1)

was put forward by Ng and Bhattacharjee (1998) who made use of the Reduced

MHD (RMHD) approximation (see Sect. 6.3.1). They exploited the parallel

between the RMHD equations and the 2D Euler equation in hydrodynamics to

prove the theorem: ‘‘For any given footpoint mapping connected smoothly with the

identity mapping ...there is at most one smooth equilibrium’’. They point out the

important implications for a smooth but unstable equilibrium: specifically that

following loss of stability the system must relax towards a non-smooth state, the

unique smooth state being the unstable one. They also demonstrate that this

relaxation towards a non-smooth state—in which the field is not it equilibrium in the

vicinity of the current sheets (regions of non-smoothness)—nevertheless can in

principle minimise the magnetic energy. It is worth noting that the proof of the

above theorem relies on the approximations of RMHD (see Sect. 6.3.1) and triply-

periodic boundary conditions, and therefore the implications for the full MHD

system with line-tied boundaries are unclear. Indeed, often equilibria obtained in the

full MHD system exhibit boundary layers that are incompatible with the RMHD

assumptions (see Sect. 4.2). While the uniqueness of smooth equilibria in a system

governed by the full MHD equations has not been demonstrated in general, what has

been shown for certain boundary conditions by Aly (2005) is that there is no

smooth, force-free field topologically equivalent to the uniform field, other than the

uniform field itself.

4.4 Arguments in favour of smooth equilibria

The studies described above in Sect. 4.3 address existence of equilibria in certain

classes of field, but a general statement regarding the conditions for the absence of

an equilibrium remains elusive. In this section we turn to arguments against the

general form of Parker’s hypothesis.

4.4.1 Rigorous, general results on the existence of force-free fields

There are very few general results concerning the existence of force-free fields. The

strongest statement so far made is due to Bineau (1972). In that work, an iterative

scheme is constructed for obtaining a magnetic field B in a domain D satisfying

123

5 Page 16 of 54 D. I. Pontin, G. Hornig



r � B ¼ 0; r� B ¼ brB; B � rr ¼ 0; in DðB; S1Þ;
r � B ¼ 0; r� B ¼ 0; in D� DðB; S1Þ;
n � B ¼ ~Bn; on S;

r ¼ ~r; on S1;

where S is a surface with normal vector n that is transverse to the field lines, S1 is a
connected part of S on which the normal component of B is strictly greater than

zero, b is a dimensionless constant, ~Bn and ~r are given functions, and DðB; S1Þ is
the sub-volume of D that is permeated by the magnetic flux passing through S1.
Following construction of the iterative scheme, the question of existence of a force-

free field as per the above equations becomes a question of whether the iteration

converges. The iterative scheme involves adding successive perturbations to a

potential field B0, and the convergence criterion then turns out to involve parameters

including the strength of this field, the modulus of r and its derivatives, and the

maximum length of field lines within DðB; S1Þ. The upshot is that the iteration

converges for sufficiently small b. The conclusion is that for any potential field B0

in D and any given ~r on S1 ‘‘there exists a family of force-free fields in D that

depends analytically on the parameter b in the neighborhood of b ¼ 0’’ (Bineau

1972). In one sense this is a powerful result: it means that force-free fields of

arbitrary topology satisfying r� B ¼ aB exist for sufficiently small a in a

geometry consistent with the Parker problem. Note that since a is not dimensionless

we can always scale the domain (in the z-direction in Parker’s geometry) to make,

for any given fieldline mapping, a as small as we like. However, what we still do not

know is how close to the potential field we must be. Or in other words, how large is

the range of a, in the vicinity of zero, within which force-free fields are guaranteed

to exist, and how does this depend on the field topology or other factors?

There do exist some general existence and stability results for the restricted case

of linear (or constant-a) force-free fields in a half-space (Aly 1992). However, such

linear force-free fields are not relevant to the complex field of the solar corona. Aly

(1990) derives sufficient conditions for linear ideal-MHD stability of general force-

free fields, again in a half-space—loosely speaking that the product of the force-free

parameter a and the characteristic length scale of the field should be order-1 or

smaller. Examples of exact force-free equilibria with complex 3D topology have

been presented by Bogoyavlenskij (2000a, 2000b). However, as argued by Parker

(2000), this does not itself imply that such smooth equilibria exist in general for

arbitrary field topologies.

One of the principal reasons why a general proof regarding the existence or

otherwise of equilibria in the Parker problem remains so challenging arises from the

need to precisely specify and maintain the magnetic field topology while solving the

force-free equations (see, e.g., Low 2010b). Indeed, Parker (1986) argued that the

requirement to simultaneously satisfy J� B ¼ 0 and the requirements for a given

topology (field line connectivity) in general leaves the mathematical problem over-

specified—or in other words that the two requirements are in general mutually

incompatible. However, this claim was refuted by Antiochos (1987), who
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considered the relative winding of field lines about one another in a half-space

above a line-tied photosphere, using an Euler-potential representation of the coronal

field: B ¼ ra�rb (note that while this geometry is closer to that in the corona, it

is not the same as the standard Parker problem as defined in Sect. 2). He showed

that the net winding of all field lines about a given coronal field line is entirely

specified by the boundary conditions (boundary distributions of a and b). Thus, he
argued that the topological constraints on the coronal field are included in the

boundary conditions, and do not provide an extra constraint on the solution of the

force-free equations, meaning that the problem of finding a solution is not a priori
over-specified (as had been argued by Parker 1986). The existence of a solution to

those equations, however, is not directly addressed. In the following section, we

describe another argument against the formation of tangential discontinuities in the

volume in response to smooth boundary motions.

4.4.2 Permissibility of tangential discontinuities

Several authors have asserted that the formation of tangential discontinuities as

predicted in Parker’s hypothesis is inadmissible in the line-tied geometry in

question. The argument, which we present in the following, appears in slightly

different forms in the papers by van Ballegooijen (1985, 1988a); Longcope and

Strauss (1994), and Cowley et al. (1997). We follow most closely the latter. We

proceed by assuming that a current sheet forms, and showing that this leads to a

contradiction. This current sheet is represented in Fig. 4. Consider the two magnetic

field lines, along the paths labelled C1 and C2, that are immediately on either side of

this sheet (for concreteness, field line ‘1’ is in front of the sheet from the perspective

shown, field line ‘2’ is behind). These field lines are chosen such that they are

infinitesimally separated on the z ¼ 0 line-tied boundary. Now, since the boundary

flows are assumed to be smooth, these two field line footpoints must also have been

Fig. 4 Schematic of a current
sheet (light shaded) in a
magnetic field between line-tied
perfectly-conducting boundary
plates at z ¼ 0;L (dark shaded).
On the front side of the current
sheet the magnetic field is B1

and a representative magnetic
field line follows the path C1.
Behind the current sheet,
B ¼ B2, and a field line
following the path C2 is
displayed
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infinitesimally separated at t ¼ 0 (i.e., in the initial equilibrium). But since the initial

equilibrium has a simple topology the footpoints of these field lines at z ¼ L are

infinitesimally separated at t ¼ 0. Finally, invoking again the smooth nature of the

boundary flows (this time at z ¼ L), the field line footpoints remain infinitesimally

separated at z ¼ L, like at z ¼ 0, for all times.

The next step of the argument relies on the result, presented by Cowley et al.

(1997), that in a force-free field the current flows entirely along the current sheet and

never leaves it, and therefore the current path on a finite, simply-connected sheet

must close. Thus, I
B � dl ¼ 0 ð16Þ

for any closed loop on either surface of the current sheet—either in front or behind

in the perspective of Fig. 4 (true so long as the loop does not cross over the sheet).

To construct such a closed loop, define C02 to be a path that runs along C2 but on the

same side of the sheet as C1. Similarly, define C01 to run along C1, but on the same

side of the sheet as C2. Now consider the loop integral of B along the path comprised

of C1 and C02. This path remains everywhere in front of the sheet, and is parallel to B

along C1, but is not parallel to B along C02. ThereforeI
B � dl ¼

Z
C1
B � dl�

Z
C02
B � dl ¼

Z
C1
B1ðlÞdl�

Z
C02
B1ðlÞ � B̂2ðlÞdl ¼ 0; ð17Þ

the final equality holding due to condition (16), and the ‘hat’ denoting a unit vector.

Similarly, considering a loop behind the current sheet,

I
B � dl ¼

Z
C2
B � dl�

Z
C01
B � dl ¼

Z
C2
B2ðlÞdl�

Z
C01
B2ðlÞ � B̂1ðlÞdl ¼ 0: ð18Þ

Now, across a tangential discontinuity jBj does not change (Landau and Lifshitz

1960), so that jB1ðlÞj ¼ jB2ðlÞj ¼ BðlÞ. Then, adding Eqs. (17) and (18) we have

I
C1þC2

BðlÞ 1� cos hðlÞð Þ dl ¼ 0; ð19Þ

where hðlÞ is the angle between B1 and B2. The integrand is everywhere greater than

zero, so the only way this equation can hold is if cos h ¼ 1 all along the field line,

i.e., h ¼ 0. This contradicts the presence of a tangential discontinuity, and we

conclude that no such current sheet can exist.

The above argument appears to rule out the formation of tangential disconti-

nuities in response to smooth boundary driving. While they are based on force-free

fields, the argument was extended to the case of finite pressure by Field (1990).

However, Ng and Bhattacharjee (1998) have pointed out that this argument applies

only to current sheets with simple structure. They present an example of a current

sheet that exhibits a ‘branching’ geometry, for which the above argument cannot be

applied (in a cross-section through the sheet at constant z it exhibits a ‘Y’-type

geometry). Cowley et al. (1997) admit that the above argument does not hold for
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current sheets of arbitrary topology, but attest that current sheets of ‘‘arbitrarily

complicated geometries’’ are ‘‘pathological’’, and should not be expected in

practice. This claim is refuted by Ng and Bhattacharjee (1998), who argue that

confining considerations to only current sheets of simple topology is ‘‘over-

restrictive’’. Chapter 8 of Parker (1994) discusses the formation of current sheets

with non-trivial topologies by means of the optical analogy (see Sect. 4.3.1).

In conclusion, it appears that the simplest, topologically-planar, tangential

discontinuities are prohibited from forming in response to smooth boundary motions

in an ideal plasma. However, current sheets with more complicated topologies—

e.g., branching—may perhaps arise. It is worth noting that the above proof assumes

the absence of certain structures in the equilibrium magnetic field. In particular, we

assumed that field lines whose footpoints are infinitesimally separated at one end

must have footpoints infinitesimally separated at the other end as well. This implies

no discontinuities are present in the field line mapping, i.e., there are no null points

or separatrix surfaces in the volume. Similarly, strong gradients could be present in

the mapping, indicating the presence of quasi-separatrix layers. These features are

explicitly excluded in Parker’s original hypothesis, though we will consider their

importance further in Sect. 7.

4.4.3 Ideal instabilities in the presence of line-tying

One way to form current sheets in a 3D geometry is through an ideal instability.

Two prime candidates are the coalescence instability (with a guide field) of flux

tubes (Finn and Kaw 1977) and the ideal kink instability (Kruskal et al. 1958; Hood

and Priest 1979). In the absence of line-tying in both cases (i.e., when the system is

periodic or invariant in the ‘guide field’ direction), singular current sheets form; at

X-points of the in-plane field for the coalescence instability and on resonant surfaces

for the ideal kink. Reasoning along the lines described in the previous section,

Longcope and Strauss (1994) considered the coalescence instability, arguing that the

introduction of line-tying in the guide field direction (thus placing the system within

the Parker problem geometry) inhibits the formation of singular current sheets. They

showed that the singular current sheets are replaced by intense but finite current

concentrations. These tend to form with a perpendicular length-scale set by the field

line mapping—see discussion and references in Craig and Pontin (2014).

Similar conclusions have been drawn regarding the effect of line-tying on the

kink instability, at least in the linear phase. Specifically, in the line-tied system a

current layer still forms at the radius that corresponds to the resonant surface in the

infinite/periodic system. However, the thickness of the current layer scales inversely

with the distance between the line-tied boundaries, and the growth rate of the

instability is reduced—see Huang et al. (2010) and references therein. This is shown

to be because—in the absence of a resonant surface—while the internal layer

associated with the fastest-growing eigenfunction persists, it is smoother than its

periodic counterpart. As pointed out by Huang et al. (2010), the issue of current

sheet formation in the non-linear phase of the instability is not fully resolved.
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5 Existence and structure of magnetohydrostatic equilibria:
computational approaches

5.1 Ideal relaxation

In the foregoing sections, mathematical results on the existence and structure of

magnetostatic equilibria have been discussed. In this section we turn to a

computational approach for assessing this problem. In particular, the methods

discussed in this section ask the following question: For a given magnetic topology,

does a smooth equilibrium exist? This is approached by means of an ideal

‘‘relaxation’’ in which at t ¼ 0 a non-equilibrium magnetic field with a chosen

topology is taken, and the forces or free energy are then minimised in search of a

corresponding equilibrium, while preserving this topology. These forces may be

minimised by following various different evolutions. Considering the problem as a

‘thought experiment’ the details of this evolution are unimportant: the question at

hand is the existence and structure (e.g., smoothness) of the final equilibrium for the

given topology—and perhaps also its stability properties.

One such approach is described in Chodura and Schlüter (1981) and Moffatt

(1985). The method is based on an ideal evolution of the magnetic field

oB

ot
�r� v� Bð Þ ¼ 0; ð20Þ

where the velocity is obtained from

v ¼ cðr � BÞ � B: ð21Þ

Here c is a scaling factor that can be absorbed into the artificial time of the evo-

lution. Since the change of magnetic energy W in the volume V is given by

dW

dt
¼ �

Z
V

F � v d3x ¼ �c
Z
V

ðr � BÞ � Bð Þ2 d3x; ð22Þ

it is obvious that the magnetic energy decreases monotonically and this process

comes to a halt only when v ¼ cðr � BÞ � B ¼ 0, that is when a force-free field

has been reached. Thus, the relaxation should produce a force-free field if the limit

of B for t ! 1 exists. However, no proof of convergence exists, and the coun-

terexample from above of an ergodic field with zero total helicity shows that in

some cases the method can fail to converge to a smooth (i.e., sufficiently differ-

entiable) field. This failure to converge can occur in various ways. It could be that

no stationary limit is obtained or that the limit is not a smooth field. The latter, in

turn, could include the possibility of current sheets. Various implementations of this

method exist and are discussed in Sect. 5.2. The main problem of this method is that

it requires a numerical solution. However, while there are recognised criteria for

identifying a smooth solution, it is much more difficult, or practically impossible, to

prove the absence of a smooth solution.
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5.2 Computational approaches: ideal relaxation

5.2.1 The computational challenges

Direct computational assessment of Parker’s hypothesis brings a number of

challenges. Foremost among these is the requirement to precisely maintain the

magnetic topology during the simulated evolution, i.e., precisely maintain the

magnetic field line mapping between the two line-tied boundaries. Typical

computational approaches to solving the MHD equations employ finite differences

on an Eulerian mesh. In such approaches the numerical diffusion is never identically

zero, so that there is a finite ‘slippage’ in the magnetic connections between

boundary points. This is exacerbated when structures form on the grid scale, as by

definition they must if current sheets (or indeed thin, finite, current layers) form.

In the following sections two methods are described which seek to mitigate

against these difficulties. However, in all cases the representation of current

singularities remains problematic. Typically, in order to test the fidelity of a

numerical simulation one would look for convergence with increasing numerical

resolution. However, this convergence cannot occur in the case of a current sheet:

instead the maximum current density represented on the grid will diverge. The rate

of this divergence may be determined by the geometrical structure of the singularity,

its strength, and the grid geometry. This is discussed further below.

5.2.2 Lagrangian magnetofrictional approaches

Under ideal MHD the vector B=q evolves according to the equation

D

Dt

B

q
¼ B

q
� r

� �
v ð23Þ

where D/Dt is the material derivative, q is the plasma density and v the plasma

velocity (this follows from the ideal induction equation (2) and mass conservation).

This is identical to the evolution equation of a line element dx in a flow (see,

e.g., Moffat 1978). Thus, in order to tackle the problem of exactly preserving the

magnetic topology, it is most convenient to use a Lagrangian description of the

fluid, in which computational grid points are fluid elements. Now, suppose that the

position vectors of these fluid elements (which are assumed to move in time) are

represented by xðX; tÞ, where xðX; 0Þ ¼ X. The modified ideal induction equation

(23) implies that the magnetic fields at time t ¼ 0 and at t[ 0 are related by the

pull-back under the mapping xðX; tÞ:

x�ðBðx; tÞ; tÞ ¼ BðX; 0Þ ð24Þ

(Candelaresi et al. 2014). This is a modern formulation of Alfvén’s Theo-

rem (Alfvén 1943). Using the definition of the pull-back on Eq. (24), the magnetic

field components Biðx; tÞ at t[ 0 can be expressed in terms of the magnetic field

components at t ¼ 0 and the mesh deformation:
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Biðx; tÞ ¼
1

D

X3
j¼1

oxi
oXj

BjðX; 0Þ: ð25Þ

Here D is the determinant of the Jacobian matrix oxi=oXj and measures the local

fluid compression/expansion. Now, assuming an evolution equation for the positions

of the fluid elements (grid points), these positions become the primary variables of

the computation: the magnetic field is subsequently calculated via Eq. (25). This

avoids the requirement for an explicit equation for the magnetic field evolution, the

solution of which leads to the accumulation of ‘errors’ in the magnetic topology

conservation (i.e., leads to ‘field line slippage’). The Lagrangian method thus pre-

serves the topology of field lines exactly [through Eq. (24) or (25)] as well as the

magnetic flux through each surface element of the grid. Additionally, r � B ¼ 0 is

automatically preserved. The aim then is to employ a suitable method to update the

positions of the grid points in such a way as to redistribute the magnetic stresses and

thus obtain an equilibrium (see Fig. 5).

It remains to decide upon an appropriate evolution equation for the mesh points

(equivalently for the fluid velocity). One approach that has been used extensively is

to employ a ‘‘magneto-frictional’’ evolution as discussed above to move towards an

Fig. 5 Illustration of the Lagrangian relaxation computational approach, showing some representative
grid lines (grey) and magnetic field lines both prior to relaxation (left), and in the numerically obtained
equilibrium (right). The grid deforms to allow field lines to equilibrate the twist/stress along their length.
Based on the simulations of Wilmot-Smith et al. (2009a)
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equilibrium. The first implementations of the method were made by Craig and

Sneyd (1986) and Longbottom et al. (1998), while a similar approach was taken by

Yang et al. (1986), who applied a magneto-frictional approach to find equilibria for

magnetic fields represented in terms of Euler potentials. In the magneto-frictional

model the fluid elements are moved in the direction of the force,

Dx

Dt
¼ cF ¼ cðr � BÞ � B�rp; ð26Þ

where c is a scaling factor that can be absorbed into the artificial time of the

evolution. The integrated forces within the domain are then reduced until they fall

below some chosen threshold. Craig and Sneyd (1986) argue that the stability

properties of the resulting (numerical) equilibrium are not affected by the fictitious

evolution.

Implementation of Eq. (26) requires calculation of r� B on the numerical

mesh, which is not rectangular after the initial time. This quantity can be expressed

as a function of the initial magnetic field and grid deformation, analogous to

Eq. (25) (Craig and Sneyd 1986). However, as first realised by Pontin et al. (2009)

small discretisation errors can combine in such a way in this calculation to produce

a current J ¼ r� B that is far from divergence-free, in locations where the

numerical mesh becomes highly distorted. When this happens the relaxation is

compromised: while the numerical value of
R
V J� B d3x can be minimised

indefinitely, the true value of
R
V J� B d3x saturates at some finite level (or indeed

increases). This finding motivated Candelaresi et al. (2014) to develop a new

implementation of the numerical scheme, wherein r� B is calculated using a so-

called mimetic derivative that has the advantage of being (numerically) divergence-

free (Hyman and Shashkov 1997). This alternative implementation1 has been shown

to substantially improve the accuracy of the force-free equilibrium produced,

however is still adversely affected by high mesh distortion, losing numerical

stability when grid cells become concave.

The above limitations notwithstanding, the implementations of Craig and Sneyd

(1986) and Candelaresi et al. (2014) have been used to study the equilibrium

properties of a number of different magnetic topologies relevant to the Parker

problem. These include magnetic fields between perfectly conducting plates that are

subject to coherent shear (Longbottom et al. 1998; Candelaresi et al. 2015) as well

as more complex ‘braiding’ patterns (Craig and Sneyd 2005; Wilmot-Smith et al.

2009a; Pontin and Hornig 2015). These studies concluded that there is no indication

of the formation of singular current layers during the relaxation, despite the range

and complexity of perturbations considered. Instead, smooth current distributions

are present in the equilibria obtained (the peak current converging to a finite value in

convergence studies with the numerical resolution). Interestingly, in many cases the

current density is seen to localise in ever thinner layers as the field perturbation

increases (e.g., Pontin and Hornig 2015), as discussed in more detail in Sect. 5.3.

It is worth discussing briefly here the numerical representation of tangential

discontinuities, on which these claims are based. As mentioned above, with

1 https://github.com/SimonCan/glemur.
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increasing numerical resolution the current density can be expected to diverge in the

presence of a tangential discontinuity. If the numerically represented current density

is J� dB=dx then roughly speaking the jump dB should be constant with increasing

resolution, while dx decreases. For a fixed Eulerian mesh one therefore expects

Jmax / ðdxÞ�1
, whereas for a Lagrangian mesh a compression of mesh points

towards the ‘sides’ of the current sheet can be expected, and flux conservation

arguments show that a power-law dependence on resolution is expected; Jmax /
ðdxÞ�m

(Ali and Sneyd 2001). This type of peak current divergence with resolution

has been reproduced in simulations of null point collapse with the Lagrangian

magneto-frictional methods under discussion (Craig and Litvinenko 2005; Pontin

and Craig 2005; Candelaresi et al. 2015), but is absent in configurations consistent

with the Parker problem.

It should be noted that Low (2013) has raised concerns over the validity of the

magneto-frictional approach, and thus the results derived from these ‘relaxation

experiments’. He argued that the absence of fluid inertia leads to an incompatibility

with the imposed boundary conditions. To test these concerns, Candelaresi et al.

(2015) implemented various different evolution equations in their code as

alternatives to Eq. (26), both for a fluid without inertia (the magneto-frictional

case) and a fluid with inertia. They did not find any indication that the final state of

the relaxation was dependent on the choice of evolution equation, for the range of

configurations considered.

5.2.3 A ‘‘variational integrator’’ method

An alternative numerical Lagrangian mesh approach to seeking force-free equilibria

exists. The mathematical basis of the method is similar to that described above. In

particular, by working with Lagrangian labelling, the frozen-flux condition is built

into the method via Eq. (25). The basis for the equations solved is the Lagrangian

for ideal MHD presented by Newcomb (1962), which in Eulerian labelling is

Lðv; q; p;BÞ ¼
Z

1

2
qv2 � p

c� 1
� B2

2

� �
d3x; ð27Þ

where c is the ratio of specific heats and an adiabatic fluid is assumed such that p=qc

is constant. Writing this in Lagrangian labelling allows conservation laws for mass

and magnetic flux to be built in, and the Euler–Lagrange equation for this

Lagrangian (in the Lagrangian labelling) turns out to be the momentum equation

(Newcomb 1962)

q0 €xi � B0j
o

ox0j

xikB0k

D

� �
þ oD
oxij

o

ox0j

p0
Dc þ

xklxkmB0lB0m

2D2

� �
¼ 0; ð28Þ

where xðX; 0Þ ¼ X, q0 ¼ qðX; 0Þ, p0 ¼ pðX; 0Þ, B0 ¼ BðX; 0Þ, D ¼ det xij as above,
the ‘dot’ denotes a time derivative, and summation over repeated indices is

assumed. Note that in addition to Eq. (25) we have q ¼ q0=D (mass conservation)

and p ¼ p0=Dc. Zhou et al. (2014) describe a numerical method for solving this

equation. They use discrete exterior calculus (Desbrun et al. 2005, and references
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therein) to first discretise the Lagrangian. They then use variational integrators for

the time-discretisation on the Lagrangian directly, with the update scheme for x then
determined from the discrete Euler–Lagrange equation (it is argued that this dis-

cretisation more faithfully preserves the energy than a direct discretisation of

Eq. (28)). Of course, eventually during the relaxation the energy must be damped,

and the authors introduce a friction term �mq _x into the equation of motion for this

purpose.

This variational integrator method has been used to demonstrate current sheet

formation in the 2D configurations of coalescence instability (Zhou et al. 2014) and

the Taylor problem (Zhou et al. 2016). Zhou et al. (2018) have used the method to

study a 3D line-tied plasma in the geometry of the Parker problem. The field they

studied is an extension of the Taylor problem (Hahm and Kulsrud 1985) to a 3D

line-tied geometry, the linear solution to which was given by Zweibel and Li

(1987). This linear solution predicts a current layer of finite width, though Zhou

et al. (2018) point out that with finite amplitudes the solution becomes pathological

for a system length (in the z-direction) exceeding a critical value. They confirm that

the current layer is finite and smooth at short system lengths, but are unable to study

systems beyond the critical length owing to a numerical instability induced by

extreme mesh distortion. They nonetheless speculate that the current layer may

become singular for lengths exceeding the critical value. It should be noted that they

restrict the numerical method to the reduced MHD equations (see Sect. 6.3).

5.2.4 Summary: computational ideal relaxation

A different approach again is taken by van Ballegooijen (1988a, 1988b), once more

based on a Lagrangian approach. A discussion of that study is deferred to the

following section. In summary, computational methods exist for analysis of

equilibrium states for given magnetic topologies via ideal relaxation. However, each

has its limitations, and in particular Lagrangian mesh methods are susceptible to

numerical instability when the mesh distortion becomes too high. While these

methods have been shown to be capable of capturing singular current features in

general, they are yet to find singularity formation in the Parker problem geometry.

5.3 Computational approaches: the case for progressively thinner current
layers

As demonstrated in the preceding sections, there remains no consensus on the

formation of tangential magnetic field discontinuities in the Parker problem.

However, in this section we describe studies which have established that any smooth

equilibrium obtained in the Parker problem geometry will tend to contain current

layers, and moreover that as the magnetic field lines become more tangled, these

current layers become thinner and more intense. Thus, regardless of the existence of

smooth equilibria, Parker’s initial idea—that field line tangling should lead to

intense currents—is conceptually correct. In the following we make this statement

more precise.
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One of the first studies to demonstrate the progressive thinning of current layers

was performed by van Ballegooijen (1988a, b), using a representation of the

magnetic field in terms of Euler potentials; B ¼ rb�rc. In van Ballegooijen

(1988a) it is described how application of a sequence of shear flows with random

strength and direction on one boundary leads to an exponential decrease in length

scales in the field line mapping between the two z-boundaries (length scales of the

functions b and c in this case). Then in van Ballegooijen (1988b) the equilibrium

field corresponding to the state attained following each successive shear is

calculated numerically by an iterative energy minimisation procedure (the topology

being fixed since b and c are held constant on the boundaries). The equilibria thus

obtained are found to contain smooth current layers, though these current layers

become progressively (exponentially) thinner as the number of shears increases.

Similar results were obtained more recently in the reduced MHD framework

by Rappazzo and Parker (2013).

Mikić et al. (1989) expanded upon the studies of van Ballegooijen (1988a, b) by

employing a dynamical approach, using a simplified version of the MHD equations.

In particular they ignored pressure and density fluctuations as well as the inertial

term in the equation of motion, took resistivity to be zero, and imposed a large,

spatially uniform viscosity. They applied a sequence of random shear flows on one

line-tied boundary (the other being held fixed) of a cubic domain discretised with a

mesh of 643 grid points. Consistent with van Ballegooijen (1988a, b) they found that

the current developed filamentary structures, that these structures became

exponentially thinner with time, and that the peak current density grew exponen-

tially with time (see Fig. 6).

Van Ballegooijen (1988b) found that the thickness of current filaments in the

equilibrium field was determined by the field line mapping. The reason why this

must generally be the case was demonstrated by Pontin and Hornig (2015). Their

argument goes as follows. In a force-free field satisfying J ¼ 1
l0
r� B ¼ aB, we

have a constant along field lines (B � ra ¼ 0). Thus, the length scales of a must

correspond to the length scales of the field line mapping (so long as a is not

constant). Now, a ¼ J � B ¼ Jk=jBj, or Jk ¼ ajBj. Therefore Jk inherits the length

Fig. 6 Contours of a ¼ J=B in the midplane of the domain in the quasi-equilibrium attained after (left-
right) 4, 8, and 12 iterations of a simulation. Images reproduced with permission from Mikić et al. (1989),
copyright by AAS

123

The Parker Problem Page 27 of 54 5



scales of a (therefore of the field line mapping), perhaps with a multiplying factor of

the field strength. (However, in the Parker problem geometry the magnetic field

strength is approximately uniform.) The argument can also be extended to fields

close to force-free equilibrium by considering the correlation length of a along field

lines—see Pontin et al. (2016). Pontin and Hornig (2015) demonstrated this theory

by considering the ideal relaxation of a set of braided fields constructed by

superimposing localised regions of twist to a homogeneous background field

(following the approach first taken by Wilmot-Smith et al. 2009a). By choosing

different values of the twist parameter (k, see Fig. 7) they were able to consider

progressively ‘‘more braided’’ fields. This can be quantified by examining

quantitatively the ‘‘squashing factor’’ of the magnetic field, Q (Titov et al. 2002;

Titov 2007), which measures stretching and squeezing under the field line mapping.

Fig. 7 Top: isosurface of the current density modulus jJj at 60% of maximum. Middle: jJj in the plane
z ¼ 0. Below: log10ðQÞ in the plane z ¼ �24. For twist parameter given by a k ¼ 0:5, b k ¼ 0:6,
c k ¼ 0:7. Images modified from Pontin and Hornig (2015)
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As the field becomes more braided, the squashing factor exhibits progressively

larger numbers of thinner layers with higher values of Q (‘‘quasi-separatrix layers’’),

see also Wilmot-Smith et al. (2009b). Pontin and Hornig (2015) showed that the

equilibria obtained following ideal relaxation contained both quasi-separatrix layers

and current layers whose thickness scaled exponentially with the twist parameter

(see Fig. 7). What’s more, the scaling exponents were found to match within the

fitting uncertainty, reinforcing the theoretical arguments of a causal relation.

Thus, the fact that the thickness of current layers within the domain in an

equilibrium is determined by length scales present in the field line mapping has been

demonstrated with different theoretical arguments, and with computations in a range

of magnetic configurations (Longcope and Strauss 1994; van Ballegooijen 1988a, b;

Pontin and Hornig 2015). It naturally follows that, as the photospheric flows

continually perturb the field line footpoints, and field lines become progressively

more tangled, it is inevitable that the current layers within the domain will

eventually become sufficiently thin and intense that rapid energy dissipation will

occur. These arguments provide strong support for the weak form of Parker’s

hypothesis as stated in Definition 3.

6 Reconnection onset and energy release

6.1 Flux braiding simulations

Parker’s idea that the corona is heated by dissipation of current layers formed in

response to field line braiding sparked studies employing a wide range of

approaches. One of these, not discussed so far, involves direct numerical simulation

of the problem. We refer to these computations as ‘‘flux braiding simulations’’.

These studies are summarised in the excellent review by Wilmot-Smith (2015).

The philosophy of the majority of flux braiding simulations is fundamentally

different from the ideal relaxation experiments described in the previous section. In

particular, the focus shifts from the existence or otherwise of a smooth equilibrium,

becoming rather whether formation of current layers (irrespective of whether they

are finite or singular) and plasma heating ensues when time-dependent footpoint

motions are applied. Instead of seeking an equilibrium structure and investigating its

properties, the boundary driving is applied continually with the aim to reach a

statistically-steady state whose properties are examined. In order to mimic the

behaviour in the corona, characteristic timescales of the boundary flows should still

be long compared with the Alfvén crossing time of the ‘coronal’ simulation

domain—however it is worth noting that for computational expediency these

timescales are typically not as well separated in the simulations as they are in

reality.

There are various differences in the approach taken for the different flux braiding

simulations, including between the equations solved (full 3D MHD with either zero

or finite explicit resistivity, or reduced MHD, or variations of these), the form of the

boundary motions applied (shear, rotational, etc.), the domain aspect ratio (from 1:1

to around 1:20), and time dependence of the driver.
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6.2 Continually-driven systems: full MHD

6.2.1 Qualitative description of the energy dissipation

All of the flux braiding simulations described in this section share a common

evolution: following the initiation of the boundary driving, the peak current grows

within the domain, organising into thin layers that form and dissipate at locations

throughout the domain, but that geometrically are always elongated in the z-
direction along the loop, see Fig. 8. Reconnection within these current layers due to

the finite resistivity (either explicit, hyper2, or numerical) leads to dissipation of the

magnetic energy, and a statistically steady state is generally reached, in which the

injection of magnetic energy through the driven boundaries is balanced by the

dissipation within the domain. We begin by discussing studies in which the full set

of resistive MHD equations is solved (to be contrasted with reduced MHD studies in

the following section). Notable variations of the numerical approach are mentioned

during the exposition.

One of the first full-MHD flux-braiding studies was performed by Galsgaard and

Nordlund (1996) who considered shear boundary flows of random phase, duration

and velocity (on both boundaries, between 2 and 40% of the Alfvén speed; see

illustration in Fig. 9a). Most of their simulations were conducted in a unit cube,

although they also considered simulations where the box length in the z-direction
was increased by a factor of 10. The authors used a hyper-resistivity coefficient that

depended of the grid resolution, and they considered resolutions between 243 and

1363. Some typical current distributions from these simulations are shown in

Fig. 8a.

One of the main findings of these simulations is that the free magnetic energy in

the domain (energy in excess of the unperturbed, uniform field) depends strongly on

the mean driving velocity: when this is 2% of the background Alfvén speed vA the

free energy is only 1.5% of the background, while it is 45% when the mean driving

speed is 20% of vA. By contrast, the energy dissipation is found to be essentially

independent of the resistivity (recall that this is a hyper-resistivity determined by the

grid resolution). Based on a scaling law derived for the energy dissipation as a

function of the driving timescale the authors conclude that the energy injection/

dissipation is sufficient to heat the corona. It is worth noting that these simulations

were run with a comparatively high plasma-b that was initially 0.5, and

progressively increased in time due to the absence of radiative losses in the energy

equation.

2 Hyper-resistivity is employed to mimic the effects of dissipation processes below the numerical grid-

scale: there are different implementations in different codes, but typically the resistive term in the

induction equation gr2B is replaced or supplemented by a term involving higher-order derivatives of B.
This has the effect of minimising the diffusion except in locations where B has extremely small length

scales.
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6.2.2 Turbulent nature of the statistically steady state

Another flux braiding simulation was performed by Hendrix and Van Hoven

(1996)—they simplified the MHD equations by assuming q ¼ p ¼ constant

throughout, and employed time-dependent boundary flows in rotational cells, with

a box aspect ratio (length:width) of 4:1 and grid resolutions up to 2562 � 31 (the x-
and y-directions being solved using a spectral method). Their main result was the

finding that the energy dissipation process in the volume is due to a turbulent

cascade to small scales. Based on magnetic energy spectra at the highest resolutions

they identified an inertial range that flattened with time, approaching (but always

Fig. 8 Illustrations of the statistically steady state attained in selected flux braiding simulations. a Current
isosurfaces and magnetic field lines in the simulation of Galsgaard and Nordlund (1996) (for a unit cube).
b Current isosurfaces in the simulation of Ng et al. (2012). c Current isosurfaces (left) and magnetic field
lines (right) in the simulation of Rappazzo et al. (2007, 2008). Images reproduced with permission,
copyright (a) by AGU; (b, c) by AAS
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remaining steeper than) the classical slope of k�3=2, k being the horizontal

wavenumber (Kraichnan 1965).

Many other papers have studied the properties of the turbulence induced in the

domain within flux braiding simulations, however the majority of these have solved

only the reduced MHD equations (see the following section). One exception is the

study of Dahlburg et al. (2012), who included substantially more physics in the

system than Hendrix and Van Hoven (1996) by allowing q and p to vary, and

including both thermal conduction and radiative losses in the energy equation. The

grid resolution is 1283 where again the x- and y-directions are solved using a

spectral method, and the box aspect ratio is 5. With this additional physics included,

they were able to show for the first time that the thermal energy of the plasma, like

the magnetic and kinetic energies, attains a state that is statistically steady, albeit

highly fluctuating in time and space. They emphasised that the temperature of the

plasma in the domain (after the statistically steady state is reached) is highly

structured, showing high spatial and temporal intermittency.

(a)

(b) (c)

Fig. 9 Illustrations of different photospheric drivers in flux braiding simulations. a Schematic of the
effect of one (left) and two (right) shear velocity perturbations on the field lines in the domain.
b Streamfunction contours for one time instant of the time-dependent driving flow employed
by Longcope and Sudan (1994) and Ng et al. (2012), modified from Longcope (1993). c Contours of
the streamfunction for the driving flow of Rappazzo et al. (2007, 2008)
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6.2.3 Dependence on driving flows

Magnetic flux braiding simulations have used a wide variety of boundary driving

flows patterns. These usually take the form of sequences of rotations or shears,

randomised within certain parameter ranges. These flow patterns are chosen largely

for computational tractability—they are divergence-free and therefore do not lead to

additional complications of plasma compression/rarefaction at the boundaries

(moreover for the reduced MHD simulations, the flow is divergence-free by

construction—see the following section). In studies that considered different driving

patterns, the overall behaviour of the system is typically found to be much the same

irrespective of the particular driver, and so it is tempting to conclude that the spatial

pattern of the driving is largely unimportant in determining the coronal evolution.

However, Ritchie et al. (2016) showed by considering a more systematic driving

that the coronal evolution can depend strongly on the driving pattern (supporting

earlier ideas of Wilmot-Smith et al. 2011). In particular, they considered a driving

flow given by a pair of vortices that ‘blink’ on and off in time in anti-phase with one

another. When the vortices have the same sense of rotation the helicity injection has

a preferential sign, while if they have opposite sense the net helicity injection (over

many cycles) is zero. They showed that magnetic energy dissipation was very

different between these two cases. When the net helicity injection is zero the

magnetic energy in the domain shows only small fluctuations about the steady state,

while for non-zero net helicity injection the energy tends to build slowly before

exhibiting much larger sudden drops (that one might hypothesise are related to the

onset of some large-scale kink-type instability in the domain). Furthermore, for the

case with zero net helicity injection, Ritchie et al. (2016) also considered different

spatial positioning of the vortical flows, and found that this affected the long-time-

averaged magnetic energy in the domain. In particular, driving patterns that induce a

higher degree of field line tangling (per unit time, say, as measured by the

topological entropy, see Thiffeault 2010) result in higher stored energy. In a similar

study, Knizhnik et al. (2019) examined the effect of helicity injection in a system

with many (61) driving vortices imposed on the line-tied z-boundaries of a

simulation domain of size 3� 3� 1. Like Ritchie et al. (2016) they found that the

field in the domain developed large-scale twist in a shell surrounding the portion of

the field that is driven, this being gradually produced by many small-scale

reconnections within the volume. The evolution was not followed for as many

driver periods as Ritchie et al. (2016), so no kink-type instability was observed.

They found that the Poynting flux into the domain was greater for higher helicity

injection, with similar overall heating in both cases but large-scale twist retained

within the domain for high helicity injection rate. These results together indicate

that certain characteristics of the driving flow may have a substantial impact on the

resulting structure of the coronal field, and the distribution of energy release events.
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6.3 Continually-driven systems: reduced MHD

6.3.1 Reduced MHD

Owing to the substantial reduction in complexity of the equations, many studies of

the Parker problem, and many flux braiding simulations in particular, have made use

of the reduced MHD equations (hereafter RMHD, see Kadomtsev and Pogutse

1974; Strauss 1976). This reduction in complexity allows analytical models to be

developed, and also substantially reduces the computational expense, the latter

being particularly beneficial for early studies when computational power was

limited. The justification for this simplification is that the length of a typical coronal

loop is much larger than its diameter. One therefore makes the following ansatz for

the ordering of terms:

Bz �r? � 1; jB?j�
o

oz
� �; ð29Þ

where � 	 1. Following this ordering through the equations one finds that vz,

variations of Bz, and the pressure p are all of order �2, so that p and vz are absent

from the leading order equations to be considered, and Bz ¼ Bz0, constant. Fur-

thermore, r � v ¼ 0, so one can assume a constant density. Thus

B ¼ Bz0ez þ ez �r?w; v ¼ v? ¼ ez �r?/ ð30Þ

and to leading order the induction and momentum equations are

q0
oX
ot

þ v? � rX

� �
¼B � rJz þ mr2

?X; ð31Þ

ow
ot

þ v? � rw ¼� Bz0
o/
oz

þ gr2
?w; ð32Þ

where X ¼ r2
?/ is the z-component of the vorticity, and Jz ¼ r2

?w (see,

e.g., Biskamp 1993). Due to the absence of pressure and density fluctuations, the

only wave modes in the system are shear Alfvén waves, that propagate in the z-
direction. Moreover, there is no coupling to an energy equation, so that any energy

dissipated by viscous or resistive effects is immediately lost.

6.3.2 Dependence of the statistically steady state on g

The first direct simulations of flux braiding in the RMHD framework were carried

out by Longcope and Sudan (1994). They applied a driving velocity composed of a

‘random’, time-dependent distribution of vortices intended to mimic the incom-

pressible component of photospheric convection (see Fig. 9b), discretising the

domain with up to 48� 48 Fourier modes in xy, and 10 finite difference intervals in

z. They confirmed the formation of intense, filamentary current concentrations in

response to the applied driving. They examined the dependence of the resulting

statistically steady state on the (spatially uniform) diffusivity g, over a range
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g ¼ 10�3–6� 10�3. This they accompanied with analysis of a model for the

statistically steady state based on an ensemble of Sweet–Parker current sheets

(Sweet 1958; Parker 1957). They concluded, both from the model and the

simulations, that both the typical perpendicular field strength in the loop, B?, and

the energy dissipation rate, scale as g�1=3. They noted, however, that extrapolation

to coronal parameters would imply a free magnetic energy (�B
2

?) in excess of the

potential field energy. This being physically implausible, they noted that the rather

strong inverse scaling with g must break down for some smaller value of g than

those considered. Motivated by these findings, Ng et al. (2012) repeated the study

of Longcope and Sudan (1994), but with advances in computing power were able to

extend the range of diffusivity down to g ¼ 1:6� 10�4 (this requiring grid

resolution 10242 � 128). A typical current distribution from their simulations is

shown in Fig. 8b. They confirmed in their simulations that in the statistically steady

state the total magnetic energy, kinetic energy and dissipation in the domain scale

inversely with g, see Fig. 10a, b. They also found that, as hypothesised

(a)

(c) (d)

(b)

Fig. 10 a Total magnetic energy for the flux braiding simulations of Ng et al. (2012) with g ¼ 3� 10�4 (blue)

andg ¼ 5� 10�3 (red), togetherwith total kinetic energy forg ¼ 3� 10�4 (green) andg ¼ 5� 10�3 (orange).

bTotal joule dissipation forg ¼ 3� 10�4 (blue) andg ¼ 5� 10�3 (red).cMagnetic andkinetic energies for the

flux braiding simulations of Rappazzo et al. (2007, 2008) with g ¼ 1:25� 10�3 and vA=uph ¼ 200. d Total

dissipation (ohmic plus viscous) for simulations with g ¼ 1=R as marked (based on standard second-order
diffusion), together with a simulation using eighth-order dissipation terms, marked R4. Images reproduced with
permission (a, b) from Ng et al. (2012), and (c, d) from Rappazzo et al. (2007, 2008), copyright by AAS
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by Longcope and Sudan (1994) the scalings of both the energy dissipation and

perpendicular field strength exhibit a break, such that for g
 10�3, a much

shallower scaling around g�1=5 is obtained. They argue that the reason for this break

in the scaling is that for g � 10�3 the energy dissipation time, sE, is comparable to

the driver correlation time, sc. They further argue that for sE [ sc the energy

dissipation rate should become independent of g, using an argument based on

random walk of field line footpoints (see also Ng and Bhattacharjee 2008). One note

of caution related to the simulation scaling results of Ng et al. (2012) is that for g
values smaller than the break point in the scaling, jB?j � 0:5Bz. Thus jB?j is larger
than would be expected for applicability of the RMHD approximation, and so

extreme caution should be exercised in interpreting these results.

6.3.3 Intermittency in the statistically steady state

A substantial body of work addressing the Parker problem in the RMHD framework

has focussed on the turbulent nature of the statistically steady state. The first such

studies were performed by Einaudi et al. (1996) and Dmitruk and Gómez (1997).

They in fact solved a 2D problem, replacing the o=oz terms in the RMHD equations

with forcing functions. Einaudi et al. (1996) found that the average energy

dissipation increases when g is reduced (the numerical resolution is increased), as

do both the peak dissipation and degree of intermittency. Dmitruk and Gómez

(1997) focus on this intermittency, and identify a scaling in the number N of energy

release events with a given energy E within their simulation of the form

dN

dE
�E�1:5 ð33Þ

(individual energy release events being identified as peaks in a plot of volume

integrated energy dissipation vs. time). They suggest that it is significant that this

measured relation compares favourably with statistics of observed flare energies

(e.g., Crosby et al. 1993; Wheatland 2008). These results were extended to fully-3D

RMHD by Dmitruk and Gómez (1999) and Gómez et al. (2000).

6.3.4 Inertial range exponents in the statistically steady state

In order to probe the turbulent nature of the statistically steady state in the fully-3D

RMHD problem, Dmitruk and Gómez (1999) analysed spectra of the magnetic

energy Em and kinetic energy Ek as functions of the in-plane wavenumber k? ¼ kxy.

They found a magnetic energy spectrum Em � k
�3=2
? , consistent with a Kraichnan-

type spectrum, with the kinetic energy spectrum being a little shallower. They

repeated their simulations for different parameter regimes, characterised by

different ratios of sA=sp, where sA is the Alfvén travel time along the loop and sp
is the photospheric turnover time (analogous to the driver correlation time

considered by Ng et al. 2012). Their results indicated that the total energy

dissipation scales as ðsA=spÞ3=2, consistent with the results of the 2D study

of Dmitruk and Gómez (1997). Dmitruk and Gómez (1999) considered a range for
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sA=sp, but with sA=sp 
 0:2. This range was extended to larger values in a follow-up

study by Dmitruk et al. (2003). They found for sA=sp ¼ 0:5 that Em � k�2
? , and for

sA=sp [ 0:5 that Em � k
�5=3
? . These results indicate the delicate nature of the

problem at hand, though are probably not directly relevant to the heating of coronal

loops, where it is expected that sA=sp 	 1.

The ideas discussed above were picked up by Rappazzo and co-workers. Their

computational approach is similar to that of Dmitruk and co-workers, with the

boundary driving involving a steady flow comprised of a superposition of vortices.

However, they utilised both uniform resistivity/viscosity and hyper-resistive and

hyper-viscous terms in the equations to extend the ranges of accessible (effective)

Reynolds and magnetic Reynolds numbers. The domain aspect ratio is 1:10. (Note

that since the driving flow is steady, these simulations are in the regime sA=sp ¼ 0.)

The first study of these simulations was reported by Rappazzo et al. (2007, 2008).

They ran simulations with a ratio of Alfvén speed to typical photospheric driving

speed, vA=uph ¼ f50; 200; 400; 1000g, finding that the magnetic energy spectrum

steepens as the ratio increases, in agreement with Dmitruk et al. (2003). In

analysing the energy dissipation rate, they argue that the relative sizes of the

magnetic field strength and loop length are critical (in shorter loops the effect of the

line-tying-enforced magnetic tension force is (on average) enhanced, weakening

non-linear interactions). Based on dimensional analysis they assert that the energy

dissipation should scale with the variable

f ¼ l?vA
Luph

: ð34Þ

On this basis they propose a coronal heating scaling/dissipation rate

�� l2?qvAU
2
ph

l?vA
Luph

� � a
aþ1

; ð35Þ

where a is the scaling index for the turbulence model. In their simulations they find

strong turbulence (with Kolmogorov-like spectra with exponent �5=3 in the per-

pendicular direction) for weak axial magnetic fields and long loops, while for strong

axial magnetic fields and/or short loops a weaker turbulence regime is found

(characterised by steeper spectral slopes of total energy). Similar to Galsgaard and

Nordlund (1996) they argue that the energy dissipation should become independent

of the magnetic Reynolds number for g
 10�3. This assertion is made on the basis

of the close comparison between the volume integrated dissipation for two of their

simulations, in one of which they used second-order diffusion with g ¼ 1:25� 10�3

and in the other of which they used eighth-order dissipation with a coefficient of

10�19, see Fig. 10(d).

In a follow-up study, Rappazzo et al. (2010) highlighted that the properties of the

turbulent dissipation in the loop are independent of the driving flow, by applying a

continuous simple shear driving flow. In those simulations a single, monolithic

current layer first forms and then breaks up in response to a tearing instability,

which is followed by a transition to turbulence.

123

The Parker Problem Page 37 of 54 5



6.4 Summary: results of flux braiding simulations

While there are many variations in the approach taken in flux braiding simulations,

the results build an overall picture of the system behaviour, as follows.

– Following the initiation of the driving velocity, thin ribbons of current rapidly

form and then dissipate throughout the domain, and a statistically steady state is

reached.

– Both reduced MHD and full MHD simulations indicate that the non-linear

evolution can be described by a turbulent cascade (though see Klimchuk et al.

2010). The turbulence is anisotropic, and its properties (such as the scaling

exponents in the inertial range) depend on the loop length and axial field

strength, as well as potentially other properties associated with the driving

velocity.

– The free magnetic energy (in excess of the potential field energy) dominates

over the kinetic energy, by a factor [ 10 (see, e.g., Fig. 10a, c).

– The free magnetic energy, or average B?, scales with driving speed. It also

scales with the magnetic Reynolds number, at least for Rm 
 103.

– The average energy dissipation rate scales with driving speed, or with sA=sp, but
is (approximately) independent of the magnetic Reynolds number, at least for Rm

sufficiently large � 103. However, caution should be taken in interpreting these

results, since there remains a huge disparity between the numerically accessible

values of the magnetic Reynolds number and the true solar values.

– The geometrical pattern of the driving flow has minimal effect on the energy

dissipation. However, averaged quantities such as the helicity injection rate or

correlation/turnover time may affect the characteristics of the energy release

events in the domain.

6.5 Resistive relaxation simulations

The flux braiding simulations described so far in this section all achieve a (time-

averaged) balance between energy input through continual boundary driving and

dissipation in the volume. However, the discrepancy between the simulation

parameters (particularly Rm) and those in the corona are large, meaning that

implications for the corona must be inferred through often-uncertain extrapolation.

This motivates the complementary approach taken in a series of papers by Wilmot-

Smith et al. (2010, 2011) and Pontin et al. (2011), who consider a turbulent

relaxation (in the absence of boundary driving) in a magnetic flux tube starting from

an initially braided state, which can be viewed as generated by an ideal dynamics

(Rm ¼ 1) over a certain time before reconnection sets in. This approach permits the

details of the energy release process following onset of reconnection to be studied,

which is relevant if—at coronal parameters—the relaxation/energy dissipation time

is short compared with the timescale for field line tangling/energy injection.

The initial braided magnetic field used for this series of papers is taken as the

final state of the ideal relaxation of Wilmot-Smith et al. (2009a) (see Sect. 5.2), and

the authors considered a resistive MHD evolution with line-tying of B and zero flow
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on the boundaries. They found that following the onset of reconnection in a pair of

initially forming current layers (those shown in Fig. 7), a cascade to smaller scales

throughout the domain ensues. The overall result is an ‘‘unbraiding’’ of the field in

the loop, such that the field line mapping after the resistive relaxation is much

simpler than before, this unbraiding being achieved through reconnection in a large

collection of discrete current layers (Pontin et al. 2011)—see Fig. 11. The presence

of a turbulent inertial range, with a power-law slope of �5=3 for the magnetic

energy, is demonstrated by Pontin et al. (2016). The number of current layers

formed during the relaxation, and time taken to unbraid the field, are both shown to

increase with the magnetic Reynolds number. Even at the moderate value of Rm

accessible in the simulations (100–5000), the energy release process lasts 5–8 loop

Alfvén-crossing times (length-wise), with this likely to increase substantially at

coronal values of Rm. This energy release timescale is an important parameter when

comparing with loop heating observations (Reale 2014). Another noteworthy result

of these simulations is that not all of the energy stored in the initial state as twisting/

braiding of field lines is released during the turbulent relaxation. Application of

Taylor’s hypothesis in which the energy is minimised subject to the constraint of

preserving the total helicity (Taylor 1974) would lead one to predict the final state of

relaxation to be a uniform field. However, it turns out that only around 60% of this

stored magnetic energy is released, with the rest remaining as large-scale twist

within the domain (Pontin et al. 2011)—see the plots of a� in Fig. 11. This led to the
discovery of additional constraints on the relaxation—see Yeates et al. (2010).

Similar relaxation simulations are described by Rappazzo and Parker (2013)—

they studied RMHD simulations starting from an initial non-equilibrium field

constructed by superimposing a perturbation component B? determined by a set of

arbitrary Fourier modes onto a uniform field along the loop, Bz. The boundaries are

line-tied with zero flow. Like the above-mentioned studies, they observe a

Fig. 11 Selected field lines (traced from fixed boundary footpoints), current isosurfaces, and contour

maps of a� ¼ ð1=48Þ
R z¼24

z¼�24
J � B=B2 dl, integrated along field lines and displayed on the plane z ¼ �24.

The Alfvén speed in the non-dimensional simulations is 1, giving a loop Alfvén crossing time of 48 units.
After Pontin et al. (2016), based on the simulations of Pontin et al. (2011)
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relaxation taking the form of decaying turbulence—this turbulent relaxation being

triggered so long as the mean value of jB?j is greater than 0:04Bz. The relaxation

again leads towards a final state containing regions of finite twist at large scales,

rather than relaxing all the way to the homogeneous field.

6.6 Plasma response and consistency with observations

The primary focus of this article is the magnetic field evolution in the Parker

problem. However, another crucial ingredient in determining what role (if any)

Parker’s braiding mechanism plays in heating the corona is the plasma’s

thermodynamic response to the energy deposited following the onset of reconnec-

tion. It is generally computationally infeasible to model the full plasma thermo-

dynamics alongside the 3D magnetic field evolution. Instead, the plasma response is

usually modelled in (ensembles of) 0D or 1D loops, with parameterised ‘‘nanoflare’’

energy deposition used to mimic the effect of heating events induced by magnetic

reconnection (for example). The reader is directed to the comprehensive review by

Reale (2014). The importance of combining theoretical work using different

approaches for understanding coronal loop observations was recently highlighted

by Klimchuk (2015).

Notable exceptions to the above—in which substantial thermodynamics are

included alongside the 3D magnetic field evolution—are the flux braiding studies of

Dahlburg et al. (2016, 2018); Rappazzo et al. (2018). Those authors have solved the

full MHD equations including thermal conduction and optically thin radiation in the

energy equation. They employed a driving flow composed of a superposition of

vortical flows, similar to the approach of, e.g., Hendrix and Van Hoven (1996), see

Fig. 9(c). In common with other flux braiding studies, Dahlburg et al. (2016) find a

turbulent evolution ensues, characterised by current layers elongated along the loop.

Magnetic energy dissipation and subsequent plasma heating in these current layers

leads to a multi-thermal plasma distribution, with ‘‘strands’’ of hotter and cooler

plasma distributed irregularly throughout the domain, on perpendicular length scales

shorter than those presently observable (based on a dimensionalisation in which the

simulated domain has size 4� 4� 50 Mm). The authors use simulated densities

and temperatures to reconstruct observables such as the differential emission

measure, which are argued to compare favourably with observations of active

regions (see Fig. 12a). These results are extended by Dahlburg et al. (2018) to

consider different loop lengths and magnetic field strengths. They find that the

highest temperatures are reached for the shortest loops, and that stronger magnetic

fields mean broader emission-measure distributions. Rappazzo et al. (2018)

describe similar simulations, varying the ratio sA=sp (see Sect. 6.3). They conclude

that for sA=sp 	 1 a broad distribution of temperatures is present in the loop, while

for sA=sp ¼ 1 the temperature distribution is much narrower.

Another study to include thermal conduction and optically thin radiation, and to

synthesise observables, was carried out by Pontin et al. (2017) (see Fig. 12b). They

considered decaying turbulence during the relaxation of an initially braided

magnetic flux tube, as in the simulations of Wilmot-Smith et al. (2010); Pontin et al.
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(2011) described in Sect. 6.5. They aimed to address the issue that, while some

recent observations of coronal loops reveal distinguishable crossing bright strands

(the previously assumed visible signature of magnetic braiding) the majority of

observed loops do not (but rather appear to have either no substructure or to be

composed of ‘‘well-combed’’ strands). They showed that clear crossing of heated

strands appeared only in certain cases, in spite of the fact that underlying field was

braided in all cases considered. The conclusion is then that an absence of a clear

‘‘braided’’ appearance in which bright strands cross one another does not exclude

that the underlying field lines are braided. This is seen also in the simulations

of Dahlburg et al. (2018), where no crossing strands are present in the synthesised

emission (Fig. 12a). It was recently shown by Pontin et al. (2020) that the spectral

properties of synthesised line profiles from simulations of braiding-induced

turbulence are consistent with key properties of observed spectra from coronal

emission lines, including the magnitude of the non-thermal broadening and its

scaling with intensity as well as the non-Gaussian nature of the spectra.

Fig. 12 aModified from Dahlburg et al. (2016). Synthesised emission from their continuously driven ‘D’

simulations at resolution 1282 � 144. b Modified from Pontin et al. (2017). Synthesised emission from

their relaxation simulations, resolution 3602 � 240
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The studies described in this section represent only a start in determining the

consistency of the braiding mechanism with observations of the hot corona. In

future, coupling with the lower atmosphere through the all-important transition

region, perhaps by linking more closely with the one-dimensional loop models that

include more realistic thermodynamics, will be a key step.

7 Implications of coronal magnetic complexity

7.1 Magnetic topology of the corona: formation of current sheets

Parker’s braiding hypothesis for coronal heating considers the simplest case in

which the magnetic field extends from one positive polarity to one negative polarity

on the photosphere. However, it is now well-established that the coronal magnetic

field has a highly complex structure, with photospheric flux concentrations present

at all observable scales, following a power-law distribution with flux (Parnell et al.

2009). What’s more, these photospheric flux fragments are continually emerging,

cancelling, splitting, and merging, with estimates that all of the coronal flux is

‘recycled’ (reconnected) on average on timescales of hours (Close et al. 2005;

Bellot Rubio and Orozco Suárez 2019).

The complex array of photospheric flux fragments means that the coronal

magnetic field must be pervaded by a web of null points, their associated separatrix

surfaces and separator lines, and quasi-separatrix layers (Schrijver and Title 2002;

Longcope and Parnell 2009; Platten et al. 2014). These structures—which represent

either discontinuities (null points, separatrices, separators) or strong gradients

(quasi-separatrix layers, hyperbolic flux tubes) in the field line mapping—are all

potential sites for accumulation of intense currents, and thus magnetic reconnection.

Two-dimensional magnetic null points (X-points) are well known to ‘collapse’ in

response to certain external perturbations (Dungey 1953; Imshennik and Syrovatsky

1967). In a line-tied geometry, slow boundary motions lead to a sequence of

approximate equilibria which in the ideal limit contain current sheets at the null that

are tangential discontinuities with singular current density (Green 1965; Syrovatskii

1971). The same is true of the three-dimensional magnetic null points present in the

solar corona (Klapper et al. 1996; Pontin and Craig 2005; Fuentes-Fernández and

Parnell 2013), as well as separator field lines (Longcope and Cowley 1996). Quasi-

separatrix layers are additional sites where intense currents may accumulate, in

response to certain boundary flows, though most likely these currents form in layers

of finite thickness even in the ideal limit (see Démoulin 2006, for a review). All of

the above has led Priest et al. (2002) to propose a modification to Parker’s braiding

scenario, called ‘‘flux tube tectonics’’, in which the current sheet formation—and

subsequent reconnection and heating—take place at the web of null points,

separatrices and separators threading the corona.

A number of authors—either explicitly or implicitly—made use of the fact that

singular current sheets form in the ideal limit at magnetic nulls to support Parker’s

hypothesis of spontaneous formation of tangential discontinuities. We have

excluded these from the discussion of Sects. 4 and 5 since they do not conform
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to the geometry of the original Parker problem, in which all field lines connect from

one boundary plate to the other and magnetic nulls are thus excluded. A number of

authors considered magnetic field equilibria above a plane, in a configuration that

begins with a bald-patch (Titov et al. 1993) at the photosphere (a null point being

located beneath the photosphere), initially proposed by Moffatt (1987). A potential

field extrapolation based on the final flux distribution would contain a null point in

the corona. However, applying the topological constraints of an ideal evolution

between the initial and final states a current sheet is instead present, extending from

the photosphere up to the location at which the X-point would be located. A number

of variants of this problem have been studied, including different boundary

perturbations and extension to spherical geometry (Low 1987, 1989, 1991, 1992;

Vekstein et al. 1991). These results lend additional weight to the notion of current

sheet formation in the corona in general, but do not directly address the Parker

problem as stated in Sect. 2. Further studies of this type, in which magnetic nulls

and/or separatrices are present include the studies by (Kumar et al. 2014, 2015).

7.2 Large-scale 3D MHD simulations of the corona

Around the beginning of this century, computing power became sufficient to permit

MHD simulations of substantial parts of the corona. The philosophy of these models

is to reproduce as faithfully as possible the observed structure of the corona by

including as much physics as is computationlly feasible. This requires realistic

pressures and temperatures, and thus in addition to solving the induction equation

together with conservation of mass and momentum, these models must solve an

energy equation that accounts for thermal conduction and radiative losses. Some

such models use a parameterised heating function, but in most the heating is directly

by ohmic dissipation, consistent with Parker’s braiding mechanism. It is only

possible to resolve the convective driving in smaller simulations. Larger-scale

simulations use a velocity driver that mimics some key properties of observed

photospheric flows. For a comprehensive review of the successes and caveats of

these models, see Peter (2015).

The first models of this type were presented by Gudiksen and Nordlund

(2002, 2005a, b) (see Fig. 13). They demonstrated the formation of a loop-

dominated corona in their simulations, concluding that a DC-type heating consistent

with Parker’s braiding mechanism was responsible for creating these few-million-

degree loops. They do note that the simulated region is rather smaller than a typical

active region, meaning that they do not produce loops as long as in the corona,

meaning for example that loop over-densities (with respect to the surroundings) are

not as extreme as those observed. In that case the photospheric/boundary driving

flow was based on a model that mimics some properties of the incompressible

component of photospheric granulation.

Bingert and Peter (2013) made a detailed study of individual energy release

events in one of these models. They found that the heating occurred in transient

bursts whose energy content followed a power-law distribution. They also found

that the energy flux into the coronal plasma peaks for event energies around 1017 J,

123

The Parker Problem Page 43 of 54 5



consistent with the energy of a nanoflare proposed by Parker (1988). Kanella and

Gudiksen (2018) performed a similar study, employing an intensive and sophis-

ticated algorithm to pick out individual (ohmic) heating events in space and time.

They too found a power law distribution of heating events in both energy and

duration (but not in event volume). In general, the height distribution of the energy

deposition and temperature typically matches the observations quite well, with the

energy input per particle (calculated by dividing the energy input by the mass

density) peaking somewhere near the transition region (Hansteen et al. 2010;

Bingert and Peter 2011).

Warnecke and Peter (2019) took this simulation approach one step further by

employing a time sequence of observed magnetograms to update the lower

boundary condition for the magnetic field. This is combined with a driving flow to

mimic granulation of the type used by Gudiksen and Nordlund (2002, 2005a, b).

The aim in this ‘‘data-driven’’ simulation is to see whether the observed coronal

emissions are reproduced (previous studies having shown that the coronal-type

emissions could be reproduced in a general sense). It turns out that the

characteristics of the coronal emission are rather well reproduced (see Fig. 14),

with visible loops in many of the same locations, super-imposed upon a diffuse

background corona. The authors speculate that the discrepancies observed (e.g., lack

of small-scale structure in the active region core, under-estimate of the overall shear

in the loops) could be improved in future by increasing the resolution of the

Fig. 13 Simulated TRACE
171 (top) and 195 (middle)
images, together with a
simulated magnetogram
(bottom), showing three
identified bright loops. Image
reproduced with permission
from Gudiksen and Nordlund
(2005b), copyright by AAS
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underlying magnetograms, as well as making use of the observed horizontal

components of the magnetic field. The fact that the observed coronal emission is

well reproduced by such simulations driven by footpoint shuffling is a strong indication

that the braiding/flux-tube tectonics model is a key part of the heating process.

What is perhaps surprising is that these large-scale MHD simulations reproduce

so well the energy fluxes and temperatures required to maintain a hot corona,

despite the fact that they drastically under-resolve the braiding process itself. This

has led to speculation that the plasma heating is relatively insensitive to the details

of the mechanism that extracts the energy from the coronal field. In the larger-scale

models, single current layers typically fill entire ‘loops’ in the coronal volume.

Since small spatial and temporal scales are missing from the modelling, the heating

is of a ‘DC’ type consistent with Parker’s original ideas—it is likely that AC or

wave heating would make a larger contribution if these smaller spatio-temporal

scales were included. It is worth noting that, while the overall heating rates are

reproduced in these models, many more detailed features of the observations are

not: for example the non-thermal broadening of synthesised spectral lines is much

smaller than typically observed.

8 Summary: established results and open questions

Ever since it was first proposed by Parker (1972), the idea of ‘‘topological

dissipation’’ has stimulated significant debate. While the mechanism is at the heart

of one of the major coronal heating theories (nanoflare heating), there remain

significant open questions. The problem of proving existence or non-existence of

equilibria in the geometry of the Parker problem is so challenging mathematically

not least due to difficulty in specifying the field topology analytically (see the

Fig. 14 Comparison of observed emission and synthesised emission in a large-scale, data-driven MHD
simulation of an active region. Note that the peak count value in the observations (corresponding to 1.00)
is 3500 DN/pixel, which is a factor of six higher than in the model. Image reproduced with permission
from Warnecke and Peter (2019), copyright by the authors
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discussion of Low 2010b). Computationally, eliminating numerical dissipation

(equivalently preserving the field topology) as well as distinguishing finite current

layers from tangential discontinuities on a discrete grid, provide significant

difficulties. Thus, the existence of smooth equilibria for arbitrary topology—and

accessibility from an initially smooth field via smooth boundary motions—remains

an open problem.

In the scenario addressed by Parker’s hypothesis, we begin from a smooth

magnetostatic equilibrium, and perform smooth boundary motions (Sect. 2). The

original claim by Parker (1972) was that no smooth equilibrium could in general be

found even when the boundary field line footpoint displacement was small.

However, van Ballegooijen (1985) demonstrated an error in Parker’s calculation,

further arguing that a smooth equilibrium should always exist in this case

(Sect. 4.2). Assessment of the case of finite-amplitude footpoint perturbations

typically requires a computational approach. While various arguments have been

proposed in support of Parker’s hypothesis (Sect. 4.3), there has been no concrete

demonstration of formation of tangential discontinuities. On the other hand, while

certain classes of fields have been shown to exhibit smooth equilibria, there remains

no general statement. Thus far, Parker’s hypothesis in the form of either

Definition 1 or 2 remains to be proven or disproven.

In spite of the aforementioned lack of progress in determining the existence or

otherwise of tangential discontinuities in Parker’s scenario (as per Definitions 1

and 2), there is now overwhelming evidence that Parker’s original idea was

conceptually correct. Specifically, the weak form of the hypothesis (Definition 3)

has been proven by a number of approaches: continual braiding of the coronal field

lines by boundary motions leads to equilibria containing current layers that grow

thinner and more intense at an exponential rate. This must inevitably lead to the onset

of reconnection and energy dissipation. The larger themagnetic Reynolds number, the

longer it will take to reach the dissipation scale, but it must be reached in the end.

On the basis of the above, it is clear that magnetic flux braiding can heat the solar
corona. However, there remain many gaps in our understanding that must be filled

before we can assess the efficiency of the mechanism, and therefore whether it

provides a substantial contribution to heating the corona in practice. Flux braiding

simulations in the geometry of the Parker problem show qualitative behaviour that is

robust between the different approaches (as summarised in Sect. 6.4). However,

there remain significant steps to be taken in applying these results to the corona:

(i) the scaling of various quantities with parameters such as the magnetic Reynolds

number remains uncertain, (ii) the relative timescales of energy storage (field line

tangling) and energy release are crucial for the nature of the heating, but are not well

known (the former due to observational limitations and the latter at least in part to

the aforementioned magnetic Reynolds number dependence), (iii) the effect of the

huge additional complexity of the chromosphere, in terms of magnetic structure,

plasma structure, and additional physics beyond MHD. What we do know is that

even in the corona there are many likely sites of current sheet formation,

reconnection, and energy dissipation that are excluded from the problem as posed

by Parker (Sect. 7.1).
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Finally, global simulations of the corona show a surprisingly good agreement

with observations (given the difference in parameter regimes). Plasma is heated in

these models primarily by dissipation of current sheets induced by footpoint

shuffling, and the resultant coronal loops successfully reproduce many properties of

the observations (Sect. 7.2). This provides evidence that the braiding mechanism

really does provide some appreciable contribution to heating the corona. Parker’s

two linked ideas of topological dissipation and nanoflare heating of the corona by

field line braiding have stimulated a wide range of studies that have in turn greatly

advanced our knowledge of the Sun and of plasma physics processes more broadly.

They promise to continue to do so for the foreseeable future.
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