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Abstract
Supergranulation is a fluid-dynamical phenomenon taking place in the solar photo-
sphere, primarily detected in the form of a vigorous cellular flow pattern with a typical
horizontal scale of approximately 30–35Mm, a dynamical evolution time of 24–48h,
a strong 300–400m/s (rms) horizontal flow component and a much weaker 20–30m/s
vertical component. Supergranulation was discovered more than 60years ago, how-
ever, explaining its physical origin and most important observational characteristics
has proven extremely challenging ever since, as a result of the intrinsic multiscale,
nonlinear dynamical complexity of the problem concurring with strong observational
and computational limitations. Key progress on this problem is now taking place with
the advent of twenty-first-century supercomputing resources and the availability of
global observations of the dynamics of the solar surface with high spatial and tempo-
ral resolutions. This article provides an exhaustive review of observational, numerical
and theoretical research on supergranulation, and discusses the current status of our
understanding of its origin and dynamics, most importantly in terms of large-scale
nonlinear thermal convection, in the light of a selection of recent findings.
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1 Introduction

The story of solar supergranulation started in Oxford in 1953 when Avril B. Hart
reported the existence of a “noisy” fluctuating velocity field on top of the mean solar
equatorial rotation speed that she was attempting to measure (Hart 1954). It is in fact
very probable that this “noise” was detected as early as 1915 by Plaskett (1916). In
a second article, Hart (1956) confirmed her initial discovery and gave an accurate
estimate of 26Megameters (Mm, or 1000km) for the typical horizontal length scale
of these “velocity fluctuations” (sic). Supergranulation was subsequently recognised
as a characteristic, and essentially statistically steady dynamical feature of the surface
of the quiet Sun (the majority of the solar surface characterized by relatively weak and
statistically homogeneous magnetic fields) after the seminal publication by Leighton
et al. (1962) of the first Doppler images of the solar surface (also resulting in the
first detection of the 5-min solar acoustic oscillations). This work was soon supple-
mented by another paper by Simon and Leighton (1964) establishing a strong spatial
correlation between supergranulation and the magnetic network of the quiet Sun.

More than 60years after its initial discovery, there remains a significant theoretical
uncertainty about how supergranulation originates, what makes it particularly stand
out among other solar surface motions, what its exact interactions with solar surface
magnetic fields and solar rotation are, whether it is a universal feature of solar type
stars or of stellar surface convection, and whether it plays a role in the local or global
solar dynamo process. As will become clear in this review, these difficulties stem both
from a combination of observational and numerical limitations and from the intrinsic
dynamical complexity of the problem. In recent years, however, the solar physics
community has gained unprecedented access to a large amount of high-resolution
data collected by space observatories, and to large supercomputers that allow for
increasingly realistic numerical simulations of the problem, so that a clear resolution
of these questions now look increasingly possible. The main purpose of this document
is to support this ongoing effort with a large review of observational, theoretical, and
phenomenological research on this problem, with a particular emphasis on some of
the latest findings.

The review is divided into six parts including this introduction. The next section
provides some introductory material on the physics of convection in the Sun and on
the essence of the supergranulation problem (Sect. 2). Section 3 is dedicated to obser-
vational results. Section 4 reviews classical convection models and phenomenological

123



6 Page 4 of 74 F. Rincon, M. Rieutord

turbulence arguments historically put forward to explain the origin of supergranulation.
Numerical simulations of the problem are reviewed in Sect. 5. Section 6, finally, offers
a recap of the main observational results, a discussion of the physics and dynamical
phenomenology of supergranulation in the light of our current theoretical, numerical
and observational knowledge, and a brief outlook on desirable and expected future
research on the problem.

2 The supergranulation puzzle

2.1 The dynamical landscape of the quiet Sun

2.1.1 The solar convection zone

The outer 30% in radius of the Sun are commonly referred to as the solar convection
zone [SCZ, see, e.g., dedicated reviews byMiesch (2005) and Nordlund et al. (2009)].
In this region, the solar luminosity (heat flux) originating in the nuclear fusion reactions
taking place in the core cannot be evacuated by microscopic heat diffusion alone,
but is instead essentially transported by fluid motions driven by thermal buoyancy.
Physically, the strong non-adiabatic radiative cooling of the surface layers, like the
top cold plate of a convection experiment, imposes a strong negative entropy gradient
in the first hundred kilometers below the surface. This gradient is likely very small
at larger depth due to the efficiency of the convective mixing of entropy. Internal
structure calculations taking into account the ionisation properties of the gas and
using local convective transport prescriptions suggest that this gradient remainsweakly
superadiabatic down to the depth of ∼ 0.3 R�, marking the transition with an internal
radiative zone. There is still some uncertainty about the precise entropy stratification
of the SCZ though, and, as we shall discuss in detail in Sect. 5.3.4, this question may
be an important piece of the supergranulation puzzle. Finally, the SCZ, unlike the
standard fluid Rayleigh–Bénard convection system, is strongly stratified in density:
the density ratio between the bottom and top of the SCZ is of the order of 106 (see
Stix 2004).

With the notable exception of the solar differential rotation, which is accurately
determined by helioseismic inversions, the internal dynamics of the SCZ is not very
well constrained observationally (Hanasoge et al. 2012;Gizon andBirch 2012; Toomre
and Thompson 2015; Greer et al. 2015). While there are many promising ongoing
efforts to better characterize this dynamics (some of them will be reviewed in Sect. 3),
much of the information we have still comes from observations of the photosphere
and chromosphere. Historically, it is important to remember that it is this surface view
which has defined the terms of the supergranulation problem.

2.1.2 Granulation

Themost prominent, and best understood dynamical feature visible at the surface of the
quiet Sun is a photospheric intensity and cellular flowpattern called granulation, which
paves the entire surface of the quiet Sun and is characterized by an intensity contrast
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of around 15%, typical horizontal length scales ranging from∼0.5 to 2Mm (Rieutord
et al. 2010), typical velocities ranging from 0.5 to 1.5km/s (Title et al. 1989), and a
typical lifetime/renovation time of 5–10min. Granulation is driven by buoyancy and
radiative effects in the thermal boundary layer formed in the strongly superadiabatic
surface region of the SCZ where the solar plasma becomes optically thin (see Fig. 2).
The dynamical features of granulation are well reproduced by numerical simulations
of radiative hydrodynamics (Stein and Nordlund 1998; Nordlund et al. 2009).

2.1.3 Supergranulation

As mentioned in the introduction, the existence of supergranulation, a dynamical
cellular flow pattern paving the surface of the Sun with a typical horizontal scale of
30–35Mm,was first established throughDopplermeasurements of solar surface flows.
This phenomenon is clearly illustrated by the Doppler image of the solar disc shown in
Fig. 1. The much weaker signal at the disc centre indicates that supergranulation flows
are essentially horizontal. The quest to understand what drives these flows (and why
they occur primarily at this particular scale) is the central theme of this review. From
a theoretical point of view, this question may look relatively easy at first glance: in
most fluid systems, there are usually just a few important physical processes at work,
and as a result only a small number of special scales can be formed from dimensional
and phenomenological analysis. We will, however, shortly find out that, all “simple”
known facts considered, supergranulation essentially resists a straightfoward analysis
of this kind. In particular, we will see that while a thermal convective origin of super-
granulation has long been, and remains the most obvious and credible explanation,
understanding the exact nature and dynamics of the process in detail is extremely
challenging in practice.

Fig. 1 The supergranulation
pattern as revealed by Doppler
imaging of the full solar disc
obtained with the MDI
instrument onboard the SOHO
satellite. Image credits:
SOHO/MDI/ESA
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2.1.4 Mesogranulation

Mesogranulation has for a long time been thought to be a distinct dynamical feature
of solar surface convection taking place at intermediate horizontal scales between the
granulation (1Mm) and the supergranulation (30Mm) scales. It was first reported as
such byNovember et al. (1981), who identified a prominent pattern of vertical motions
with a typical horizontal scale of the order of 8Mm in time-averaged Doppler images,
see also November and Simon (1988), Title et al. (1989), Chou et al. (1992) and
Ginet and Simon (1992). However, several other observational studies (Wang 1989;
Chou et al. 1991; Straus et al. 1992), including one by Hathaway et al. (2000) using
high-resolution Doppler data from the SOHO space observatory, found no evidence
for a local maximum in the power spectrum of solar convection (the scale-by-scale
distribution of energy) at such scales.

While the topic remained controversial for a while (Roudier et al. 1999; Rieutord
et al. 2000; Shine et al. 2000; Lawrence et al. 2001), a variety of observational char-
acterizations of the solar power spectrum derived from high-resolutions, space-based
observations with the SDO observatory over periods of time of the order of 24h have
now clearly confirmed the lack of a distinctive spectral bump atmesogranulation scales
(Williams and Pesnell 2011; Hathaway et al. 2015; Rincon et al. 2017). Observational
analyses of magnetic field distributions at the solar surface in the mesogranulation
range also appear to support this conclusion (Yelles Chaouche et al. 2011; Berrilli
et al. 2014). Several authors had also previously made the case that mesogranulation,
understood as a singular dynamical feature, was simply a ghost feature artificially
generated by averaging procedures (Matloch et al. 2009; Rieutord et al. 2010). As
early as 1994, one of the authors of the original mesogranulation study, November
(1994), wrote that the term “mesogranulation” was misleading and instead suggested
to interpret this feature as “the vertical component of the supergranular convection”,
while Straus and Bonaccini (1997) argued that mesogranulation was a mere powerful
extension of granulation at large scales. Overall, it is clear that there is a lot of dynamics
taking place at scales intermediate between granulation and supergranulation, but it
does not seem that the dynamics at any particular scale in that range particularly stands
out. To avoid any possible misunderstanding, we will, henceforth, refer to this range
of scales as the mesoscale range, without necessarily implying that there is anything
physically special about it.

2.2 Physical scales in turbulent solar convection

Having identified various dynamical phenomena taking place at the top of the SCZ,
is it now possible to come up with intuitive physical explanations of their origin
within the framework of thermal convection theory? An important point here is that
convection in the SCZ is evidently strongly turbulent and nonlinear. Global Reynolds
numbers Re = LV /ν, based on either the full vertical extent of the convective layer, or
thermodynamic scales heights below the surface, and on typical convective velocities
estimated from either surface measurements or mixing length theory, range from 1010

to 1013 in the SCZ. To fix ideas, laboratory experiments on turbulent convection are
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currently limited to Re < 107 (e.g., Niemela et al. 2000). We may then ask what kind
of scales can be baked in this kind of dynamical environment.

2.2.1 Injection scale

The injection range of a turbulent flow is the typical range of scales at which kinetic
energy is injected into the system by either a natural or artificial forcing process. In
turbulent convection, this injection of kinetic energy is due to the work of the buoy-
ancy force. Within the framework of classical phenomenological turbulent convection
theories (the exact relevance of which for the problem at hand will be discussed in
Sect. 6), the scale most representative of the injection range is called the Bolgiano
scale LB (Bolgiano 1959, 1962; Oboukhov 1959; L’vov 1991; Chillá et al. 1993;
Rincon 2006). It can be shown, based on purely dimensional arguments and scaling
considerations for heat transport in turbulent convection, to be almost always of the
same order (up to some order one prefactor) as the local typical scale height (Rincon
2007 see alsoKumar et al. 2014). In an incompressible thermal convection experiment,
this corresponds to the distance between the hot and cold plates, but in the strongly
stratified SCZ, a more sensible estimate is the local pressure or density scale height
Hp or Hρ . Close to the surface, the Bolgiano scale is, therefore, roughly of the order
of a Megameter, comparable to the typical scale of granulation LG, but significantly
smaller than the scale of supergranulation LSG.

As we go deeper in the SCZ, the typical density and pressure scale heights become
larger and, therefore, so should the Bolgiano scale. As a result, the Bolgiano scale in
the SCZ is expected to increase with depth, ranging from 1Mm close to the surface to
100Mm close at the bottom of the SCZ. From a physical point of view, we can think of
convection in the stratified SCZ as being driven by cold, low entropy plumes of fluid
sinking from the surface and expanding self-similarly throught the nearly isentropic
convection zone (Rieutord and Zahn 1995). These large-scale plumes undergo sec-
ondary instabilities along their descending trajectories, producing a turbulent mixture
of vorticity filaments (see, e.g., Rast 1998; Clyne et al. 2007; Stein et al. 2009, and
Fig. 2).

2.2.2 Dissipation scales

As we are considering the turbulent motions of a non-ideal MHD fluid with finite
viscosity and finite magnetic and thermal diffusivities, there are also three distinc-
tive dissipation scales in the problem at hand: the viscous dissipation scale �ν , the
magnetic dissipation scale �η and the thermal dissipation scale �κ . All of them are
depth-dependent in the inhomogeneous SCZ.

A rough estimate for the viscous dissipation scale �ν can be obtained from the
Kolmogorov phenomenology of turbulence (Frisch 1995) via the expression �ν ∼
Re−3/4L , where L stands for the injection scale and Re = LV /ν, V being the typical
velocity at the injection scale. In the SCZ, where ν ∼ 10−3 m2/s (Rieutord 2008),
we find �ν ∼ 10−3 m at the surface, taking L ∼ LG ∼ 1Mm and V ∼ 1km/s for
the the typical granulation scale and velocity. At the bottom of the SCZ, where the
injection scale is much larger, one can estimate similarly that �ν ∼ 0.1m. Hence, �ν

123



6 Page 8 of 74 F. Rincon, M. Rieutord

τ = 1 surface

Thermal boundary layer

Diving plume

Radiative cooling

Cooler gas

Turbulent
entrainmentEntropy

profile

Isentropic
interior

Fig. 2 Left: the entropy profile as a function of depth, as estimated by numerical simulations or one-
dimensional structure models. Right: numerical vizualisation a cool plume diving from the surface. As
it penetrates into the isentropic background, the plume increases both its mass and momentum flux by
turbulent entrainment (represented by curly arrows) and expands horizontally. Image credits: Mark Rast,
see Clyne et al. (2007)

is everywhere extremely small compared to the resolution of current observations and
to the dynamical scales of interest.

In MHD, the relative value of the magnetic dissipation scale �η with respect to the
viscous scale �ν depends on the ordering of the dissipation coefficients of the fluid
(see e.g. Schekochihin et al. 2007). When the magnetic diffusivity η is much larger
than the kinematic viscosity ν, as is the case in the Sun, one may use �η/�ν ∼ Pm−3/4

(Moffatt 1961), where Pm = ν/η is the magnetic Prandtl number, and we have again
assumed a Kolmogorov scaling for the velocity field. The magnetic diffusivity in the
subsurface layers of the Sun is η ∼ 102 m2/s (Spruit 1974; Rieutord 2008), hence
Pm ∼ 10−5 and �η ∼ 100m close to the surface (see also Pietarila Graham et al.
2009). This is also small compared to the resolution of current observations and to the
dynamical scales of interest. Close to the bottom of the SCZ, Pm ∼ 10−1−10−2, so
�η ∼ 1m.

Finally, we have the thermal dissipation scale �κ , which is the largest of the three
dissipation scales in the solar context. In the SCZ, the thermal diffusivity κ is every-
where much larger than the kinematic viscosity ν, so the thermal Prandtl number
Pr = ν/κ is very small. Under these conditions, we may estimate �κ from the
expression �κ/�ν ∼ Pr−3/4, once again assuming a Kolmogorov scaling for the
velocity field. Thermal diffusion in the Sun is directly supported by photons and,
thus, depends strongly on the opacity of the fluid and, therefore, on depth. In the deep
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SCZ, Pr ∼ 10−4–10−6, so �κ ∼ 500m. In the optically thin surface layers, on the
other hand, �κ is much larger, and comparable to the scale of granulation LG ∼ 1Mm.
As explained earlier, thermal cooling is a key ingredient of granulation. The typical
granulation scale and flow turnover time can in fact be explained as a the result of a
balance between the advection time and cooling times of buoyant, high-entropy fluid
particles. To summarise, the ordering of the characteristic spatial scales close to the
solar surface is (a similar ordering holds for timescales):

�ν � �η � �κ ∼ Hp ∼ Hρ ∼ LB ∼ LG � LSG � R� .

2.3 What about supergranulation?

While there is a clear coincidence between some of these scales and the scale of
granulation, we see that we cannot as easily construct a scale comparable to that of
supergranulation at the solar surface from the standard phenomenology of turbulent
MHD convection. Of course, we have argued that the injection scale of turbulent
convection should increase self-similarly with depth in the stratified SCZ. We are,
therefore, in principle allowed to speculate that supergranulation could be associated
with convective motions originating deeper into the SCZ (say at∼ 30Mm). But in that
case we are still left with the question of finding a process that would single out this
particular depth physically, among the available continuum of injection scales. At the
minimum, we have to conclude that understanding the origin, and determining what
sets the scale of supergranulation from phenomenological considerations, requires a
somewhat more sophisticated line of thinking than that outlined above.

Absent a straightforward answer (and given the historical difficulties to simulate
numerically the dynamics in the corresponding range of scale, as will be explained
in Sect. 5), many different potential clues and explanations, including the effects of
changes in chemical composition or ionisation, the effects of shear, rotation or/and
magnetic fields on convection, or nonlinear dynamical effects such as inverse cascades,
have long been sought through either observational detection programmes or more or
less rigorous theoretical proposals and models. These different lines of research will
be reviewed and discussed at length in Sects. 3 and 4, but it is important at this stage
to acknowledge that none of them has led a comprehensive, predictive and falsifiable
theoretical explanation of supergranulation so far. On the other hand, we will see that
drastic improvements of both observational capacities and computing power over the
last 10years are now leading to the emergence of new observational and numerical
evidence strongly supporting the idea that the supergranulation scale at the solar surface
is a special scale at which the dynamics is indeed first and foremost driven by buoyancy
forces. The possible physics phenomenologies seemingly underlying these various
results will be discussed in detail in Sect. 6.

3 Observational characterization

This section offers a wide review of the observational characterization of supergran-
ulation. After an introduction of the principal methods of detection/inference of solar
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surface flows (Sect. 3.1), we review the numerous observational characterization of the
scale of supergranulation (Sect. 3.2),measurements of supergranulation-scale intensity
variations (Sect. 3.3), the inferred depth of the pattern (Sect. 3.2.4) and its interactions
with rotation (Sect. 3.4) and magnetic fields (Sect. 3.5).

3.1 Flowmeasurement methods

Supergranulation is first and foremost detected in the form of a flow at the surface of
the quiet Sun. Three methods are currently used tomeasure the corresponding velocity
field: Doppler imaging, granule tracking and local helioseismology.

3.1.1 Doppler imaging

Doppler imaging is the oldest technique used to monitor supergranulation (the first
detection by Hart (1954) was on a Doppler signal). A SOHO/MDI Doppler view of
supergranulation has already been shown in the previous section in Fig. 1. Doppler-
grams only provide the line-of-sight component of the velocity field. Therefore, except
at the disc centre or at the solar limb, this signal consists in a mixture of the horizontal
and vertical velocity field components. As already mentioned in the previous section,
one clearly notices that the supergranulation velocity field is mainly horizontal, as
the signal almost disappears near the disc centre. Doppler imaging of solar surface
motions has been tremendously developed since Hart (1954), and is a key component
of many modern space solar observatories, such as SOHO, SDO and Hinode.

3.1.2 Correlation and structure tracking

Another way to measure the velocity field at the photospheric level is by tracking
structures visible at the surface. The idea is that small-scale structures such as granules
(see Sect. 2.1.2 below) are simply advected by large-scale flows. Three variations of
this technique are used: the local correlation tracking (LCT), the coherent structure
tracking (CST) and theball-tracking (BT).LCTdetermines themotionof features on an
image bymaximising the correlation between small sub-images (November andSimon
1988). CST identifies coherent intensity structures in the image by a segmentation
process and then measures their displacement (e.g., Roudier et al. 1999; Rieutord
et al. 2007; Tkaczuk et al. 2007). BT follows the displacement of floating balls over
the intensity surface of images. The motion of the floating balls follows the mean
motion of granules; this is presumably more effective computationally speaking than
LCT and CST (Potts et al. 2004).

The principles and accuracy of granule tracking with LCT or CST have been tested
by Rieutord et al. (2001) using synthetic data extracted from numerical simulations.
Flows at scales larger than 2.5Mm are well reproduced by the displacements of gran-
ules.At shorter scales, the randommotion of granules (which are dynamical structures)
generates a noise that blurs the signal. This 2.5Mm lower limit has been confirmed
by Rieutord et al. (2010) using Hinode/SOT observations. The 2.5Mm resolution
is significantly smaller than the supergranulation scale, therefore, these methods are
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Fig. 3 The supergranulation horizontal velocity field as obtained by granule tracking. Image reproduced
with permission from Rieutord et al. (2008), copyright by ESO

well adapted to derive the horizontal components of the supergranulation flow. Unlike
Doppler imaging, they do not suffer from a projection effect, but only measure the
horizontal component of the flow.We will see a bit later that a combination of Doppler
and tracking techniques now appears to make it possible to separate the horizontal and
vertical components of the flow (albeit in a limited range of scales). An example of
the horizontal velocity fields using this technique applied to ground-based sequences
of wide-field images obtained at Pic du Midi is shown in Fig. 3.

3.1.3 Local helioseismology

Helioseismology uses the propagation of acoustic or surface gravity waves ( f -modes)
to determine the velocity of themediumoverwhich they propagate. If thewave velocity
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(a)

(b)

(c)
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�Fig. 4 Kinetic energy and velocity spectra of photospheric and subphotospheric flows derived using three
different methods. aGlobal spherical harmonics spectra of the line-of-sight Doppler velocity field obtained
with SOHO/MDI and SDO/HMI. The supergranulation peak around � = 120 (SOHO) and � = 130 (SDO)
is clearly visible. The granulation peak expected around � = 3000 is eroded and effectively shifted to
larger scales (� ∼ 1500) due to time-averaging. b Global spherical harmonics power spectra of the three
components of the surface velocity field (radial Er , spheroidal ES , toroidal ET ) inferred from a combined
CST tracking/Doppler analysis of 24h of SDO/HMI data. The inset shows the vertical scale height of the
flow inferred from the ratio between the amplitudes of the horizontal and vertical velocity, as a function
of horizontal scale. c Global spherical harmonics spectrum of the subphotospheric horizontal velocity field
at different depths (full lines), derived from a local helioseismic ring-diagram analysis. The peak scale of
the flows shifts towards larger scales with increasing depth. Note also that the sign of the vertical velocity
gradient changes around � = 30–40 in this inversion (the vertical amplitude of the flow seems to increase
with depth at large scales, while it decreases at smaller scales). Images reproduced with permission from
a Williams et al. (2014), copyright by Springer; b Rincon et al. (2017), copyright by ESO; c Greer et al.
(2015), copyright by AAS

is c and that of the fluid is V , a planewave travelling downstream shows a velocity V+c
whereas the one travelling upstream moves with a velocity V − c. The sum of the two
measured velocities gives that of the fluid. However, the phase velocity of the waves
is not directly measurable: the observable quantity is the local oscillation of the fluid
which results from the superposition ofmany travellingwaves.Aproper filtering is thus
needed to select the desired wave; this operation requires a true machinery. The reader
is referred to the reviews of Gizon and Birch (2005), Hanasoge and Sreenivasan (2014)
and Hanasoge et al. (2016) for more detailed presentation of these techniques in the
context of subsurface solar convective dynamics. Let us here simply recall some basic
information about their output: the spatial resolution at which velocity fields can be
measured is around 5Mm, and the time resolution for time–distance helioseismology
is around 8h. While this is lower than what can be achieved with other methods, this
technique provides the only means to probe the vertical dependence of the velocities
and the subphotospheric dynamics.Typically, vertical variations canbe evaluateddown
to 10–15Mm below the surface, but the accuracy of measurements deeper than 10Mm
is still debated. A comparison between the tracking and helioseismic reconstructions
of large-scale solar surface flows, showing good agreement between the two, can be
found for instance in Švanda et al. (2007) and Greer et al. (2016).

3.1.4 Power spectra of solar surface flows

Given a local or global velocity field map obtained by one of the means described
above, power spectra (scale-by-scale distribution of kinetic energy in Fourier or spher-
ical harmonics space) are one of the most important tools to characterize the properties
of the surface and subsurface dynamics of the solar photosphere. These include spectra
of full-disc Doppler velocity maps obtained by SOHO/MDI (Hathaway et al. 2000,
2002) and SDO/HMI data (Williams and Pesnell 2011;Williams et al. 2014; Hathaway
et al. 2015) and spectra of horizontal velocity fields derived from tracking applied to
photometric ground-based wide-field data (Rieutord et al. 2008), Hinode/SOT data
(Rieutord et al. 2010), SDO/HMI data (Langfellner et al. 2015a), or from helioseismic
inversions of flows based on SDO/HMI Doppler data (Greer et al. 2016). A selec-
tion of recently published spherical harmonics spectra derived from SDO/HMI data
using different kinds of flow measurements covering large areas of the solar disc is
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shown in Fig. 4. Figure 4a shows a spectrum of the Doppler (line of sight) velocity
field as measured by the SOHO/MDI and SDO/HMI Michelson imagers (Williams
and Pesnell 2011). Figure 4b shows the spectra of the three components of the pho-
tospheric velocity field, determined from a new technique combining CST (tracking)
and Doppler velocity fields reduced from SDO/HMI data (Rincon et al. 2017). Finally,
Fig. 4c shows the velocity spectra of subsurface flows determined from a ring-diagram
analysis of SDO/HMI data (Greer et al. 2015).

3.2 The scales and structure of supergranulation

3.2.1 Horizontal spatial scale andmorphology

Several techniques are used to measure the horizontal scale of supergranulation flows.
The most popular one by far is to estimate the peak scale of power spectra such
as those shown in Fig. 4. All studies of this kind basically find a peak scale value
of 30–36Mm, corresponding to � = 120–140 spherical harmonics, with a typical
width of 20–75Mm. The comparison shown in Fig. 4a between SOHO/MDI spectra
and SDO/HMI spectra computed for the same observation period suggests that the
lower spatial resolution of SOHO/MDI leads to a 10%-larger estimate for the size of
supergranules (Williams et al. 2014).

A detailed analysis of the plots of Rincon et al. (2017) in Fig. 4b reveals that
the spectra of the horizontal and vertical components of the flow are very different.
The supergranulation peak around � = 120 is essentially associated with horizontal
spheroidal motions corresponding to diverging/converging flows. This dominance of
the spheroidal spectrum over the toroidal/vortical spectrum of horizontal flows attests
of the predominantly cellular structure of supergranulationmotions. Theweaker radial
velocity spectrum increases monotically with decreasing scale down to the 2.5–5Mm
resolution of the velocity map used in the study1 and only shows a tentative inflexion
at the supergranulation scale (a similar conclusion applies to the toroidal/vortical
component). This trend of the radial velocity field to increase with scale down to the
spatial resolution of the data has also been observed using a different flow-component
determination method based on a differentiation of Doppler maps (Hathaway et al.
2015). The very different radial and horizontal velocity spectra reflect the strong
anisotropy of the flow. We will shortly argue that this result can be used to infer
some information about the vertical scale height of the velocity field. Finally, the
helioseismic data analysis shown in Fig. 4c reveals the interesting, albeit perhaps not
entirely surprising result that the scale of the spectral peak increases monotonically
with increasing depth, as onewould expect from the self-similarity argument described
in Sect. 2.

Other non-spectral techniques have been used to measure the horizontal scale
of supergranulation. In their seminal work, Leighton et al. (1962) and Simon and
Leighton (1964) calculated the auto-correlation length of Dopplergrams, and found
32Mm. Other authors, like DeRosa et al. (2000) and DeRosa and Toomre (2004), used

1 Consistent use of the component-separation method combining CST and Doppler velocities requires
downgrading the Doppler data to the 2.5Mm CST resolution (Rincon et al. 2017).
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local correlation tracking to determine the horizontal flows from the Doppler signal
of SOHO/MDI and identified supergranules with horizontal divergences. From these
data, they derived a rather small “diameter” in the 12–20Mm range. Using a simi-
lar technique, Meunier et al. (2007c) found a mean value for supergranule diameters
around 30Mm. As underlined in these papers, the exact size of supergranules very
much depends on the smoothing procedure used in the data processing. Another tech-
nique consists in estimating the supergranulation scale fromhorizontal flowdivergence
maps derived from local helioseismic analysis (this quantity is directly associated with
the difference between wave travel times in seismology and is, therefore, more readily
accessible than the velocity field itself). Using this technique on SOHO/MDI data, Del
Moro et al. (2004) computed the statistics of the sizes of supergranules and found a
mean diameter at 27Mm, with a peak in the distribution at 30Mm. Similar results have
been obtained by Hirzberger et al. (2008) using an even larger set of data (collecting
more than 105 supergranules).

Finally, several authors have used tesselation algorithms or threshold-based identifi-
cation techniques to capture individual supergranulation cells and subsequently study
their geometrical properties and spatial arrangement. Such techniques have mostly
been applied to maps of the chromospheric network (e.g., Hagenaar et al. 1997; Schri-
jver et al. 1997; Berrilli et al. 1998; Chatterjee et al. 2017), whose relationship to
supergranulation is further described in Sect. 3.5.1, and tend to give slightly smaller
size estimates.

3.2.2 Time scale and lifetime

As with horizontal spatial scales, there are several ways in which the time scale of
supergranulation can be measured. Historically, many such measurements rely on
the statitics of coherent cellular structures. Worden and Simon (1976) suggested a
supergranulation lifetime of 36h. Later, Wang and Zirin (1989) showed that super-
granulation lifetime estimates depended strongly on the choice of tracer or proxy.
They obtained 20h using Dopplergrams, 2days using direct counting techniques of
supergranulation cells and 10h using the tracking of magnetic structures (see also
Sect. 3.5). Here again, SOHO/MDI data have dramatically increased the statistics
and thus the quality of the determinations. Using a wavelet analysis of MDI data,
Parfinenko et al. (2014) found a time scale of 1.3days, while Hirzberger et al. (2008)
report a lifetime around 1.6–1.8days using helioseismic techniques. These latter esti-
mates are somewhat longer than the others, but they rely on very long time series and
large statistics enabling a better representation of long-living supergranules. A recent
SDO/HMI helioseismic analysis by Greer et al. (2016) finds a very similar coherence
time of supergranules in the first fewMegameters below the surface, but also concludes
that the pattern visible at the surface at any given time may subsequently propagate
down to the base of the near surface shear layer over a scale of a month. We will come
back to this result when we discuss the influence of rotation on supergranulation.
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3.2.3 Velocity scales

A typical horizontal velocity associated with supergranules can be quickly derived
from the ratio between the horizontal spatial scales and time scales given above.
Taking 30Mm for the former and 1.7days for the latter leads to a velocity of 205m/s,
in reasonable agreement with more direct inferences of the supergranulation velocity
field from observations: the original work of Hart (1954) inferred 170m/s, Simon and
Leighton (1964) mentioned 300m/s and more Hathaway et al. (2002) evaluated this
amplitude at ∼ 360m/s from SOHO/MDI Dopplergrams.

A quantitative way to estimate the magnitude of the supergranulation velocity field
is through the spectral density of kinetic energy E(k) describing the relation between
the scale and amplitude of the flow. The dimensional value of the spectral density of
horizontal kinetic energy Eh(k)was for instance derived byRieutord et al. (2010) from
granule tracking velocity measurements using Hinode/SOT data. The spectral power
density at supergranulation scales is 500km3/s2,which is larger than that at granulation
scales.2 This energydensity is related (dimensionally) to the velocity at scaleλ = 2π/k
by the relation Vλ = √

kEh(k). This leads to V
λ=36Mm � 300m/s, consistent with

the direct Doppler measurements of the velocity field at supergranulation scales.
It has been known from Dopplergrams for very long that the supergranulation flow

field is largely dominated by its horizontal component. The 300–400m/s estimates
above refer to this component. The vertical component of supergranulation flows is
much smaller and has provenmuch harder tomeasure, notably because the correspond-
ing signal is mixed with the much stronger 5min signal of acoustic solar oscillations,
and polluted by the presence of magnetic field concentrations at supergranule bound-
aries, where up and downflows tend to be localized (see Sect. 3.5 below). November
(1989, 1994) advocated that this vertical component was in fact the mesogranulation
that he detected some years before on radial velocities at disc centre (November et al.
1981). The rms value of this quantity was then estimated to be 60m/s. This quan-
tity was more precisely evaluated using the SOHO/MDI data. Hathaway et al. (2002)
derived an estimate of 30m/s while Duvall and Birch (2010) found a very low rms
value around 4m/s with upwelling velocities of 10m/s. Similarly, power spectra of
line-of-sight velocities from Hinode/SOT data derived by Rieutord et al. (2010) point
to a rms vertical velocity of 10m/s at the scale of supergranulation, however, with low
statistics. The recent global analysis of SDO/HMI surface data by Rincon et al. (2017)
aiming at disentangling the three components of the velocity and the corresponding
spectra (Fig. 4b), points to a value of no more than 20–30m/s for the radial/vertical
velocity field at supergranulation scales. Only an upper bound can be inferred from
such surface measurements as it is very difficult to isolate the weak signal from this
slow flow component in the data. Recent helioseismic measurements by Greer et al.
(2016) point to a typical vertical flowfield of the order 40m/s in the first fewMmbelow
the surface. Whatever the exact value, the results show that the vertical amplitude of

2 At granulation scales, the spectral power density is less than 300km3/s2. We recall that granules have a
much larger typical velocity than supergranules though, of the order 1–2km/s (Sect. 2.1.2). The difference
comes from the definition of the spectral power density at wavenumber k, E(k) ∼ k−1V 2

k , which introduces
an extra k factor.
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the flow is at best ten times smaller than the horizontal one, emphasizing once again
the strong anisotropy of the supergranulation flow.

3.2.4 Depth and vertical structure

A typical scale height of subsonic flows in the supergranulation to mesogranulation
range can be indirectly estimated from velocities measured at the photospheric level
using the anelastic equation of mass conservation

∂zvz = −vz∂z ln ρ − ∇h · vh ,

where the index h refers to the horizontal quantities and z. This equation can also
be expressed as vh/λh ∼ vz/λz , where λh is the horizontal scale and λz stands for
the smallest of the density scale height and typical vertical scale of variation of the
flow. We see that a separate measurement of the vertical and horizontal velocities at
given horizontal scale allows for an estimation of the corresponding vertical scale of the
flow. Combining Dopplergrams and correlation tracking inferences, November (1994)
argued that the supergranulation flow should disappear at depths larger than 2.4Mm
below the visible surface. Rieutord et al. (2010) performed the same kind of calculation
using divergences and velocity fields derived from Hinode data, and found a vertical
velocity scale height of ∼ 1Mm, indicating a very shallow structure. Finally, in their
recent global spectral analysis of the different components of the flow using SDO/HMI
data, Rincon et al. (2017) found that λz is approximately constant and of the order
of 2.5Mm in the horizontal range extending from the supergranulation scale down to
a few Mm (see inset in Fig. 4b). The conclusion that the flow has a relatively small
vertical scale of variation below the surface appears to be an inescapable consequence
of the measurements of a large horizontal to vertical surface velocity ratio. This result,
however, does not imply that there is no flow below that depth.

There is obviously only so much one can do with surface measurements to study
the vertical structure of supergranulation. Fortunately, the advent of local helioseis-
mology in the late 1990s has made it possible to start probing supergranulation-scale
flows at optically-thick levels. Using MDI data, Duvall et al. (1997), detected flows at
supergranulation scales only in the first few Mm below the surface. Duvall Jr (1998)
further estimated that the depth of supergranulation was 8Mm. Zhao and Kosovichev
(2003), on the other hand, found converging flows at 10Mm and estimated the super-
granulation depth to be 15Mm.Woodard (2007) reported a detection of a flow pattern
down to 5Mm corresponding to the deepest layers accessible with their data set. Using
Hinode data, Sekii et al. (2007) found that a supergranulation pattern, monitored for
12h in a small field of 80× 40Mm2, does not persist at depths larger than 5Mm. The
existence of a return flow at depths larger than 5Mmwas also suggested in that period
but remained unclear (Duvall Jr 1998; Zhao and Kosovichev 2003). There is a large
scatter in these early results, and a lot of ambiguity in what they really represent.

The helioseismic determination of the vertical extent and structure of supergranu-
lation remains a work in progress and a difficult task. Various discussions of the early
shortcomings, difficulties and artefacts associated with the development of helioseis-
mic imaging of subsurface flows can be found in Braun and Lindsey (2003), Lindsey
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and Braun (2004) and Gizon and Birch (2005) andmore recently in Švanda (2015) and
Bhattacharya and Hanasoge (2016). But, as these difficulties are progressively elim-
inated, helioseismic techniques are now increasingly playing a key role in the study
and understanding of supergranulation, and new helioseismic analyses of subsurface
flows have now been conducted with SDO/HMI data. Duvall and Hanasoge (2013)
and Duvall et al. (2014) found suprisingly high-speed supergranular flows at a depth
∼ 2Mm, namely vertical upflows of 240m/s at a depth of 2.3Mm and horizontal flows
of 700m/s at a depth 1.6Mm. Such high values have, however, been challenged by
subsequent studies by DeGrave and Jackiewicz (2015) and Greer et al. (2015, 2016).
This tension may be due to the fact that Duvall and Hanasoge (2013) and Duvall et al.
(2014) used a large skip distances and imaged vertical flows, and also averaged over a
larger number of supergranules, while the local methods used in other studies typically
image horizontal flows using moderate skip distances. Greer et al. (2016) also find
an instantaneous correlation depth of ∼7Mm for the supergranulation pattern, but
suggests that the pattern actually propagates down to the bottom of the near surface
shear layer over a month at a vertical speed of the order of 40m/s. This propagation
may help to explain some of the deeper earlier estimates for the depth of supergranu-
lation. Note however that these determinations of the correlation depth of flows may
be affected by the details of helioseismic inversion procedures, as suggested by the
analysis of DeGrave et al. (2014b). Finally, Greer et al. (2016) suggest that supergran-
ules “form[s] at the surface and rains downward, imprinting [their] pattern in deeper
layers”. They also find that the pattern does not take the form of a cellular flow like
in the laminar picture of Rayleigh–Bénard convection, but is rather dominated by
downflows. As mentioned earlier, the spectral analysis of helioseismically determined
convective flows by Greer et al. (2015) (Fig. 4c) also suggests a monotonic increase
of the energetically dominant horizontal scale of fluctuations with depth.

3.3 Intensity variations in supergranules

The surface thermal signature of supergranulation appears to be quite small. Earlymea-
surements suggested that the intensity contrast between the border and the centre of
supergranules probably does not exceed a few percents in the infrared (Worden 1975).
The photometric intensity contrast at supergranulation scales in white light images is
also much smaller and ambiguous than that of granulation, which has been shown to
be up to 27% at a wavelength of 450nm (Wedemeyer-Böhm and Rouppe van der Voort
2009). Several early studies (Beckers 1968; Frazier 1970; Foukal and Fowler 1984;
Lin and Kuhn 1992) found an increase of intensity at the edge of supergranulation
cells, corresponding to a negative correlation between the supergranulation horizontal
divergence maps and intensity maps. These early results may naively tend to rule out a
convective origin for supergranulation but are subject to caution. First, supergranula-
tion vertices are strongly correlated with magnetic bright points (see Sect. 3.5 below).
To circumvent this difficulty, Rast (2003a) considered only areas with low magnetic
fields and found a small decrease of intensity at the edge of supergranules. The problem
was reconsidered in detail by Meunier et al. (2007b, 2008) using MDI intensity maps.
There too, the influence of the magnetic network was carefully eliminated. In contrast
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to most previous studies, they report a very small but significant intensity decrease
from the centre to the edge of supergranulation cells (in the range 0.8–2.8K). This
conclusion was also reached by Goldbaum et al. (2009) using a different methodology.
In addition, Meunier et al. (2008) noticed that the radial temperature profile at the sur-
face of a supergranule is very similar to that of a simulated granule. Using SDO/HMI
continuum intensity maps centered around 617nm, (Langfellner et al. 2016) recently
derived a new estimate at ΔT = 1.1 ± 0.1K of the temperature drop between centre
and edge of supergranules, in line with the preceding results.

While such contrats are relatively weak, it has been argued that they remain con-
sistent with a convective origin of supergranulation (Goldbaum et al. 2009). Also, the
many complexities of radiative transfer at the surface, including strongly temperature-
dependent opacities (Nordlund et al. 2009), imply that small surface intensity contrasts
cannot alone easily be accepted as smoking-gun evidence for weak buoyancy/entropy
driving below the surface. Helioseismic analysis (e.g., Duvall et al. 1997) notably seem
to point to larger relative temperature contrasts of the order of a few percents below
the surface. We will also see in Sect. 5 that a strong buoyancy driving is observed
at scales larger than granulation in large-scale simulations, but does not generally
translate into a strong surface intensity pattern in simulations incorporating realistic
radiative physics.

3.4 Effects of rotation

The influence of the global rotation Ω of the Sun on the dynamics of a structure of
size L and typical velocity V is measured by the Rossby number:

Ro = V

2ΩL
= (2Ωτ)−1.

The second expression uses the lifetime of the structure τ = L/V . In numbers, taking
τSG = 1.7days and a rotation period of 25–30days leads to RoSG ∼ 2−3. This is
not a large value, indicating that the Coriolis acceleration should affect the dynam-
ics of supergranules. Such an effect has been reported by Gizon and Duvall (2003),
who showed (Fig. 5a) that the correlation between vertical vorticity and horizontal
divergence of supergranules changes sign at the equator: it is negative in the northern
hemisphere and positive in the southern one. Hence, supergranules, while essentially
consisting of cells of diverging flows, behave like weak anticyclones (the vertical vor-
ticity of anticyclones changes sign at the equator, see Fig. 5b). These anticyclones
are surrounded by cyclonic vorticity associated with downward flows; because these
downdrafts have a somewhat smaller scale, the cyclonic vorticity is less conspicuous in
measurements than the anticyclonic contribution of supergranules, but it has actually
been singled out in the work of Komm et al. (2007). A recent study of Langfellner et al.
(2015b) applying both time–distance helioseismology and local correlation tracking
to SDO/HMI data has recently confirmed these conclusions with spatially-resolved
measurements of the supergranulation vorticity. They find a typical vortical flow com-
ponent of the order of 10m/s in the diverging core of supergranules, much weaker than
the diverging horizontal flow component itself. This result is consistent with the weak-
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Fig. 5 a Correlation between the horizontal divergence and vertical vorticity of the supergranulation flow
as a function of latitude. Image reproduced with permission from Gizon and Duvall (2003), copyright by
ESA. b Schematic view of anticyclones at the surface of the rotating Sun

ness of the toroidal flow component with respect to the spheroidal flow component
found in the spectral analysis of Rincon et al. (2017).

Early studies of the rotational properties of supergranulation focused on the rota-
tion rate of the supergranulation pattern (Duvall 1980; Snodgrass and Ulrich 1990).
Using Dopplergrams, they found, surprisingly, that supergranulation is rotating 4%
faster than the plasma. This phenomenon is usually referred to as the superrotation of
supergranules. Superrotation was seemingly confirmed by Duvall and Gizon (2000)
using the time–distance technique applied to f -modes detected with SOHO/MDI, and
Beck and Schou (2000) estimated that the supergranulation rotation rate is larger than
the solar rotation rate at any depth probed by helioseismology.

Analysing time series of divergence maps inferred from time–distance helioseis-
mology applied toMDIdata,Gizon et al. (2003) further found that the supergranulation
pattern hadwave-like properties with a typical period of 6–9days, quite longer than the
lifetime of individual supergranules. They also found that the power spectrum of the
supergranulation signal close to the equator presented a power excess in the prograde
direction (with a slight equatorwards deviation in both hemispheres), thus explain-
ing the anomalous superrotation rate of the pattern. The dispersion relation for the
supergranulation “wave” appears to be only weakly dependent on latitude (Gizon and
Duvall 2004). Schou (2003) seemingly confirmed these findings with direct Doppler
shift measurements and found that wave motions were mostly aligned with the direc-
tion of propagation of the pattern. These results brought interesting new light on the
supergranulation phenomenon and led to the conjecture that supergranulation could
be a manifestation of oscillatory convection, a typical property of convection in the
presence of rotation and/or magnetic fields (see Sect. 4). This interpretation of the
observed power spectrum in terms of oscillations was, however, questioned by Rast
et al. (2004) and Lisle et al. (2004), who instead suggested an explanation in terms of
two superimposed steady flow components identified as mesogranulation and super-
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granulation advected by giant cell circulations. According to Gizon and Birch (2005),
this interpretation is not supported by observations. They argued that the finding of
Lisle et al. (2004) that supergranules tend to align in the direction of the Sun’s rota-
tion axis under the influence of giant cells can be explained naturally in terms of wave
dynamics. North–South alignments of supergranules have also been found in the polar
regions byNagashima et al. (2011) using local helioseismologywithHinode/SOTdata.
A recent study by Langfellner et al. (2018) using both time–distance helioseismology
on SDO/HMI data and correlation tracking appears to further confirm the results of
Gizon et al. (2003) on the wave-like oscillatory properties of the dynamics in the range
of scales 50 < � < 120 comparable to or slightly larger than the supergranulation
scale.

Going back to surface measurements, Hathaway et al. (2006) argued that the super-
granulation pattern superrotation inferred from Doppler shifts was due to projection
effects on the line-of-sight signal. Using correlation tracking of divergence maps
derived from intensity maps (Meunier et al. 2007c) and comparing it with direct
Doppler tracking, Meunier and Roudier (2007) confirmed the existence of projection
effects with the lattermethod, but found that the supergranulation pattern inferred from
divergence maps was still superrotating, albeit at smaller angular velocities than those
inferred by Duvall (1980) and Snodgrass and Ulrich (1990). More recently, Hathaway
(2012) found that supergranules of increasingly larger size seem to accurately track the
solar rotation rate at increasingly larger depths, down ∼50Mm. This latter estimate is
quite large compared to the coherence length (7Mm) inferred byGreer et al. (2016) but
is consistent with the high speed vertical flows suggested by the Duvall et al. (2014)
analysis. Also, Greer et al. (2016) note that the 7Mm estimate is deceptive because
of the slow downwards propagation of the supergranulation pattern diagnosed in their
helioseismic analysis, and notably argue that the slow propagation speed is consistent
with a propagation of the pattern down to the base of the near surface shear layer on a
timescale comparable to the solar rotation period. This suggests that supergranulation
is in dynamical interaction with the subsurface differential rotation layer down to 30–
50Mm deep, and may actually play an important role in the dynamical establishment
of this layer.

For the sake of completeness, let us finally mention the observations by Kuhn et al.
(2000) of small-scale 100m-high “hills” at the solar surface, which they interpreted as
Rossby waves. It has been argued (Williams et al. 2007) that these structures simply
result from the vertical convective motions associated with supergranules.

3.5 Effects of magnetic fields

As explained in Sect. 2.2, the magnetic dissipation scale at the solar surface is
�η ∼ 100m or slightly less. Hence, convection at the solar surface is strongly coupled
to the Sun’s magnetic dynamics at all observable scales, including that of supergran-
ulation. The aim of this section is to review the breadth of observational results on the
interactions between the two. We first look at the correlations between supergranula-
tion and the magnetic network and review the main properties of internetwork fields,
whose dynamics is directly related to the formation of the magnetic network. We then
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review studies of the dependence of supergranulation on the global solar magnetic
cycle, and of its interactions with active regions.

3.5.1 Supergranulation and the magnetic network

The discovery of the chromospheric network in Ca+ K spectroheliograms (the K-line
of Ca+ at 393.4nm) such as shown in Fig. 6 dates back to Deslandres (1899). The first
comparative analyses between magnetograms, spectroheliograms and Dopplergrams
by Leighton et al. (1962) and Simon and Leighton (1964) revealed a strong correlation
between the chromospheric network, the magnetic field distribution of the quiet Sun
and supergranulation. For this reason, bothmagnetograms and spectroheliograms have
been used as a proxy to study supergranulation (e.g., Lisle et al. 2000; Del Moro et al.
2007; Tian et al. 2010), but it should be kept in mind that the dynamical interactions
between magnetic fields and supergranulation are actually still not well understood
(this problem will be discussed in Sect. 6).

The magnetic network refers to a distribution of magnetic field concentrations
(associated with bright points in spectroheliograms) with typical field strengths of the
order of 1kG (see reviews by Solanki 1993; de Wijn et al. 2009), primarily located
on the boundaries of supergranules (Simon et al. 1988), in downflow areas. Several
differences between supergranulation and the magnetic network have been noticed,
including a 2% relative difference in the rotation rate of the two patterns (see Snod-
grass and Ulrich 1990 and Sect. 3.4 above). The magnetic network is not regularly
distributed on the boundaries of supergranulation cells but rather concentrates into
localized structures (see Fig. 7). Estimates of the lifetime and size of supergranules
inferred frommagnetograms or spectroheliograms are significantly smaller than those
based on direct velocimetric measurements (Wang and Zirin 1989; Schrijver et al.

Fig. 6 A view of the
chromospheric network at the
Ca+ K3 line at 393.37nm.
Image credits: Meudon
Observatory
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Fig. 7 Distribution of magnetic
field intensity (grey scale levels)
on the supergranulation
boundaries. The black dots show
the final positions of floating
corks that have been advected by
the velocity field computed from
the average motion of granules.
The distribution of corks closely
matches that of the magnetic
field. Image reproduced with
permission from Roudier et al.
(2009), copyright by ESO

1997; Hagenaar et al. 1997). For instance, Hagenaar et al. (1997), using correlations
of maps of the chromospheric network, obtained a typical size of 16Mm. As far as the
horizontal velocities are concerned, the tracking of magnetic network elements gives
values around 350m/s, close to the estimates derived from granule tracking (Lisle et al.
2000). The spatial distribution of magnetic network fields can be reconstructed quite
well by letting passivemagnetic elements be advected by the surface flowfield (Krijger
and Roudier 2003; Roudier et al. 2009). Moreover, tagging the granules and following
their evolution and motion leads to the so-called Trees of Fragmenting Granules in a
space-time diagram, a structure whose spatial boundaries also neatly match part of the
boundary of the embodying supergranule (Roudier et al. 2016; Malherbe et al. 2018).

These results show that the formation of the magnetic network is related to the
large-scale dynamics of the surface (see Orozco Suárez et al. 2012; Giannattasio
et al. 2014; Berrilli et al. 2014). The magnetic field-flow interaction occurs over a
wide range of scales extending up to the 35Mm supergranulation scale, and sev-
eral studies with the Swedish Solar Telescope at La Palma observatory indicate that
strong correlations between flows at scales comparable to or smaller than mesoscales
(i.e., significantly smaller than supergranulation) and intense magnetic elements exist
(Domínguez Cerdeña 2003; Domínguez Cerdeña et al. 2003). A study by Roudier
et al. (2009), combining spectropolarimetric and photometric Hinode measurements,
also established a very clear correlation between the motions at mesoscales and those
of the magnetic network (see also de Wijn and Müller 2009). Note finally that the net-
work formation process may be influenced by an East–West anisotropy now detected
in supergranules (see Langfellner et al. 2015a; Roudier et al. 2016).
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3.5.2 Internetwork fields

One of the important advances on solar magnetism in the last two decades has been the
detection of quiet Sun magnetic fields at scales much smaller than that of granulation
(e.g., Domínguez Cerdeña et al. 2003; Berger et al. 2004; Trujillo Bueno et al. 2004;
Rouppe van der Voort et al. 2005; Lites et al. 2008). The ubiquity of these fields and
their energetics suggest that the dynamics of internetwork fields could also be a piece of
the supergranulation puzzle. The following summary is notmeant to be exhaustive. For
a more detailed presentation, we refer the reader to the reviews of deWijn et al. (2009)
and Stenflo (2013). Internetwork fields refer to mixed-polarity fields that populate the
interior of supergranules. Their strength is on average thought to be much weaker than
that of network fields, but magnetic bright points are also observed in the internetwork,
(e.g., Muller 1983; Nisenson et al. 2003; de Wijn et al. 2005; Lites et al. 2008).
Besides, network and internetwork fields are known to be in permanent interaction
(e.g., Martin 1988). In fact, in the light of nowadays high-resolution observations
and numerical MHD simulations (see Sect. 5.3.6), the historical distinction between
network and internetwork fields cannot be easily justified on dynamical grounds, as
the two appear to be part of a complex multiscale dynamics involving some local
dynamical intensification process. Internetwork magnetism was originally discovered
by Livingston and Harvey (1971, 1975) and subsequently studied by many authors
(e.g., Martin 1988; Keller et al. 1994; Lin 1995) at resolutions not exceeding 1”
(730km). Observations with the solar telescope at La Palma observatory revealed the
existence of such fields at scales comparable and even smaller than the granulation
scale (Domínguez Cerdeña et al. 2003; Roudier and Muller 2004; Rouppe van der
Voort et al. 2005). Studies based on Hinode observations (Orozco Suárez et al. 2007;
Lites et al. 2008) reported magnetic field variations at scales comparable to or smaller
than 100km.

The strength of internetwork fields, their distribution at granulation and subgranu-
lation scales and their preferred orientation are still a matter of debate. Almost every
possible field-strength value in the 5–500G range can be found in literature (Martin
1988; Keller et al. 1994; Lin 1995; Domínguez Cerdeña et al. 2003; Trujillo Bueno
et al. 2004; Lites et al. 2008). This wide dispersion is explained by several factors.
Zeeman spectropolarimetry, one of the most frequently used tools to study solar mag-
netism, is affected by cancellation effects when the magnetic field reverses sign at
scales smaller than the instrument resolution (Trujillo Bueno et al. 2004; deWijn et al.
2009). Hence, very small-scale fields can partially escape detection via this method.
Zeeman spectropolarimetry estimates of the average field strength based on Hinode
observations (Lites et al. 2008) are 11G for longitudinal fields and 60G for transverse
fields (horizontal fields at disc centre), but wide excursions from these average values
are detected and the observed signatures may also be compatible with stronger, less
space-filling magnetic fields. Using Hanle spectropolarimetry, Trujillo Bueno et al.
(2004) report an average field strength of 130G, with stronger fields in the intergran-
ular lanes and much weaker fields in the bright centres of granules. The discrepancy
betweenHanle and Zeeman estimates can be reduced using techniques that circumvent
cancellation effects, though, leading to estimates of 60–80G (Danilovic et al. 2010,
2016a, b).
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Some Zeeman estimates seem to indicate that small-scale internetwork fields have
a tendency to be horizontal (Orozco Suárez et al. 2007; Bommier et al. 2007; Lites
et al. 2008), sometimes even bridging over granules, but other studies have come
to the opposite conclusion that internetwork fields are mostly isotropic (Martínez
González et al. 2008; Asensio Ramos 2009; Bommier et al. 2009). Using Zeeman and
Hanle diagnostics in a complementary way, López Ariste et al. (2010) came to the
conclusion that internetwork fields are mostly isotropic and highly disordered, with a
typical magnetic energy containing scale of 10km.We again refer the reader to Stenflo
(2013) for a more detailed review of this problem. The isotropy properties of the field
also seem to be dependent on the depth at which they are probed (Schüssler andVögler
2008; Rempel 2014), and conditional on the amplitude of the signal polarization (Lites
et al. 2017).

Finally, at the scale of supergranulation, it has been pointed out that regions of
supergranulation up-welling (i.e., of positive divergence) can be very quiet and have
very little flux emergence (Martínez González et al. 2012; Stangalini 2014). One
possible explanation is that supergranulation-scale diverging flows somewhat hinder
small-scale dynamo action, but this observation may also be a simple consequence of
the fast sweeping of the magnetic fields peppered by the small-scale dynamo to the
boundaries of supergranules.

3.5.3 Magnetic power spectrum of the quiet photosphere

The scale-by-scale distributionofmagnetic energy and thepower spectrumofmagnetic
fields in the quiet photosphere may also give us clues on MHD dynamics in the
subgranulation to supergranulation range. Several authors have notably argued that
solar magnetic fields, from the global solar scales to the smallest scales available
to observations, may have a fractal or multifractal structure (Lawrence et al. 1995;
Komm 1995; Nesme-Ribes et al. 1996; Meunier 1999; Janßen et al. 2003; Stenflo and
Holzreuter 2002, 2003a, b; Abramenko 2005).

Studies of the magnetic power spectrum of the quiet Sun are currently mostly
limited to the line-of-sight component of the magnetic field. Most spectra available
in literature have been obtained from either ground-based observations, SOHO / MDI
and Hinode magnetograms. The power spectrum of magnetic energy at scales below
1Mm has recently been studied by Stenflo (2012), Katsukawa and Orozco Suárez
(2012) and Danilovic et al. (2016a) using Hinode/SOT data. These different studies
find a rather slow decay of the magnetic energy (∼ k−0.7–k−1.4) at subgranulation
scales suggestive of vigorous magnetic dynamics at such scales. At the larger scales
ofmost interest here, themagnetic power spectrum is rather flat, but shows amaximum
in the meso to supergranulation-scale range. The spectrum appears to have a relatively
shallow negative slope below 10–20Mm, (e.g., Lee et al. 1997; Abramenko et al.
2001; Harvey et al. 2007; McAteer et al. 2010; Longcope and Parnell 2009). There
have unfortunately been very few studies of supergranulation-scale magnetic fields
with SDO/HMI so far. A raw comparison of Hinode/SOT, SOHO/MDI and SDO/HMI
magnetic spectra obtained in this range of scale has been made by Abramenko et al.
(2011).

123



6 Page 26 of 74 F. Rincon, M. Rieutord

3.5.4 Supergranulation variations over the solar cycle

In view of the association between supergranulation and the magnetic network, it
is natural to wonder if and how the size of supergranules varies with solar activ-
ity. Early studies did not directly focus on supergranulation flows but rather on the
cycle-dependence of the magnetic network itself. Singh and Bappu (1981) studied
spectroheliograms spanning a period of seven solar maxima and found the typical size
of the chromospheric network to be smaller at the maxima than at the minima of the
cycle. A similar conclusion was reached by Kariyappa and Sivaraman (1994), Berrilli
et al. (1999) and Raju and Singh (2002), but Wang (1988) and Münzer et al. (1989)
both reported an increase of network cell sizes in regions of stronger magnetic activity
instead. UsingMDImagnetograms spanning the first half of Cycle 23,Meunier (2003)
found an increase of the size of magnetic elements at supergranulation-like scales with
solar activity [Berrilli et al. (1999) also used data obtained at the beginning of Cycle 23
close to the activity minimum]. However, in the upper solar atmosphere (quiet chro-
mosphere and transition region) there is a clear decrease of the supergranular scale
when the magnetic cycle decreases McIntosh et al. 2011; Chatterjee et al. 2017. These
somehow contradicting results show that magnetic tracers must be used with care for
this kind of measurements. The results are sensitive to the thresholds used to identify
the various field components (e.g. network or internetwork), and disentangling these
effects is difficult.

Other studies have attempted to use proxies independent of magnetic tracers of
supergranulation to measure its size, notably velocity features like positive diver-
gences. DeRosa andToomre (2004), using two data sets obtained at periods of different
levels of magnetic activity, found smaller supergranulation cell sizes in the period of
high activity. A similar conclusion was reached by Meunier et al. (2008). Meunier
et al. (2007a) found a decrease of the typical cell sizes with increasing field strength
within supergranules, but noted that larger supergranulation cells were associated
with stronger network fields at their boundaries. Hence, it seems that a negative or a
positive correlation can be obtained, depending onwhether the level of magnetic activ-
ity is defined with respect to internetwork or network fields. Meunier et al. (2007a)
also reported the absence of large supergranulation cells for supergranules with large
internetworkmagnetic field strengths, suggesting that internetwork fields (whose exis-
tence is most likely rooted in a small-scale dynamo mechanism independent of the
solar cycle) do have a dynamical influence on supergranules. We refer the reader to
Meunier et al. (2007a) for a more exhaustive discussion of the previous results and of
the possible shortcomings and biases of the various methods.

The last marked and long minimum that occurred in 2008 between solar cycles
23 and 24, prompted Williams and Pesnell (2011) to compare the characteristic time
scale, length scale and velocities of supergranulation with the ones of the preceding
minimum in1996.Only slight differences have been found. Finally, on the helioseismic
side, the dispersion relation for the supergranulation oscillations found by Gizon et al.
(2003) appears to be only weakly dependent on the phase of the solar cycle (Gizon
and Duvall 2004). However, the same authors reported a decrease in the lifetime and
power anisotropy of the pattern from solar minimum to solar maximum. Overall, it
is therefore fair to say that a possible dependence of supergranulation on the solar

123



The Sun’s supergranulation Page 27 of 74 6

cycle, if any, appears to be relatively weak, and does not appear to drastically affect
its dynamics.

3.5.5 Supergranulation and flows in active regions

Let us finally consider the properties of surface flows at scales comparable to super-
granulation within active regions and in the vicinity of sunspots. The reason for doing
this is twofold. First, we may wonder how supergranulation evolves locally during
the formation or decay of an active region. Second, the properties of flows around
sunspots may give us some hints of the effect of strong magnetic flux concentrations
on the flow dynamics in the quiet Sun.

Information regarding the first point remains scarce. Rieutord et al. (2010) reported
the disappearance of the supergranulation spectral peak in the kinetic energy power
spectrum of solar convection during the emergence of two magnetic pores. While the
pores (of a size comparable to that of a granule) are emerging, the supergranulation
flow becomes very weak just like if the surrounding magnetic flux associated with the
pores had a significant impact on the flow. A related observation by Hindman et al.
(2009) shows that the fairly regular tiling of the surface of the quiet Sun associated
with supergranulation is somewhat disorganised and washed away within magnetic
active regions.

As far as the second point is concerned, many studies in the past have focused on the
detection and characterisation of intrinsic flows associated with sunspot regions (see
Solanki (2003) and Thomas and Weiss (2008) for exhaustive descriptions of sunspot
structure and dynamics) and significant observational progress has been made on
this problem in recent years thanks to local helioseismology (Lindsey et al. 1996;
Gizon et al. 2000; Zhao et al. 2001, 2004, 2010; Haber et al. 2001, 2004; Braun
and Lindsey 2003; Hindman et al. 2009; Komm et al. 2011, 2012; Kosovichev 2012;
Jain et al. 2016; Löptien et al. 2017). The general picture seems to be as follows
[Hindman et al. (2009), but see also DeGrave et al. (2014a) for a discussion of the
possible limitations of helioseismic techniques in sunspots]: an annular outflow called
the moat flow (Sheeley 1969) is observed at the surface, close to the sunspot. There is a
corresponding return flow at depths smaller than 2Mm, so themoat circulation is fairly
shallow. In contrast, further away from the sunspot umbra, larger-scale circulations
characterized by a surface inflow and a deep (> 10Mm) outflow are inferred from
helioseismic inversions.

The structure of the moat flow has been probed using the Doppler signal (Sheeley
and Bhatnagar 1971; Sheeley 1972), the tracking of surface features, such as granules
(Muller and Mena 1987; Shine et al. 1987) or small-scale magnetic elements (Sheeley
1972; Harvey and Harvey 1973; Hagenaar and Shine 2005), and with helioseismology
(Gizon et al. 2000). The outflow appears to have properties similar to those of super-
granulation (see notably Brickhouse and Labonte 1988), albeit with a larger velocity
∼ 1km/s. It remains unclear whether this strong-field dynamical behaviour has any-
thing in common with supergranulation though. The outflow in this case is centred on
a strong field region whereas it is the supergranulation inflow vertices that coincide
with magnetic flux concentrations in the quiet Sun (see, e.g., Requerey et al. 2018).
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4 Classical fluid theory and phenomenological models

4.1 Context

The big problem with understanding supergranulation has always been the important
challenges that its numerical simulation and formal theoretical description present.
Until the mid-2000s and the advent of the first large-scale 3D numerical simulations,
our computing arsenal was too limited to probe almost any aspect of the multiscale
dynamical nonlinear complexity of large-scale solar surface dynamics, leaving theo-
retical astrophysicists almost naked with just linear or weakly nonlinear theories from
the 1960–1990 era at hand, plus a few generic hand-waving turbulence concepts from
the same period. All the classical phenomenological models of supergranulation from
this “pre-numerics era” are extremely simplified, qualitative and speculative. Most
of them have consequently proven unfalsifiable and, as we shall see with the review
of numerical results in the next section, are in fact most likely too idealized. To be
fair, similar limitations have plagued research on many, if not all nonlinear astrophys-
ical fluid dynamics problems. It also has to be recognized that such models are not
devoid of meaningful physical insights either, and have played an important role in
shaping the generic astrophysical fluid dynamical phenomenological landscape over
the years. This section is, therefore, perhaps best understood as a testimony of the
historical development of the many different possible phenomenological scenarios for
supergranulation dynamics.Modern numerical developments, and ongoing theoretical
discussions inspired by them as well as by some of the observational results reviewed
in the previous section, will be reviewed in Sects. 5 and 6.

The classical phenomenological models of supergranulation are essentially of two
types: those which assume that supergranulation is rooted in thermal convection (i.e.,
it is driven by thermal buoyancy) and rely on classical fluid convection theory, and
those which do not and rely on more general phenomenological concepts of tur-
bulent dynamics. In the following, we therefore first briefly introduce the rotating
MHD Rayleigh–Bénard problem (Sect. 4.2), which provides the simplest mathemat-
ical description of rotating magnetoconvection in a fluid. While this system is not
entirely adequate to describe convection in the strongly stratified SCZ and close to the
optically thin surface (Nordlund 1982), it is sufficient for the purpose of discussing
the generic phenomenology of linear and turbulent convection, most classical convec-
tion models of supergranulation, as well as some aspects of the nonlinear dynamics
observed in the simulations thatwill be reviewed in thenext section.We then reviewdif-
ferent simple “linearized” thermal convection models of supergranulation (Sect. 4.3),
and other possible fluid dynamical mechanisms involving nonlinear turbulent interac-
tions and collective dynamics of smaller-scale turbulence (Sect. 4.4).

4.2 Rotating, MHD Rayleigh–Bénard convection

4.2.1 Formulation

The simplest mathematical formulation of the dynamical problem of thermal fluid
convection is the Rayleigh–Bénard problem describing convection between two dif-
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g
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Bo, Ω
Ttop < Tbot
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Fig. 8 The rotating MHD Rayleigh–Bénard convection problem

ferentially heated horizontal plates, each held at a fixed temperature. This model is
derived under the Boussinesq approximation, which amounts to assuming that the flow
is highly subsonic and that density perturbations δρ to a uniform and constant back-
ground density ρo are negligible everywhere except in the buoyancy term δρ g, where
g = −gez stands for the gravity (Chandrasekhar 1961). The equilibrium background
state is a linear temperature profile with temperature decreasing from the bottom to
the top of the layer. Anticipating discussions of the effects of rotation and magnetic
fields on supergranulation, we consider the case of an electrically conducting fluid
threaded by a mean vertical magnetic field denoted by Bo = Boez and rotating around
a vertical axis, with a rotation rate � = Ω ez . This set-up is pictured in Fig. 8.

In nondimensional form, the equations for momentum and energy conservation, the
induction equation, the equations for mass conservation and magnetic field solenoi-
dality read

∂u
∂τ

+ u · ∇u + √
TaPr ez × u = −∇p + RaPr θez + Q

Pr2

Pm
(∇ × B) × B + PrΔu

∂θ

∂τ
+ u · ∇θ − uz = Δθ

∂B
∂τ

+ u · ∇B = B · ∇u + Pr

Pm
ΔB

∇ · u = 0 , ∇ · B = 0 , (1)

where the momentum equation has been written in the rotating frame, lengths are
measured in terms of the thickness of the convection layer d, times are defined with
respect to the thermal diffusion time τκ = d2/κ (κ is the thermal diffusivity), the
total magnetic field B is expressed in terms of the Alfvén speed VA = Bo/

√
ρoμo,

temperature deviations θ to the initial linear temperature profile are measured in terms
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of the background temperature difference ΔT = Ttop − Tbot between the two hor-
izontal plates enclosing the fluid in the vertical direction. Nondimensional velocity
and pressure fluctuations are denoted by u and p respectively. This set of equations
is to be complemented by appropriate boundary conditions, most commonly fixed
temperature or fixed thermal flux conditions on the temperature, no-slip or stress-free
conditions on velocity perturbations, and perfectly conducting or insulating bound-
aries for the magnetic field. Note that the diffusive non-dimensionalization of the fluid
equations used above is a matter of convention. This formulation is faithful to the
historical development of the linear theory of rotating magnetoconvection pioneered
by Chandrasekhar (1961), and has been central to the formulation of classical theo-
ries of many stellar convective phenomena ranging from supergranulation to sunspot
dynamics (Thomas and Weiss 2008; Weiss and Proctor 2014).

Several dimensionless numbers appear in the equations above, starting with the
Rayleigh number

Ra = α|ΔT |gd3
νκ

= |N 2|τντκ , (2)

where α is the thermal expansion coefficient of the fluid defined according to
δρ/ρo = −α θ . Here, N 2 = αΔTg/d < 0 is the square of the Brunt–Väisälä fre-
quency (negative for a convectively unstable layer) and τν = d2/ν is the viscous
diffusion time, so the Rayleigh number measures the relative effects of the convection
“engine”, buoyancy, and of the “brakes”, namely viscous friction and heat diffusion.
The second important parameter above is the Chandrasekhar number

Q = B2
od

2

ρoμoνη
= τντη

τ 2A
, (3)

which is a measure of the relative importance of magnetic tension (τA = d/VA is
the Alfvén crossing time) on the flow in comparison to magnetic diffusion (η is the
magnetic diffusivity, τη = d2/η is the typical magnetic diffusion time) and viscous
friction. The relative importance of the Coriolis force in comparison to viscous friction
is measured by the Taylor number,

Ta = 4Ω2d4

ν2
= (2Ω)2τ 2ν . (4)

Finally, Pr = ν/κ and Pm = ν/η, where η is the magnetic diffusivity, stand for the
thermal and magnetic Prandtl numbers (see Sect. 2.2).

4.2.2 Linear theory

In the simplest non-rotating hydrodynamic case (Ta = Q = 0, no induction), when
the Rayleigh number is less than a critical value Racrit that depends on the particu-
lar choice of boundary conditions, diffusive processes dominate over buoyancy: the
hydrostatic solution is stable, i.e., any velocity or temperature perturbations decays.
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For Ra > Racrit , convection sets in as a linear instability and perturbations grow
exponentially in the form of convection rolls or hexagons with a horizontal spatial
periodicity λ comparable to the convective layer depth d in most cases. For stress-free,
fixed temperature boundary conditions, Racrit = 27π4/4 � 657 and λcrit/d = 2

√
2,

while for rigid, fixed-temperature boundary conditions, Racrit � 1707 and λcrit/d � 2
(the width of a individual convection roll is λ/2). Some effects of magnetic fields and
rotation on linear stability are discussed in the next paragraphs.

4.2.3 Turbulent renormalization of transport coefficients

Ra and Ta computed from microscopic transport coefficients (Sect. 2.2) are extremely
large numbers in the SCZ. Convective dynamics, therefore, takes place very far from
the actual convective linear instability threshold (Ra/Racrit ∼ 1015–1020). Therefore,
using linear theory in this context to predict the dominant scale of convection, for
instance, does not a priori seem appropriate. Is it possible to deal with this problem
simply theoretically? A common argument is that the viscous, thermal and magnetic
diffusive transport properties of the plasma at large scales are effectively set by the
underlying vigorous turbulence driven in the highly supercritical regime, so that trans-
port coefficients should be renormalized. In the context of large-scale solar convection,
turbulent transport coefficients may for instance be estimated from the typical scale
and velocity of granulation, νT ∼ LGVG . The phenomenological rationale for doing
this is that fluid systems driven strongly out-of-equilibrium react dynamically in a
way that effectively brings them back close to their stability threshold by mixing the
fluid in a way that smoothes out unstable free-energy gradients. If we accept that the
renormalized turbulent Ra (and perhaps also Q and Ta) should be close to its value at
the stability threshold, then it makes sense to use the simpler mathematical toolkits of
linear and weakly nonlinear analysis to describe the large-scale dynamics, rather than
solve the full, strongly nonlinear problem.

As we are about to see, linear and weakly non-linear models of convection have
proven very convenient and popular in the solar context, mostly because they are
solvable. Howevever, keep in mind that they are at best only a quick, very approximate
fix to make for the lack of a better available dynamical theory of turbulence and
adequate numerics, and are ultimately fundamentally unsatisfying. In particular, their
idealized nature implies that we have almost no control over their accuracy in the
dynamical regimes of interest, apart from an order of magnitude estimate of turbulent
transport coefficients. While these models may be suggestive of qualitative trends or
effects, their actual predictive power is quite limited.

4.3 Laminar convection theories of supergranulation

Following its discovery in the 1950s and further studies in the 1960s, supergranulation
was rapidly thought to have a convective origin, very much like the solar granula-
tion. Many theoretical models relying on the basic “convection cell” phenomenology
described in Sect. 4.2 have been devised to explain the apparently discrete-scales
regime of the dynamics of the solar surface (namely the scales of granulation and
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supergranulation, but also that of mesogranulation, see Sect. 2.1.4). We will discuss
a few flavours of these laminar convection models, keeping in mind the important
caveats of the previous subsection.

4.3.1 Multiple mode convection

The simplest proposal for the emergence of a set of special scales is that of multiple
steady linear or weakly nonlinearly interacting modes of thermal convection forced
at different depths. The first theoretical argument of this kind is due to Simon and
Leighton (1964), who suggested that supergranulation-scale motions corresponded to
simple convection cells driven at the depth of He++ recombination and just advecting
granulation-scale convection. Schwarzschild (1975) invoked an opacity break, He+
and H+ recombinations as the drivers of supergranulation-scale convection. Simon
and Weiss (1968) and Vickers (1971) suggested that deep convection in the Sun had
a multilayered structure composed of deep, giant cell circulations extending from the
bottomof the convection zone to 40Mmdeep, topped by a shallower circulation pattern
corresponding to supergranulation. Bogart et al. (1980) attempted to match a linear
combination of convective eigenmodes to the solar convective flux but did not find
that supergranulation came out as a preferred scale of convection in this quasilinear
framework.

Antia et al. (1981) argued that turbulent viscosity and diffusivity should be taken
into account in linear calculations, as they alter the growth and scales of the most
unstable modes of convection (but note that this assumption was already implicit in
the laminar scenarios described above). In their linear calculation with microscopic
viscosity and thermal diffusivity coefficients replaced by their turbulent counterparts,
granulation and supergranulation show up as the two most unstable harmonics of
convection. Calibrating the amplitudes of a linear superposition of convective modes
to match mixing-length estimates of the solar convective flux in the spirit of Bogart
et al. (1980), Antia and Chitre (1993) further argued that they could reproduce the
main characteristics of the power spectrum of solar surface convection.

Gierasch (1985) devised a one-dimensional energy model for the upper solar con-
vection zone from which he argued that turbulent dissipation takes place and deposits
thermal energy at preferred depths, thereby intensifying convection at granulation and
supergranulation scales. On this subject, we also mention the work of Wolff (1995),
who calculated that the damping of r -modes in the Sun should preferentially deposit
heat 50Mmbelow the surface as a result of the ionisation profile in the upper solar con-
vection zone. He then argued that this process might lead to convective intensification
at similar horizontal scales.

4.3.2 Effects of temperature boundary conditions

Asomewhat different phenomenological proposalwasmade by van der Borght (1974).
He considered the case of steady finite-amplitude thermal convection cells in the pres-
ence of fixed heat flux boundary conditions imposed at the top and bottom of the layer,
and showed that the convection pattern in this framework has much smaller tempera-
ture fluctuations than in the standard Rayleigh–Bénard model with fixed temperature
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boundary conditions. This is interesting in the context of the supergranulation prob-
lem, considering that intensity fluctuations at supergranulation scales are somewhat
elusive (see Sect. 3.3).

Fixed heat flux boundary conditions naturally favour marginally stable convection
cells with infinite horizontal extent compared to the layer depth, or convection cells
with a very large but finite horizontal extent when a weak modulation of the heat
flux is allowed for (Sparrow et al. 1964; Hurle et al. 1967; van der Borght 1974;
Busse and Riahi 1978; Chapman and Proctor 1980; Depassier and Spiegel 1981). This
case is, therefore, very different from the standard Rayleigh–Bénard case with fixed
temperature boundary conditions, which gives rise to cells with aspect ratio of order
unity. The interesting qualitative feature of this boundary-condition effect is that it
naturally selects very flat, anisotropic convection cells and, therefore, alleviates the
need to invoke convection at depths comparable to the typical horizontal scale of
supergranulation.

4.3.3 Oscillatory convection and the relative role of dissipative processes

The discovery by Gizon et al. (2003) that supergranulation has wave-like properties
(Sect. 3.4) paved the way for new theoretical speculations. In particular, it offered an
opportunity to revive the interest for theories of oscillatory convection dating back
to the work of Chandrasekhar (1961). Such a behaviour requires the presence of
an extra restoring force acting on the convective motions driven by buoyancy. This
force can be provided by Coriolis effects (rotation) or magnetic field tension. The
existence of oscillatory solutions is known to depend very strongly on how various
dissipative processes (viscous friction, thermal diffusion and ohmic diffusion) compete
in the flow. This is usually measured or parametrized in terms of the thermal Prandtl
number Pr = ν/κ , where ν is the kinematic viscosity and κ is the thermal diffusivity,
the magnetic Prandtl number Pm = ν/η, where η is the magnetic diffusivity, and
the “third” Prandtl number ζ = η/κ = Pr/Pm. In the Sun, Pr ∼ 10−4−10−10,
Pm ∼ 10−2−10−5 (see Sect. 2.2) and ζ � 1 at the photosphere.

4.3.4 Convection, rotation and shear

As mentioned in Sect. 3.4, supergranulation-scale flows are weakly influenced by the
global solar rotation. In the presence of a vertical rotation vector, overstable oscillatory
convection is preferred to steady convection provided that Pr is small (Chandrasekhar
1961). Physically, an oscillation is only possible if inertial motions are not significantly
damped viscously on the thermalization timescale of rising and sinking convective
blobs. Busse (2004, 2007) suggested on the basis of a local Cartesian analysis that the
drift of supergranulation could be a signature of weakly nonlinear thermal convection
rotating about an inclined axis and found a phase velocity consistent with the data
of Gizon et al. (2003), assuming an eddy viscosity prescription consistent with solar
estimates (based on the typical sizes and velocity of granulation). Earlier work on the
linear stability of a rotating spherical Boussinesq fluid layer heated by internal heat
sources showed that the most rapidly growing perturbations are oscillatory and form
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a prograde drifting pattern of convection cells at low Prandtl number in high Taylor
number regimes corresponding physically to large rotation (Zhang and Busse 1987).

Related to this issue is the influence of differential rotation, or shear, on super-
granulation. Green and Kosovichev (2006) considered the possible role of the solar
subsurface shear layer (Schou et al. 1998) by looking at the effect of a vertical shear
flow on the onset of convection in a strongly stratified Cartesian layer using linear
theory, and found that steady convective modes become travelling when a weak shear
is added. Earlier studies had found that this behaviour is possible either at low Pr
(Kropp and Busse 1991) or if some generic form of top-down symmetry breaking is
present in the system (Matthews and Cox 1997). As a linear shear flow alone does not
break this symmetry, it is likely that density stratification plays an important role in
obtaining the result. Green and Kosovichev (2006) also found that the derived phase
speeds of the travelling pattern were significantly smaller than those inferred from the
observations by Gizon et al. (2003).

Note that the relative orientations and amplitudes of rotation, shear and gravity
are fundamental parameters in the sheared rotating convection problem. The results
(e.g., the pattern phase velocity and wavelength) of local Cartesian theoretical models
of supergranulation incorporating solar-like rotation effects are, therefore, expected
to depend significantly on latitude. This is a problem with local laminar models of
sheared rotating convection, because in practice there is no conclusive observational
evidence for a very strong latitudinal dependence of the scales or propagation of
supergranulation (see Sect. 3.4). Laminar spherical models do not necessarily suffer
from this problem to the same extent, as they predict global modes with a well-defined
phase velocity.

4.3.5 Convection andmagnetic fields

The presence ofmagnetic fields in convection can have diverse consequences, themost
obvious of which is a coercive effect on convective motions through magnetic tension.
Such a coercive effect on the scale of supergranulation was actually discussed very
quickly after its discovery.Much of the discussion at the time involved an equipartition
argument (e.g. Parker 1963, 1974; Simon andLeighton 1964; Clark and Johnson 1967;
Simon andWeiss 1968; Frazier 1970, 1976). Many flux concentrations in the network
are actually well above equipartition with the supergranulation flow field. Using the
typical value for the velocity field at supergranulation scales given in Sect. 3.2.3 and
an order of magnitude estimate for the plasma density in the first 1Mm below τ = 1,
we see that for the kinetic and magnetic energy densities to be comparable in the
supergranulation peak range, an rms magnetic field strength of 100G is required:

Ekin = 45

(
ρ

10−3 kg/m3

) (
V

300 m/s

)2

J m−3 , (5)

Emag = 40

(
B

100 G

)2

J m−3 . (6)

123



The Sun’s supergranulation Page 35 of 74 6

Hence, the magnetic energy density of strong network elements with kG fields appears
to be roughly 100 times larger than that of the supergranulation flow. This result
first suggests that supergranulation-scale motions cannot alone generate these flux
concentrations. Partial evacuation of density and vigorous localized motions such
as granulation-scale motions seem to be required to obtain superequipartition fields
(Webb and Roberts 1978; Spruit 1979; Spruit and Zweibel 1979; Unno and Ando
1979; Proctor 1983; Hughes and Proctor 1988; Bushby et al. 2008). Now, the question
is whether such strong, but very localized and inhomogeneous fields can have a strong
dynamical impact on the flow. Obviously, numerical simulations provide the best way
to test this, but some “effective” phenomenological theories have also been considered
in this context. An interesting proposal of this kind is due to Longcope et al. (2003),
whose (theoretical) calculations suggest that the dynamical feedback of a distribution
of magnetic fibrils embedded into the solar plasma physically translates into a large-
scale viscoelasticity.

The forementioned idea of large-scale convection with fixed heat flux boundaries
was also further carried out with the addition of a uniform vertical magnetic field
threading the convective layer. Contrary to the hydrodynamic case for which zero-
wavenumber neutral (zero growth-rate) solutions are preferred linearly, convection
cells with a long but finite horizontal extent dominate in the magnetised case, pro-
vided that the magnetic field exceeds some threshold amplitude. The horizontal scale
of the convection pattern in this model is controlled directly by the typical strength of
the magnetic field. Murphy (1977) was the first to suggest that this model might be
relevant to supergranulation, and the linear problem in the Boussinesq approximation
was solved by Edwards (1990). Rincon and Rieutord (2003) and Rincon (2004) further
solved the fully compressible linear problem numerically and revisited it in the context
of supergranulation. Using typical solar values as an input for their model parameters
(density scale height, turbulent viscosity etc.), it was shown that the average mag-
netic field strength (measured in the nondimensional equations by the Chandrasekhar
number Q) required for compressible magnetoconvection with fixed heat flux to pref-
erentially “select” supergranulation-scale convection was a rather reasonable 100G
(Sect. 3.5.1).

Magnetoconvection in a uniform vertical magnetic field is also known to pref-
erentially be oscillatory at onset provided that ζ � 1 (e.g., Chandrasekhar 1961;
Proctor andWeiss 1982), a phenomenon known as magnetic overstability. This is also
possible for non-vertical magnetic fields (e.g., Matthews et al. 1992; Hurlburt et al.
1996; Thompson 2005, and references therein). Physically, field lines can only be bent
significantly by convective motions and act as a spring if they do not slip too much
through the moving fluid, which requires, in this context, that the magnetic diffusivity
of the fluid be small enough in comparison to its thermal diffusivity. Since ζ � 1 in
the quiet photosphere, oscillatory magnetoconvection represents a possible option to
explain the wavy behaviour of supergranulation. On this topic, Green and Kosovichev
(2007) built on the work of Green and Kosovichev (2006) by considering the linear
theory of sheared magnetoconvection in a uniform horizontal (toroidal) field shaped
by the subsurface shear layer. They found that the phase speed of the travelling waves
increases in comparison to the hydrodynamic case studied by Green and Kosovichev
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(2006) and argue that the actual phase speed measured by Gizon et al. (2003) can be
obtained for a reasonable uniform horizontal field strength of 300G.

Yet another possible magnetic feedback mechanism is provided by the interactions
between magnetic fields and radiation. Observations, theory and simulations suggest
that magnetic concentrations tend to depress the opacity surfaces of the photosphere,
which in turn is thought to channel radiation outwards (Spruit 1976; Vögler 2005),
and it has been argued that strong magnetic concentrations at network scales may
thereby alter the convection process at supergranulation scale and consequently single
this scale out in the energy spectrum.

4.3.6 Dissipative effects

Finally, it is known both theoretically and experimentally that even in the absence
of any effect such as magnetic couplings, rotation or shear, the value of the thermal
Prandtl number can significantly affect the scales and time evolution of convection,
both in the linear and nonlinear regimes. Its value notably controls the threshold
of secondary oscillatory instabilities of convection rolls (Busse 1972). At very low
Prandtl numbers, Thual (1992) showed that a rich dynamical behaviour associatedwith
the interactions between the primary convection mode and the secondary oscillatory
instability takes place close to the convection threshold. This includes travelling and
standing wave convection. Overall, most theoretical studies of supergranulation to
date have been either ideal (no dissipation) or for Pr ∼ Pm ∼ 1. For this reason, some
important thermal effects relevant to supergranulation-scale convection maywell have
been overlooked until now. Note that this limitation also applies to most numerical
simulations.

4.4 Large-scale instabilities, inverse cascades and collective interactions

A few other qualitative arguments and models have been put forward to explain the
origin of supergranulation besides thermal convection scenarios. The generic proposal
of these arguments is that supergranulation could emerge from collective nonlinear
interactions of small-scale structures such as granules, for instance through a large-
scale instability reminiscent of inverse-cascade scenarios in flows with specific spatial
symmetries.

4.4.1 Rip currents and large-scale instabilities

The first work along this line of thought is due to Cloutman (1979), who proposed to
explain the origin of supergranulation using the physical picture of rip currents on the
beaches of oceans: the repeated breaking of waves on beaches induces rip currents
flowing parallel to the coast line. On the Sun, he qualitatively associated breakers with
the rising flows of granules breaking into the stably stratified upper photosphere. This
idea provides an illustration of a broader phenomenological suggestion by Rieutord
et al. (2000) that the collective interaction of solar granules may give rise to a large-
scale instability at supergranulation scales. The idea finds its root in theoretical work
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on energy localization processes in nonlinear lattices (Dauxois and Peyrard 1993) and
large-scale instabilities (“negative eddy viscosity instabilities”) of flows with partic-
ular spatial symmetries, such as the Kolmogorov flow (Meshalkin and Sinai 1961;
Sivashinsky and Yakhot 1985) or the decorated hexagonal flow (Gama et al. 1994).
Asymptotic theory on simple prescribed vortical flows can be performed under the
assumption of scale separation (Dubrulle and Frisch 1991) between the basic periodic
flow and the large-scale instability mode. In such theories, the sign and amplitudes
of the turbulent viscosities is found to be a function of the Reynolds number. For
instance, an asymptotic theory based on a large aspect ratio expansion was developed
byNewell et al. (1990) for thermal convection. In this problem, large-scale instabilities
take on the form of a slow, long-wavelength modulation of convection roll patterns.
Their evolution is governed by a phase diffusion equation with tensorial viscosity. In
the case of negative effective parallel diffusion (with respect to the rolls orientation),
the Eckhaus instability sets in, while the zigzag instability is preferred in the case of
negative effective perpendicular diffusion. In relation with our earlier discussion of
the renormalization of transport coefficients, note that phase-instabilities like this one
provide a very clear and quantitative example as to why postulating a generic positive
turbulent diffusion to parametrize the effects of small-scale motions on large-scale
dynamics is not always appropriate.

4.4.2 Plume and fountain interactions

Yet another phenomenological dynamical argument put forward to explain the origin of
supergranulation is that the pattern results from the collective interaction of “plumes”
(buoyantly driven rising or sinking flows). Plumes can be either laminar or turbulent,
however, turbulent structures have by far receivedmost of the attention because of their
numerous applications (see Turner 1986). The first numerical simulations of strongly
stratified convection at high enough Reynolds numbers (e.g., Stein and Nordlund
1989; Rast and Toomre 1993) quite clearly showed the importance of vigorous sinking
plumes in turbulent convection, and the results prompted Rieutord and Zahn (1995) to
study the fate of these downdrafts in some mathematical detail. Unlike the downflows
computed in early simulations, solar plumes are turbulent structures, which entrain
the surrounding fluid (see Fig. 2). As Rieutord and Zahn (1995) pointed it out, the
mutual entrainment and merging of these plumes naturally leads to an increase of the
horizontal scale as one proceeds deeper.

Toy models have been elaborated in this context to investigate the properties of “n-
body” dynamical advection-interactions between plumes. For instance, Rast (2003b)
developed a model in which a two-dimensional flow described by a collection of
individual divergent horizontal flows (“fountains”) mimicking granules is evolved
under a simple set of rules governing the merging of individual elements into larger
fountains and their repulsion [this description was inspired by an earlier kinematic
model of flows in exploding granules by Simon et al. (1991)]. For some parameters
typical of the solar granulation “fountains”, he argued that the clustering scales of
the flow after a long evolution of the system resembled that of mesogranulation and
supergranulation. A similar model incorporating simplified magnetic field dynamics
was designed by Crouch et al. (2007). They observed somemagnetic field organisation
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and polarity enhancement at scales similar to that of supergranulation in the course
of the evolution of the model. While they may help to form an intuition of large-scale
dynamical interactions in turbulent convection, the main caveat with models like this,
of course, is that they are not rooted in the actual fluid dynamical equations.

5 Numerical modelling

Our understanding of turbulent convection in general, and solar convection in partic-
ular, has made huge progress over the last 40years thanks to numerical simulations.
The numerical study of solar convection was limited to granulation scales for a long
time, but there has finally been some important progress on supergranulation-scale
dynamics over the last 15years. The first part of this section provides an introduction
to the potential and limitations of numerical modelling, and describes a few impor-
tant results on the Rayleigh–Bénard problem and granulation-scale solar convection
relevant to our discussion of supergranulation. We then review the main achievements
(and difficulties) of numerical simulations of supergranulation-scale dynamics, and
discuss their implications for our current understanding of the problem.

5.1 Introduction to convection simulations

5.1.1 General potential and limitations

Numerical simulations are the most important tool that we have to probe and explore
the nonlinear dynamics of hydrodynamic turbulent flows and other complex fluid
physics such a radiation hydrodynamics or MHD. They are not a panacea though
and face many limitations of their own, including in the solar physics context. In
particular, the finite capacities of computers make it completely impossible for any
type of simulation, even today, to approach dissipative flow regimes characteristic of
the solar surface and to span all the range of time and spatial scales involved in the
problem. It should, therefore, be constantly kept in mind when discussing numerical
simulations of solar convection (and more generally of laboratory and astrophysical
turbulence) that we are not actually “simulating the Sun”, but rather a fairly quiet
toy model of it. This being said, large-enough simulations can give us important
insights into semi-quantitative trends about the nonlinear dynamics, statistics and
self-organization of turbulent flows, which is exactly the kind of information needed
to address the supergranulation problem.

5.1.2 Turbulent Rayleigh–Bénard convection versus Navier–Stokes turbulence

Despite its simplicity compared to the actual strongly stratified solar convection prob-
lem (which also involves radiation), the problem of incompressible, non-rotating
turbulent convection in the Rayleigh–Bénard framework introduced in Sect. 4.2 is
very important in the context of this review, because it contains both buoyancy effects
and all the nonlinearities underlying the typical turbulent dynamics of a fluid. Numer-
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ical simulations of this problem can, therefore, tell us a lot about the generic dynamics
of turbulent convection in the absence of any other diverting physical effect.

The Boussinesq equations are very similar to the forced Navier–Stokes equations:
the main difference between the two is that the forcing term in the Rayleigh–Bénard
problem is not an external body force, but is determined self-consistently from the time-
evolution of the temperature fluctuations. Both experimental and numerical evidence
at order one thermal Prandtl number strongly suggest that the basic phenomenology of
Rayleigh–Bénard turbulence at vertical and horizontal scales smaller than the vertical
extent of the domain considered should be similar to that of Navier–Stokes turbu-
lence in the inertial-range (Rincon 2006; Lohse and Xia 2010; Kumar et al. 2014).
In particular, the dynamics becomes increasingly isotropic at smaller scales. To a
very good first approximation, the numerical issues and requirements to simulate the
Rayleigh–Bénard problem at very high Rayleigh numbers are, therefore, the same as
those pertaining to the simulation of forcedNavier–Stokes turbulence at highReynolds
numbers. In particular, a strong scale separation between the vertical size of the numer-
ical domain and the grid size is required to simulate the turbulent cascade properly.
High-resolution simulations using spectral methods (Canuto et al. 2006) remain the
most adequate tool to reach highly-supercritical regimes. The highest-supercritical
simulations to date (Ra/Racrit ∼ 1011, see Verzicco and Camussi 2003; Amati et al.
2005; Lohse and Xia 2010) require numerical spectral resolutions of the order of
∼ 5123 to ∼ 10003 grid points to simulate turbulent convection in numerical domains
of comparable vertical and horizontal size (order one aspect ratios). This is significant
even by today’s computing standards. An extra difficulty of the turbulent Rayleigh–
Bénard problem, compared to standard Navier–Stokes turbulence in a periodic box, is
the need to resolve very fine thermal boundary layers at the top and bottom boundaries.
These transition layers scale as a fractional power of Ra/Racrit and, therefore, become
increasingly difficult to resolve at high Ra.

A critical implication of these strong numerical constraints in the context of super-
granulationmodelling is that simulations of turbulent convection at very highRayleigh
numbers are still restricted to fairly low aspect ratios (the ratio between the horizontal
and vertical extents of the domain), typically one-half or one. Simulations of turbu-
lent convection dynamics at horizontal scales signicantly larger than the vertical size
of the domain are possible but currently limited to mildly supercritical, soft turbu-
lence regimes, typically Ra ∼ 105–107 (Ra/Racrit ∼ 103–105). Most simulations are
also currently limited to Prandtl numbers of order unity, which makes it difficult to
investigate the effect of scale separations between the various dissipation scales of the
problem.

5.1.3 Solar convection models

Numerical simulations of astrophysical convection are similar in many ways to
Rayleigh–Bénard simulations and are, therefore, plagued by the same numerical limi-
tations. But they also include a variety of extra physical effects relevant to the particular
solar context, which are not present in the Rayleigh–Bénard, adding a further layer of
complexity. This includes strong vertical density stratification, mild compressibility
(up to Mach number of order one), radiative transfer in the surface layers, and the
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lack of a well-defined rigid bottom boundary. The first direct numerical simulations of
strongly stratified convection date back from the 1970s (Graham 1975), and the first
numerical study of stratified convection incorporating radiative transfer effects is due
to Nordlund (1982). Since then, numerical studies of astrophysical convection have
split into two “families” of models that define the main trends in the field nowadays.

“Idealized simulations” rely on simple models of stratified atmospheres such as
polytropes, and implement the standard incompressible, anelastic or compressible
fluid equations, including explicit viscosity, thermal and magnetic diffusivities in a
domain usually bounded by walls in the vertical direction (just as in the Rayleigh–
Bénard problem). These simulations do not explicitly incorporate radiative transfer
but instead rely on thermal diffusion in the entropy equation to model its effects. This
is of course not totally appropriate in the optically thin surface layers, and makes
it difficult to directly compare the results with solar observations of light intensity.
Idealized simulations, on the other hand, are usually very good at describing the
nonlinear dynamics in highly-supercritical regimes. They often rely on numerical
spectral methods, which remain the gold standard in simulations of incompressible
homogeneous turbulence (Vincent and Meneguzzi 1991; Ishihara et al. 2009), but
also face a few problems when it comes to the simulation of compressible flows: for
instance, they cannot capture shocks easily. This is not a major issue at mild Rawhere
the dynamics is quite subsonic, but becomes a problems asRa increases (Cattaneo et al.
1991).Apopular approachused in global spherical convection simulations (Clune et al.
1999) is to solve the anelastic equations instead of the fully compressible problem. This
approach filters out sound waves, thereby removing a bunch of numerical problems
and constraints.

“Realistic” simulations of solar convection (Nordlund et al. 2009), on the other
hand, aim at maximum astrophysical realism by taking into account not only the strat-
ified flow dynamics but also other important physical processes in the solar context
such as radiative transfer, huge solar-like density stratifications and realistic equations
of state includingHeliumandHydrogen ionisations.Unlike idealized simulations, they
usually ignore the explicit physical dissipative processes like viscosity and instead rely
on grid dissipation or hyper-dissipation to avoid numerical blow-up. These features,
coupled to the use of “handmade” open boundary conditions, makes this kind of sim-
ulations more realistic to solar physics studies, in the sense that some of the physics
simulated is closer to that in the SCZ, and their results can be directly compared with
solar observations. However, grid-based methods also generically offer less control
over dissipative processes and are usually more dissipative for a given numerical reso-
lution than spectral methods in simulations of homogeneous turbulence characterized
by space-filling fine-scale gradients. This limitation does not appear to be an important
issue for simulations of solar granulation for which thermal radiation, which is well-
accounted for in such simulations, plays an overwhelming dynamical role. But, as we
shall see in Sect. 5.2.1, understanding the large-scale dynamics requires to understand
not only the thermal physics, but also how dynamical nonlinearities play out. Ideal-
ized simulations offer an exact control over the supercriticality of the system and can
reach slightly more asymptotic regimes at comparable resolution. A second potential
problem of realistic simulations is that they could be in the wrong dissipative regimes,
simply because they do not take into account rigorously the disparity of time and
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length scales of different dissipative processes. This may notably be an issue when
addressing MHD effects in solar convection.

5.2 Small-scale simulations

We will now review a few turbulent convection simulations in “small” order-one
aspect ratio domains but whose results are also directly relevant to the question of
supergranulation-scale dynamics.

5.2.1 Turbulent Rayleigh–Bénard convection

Turbulent convection dynamics in increasingly supercritical Rayleigh–Bénard simu-
lations in a slender cylindrical cell of aspect ratio one-half (for Pr = 0.7 and up to
Ra = 1011) is illustrated in Fig. 9. The figure shows temperature snapshots in vertical
planes and underlines two very important points. First, there is a very marked evolu-
tion of the dynamical pattern from moderate to very large Ra. An asymptotic large Ra
regime is not attained even at Ra = 1011. Such a value is way smaller than the Ra in
the SCZ, but also way larger than Ra in any current simulation of solar convection!
This illustrates the problem of accessing asymptotic dynamical regimes in numerical
simulations. Second, two large-scale circulations emerge from the small-scale turbu-
lent fluctuations as Ra increase. These so-called thermal winds are also observed in
laboratory experiments on convection (e.g., Krishnamurti and Howard 1981; Sano
et al. 1989; Niemela et al. 2001; Xi et al. 2004, and references therein). As we will see
in Sect. 5.3.3, these structures are essentially buoyant but they do not necessarily cor-
respond to the most unstable linear convection mode in the problem. They are instead
a consistent outcome of the nonlinear self-organization of the buoyant dynamics. It
is clear that these large-scale thermal winds are strongly constrained laterally in low
aspect ratio geometries, and are likely to take more horizontal space in larger aspect
ratio domains. This is a very important point in the context of supergranulation, and
will also be discussed in Sect. 5.3.3.

5.2.2 Stratified convection simulations at granulation scales

The first realistic three-dimensional simulation of small-scale solar surface convection
of Nordlund (1982) mentioned earlier was followed by improved version at higher
resolutions (Stein and Nordlund 1989, 1998). These studies primarily focused on
understanding the thermal structure and observational properties of granulation. Stein
andNordlund (1989) notably found that convective granulation-scale plumes in a strat-
ified atmosphere merged into larger plumes at larger depth, producing increasingly
large convective patterns deeper and deeper. The results also demonstrated the influ-
ence of stratification on the horizontal extent of granules and on the typical plasma
velocity within granules.

Early idealized two-dimensional simulations of stratified convection by Graham
(1975), Chan et al. (1982) and Hurlburt et al. (1984) had already revealed an asym-
metry between up and downflows in two-dimensional simulations of compressible
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Fig. 9 Snapshots of temperature fluctuations in a vertical plane, from numerical simulations of Rayleigh–

Bénard convection in a slender cylindrical cell at Pr = 0.7 and Rayleigh-numbers a 2 × 107, b 2 × 109, c
2 × 1011. Image reproduced with permission from Verzicco and Camussi (2003), copyright by CUP

convection in a stratified medium. The physical origin of this phenomenon, known as
buoyancy braking, was explicited by Massaguer and Zahn (1980). This kind of simu-
lations were later expanded to Rayleigh numbers up to 1000 times supercritical in two
dimensions (Chan and Sofia 1989, 1996), and to three dimensions by Cattaneo et al.
(1991). The results of these early idealized small-scale simulations are qualitatively in
line with those of Stein and Nordlund (1989) as far as the deep, large-scale dynamics
is concerned. This suggests that an explicit modelling of physical processes such as
radiative transfer is not essential to study the turbulent dynamics and scale-interactions.
These simulations also showed that the presence or absence of a solid bottomwall may
be important, as the former tends to generate more shear and large-scale recirculations
in deep layers.

Readers interested in the particular problem of granulation-scale convection mod-
ellingwill findmuchmore detailed information in the reviews byNordlund et al. (2009)
andAsplund et al. (2009).As explained earlier, the surface features of granulation-scale
convection aremuch better understoodwith realistic simulationswhich are specifically
tailored for this purpose. However, these simulations are also very dissipative, and it
still remains a bit unclear whether this kind of modelling can faithfully describe turbu-
lent convection in strongly nonlinear, supercritical regimes typical of the large-scale
dynamics of in the SCZ.

5.3 Large-scale simulations

5.3.1 Global versus local simulations

In the 1980s and 1990s, global (spherical) and local numerical simulations of solar-like
convection were respectively limited to the study of global-scale convection dynamics
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(giant cells and larger) and granulation-scale dynamics. The numerical study of the
dynamics at scales larger than that of individual granules, but smaller than global
solar scales, only became possible in the early 2000s. It is interesting in retrospect to
recall as a short anecdotal digression the following optimistic citation extracted from
an article of Nordlund (1985): “There is a need for numerical simulations at the scale
of supergranulation […] This is probably feasible with present day computers and
numerical methods.”

There are two different possible approaches to the simulation of supergranulation-
scale dynamics: local Cartesian simulations (taking a small patch of the solar surface
and ignoring curvature effects) and global simulations in a spherical shell. In the local
approach, the horizontal box size of the largest simulations to date (i.e., the largest
horizontal scale of the simulations) is roughly a few times the horizontal scale of super-
granulation (Lord et al. 2014; Cossette and Rast 2016).While numerical resolutions of
512–1024 grid points in each spatial direction are now routinely achievable, simulat-
ing the dynamics at 100Mm horizontal scales still requires to somewhat sacrifice the
resolution of dynamical processes at scales of the order ∼ 100km only mildly smaller
than that of granulation, and way above the actual viscous dissipative cut-off at the
solar surface in any case. Note also that the dynamics at supergranulation scales in
this kind of set-up remains slightly constrained by (usually periodic) lateral boundary
conditions.

Global spherical simulations can model the dynamics at scales significantly larger
than supergranulation, but their problem is that the smallest scales included in even
the latest-generation simulations of this kind are of the order of a fewMm, only mildly
smaller than scale of supergranulation. Hence, the supergranulation-scale dynamics
in these simulations is much more dissipative than in local simulations. This is a sig-
nificant issue because, as shown in Sect. 3.2, the turbulent spectrum of solar surface
convection shows that supergranulation is located at the large-scale edge of the injec-
tion range of turbulence, not in the dissipation range. The dominant physical processes
in these different regimes are obviously very different. Another potentially very impor-
tant weakness of global simulations in this context is the usually very crude way in
which they deal with the thermodynamic surface boundary layer at the photospheric
transition. As we shall see, the thermodynamic structure in the first few Megameters
below the surface now increasingly appears to play a significant role in setting the
horizontal scale of supergranulation-scale dynamics.

5.3.2 Global spherical simulations

Global spherical simulations of turbulent convection started to appear more than
40years ago. The first numerical model of 2D Boussinesq convection in a spher-
ical shell is due to Gilman (1975), who used it to study the influence of rotation
on convection, the problem of large-scale circulations in the solar convection zone,
and that of the interactions between supergranulation and rotation (e.g., Gilman and
Foukal 1979). Spherical convection modelling was soon extended to the anelastic
approximation by Gilman and Glatzmaier (1981) and Glatzmaier (1984, 1985), and
to the fully compressible fluid equations by Valdettaro and Meneguzzi (1991). Most
simulations in spherical geometry use the expansions of the fields on spherical har-
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Fig. 10 Radial velocity snapshots at various depths in global simulations of convection in shallow spherical
shells, down to supergranulation scales. Image reproduced with permission from DeRosa et al. (2002),
copyright by AAS

monics up to a given resolution Lmax (the � order of the smallest scale spherical
harmonic). The early simulations were restricted to fairly laminar regimes and very
large solar scales, namely Lmax = 32 or, in terms of smallest resolved horizontal scale,
λ = 2πR�/Lmax � 130Mm, which is much larger than the scale of supergranulation
(36Mm, or � = 120, see Sect. 3.2).

Thefirst dedicated attempt to study supergranulation-scale dynamics through global
spherical simulations is due toDeRosa (2001),DeRosa andToomre (2001) andDeRosa
et al. (2002), who carried out idealized three-dimensional hydrodynamic simulations
in thin spherical shells with a horizontal resolution of Lmax = 340, corresponding to
a smallest resolved horizontal scale of 13Mm; they used the popular high-resolution
three-dimensional spherical simulations ASH code (Clune et al. 1999). The simula-
tions exhibit structures at scales larger and comparable to that of supergranulation
(see Fig. 10). However, it was difficult to diagnose why supergranulation scales would
play a special role (except for being in the dissipative range) in these simulations,
and the fact that the grid was so close to the supergranulation scale prevented them
from drawing any robust conclusion regarding the physical origin of supergranulation.
Simulations of solar-like convective shells by Miesch et al. (2008) at higher spheri-
cal harmonics resolution (Lmax = 682) have further revealed the presence of intense
cyclonic downdrafts at scales comparable to those of giant cells, a very likely sig-
nature of interactions between large-scale convection and rotation such as described
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Fig. 11 a Radial velocity, b
radial (vertical) velocity
spectrum and c latitudinal
(horizontal) velocity spectrum at
r/R� = 0.99 (case H0 in black)
in global simulations (Hotta
et al. 2014) (cases H1 and H2
only extend up to r/R� = 0.96
and have smaller density
contrasts). The qualitative
behaviour of both spectra is very
similar to the surface radial and
spheroidal spectra derived from
observations by Rincon et al.
(2017) (black and blue in
Fig. 4b)
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in Sect. 3.4. Looking at the spectrum of these simulations though, it is clear that
supergranulation scales are still located close to the dissipative range.

Even at the highest resolutions that can be achieved today in global simulations, not
all the relevant dynamical range required to quantitatively address the problem of the
dynamics in the supergranulation to subgranulation range can be simulated adequately.
However, there has been some qualitative progress in that direction recently. A new
set of numerical simulations of non-rotating convection by Hotta et al. (2014) with
a grid resolution of just a few Mm appears to resolve vigorous convective dynamics
at scales smaller than supergranulation. Some results appear to be in good qualitative
agreement with observations (Fig. 11). For instance, the kinetic energy spectra of
the different flow components close to the surface appear to follow the exact same
trends as the observational trends reported by Rincon et al. (2017), with the horizontal
velocity spectrum peaking at large scales and the radial velocity spectrum increases
monotonically down to the grid scale, with just a kink at the peak scale of horizontal
motions. Convective motions in these simulations extend down to depths of at least
0.2 R�, with the radial velocity progressively increasing and peaking at a similar scale
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as horizontal motions at increasing depths. The results also strongly suggest that the
very strong anisotropy of supergranulation peak-scale flows observed at the surface is
a surface effect shaped by the strong subsurface pressure and density gradients, and
is somehow only the tip of the subsurface convection iceberg.

An important difference with observations in the simulations of Hotta et al. (2014),
though, is that the peak scale of horizontal motions is a few hundredMm, significantly
larger than that of supergranulation. We will soon encounter this scale-mismatch issue
again in local simulations, and will subsequently discuss different physical factors
possibly affecting the peak scale of the spectrum.

5.3.3 Large-scale turbulent convection in local Cartesian simulations

Large-scale local Cartesian simulations are also limited in terms of dynamical regimes,
but not quite as much as global ones when it comes to the study of the dynamics at
scales comparable to or smaller than supergranulation.On current supercomputers, this
family of models can typically describe the nonlinear dynamics from scales slightly
larger than supergranulation scales (100Mm) to subgranulation scales (typically 10–
100km).

A strong feature of all three-dimensional, large-scale idealized simulations using
bottom and top wall boundaries is a pattern of vigorous large-scale dynamical circu-
lations, topped by a smaller granulation-like pattern in the surface thermal boundary
layer. This is shown in Fig. 12 (left). These circulations are very likely the counterpart
in large-scale simulations of the thermal winds of aspect ratio unity seen in simulations
and experiments (Sect. 4.2). They were quickly dubbed “mesoscale structures” in the
solar physics context when they were first reported, because their typical scale was
larger than the scale of the granulation pattern, yet their peak size was not quite as
large as that of supergranulation (relative to granulation). This was also a period when
the question of the existence of mesogranulation (Sect. 2.1.4) as a separate physical
phenomenon was widely debated. As we will shortly see, it now seems increasingly
clear that these structures are to a large extent the counterpart of supergranulation in
the particular regime and geometry of these simulations. These dynamical structures
were first reported byCattaneo et al. (2001) in large-scale Boussinesq simulations with
an aspect ratio up to 20 and a Rayleigh number 5 × 105 (roughly 1000 times super-
critical), and were also later observed in several other Boussinesq studies (Hartlep
et al. 2003; Parodi et al. 2004; von Hardenberg et al. 2008; Pandey et al. 2018). Their
typical correlation time in large-aspect ratio simulations is much longer than the typ-
ical turnover time in the granulation boundary layer, and their kinetic energy is also
much larger than that contained in the superficial granulation-scale motions. Cattaneo
et al. (2001), in the spirit of the turbulence concepts described in Sect. 4.4, speculated
that they may be the result of a nonlinear inverse cascade or large-scale secondary
instability of smaller-scale convective flows.

The nonlinear dynamics and origin of these structures was investigated in more
detail by Rincon et al. (2005) using fully compressible idealized simulations with
rigid walls, Ra = 3 × 105 and a modest density stratification, but with a very wide
aspect ratio∼ 42. The main conclusion of the analysis was that these large-scale flows
dominate the kinetic energy spectrum and are effectively driven by thermal buoyancy.
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Fig. 12 Comparison between horizontal temperature maps in an idealized simulation of large-scale com-
pressible convection in a stratified polytropic atmosphere (left, aspect ratio 42, see Rincon et al. (2005) for
details) and horizontal temperature maps in a realistic simulation of large-scale solar-like convection (right,
aspect ratio 10, see Rieutord et al. (2002) for details). Top: z = 0.99 d and at optical depth τ = 1 respec-
tively (surface). Middle: half-depth of the numerical domain. Bottom: bottom of the numerical domain. The
emergence of the granulation pattern in the surface layers is clearly visible in both types of simulations, on
top of a larger-scale mesoscale dynamics extending down to deeper layers
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The organization of such powerful flows at such scales was found to be the result of
a dynamical interplay between the linear convection injection process and turbulent
cascade and transport processes.What happens is the following (Rincon 2004; Rincon
et al. 2005): there is initially a broadband spectrum of linearly unstable convection
modes (∼ 100) in the simulation, but in the early stages kinetic energy growth is much
faster at themost unstable scales of the system,whose horizontal scale is comparable to
the vertical scale of the system. This is of course expected from linear analysis. Once
in the nonlinear regime, however, the injection of kinetic energy through thermal
buoyancy is observed to continuously drift to larger horizontal scales, with nonlinear
interactions cascading down the injected power down to smaller scales. This dynamics
is illustrated in Figs. 13 and 14. Physically, the smaller-scale turbulence associated
with the early dynamical saturation of the most unstable modes acts as a turbulent
diffusion for the still-developing larger-scale structures. Ultimately, the dominant scale
appears to be set by a balance between the rate of energy injection by buoyancy (set
by the Rayleigh number) and the rate of turbulent dissipation associated with all the
saturated smaller-scale modes. Interestingly, both laminar “quasi-linear” convection
and nonlinear interactions arguments described in Sect. 4 are phenomenologically
relevant to this detailed numerical analysis, albeit not in a straightforward way. In
particular, while nonlinear interactions play a big role in the dynamics, the large-scale
structures are definitely not driven by them and are, therefore, not due to inverse
cascading or large-scale nonlinear instability.

As striking as it is in idealized simulations, the dynamics described above, including
the observation of a kinetic energy peak at scales much larger than the most unsta-
ble linear scales, was much less obvious in the first corresponding largish-aspect ratio
realistic simulations. An increase of the typical horizontal size of convective structures
with depth was for instance observed in aspect ratio 10 “realistic” hydrodynamic sim-
ulations by Rieutord et al. (2002) (Fig. 12 (right)), but no strong evidence was reported
for particularly vigorous flows at scales larger than that of granulation close to the sur-
face (but only a spectrum of light intensity at the surface, peaking at granulation scale,
was documented). Several possible explanations have been put forward for this seem-
ing discrepancy: one is that the small-scale dynamics is not vigorous enough in these
simulations, or is simply sufficiently different given the presence of radiative transfer
that the dynamics is somewhat different from that in idealized simulations. Another
possibility is that boundary conditions play a key role in the dynamical scale selection
process, as most realistic simulations have an open bottom boundary condition and a
strongly stratified atmosphere. It was notably pointed out by Nordlund et al. (1994)
that using “wall-type” boundary conditions, as is standard in idealized simulations,
can significantly alter the shape of the convective pattern, because walls allow for a
return flow after convective plumes smash down at the bottom. It may also be that
particular “idealized” (!) implementations of open bottom boundary conditions used
in most realistic (!) simulations artificially suppress or quench large-scale convective
motions that would be present in the general case.
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Fig. 13 From left to right and top to bottom: dynamical evolution of the spectra of temperature fluctuations
Eθ (k) and kinetic energy fluctuations E(k) as a function of time and integer horizontal wave number k
and time t (measured in vertical thermal diffusion units) in the large-aspect ratio idealized simulation of
turbulent convection with mild density stratification shown in Fig. 12 (left), Ra = 3 × 105 and Pr = 0.3.
k = 1 corresponds to the horizontal size of the domain and k = 42 to the vertical size of the domain. The
peak scale of the spectra (k � 7 towards the end of the simulation, much larger than the vertical size of
the domain) correspond to the large-scale thermal structures visible in Fig. 12. Image from Rincon (2004),
Chap. 4.3, p. 85
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Fig. 14 Spectral-space energy budgets as a function of integer horizontal wavenumber k in the large-aspect
ratio simulations of turbulent convection described in Figs. 12 (left) and 13. Here, F(k) is the buoyancy
forcing term, T (k) is the nonlinear transfer (cascade) term, and D(k) is the dissipation term. The dominant
balance in the peak injection range is between the positive buoyancy forcing term and the negative nonlinear
transfer term, indicating that the large-scale dissipative structures seen in Fig. 12 (left) are powered by
buoyancy. This injected power is dissipated by turbulent viscous dissipation mediated through spectral
space by smaller-scale turbulent convective motions. Image reprpoduced with permission from Rincon
et al. (2005), copyright by ESO

5.3.4 State-of-the-art local hydrodynamic Cartesian simulations

The first realistic numerical simulations including supergranulation scales are due to
Benson et al. (2006), Georgobiani et al. (2007) and Stein et al. (2009). The latter used
a 96Mm wide and 20Mm deep three-dimensional numerical box but, just like Rieu-
tord et al. (2002), they found a monotonic smooth increase of the size of convective
structures with depth, and no or very little power enhancement at supergranulation
scales in the surface power spectrum. Similarly to Spruit et al. (1990), they subse-
quently argued that there was no reason why a particular scale should pop-up in the
continuum of scales present in the simulation (see Nordlund et al. (2009) and Geor-
gobiani et al. (2007) for representations of the power spectra of the simulations). A
gradual monotonic increase of the convection scale with depth was also reported in
an independent numerical study by Ustyugov (2008) in a 60Mm wide and 20Mm
deep three-dimensional box. The physics of ionisation of helium and hydrogen were
included in the model of Stein et al. (2009), which allowed them to test for the first
time the first theoretical proposal for the origin of the supergranulation by Simon and
Leighton (1964) described in Sect. 4.3. Considering the gradual large-scale decrease
of energy in the power spectrum of their simulations, they concluded that the existence
of recombination layers of ionised elements cannot by itself explain supergranulation.
This conclusion was further confirmed by Lord et al. (2014) using simulations in a
box of size 196 × 196 × 49Mm3 (the latter paper contains an interesting discussion
of the slightly surprising actual effects of ionisation in the problem).

The latest realistic local simulations of Lord et al. (2014) appear to show a clear
excess of kinetic energy at large scales (see Fig. 15, red line), just like idealized simu-
lations. The reasons for this seemingly new convergence of the large-scale dynamical
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Fig. 15 Kinetic energy spectra in the radiative hydrodynamics simulations of Lord et al. (2014) (solid red
line). The spectrum obtained by reducing artificially the velocities in the deep layers is shown in dotted blue
line. The vertical line marks the scale of the largest modes driven in the simulation. The black dashed line
corresponds to solar spectra obtained from SDO/HMI data and coherent structure tracking (black dashed
line). Image reproduced with permission from Lord et al. (2014), copyright by AAS

properties of convection in realistic and idealized simulations (assuming there was
ever a big difference between the two) have not yet been clearly discussed to the best
of our knowledge. Interestingly, a lot of the discussion in Lord et al. (2014), as well
as in subsequent studies (e.g., Featherstone and Hindman 2016; Karak et al. 2018), is
now focused on there being too much energy at large scales in simulations in com-
parison to the solar case. They notably point out that much of the heat flux is carried
by the largest-scale flows in their simulations, which demonstrate that these flows are
strongly buoyantly driven, just like the large-scale dynamics in idealized simulations
described earlier.

Overall, it seems like all realistic and global simulations currently overestimate the
peak scale of convection and convective velocities at large-scales in comparison to the
solar case, while idealized simulations such as that of Cattaneo et al. (2001) andRincon
et al. (2005) underestimate them. Interestingly, Lord et al. (2014) manage to reproduce
the Sun’s kinetic energy spectrum by using an artificial mechanism to carry the whole
solar flux below a critical depth (here 10Mm). The consequence of this prescription
is to suppress the flux-transporting motions at the largest scales of the box, resulting
in the emergence of a peak scale in the kinetic energy spectrum comparable to that
of supergranulation. This result strongly suggests that understanding the asymptotic
subtleties of deeper-scale convection in the Sun is very important for a quantitative
theory of supergranulation. Cossette and Rast (2016; see also Kessar et al. 2018) have
recently followed up on this idea with a series of idealized convection simulations
in a strongly stratified atmosphere composed of different, prescribed superadiabatic
surface layers matched to an adiabatic interior. They find that the vertical scale of
the entropy jump at the surface, which sets the entropy deficit of sinking buoyant
plumes (or “entropy rain”, see Brandenburg 2016), has a major effect on the peak
“supergranulation” scale of the convection spectrum. We will frame these results in
the context of a larger theoretical discussion in Sect. 6.
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While some of the results reviewed above suggest a strong, purely non-rotating,
hydrodynamic dependence of the supergranulation scale on the modelling of the ther-
modynamic structure and heat flux of the whole system, rotation and magnetic fields
have also long been thought to play a role in the supergranulation problem (see Sect. 4).
What do simulations tell us about these interactions?

5.3.5 Simulations with rotation

As explained in Sect. 3.4, there is an increasing sense that a rotational connexion
between the subsurface shear layer and large-scale convection at scales comparable
to or larger than supergranulation exists in the Sun. Only a few local simulations have
specifically addressed the issue of the interactions between supergranulation and rota-
tion. In an early attempt at simulating this problem in the Boussinesq approximation
in a numerical box elongated in the horizontal direction, Hathaway (1982) found that
the presence of a tilted rotation axis and generate a subsurface shear layer. The local
dynamics of angular momentum transport in turbulent convection has since been stud-
ied at much higher numerical resolution (e.g., Brummell et al. 1996, 1998; Käpylä
et al. 2004; Brandenburg 2007) and, while the focus of these papers is not specifically
on supergranulation, Brandenburg (2007) argued that the travelling-wave properties
of supergranulation (Sect. 3.4) could be due to the radial subsurface shear. In a related
study, Egorov et al. (2004) reported a good agreement between the divergence-vorticity
correlations obtained from simulations of rotating convection and those inferred from
observations of the supergranulation flow field.

Based on new high-resolution global spherical simulations dedicated to the super-
granulation problem, Featherstone and Hindman (2016) have recently argued that
Coriolis effects may effectively quench large-scale, low Rossby number convection
in the SCZ, resulting in a reduction of both large-scale heat transport and of the peak
scale of convection at the surface, as observed in the simulations of Lord et al. (2014)
with artificial heat-flux reduction. This effect might also be indirectly connected to
the non-rotating scale-selection effect put forward by Cossette and Rast (2016), in the
sense that the effects of rotation on convective heat fluxes can also indirectly affect the
internal and subsurface thermal structure on which the peak scale of the convection
spectrum depends.

5.3.6 MHD simulations

Just like rotation, magnetic fields have long been recognized to play a non-negligible
dynamical role in solar convection. Many (mostly local) large-scale local simulations
have now been devoted to the study of MHD convection at scales comparable to
supergranulation and to the process of network formation. These can be subdivided
into magnetoconvection simulations in an imposed mean magnetic field or with a
magnetic flux introduced “by hand” at the beginning of the run, and turbulent dynamo
simulations, in which the magnetic field is spontaneously generated by the turbulent
convection flow starting from an infinitesimal seed field.

In the absence of amean field threading the convection layer, small-scale disordered
magnetic fields consistently generated by small-scale turbulent dynamo action get
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Fig. 16 Horizontal maps of a temperature and b vertical magnetic field fluctuations in the surface layers
of local realistic simulations of large-scale MHD convection. Image reprpoduced with permission from
Ustyugov (2009), copyright by ASP

organized into a network of ribbons and point-like magnetic flux concentrations, much
like in the quiet Sun (Cattaneo 1999; Emonet andCattaneo 2001; Vögler and Schüssler
2007; Bushby and Favier 2014; Rempel 2014; Danilovic et al. 2016a). The typical
scale at which this “network” forms in simulations corresponds to that of the large-
scale energetic motions described earlier. A similar phenomenology is observed in
magnetoconvection simulations in aweakmean (vertical or horizontal) field (Ustyugov
2006, 2008, 2009; Stein et al. 2011). This process is illustrated in Fig. 16, which shows
a large-scale realistic simulation of magnetoconvection with an imposed 50G vertical
field (Ustyugov 2009). Only in the presence of a strong mean vertical field is the
peak horizontal scale of these turbulent convective motions strongly constrained and
reduced bymagnetic tension (Tao et al. 1998; Cattaneo et al. 2003). The field strengths
required are generally stronger than observed in most of the quiet Sun, but this kind
of effect may be particularly noticeable in polar regions (e.g. Tsuneta et al. 2008).

While an essentially passive magnetic field phenomenology provides the simplest
explanation for the observed correlation between supergranulation and the solar mag-
netic network, we argued in Sect. 4.3.5 that a distribution of spatially-intermittent
magnetic fields organized into strongly inhomogeneous structures (such as observed
both in simulations and observations) may dynamically affect convection. Numerical
evidence for this remains limited, but Ustyugov (2009) notably found that local con-
centrations of strongmagnetic flux seem to play an important role in the scale-selection
process in his simulations of network formation with a weak but uniform mean field
and may, therefore, exert a significant dynamical feedback on supergranulation. The
simulation of Hotta et al. (2015) also provides an example on how small-scale turbu-
lent field may affect convection and entropy mixing throughout the convection zone.
Other possible MHD effects briefly described in Sect. 4.3.5 and in the discussion sec-
tion of the first published edition of this review (Rieutord and Rincon 2010) remain
more speculative and have not been conclusively detected in simulations so far.
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Fig. 17 A schematic view of the supergranulation phenomenon as currently constrained by observations. λ
is the scale where the horizontal kinetic energy spectral density is maximum. d is the diameter of “coherent
structures” (supergranules). The red and blue patches depict the warm and cold regions of the flow. I.N.B
denotes the internetworkmagnetic field (the dichotomy between network and internetwork fields is probably
not quite as clear as indicated in this drawing). The vertical structure and extent of the dynamics remains
one of the main unknowns in this cartoon

6 Discussion and outlook

The physical and dynamical complexity of the supergranulation problem is quite
extraordinary: vigorous turbulent small-scale and large-scale flows in a strongly
stratified atmosphere, ionisation physics, rotation, shear and tortuous magnetic-field
geometries at all observable scales. It is, therefore, perhaps not suprising that both
observers and theoreticians have struggled for many decades after the initial historical
observational discoveries to identify and describe the essential processes underly-
ing this phenomenon. As shown in the previous sections, research on the problem
as strongly intensified in the last 15years. This progress has largely been driven by
massive improvements in observational capacities and analysis techniques, as well as
in computing power. Before we discuss the emergent dynamical picture and outline a
few desirable and expected directions of future research, let us first offer a compact
recap of the current observational knowledge on the problem against which theoretical
and numerical models have to be confronted. A pictorial representation of the results
is also provided in Fig. 17.

6.1 Summary of observations

Supergranulation is a pattern of vigorous, mostly cellular-like flows in the quiet solar
photosphere and subphotospheric layers, detected through Doppler measurements,
structure tracking, and helioseismic analyses. The typical range of horizontal length
scales of supergranulation flows at the photosphere is 20–70Mm, with a peak at
36Mm corresponding to the peak scale of the horizontal kinetic energy spectrum of
solar surface flows. This result is clearly established in Fig. 4 of Sect. 3. Surface
flows in the meso to supergranulation range of scales are strongly anisotropic. A clear
distinctionmust bemade between the horizontal and vertical components of the flow at
the photospheric level the horizontal, cell-like component of the flow (300–400m/s) is
more than ten times more vigorous than the vertical upflow and downflow components
(20–30m/s) detected respectively it the center and periphery of supergranules, and the
kinetic energy spectra of each component look very different. The spectrum of the
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vertical component, unlike the horizontal spectrum, may have a kink, but does not
peak at supergranulation scales. Instead, it increases down to granulation scales.

These different observations strongly suggest that supergranulation-scale dynamics
is the dynamical manifestation of a vigorous turbulent energy-injection mechanism,
which has many (but not unambiguously all) of the observational hallmarks of thermal
convection. Different observations suggest that supergranules are slightly warmer at
their centre, but with a temperature drop smaller than 3K at the surface, possibly
larger below the surface. Our understanding of the structure of subsurface flows in
the supergranulation range remains a bit fuzzy, but several recent measurements seem
to point to the existence of dynamics at scales comparable to or larger than that of
supergranulation down to the bottom of the near-surface shear layer, albeit with a
shallow vertical scale-height of variation close to the surface, of the order of 2–7Mm.

Different studies suggest that supergranulation is influenced by the global solar
rotation, andmay itself play an important role in the establishement of the near-surface
shear layer of the SCZ. Finally, flows in the meso to supergranulation-scale range are
strongly correlated with the solar magnetic network and have a strong influence of
the distribution and advection of small-scale magnetic fields up to network scales.
Whether supergranulation itself is constrained by magnetic forces cannot be easily
asserted with observations, although a few observations suggests that the emergence
of active regions, and stronger fields in general, may dynamically affect it.

6.2 Physics and dynamical phenomenology of supergranulation

There has been ample progress in the last 10–15years in our understanding of the
phenomenology of the dynamics of the solar surface in the range of scales relevant to
the supergranulation problem thanks to numerical simulations. At the very least, there
now appears to be much more numerical evidence than 10years ago that supergranu-
lation is buoyantly-driven, and is in fact the energetically dominant convection scale
on the large-scale side of the injection range of the photospheric convection spectrum.
Simulations also increasingly show that the detailed dynamical picture is significantly
more complex than the classical laminar picture of convection described in Sect. 4,
although interestingly enough, the nonlinear organization of the dynamics in the turbu-
lent regime (illustrated for instance by the broadband convection spectra in Fig. 4 and
the large-scale nonlinear dynamics in the simulations described in Sect. 5.3.3) appears
to result in large-scale, vigorous coherent motions reminiscent of laminar convection.

Brute force observational and numerical progress on the problem has recently been
accompaniedwith several potentially-testable theoretical developments and arguments
regarding the phenomenology of turbulence and convection at scales larger than gran-
ulation (Lord et al. 2014; Cossette and Rast 2016; Featherstone and Hindman 2016;
Rincon et al. 2017). It was recently argued by Rincon et al. (2017) on the basis of the
strong anisotropy of photospheric flows in the supergranulation to granulation range
that an appropriate description of convection dynamics at the surface in this range of
scales requires a generalization of the classical isotropicBolgiano–Oboukhov theory of
turbulent convection (Bolgiano 1959, 1962; Oboukhov 1959) to the regime kH � 1,
where k is the horizontal wavenumber of fluctuations and H is a typical scale height
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(the distance between plates in the Rayleigh–Bénard experiment, or a thermodynamic
scale height in the stratified problem). A tentative generalized theory of this kind can
be derived using three key dynamical assumptions: a dominant dynamical balance
between buoyancy forces and inertial terms in the momentum equation (as diagnosed
in idealized simulations, see Sect. 5.3.3), a constant flux of thermal variance in spectral
space in a well-mixed, nearly adiabatic turbulent convection layer and a typical “frus-
trated” vertical scale of variations of fluctuations independent of their horizontal scale
and of the order of H . The first two assumptions are part of the standard Bolgiano–
Oboukhov phenomenology, but the latter is specific to the anisotropic regime kH � 1.
Crucially, the theory predicts that the horizontal kinetic energy spectrum continues to
increase at scales larger than granulation and the Bolgiano scale, while the vertical
kinetic energy decreases with increasing scale, in broad agreement with observations.
This result provides a possible partial way out of the problem raised in Sect. 2 of the
mismatch between the supergranulation scale and the Bolgiano injection convection
scale: the theory suggests that the latter is just a lower bound on the scale of the injec-
tion range, and that an anisotropic, buoyancy-driven nonlinear Bolgiano-like injection
regime is possible at horizontal scales larger than the typical vertical scale height of
the domain (this regime has never been investigated in laboratory experiments to the
best of our knowledge). Finally, the theory also predicts an increase of temperature
fluctuations with increasing horizontal scale. This is in relative tension with the rela-
tively weak photospheric light intensity contrasts measurements reported in this range
of scales at the solar surface, but is on the other hand quite consistent with a variety
of numerical results, notably those of Rincon et al. (2005), Lord et al. (2014) and
Cossette and Rast (2016) discussed in Sect. 5.

These preliminary theoretical predictions, considered jointly with the observation
of a maximum in the kinetic energy spectrum at scales much larger than granulation,
raise several key questions: what sets the scale of this maximum dynamically? why
is supergranulation so prominent as a flow pattern but not as a temperature pattern
at the photospheric level, and what is the spectrum of thermal fluctuations below
the photosphere? Numerical simulations are slowly getting to a place where a much
better understanding of the interactions and balance between different relevant linear
and nonlinear dynamical processes in this range of scale becomes possible and these
questions can be adressed. A closely related issue is to reconcile the peak scales and
amplitudes of the observed solar convection spectrum (the actual supergranulation
scale) with the dynamics of either global or local simulations. In particular, why does
the solar dynamics appear to have so little power on large scales?

In the light of the numerical results reviewed in Sect. 5, there are at least three
remaining credible possibilities as to what sets the peak scale of the convection spec-
trum and supergranulation: the internal thermodynamic structure and the magnitude
and thickness of the entropy jump in the surface thermal boundary layer, which are
directly constrained by the production of heat in the Sun (Cossette and Rast 2016;
Rincon et al. 2017; Kessar et al. 2018), the interaction between slow, large-scale con-
vection and rotation (Featherstone andHindman 2016), and the dynamical interactions
between convection and magnetic fields (Ustyugov 2009; Stein et al. 2011, see also
discussion in Rieutord and Rincon 2010). The question of the amplitude of thermal
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fluctuations at supergranulation scales has recently been discussed by Cossette and
Rast (2016) and Rincon et al. (2017).

6.3 Outlook

There are many reasons to be cautiously optimistic about future breakthroughs on
the supergranulation problem, and it seems increasingly possible that a robust phe-
nomenology and even perhaps a consistent nonlinear theory of large-scale convection
in the SCZ can be constructed in the next decade.

From an observational point of view, there has been a strong revival of super-
granulation studies in the last 10years with the launch of Hinode and more recently
SDO, and important progress has been made on the characterization of both surface
and subsurface dynamics. Particularly encouraging are the ongoing efforts to improve
the characterization of subsurface dynamics with localhelioseismology, and the newly
acquired capability to study the surface dynamics from a global perspective with either
tracking or Doppler techniques (or both) thanks to the highly-sampled SDO/HMI data.
More observational results of this kind are expected in the forthcoming years. These
should hopefully be accompanied with a better convergence between different tech-
niques and research groups, thereby enriching and consolidating the existing corpus
of observational constraints. Among many other things, a better heloiseismic char-
acterization of subsurface thermal fluctuations at supergranulation scales and smaller
scales would be extremely valuable for this problem, and so would be a better, less
controversial characterization of large-scale convection flows in subsurface layers and
in the deeper SCZ. There is still a lot of fuzziness and disagreement between different
groups on these questions and more work is required to settle them. The good news is
that only a fraction of SDO capacities seems to have been exploited so far on this front.
The potential of SDO has also almost not been exploited to look for new observational
clues of a possible dynamical relationship between large-scale flows and magnetic
fields in the quiet Sun. There seems to be a lot of room left for new discoveries on this
front too.

In-depth numerical investigations of the different dynamical scenarios described
in the previous paragraph at even higher-resolutions are also almost certainly going
to be carried out in the forthcoming years, but making significant further progress is
going to be challenging. First of all, as explained in Sect. 5, the actual thermodynamic
profiles and entropy jumps established by turbulent mixing in simulations are less
extreme than in the SCZ because the simulated regimes are not quite as asymptotic as
in the Sun. Finally, the dynamical influence of magnetic fields in the problem is also
not easy to understand considering the complex geometry and potentially insidious
effects of solar magnetic fields. It is not even clear that all the aspects of the MHD
problem have yet been properly recognized [see, e.g., recent discussion by Karak et al.
(2018)]. Some of these issues may be very difficult to address numerically, given the
difficulty to simulate MHD in the low magnetic Prandtl regime typical of the SCZ
(Schekochihin et al. 2007; Vögler and Schüssler 2007; Pietarila Graham et al. 2009;
Rempel 2014).
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Fig. 18 a Global distribution of 24-h-positive time FTLEs of solar surface flows (in inverse hour units)
computed from horizontal velocity field maps derived from October 8, 2010 SDO data (one of the quietest
periods of solar activity since the launch of SDO). The green circle diameter is 30Mm. b Local distribution
of FTLEs of solar surface flows computed from horizontal velocity field maps derived from August, 2007
Hinode data, (red: positive-time FTLEs, blue: negative-time FTLEs). Image credits: F. Rincon&T. Roudier,
so far unpublished
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Progress on the supergranulation problem is not only interesting and important in
itself, but also from the perspective of understanding the global solar dynamo, turbulent
generation of solar magnetic fields, and coronal heating. To emphasize this clearly and
open the subject for future discussions, we show in Fig. 18 solar surface distributions
of finite time Lyapunov exponents (FTLE) computed from recent Lagrangian tracer
analyses of global and local maps of horizontal photospheric velocity fieds derived
from Hinode and SDO observations using CST tracking. Such FTLE calculations,
introduced in the context of solar coronal heating by Yeates et al. (2012) and Chian
et al. (2014), characterize the Lagrangian transport properties of flows and make it
possible to image transport barriers, i.e., regions of accumulation or rarefaction of
passive tracers such as passive magnetic fields, in the form of Lagrangian Coherent
Structures (LCS). These concepts have already foundmany applications in other fields
of physics such as oceanography and atmospheric sciences (e.g., Lekien et al. 2005;
Lehahn et al. 2007; Lekien and Ross 2010). These two computations reveal that the
Sun is pavedwith supergranulation-scale lagrangian coherent structures, and strikingly
illustrate the Lagrangian process of magnetic network formation. Based on this kind
of analysis, it is clear that supergranulation-scale convection plays a major role in the
global and local structuration and dynamics of solar magnetic fields at the interface
between the solar interior and corona.

To conclude this review, let us note that solar surface convection is one of the
very few time and spatially-resolved examples of extremely nonlinear dynamical fluid
astrophysical phenomena. As we are increasingly approaching a position where a
detailed understanding and characterization of this phenomenon seems possible, it
is certainly worth emphasizing that everything we can learn about it is likely to be
strongly relevant and illuminating from amuch broader astrophysical and fundamental
fluid dynamics perspective.
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