
REVIEW ARTICLE

Gravity experiments with radio pulsars

Paulo C. C. Freire1 · Norbert Wex1

Received: 22 April 2024 / Accepted: 28 June 2024
© The Author(s) 2024

Abstract
The discovery of the first pulsar in a binary star system, the Hulse–Taylor pulsar,
50 years ago opened up an entirely new field of experimental gravity. For the first
time it was possible to investigate strong-field and radiative aspects of the gravita-
tional interaction. Continued observations of the Hulse–Taylor pulsar eventually led,
among other confirmations of the predictions of general relativity (GR), to the first
evidence for the reality of gravitational waves. In the meantime, many more radio
pulsars have been discovered that are suitable for testing GR and its alternatives. One
particularly remarkable binary system is the Double Pulsar, which has far surpassed
the Hulse–Taylor pulsar in several respects. In addition, binary pulsar-white dwarf
systems have been shown to be particularly suitable for testing alternative gravita-
tional theories, as they often predict strong dipolar gravitational radiation for such
asymmetric systems. A rather unique pulsar laboratory is the pulsar in a hierarchical
stellar triple, that led to by far the most precise confirmation of the strong-field
version of the universality of free fall. Using radio pulsars, it could be shown that
additional aspects of the Strong Equivalence Principle apply to the dynamics of
strongly self-gravitating bodies, like the local position and local Lorentz invariance
of the gravitational interaction. So far, GR has passed all pulsar tests with flying
colours, while at the same time many alternative gravity theories have either been
strongly constrained or even falsified. New telescopes, instrumentation, timing and
search algorithms promise a significant improvement of the existing tests and the
discovery of (qualitatively) new, more relativistic binary systems.
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Abbreviations
BH Black hole
CM Centre of mass
CMB Cosmic microwave background
DEF Damour–Esposito–Farèse
DNS Double neutron star
EEP Einstein equivalence principle
EM Electromagnetic
EoS Equation of state
GR General relativity
GW Gravitational wave
ISM Interstellar medium
JFBD Jordan–Fierz–Brans–Dicke
LIGO Laser interferometer gravitational-wave observatory
LLR Lunar laser ranging
LT Lense–Thirring
MoI Moment of inertia
MOND Modified Newtonian dynamics
MS Main sequence star
MSP Millisecond pulsar
NS Neutron star
PA Position angle
PK Post-Keplerian
PN Post-Newtonian
PPN Parameterised post-Newtonian
PTA Pulsar timing array
SEP Strong equivalence principle
S/N Signal-to-noise ratio
SN Supernova
SSB Solar system barycentre
TCB Temps-coordonnée barycentrique (Barycentric coordinate time)
ToA Time of arrival
UFF Universality of free fall
VLBI Very long baseline interferometry
WD White dwarf
WEP Weak equivalence principle
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1 Introduction

For many years, Einstein’s general theory of relativity (GR), which was finalised in
1915 (Einstein 1915), could only be tested in the weak-field slow-motion regime of
the Solar System,1 and testing GR and its alternatives beyond their first post-
Newtonian (PN) approximation was way out of reach. Then the discovery of the first
binary pulsar by Russell Hulse and Joseph Taylor in the summer of 1974 (Hulse and
Taylor 1975) provided the physics community with a completely new testbed for
investigating our understanding of gravity, space and time. With the discovery and
continued observation of the Hulse–Taylor pulsar, aspects of the gravitational
interaction of strongly self-gravitating bodies—specifically, two neutron stars (NSs)
—could be investigated for the first time. Furthermore, at a quite early stage it was
clear that the Hulse–Taylor pulsar provides a unique opportunity to test for the
existence of gravitational waves (GWs) emitted by accelerated masses, which was
confirmed with high precision in the following decade (Taylor and Weisberg
1982, 1989).

This was important for the opening of the GW window on the Universe: not only
did it greatly facilitate the construction of ground-based GWobservatories, but it also
motivated the current attempts at detecting very low frequency GWs via pulsar
timing arrays (Perera et al. 2019), which at the time of writing seems close
(Antoniadis et al. 2023; Agazie et al. 2023; Reardon et al. 2023). This highlights the
double use of pulsar timing, both for precise tests of gravity theories and for detecting
low-frequency GWs from other sources.2

Meanwhile, many other radio pulsar systems were, and are being found that can
be used for testing gravitational physics and our understanding of space and time.
Depending on their orbital properties and the characteristics of their companions,
these pulsars allow the study of different aspects of relativistic gravity and the
derivation of the tightest constraints on some alternatives to GR; as an example,
pulsar experiments with a millisecond pulsar (MSP) in a triple stellar system have
provided the largest lower limit (around 150,000) for the Brans–Dicke parameter
xBD (see Voisin et al. 2020 and Sect. 5.1). Besides tests of specific gravity theories,

1 Attempts to measure the gravitation redshift with the help of white dwarfs remained inconclusive for
quite a while due to observational and astrophysical challenges, never superseding Solar System tests (see
e.g., Holberg 2010).
2 There are also prospects for future tests of gravity with Pulsar Timing Arrays (PTAs). These are
discussed in detail by Yunes and Siemens (2013).
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there are pulsars that allow even for quite generic constraints on potential deviations
from GR in the quasi-stationary strong-field regime and the radiative aspects of
gravity. So far, GR has passed all the pulsar tests with flying colours! These
experiments play a crucial complementary role to other modern gravity tests, such as
those conducted by GW observatories (Abbott et al. 2016, 2021a, b) or the Event
Horizon Telescope (Event Horizon Telescope Collaboration 2019b; Event Horizon
Telescope Collaboration 2022b), as well as modern Solar System tests and tests on
cosmological scales (Berti et al. 2015).

Despite the growth in the number of systems that we can use, and the numbers and
types of experiments, this work stands on the foundations laid after Jocelyn Bell
noticed the first pulsar on her chart, and later when PSR B1913?16 was found by Joe
Taylor and collaborators. These foundations include the experimental techniques that
were developed for the precise timing of pulsars and binary pulsars, but also the
many theoretical developments triggered by the discovery of “the” binary pulsar,
which provide a solid conceptual foundation for our experiments. It is important to
recognize, 50 years after the discovery of PSR B1913?16, our great debt to those
who opened the path for us.

In this review, we provide a summary of the tests of gravity theories with radio
pulsars. This is not meant to be exhaustive, and covers only a bare minimum of
necessary historical material, focusing instead on the results of greater significance
for the study of gravity. In Sect. 2, we provide a very brief overview of pulsar radio
emission, how it is detected and its data processed for timing purposes, and some
information on the pulsars as astrophysical objects, especially the formation and
evolution of binary pulsars. This is important for understanding the systems
themselves, but also why some systems are better laboratories than others; the reader
familiar with these topics can skip this section. In Sect. 3, we present an outline of the
pulsar timing technique and describe the relativistic effects that have been seen in
binary pulsars, mostly via this timing technique. We give special emphasis to the
“post-Keplerian” (PK) parameters (which quantify these relativistic effects) and their
interpretation in GR, which is the basis of most of the tests discussed in this review.
In Sect. 4, we discuss the main tests of GR with binary pulsars. In Sect. 5, we discuss
pulsar tests of our general understanding of gravity and gravitational symmetries, and
a search for possible deviations from GR, with a particular focus on phenomena that
are predicted by alternative theories of gravity. The non-detection of these
phenomena represents strong constraints on such alternative theories. As an
illustrative example, we will present pulsar tests of Damour–Esposito–Farèse
(DEF) gravity in some more detail. Finally, in Sect. 6, we summarize the results and
discuss future prospects.

As a final comment, it is important to emphasise that the vast majority of the work
discussed here appeared in the years since the last Living Review in Relativity on this
topic was published (Stairs 2003).
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2 Pulsars: the neutron stars and their radio emission

2.1 Radio pulsars

Jocelyn Bell’s discovery of radio pulsars in 1967 (Hewish et al. 1968) was a
complete surprise. The first radio pulsar, then known as CP 1919 (now known as
PSR B1919?21) showed an extraordinarily stable pulsation period of
1:3372795� 0:0000020 s. This stable periodicity is the feature that makes pulsars
uniquely useful for a wide range of applications in astrophysics and, as discussed
below, fundamental physics.

That the signals, first detected at a radio frequency of 81.5 MHz, were of
astrophysical origin was soon firmly established. The discovery itself happened
because Jocelyn Bell noticed that the signal reappeared, like the distant stars, 4 min
earlier every day within the beam of the Cambridge radio telescope. Additional
evidence that the signals were of interstellar origin was provided by the detection of
dispersion: the radio pulsations at lower radio frequencies arrive with a delay relative
to the same pulsations at higher frequencies, as expected from a signal traveling
through diluted ionised gas for distances of hundreds of parsecs (see Sect. 2.3.3).
Final proof was provided by the fact that the observed periodicity varied precisely
with the Doppler shift caused by the projection of Earth’s velocity along the direction
to the pulsar (Hewish et al. 1968).

Figure 1 shows a well-known pulse train from this pulsar, recorded later at a radio
frequency of 318 MHz (Craft 1970). This shows clearly that the individual pulses are
nearly random. However, and most importantly, adding a large number of such
pulses in phase, we arrive at a stable pulse profile, which is characteristic of each
pulsar.

2.2 Neutron stars

The earlier interpretations assigned the signal to the smallest sources known to exist
at the time, white dwarf (WD) stars (see e.g., discussion in Hoyle and Narlikar 1968).
However, the discovery of the Vela and Crab pulsars (Large et al. 1968; Staelin and
Reifenstein III 1968), and in particular the discovery of the very short periodicity of
the latter pulsar, 33.091 ms (Comella et al. 1969), which is slowing down with time
(Richards and Comella 1969), forced the acceptance of the model that assigned the
periodic pulsating signals to the rotation of a NS (Gold 1968; Pacini 1968).

This was an extraordinary breakthrough for two main reasons:

1. It established beyond doubt the existence of NSs: that there is a dense,
stable remnant considerably more compact than WDs had been uncertain since
1934, when they were first proposed by Baade and Zwicky (1934).3 The first

3 Often Landau (1932) is cited as the first to predict neutron stars. This, however, is strictly speaking not
the case. Landau (1932) puts forward the hypothesis of “pathological cores” made of densely packed
protons and electrons, in which quantum mechanics fails, inside every star. A concept that, from a physical
and astrophysical point of view, is far removed from real neutron stars. Moreover, Landau prepared and
submitted this work even before the neutron was discovered (see e.g., Yakovlev et al. 2013 for details).
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detailed calculations of NS structures (Tolman 1939; Oppenheimer and Volkoff
1939) resulted in estimates of the maximum NS mass between 0.7 and a few
solar masses. With diminutive radii of O (12 km) and masses similar to that of
the Sun, their central densities are higher than that of atomic nuclei. Owing to
their compactness, the calculation of NS structures requires a fully general-
relativistic hydrostatic equilibrium equation, together with detailed information
on the macroscopic properties (especially pressure) of nuclear matter at these
high densities, its equation of state (EoS) (Tolman 1939; Oppenheimer and
Volkoff 1939). Even today, the unknown state of matter at these densities implies
that there are still significant uncertainties in its EoS, which result in O (20%)
uncertainties in the maximum mass, radius and moment of inertia (MoI) of NSs,
making this a very active topic of research with implications not only for many
branches of astrophysics (Özel and Freire 2016) but also for the understanding of
the strong nuclear force (Lattimer 2021).

2. The association of the Vela and Crab pulsars with well-known supernova (SN)
remnants (the Crab nebula is associated with a historical SN observed in the

Fig. 1 Sequence of radio pulses from PSR B1919?21 observed in a radio intensity time series recorded at
a radio frequency of 318 MHz with the Arecibo 305-m radio telescope. The figure shows how the intensity
of the radio signal (vertical axis) changes as a function of spin phase (horizontal axis, increasing towards
the right, only a short window of about 10% of a full rotation is shown). Successive pulses are displayed
with increasing vertical offsets for visibility. Note the bar, indicating a time interval of 20 ms, which shows
the high time resolution of the signal. From Craft (1970)
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constellation Taurus in 1054 AD, with detailed records from China and Japan,
Stephenson and Green 2002) implied that some types of core-collapse SNe mark
the birth of a NS (Janka 2012; Burrows and Vartanyan 2021). Thus, NSs
represent the end products of the evolution of some types of massive stars, with
the collapse of their cores (and the associated neutrino burst) powering the SN
explosion, as had been suggested since the 1930s (Baade and Zwicky 1934;
Zwicky 1938).

2.3 Characteristics of the radio emission

Despite all the previous work on NSs, the discovery of pulsars was surprising
because no one predicted their radio emission. This is still the case today: 56 years
after the discovery of PSR B1919?21, the radio emission from pulsars remains
poorly understood (but see Philippov et al. 2020). However, this does not hinder in
the least the use of pulsars for the experiments described below.

In the radio sky, pulsars appear as faint, point-like radio sources. This faint
emission is generally observed at frequencies of a fraction to a few GHz, i.e.,
decimetric to metric wavelengths. It is a broadband phenomenon, without any
recognisable spectral features, with a maximum of emission around a couple hundred
MHz and a steep decrease in power at higher frequencies, which means that the vast
majority of pulsars become undetectable at frequencies above a few GHz. However,
about 10% of known radio pulsars have associated gamma-ray emission (Smith et al.
2023).

One of the most prominent characteristics of the radio emission is its high degree
of polarisation, with percentages of both linear and circular polarisations that are
much higher than in other radio sources. This points to another fundamental
characteristic of this emission, its coherence: the effective temperatures required from
an object produce the observed radio emission via thermal blackbody emission (i.e.,
its emission temperature) are of the order of 1025 K for most pulsars, which is too
high. For additional details, see Lyne and Graham-Smith (2012), Lorimer and
Kramer (2012).

2.3.1 The lighthouse model

Despite the lack of a good model for the radio emission, a geometric model was
firmly established soon after the discovery of PSR B1919?21. The pulsar is a
magnetised NS, and the radio emission is highly anisotropic, emerging mostly from
regions close to open magnetic field lines in the vicinity of the magnetic poles.
Because the magnetic axis is generally misaligned with the spin axis, distant
observers only detect radio emission for the time (within each rotation of the NS) that
some part of the emission beam is pointing to the Earth. The overall effect is similar
to the apparent pulsations of a lighthouse. This hypothesis is confirmed by the
observation that the position angle (PA) of the linear polarisation is seen to change
with the spin phase in a way that is consistent with the changing orientation of the
magnetic field lines directly along the line of sight to the observer (Radhakrishnan
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and Cooke 1969). From this change of the PAwith spin phase the rotation geometry
can be determined, especially the angle between the magnetic field and the spin axis
and the angle between the spin axis and the line of sight (for details, see Lorimer and
Kramer 2012).

2.3.2 Time domain signals

Figure 1 illustrates a fundamental aspect of most pulsar observations: that they are
time-domain observations, where a 1-dimensional time signal from a restricted
location in the sky is recorded with high time resolution, instead of a 2-dimensional
spatial signal as when an image of the sky is being produced.

This fundamental difference implies that while imaging observations of many
radio sources require the use of radio interferometers, like the Very Large Array
(VLA) near Socorro, New Mexico (USA), the MeerKAT 64-dish array near
Carnarvon, South Africa (Jonas and MeerKAT team 2016), and the upgraded Giant
Metrewave Radio telescope (uGMRT) near Narayangaon, India (Gupta et al. 2017),
or scans with single dish telescopes, sometimes using multiple receivers in the focal
plane of the telescope (“multi-pixel” receivers), the use of such imaging techniques is
not required for most pulsar observations, which can also be made by single radio
dishes with single-pixel receivers—the poorer imaging resolution is in this case
completely irrelevant.

Given the faintness of pulsar emission, what matters above all for pulsar
observations is the sensitivity of the radio telescope. Currently, the most sensitive
radio telescope in the world for pulsar observations is a single dish, the Five hundred
meter Aperture Spherical Telescope (FAST), in Guizhou province, China (Nan and
Li 2013), a design inspired on (and the first to surpass the sensitivity of) the 305-m
William E. Gordon radio telescope near Arecibo, Puerto Rico, USA, which is no
longer in operation. Other telescopes used extensively for pulsar searches are the
largest fully steerable radio telescopes in the world, the 100-m Green Bank radio
telescope in Green Bank, West Virginia, the 100-m Effelsberg radio telescope near
Effelsberg, Germany, the 75-m telescope at Jodrell Bank near Manchester, UK and
the 64-m Murriyang radio telescope near Parkes, Australia. Although not fully
steerable, the Nançay radio telescope in Nançay, France is also extensively used for
pulsar observations.

When observing radio pulsars (and many other types of sources), these radio
telescopes use high sensitivity, broadband single-pixel receivers. These produce two
voltage streams, one for each radio polarisation; these should be proportional to the
electric field (the amplitude) of the incoming wave. In modern observing systems,
these voltages are sampled and digitised at rates of at least twice the bandwidth being
registered, which typically implies a few times 109 samples per second (e.g., Jonas
and MeerKAT team 2016). These two voltage streams—and the local time references
—provide all the information in pulsar observations. From here on we describe how
these data are processed and reduced.

From these two digitised voltage streams, a digital spectrometer (also called in
radio instrumentation a “filterbank“) produces spectra, either using fast Fourier
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transforms (FFTs) or, for better channelisation, polyphase filterbank techniques. The
number of frequency channels in the spectra varies according to the needs of different
observations: a few hundred to a few thousand for pulsar observations, tens of
thousands for observations of radio spectral lines.

In pulsar observations, at least one spectrum is recorded, for the total intensity of
the signal (I ), obtained from the addition of the squares of the voltages from each of
the two polarisations. This process is called detection: I should be proportional to the
power of the incoming radio waves.

However, four spectra can be computed and recorded at the same time, one for
each of the Stokes parameters: in addition to I these include Q, U and V (Lorimer
and Kramer 2012), thus preserving the polarisation characteristics of the signal. This
is important for pulsars, since as mentioned above they are highly polarised sources.
The Stokes parameters are the components of the 4-dimensional Stokes vector. The
rationale for describing the polarisation characteristics of the signal using Stokes
vectors is that they can, like any other vectors, be added as necessary. This means
that we can add all polarisation measurements occurring at a particular spin phase of
the pulsar to derive a high S/N measurement of the average polarisation of the radio
emission at that phase. The correct derivation of the Stokes parameters requires
careful calibration of the two voltage streams.

The limiting time resolution within each spectral channel is the inverse of its
bandwidth; for pulsar observations the latter is of the order of MHz, thus the time
resolution is typically of the order of microseconds (ls). Consecutive samples are
integrated in all channels, and the resulting spectra are recorded, typically once every
few tens of ls; this is generally done in order to reduce the data rates. In any case,
this timescale is much faster than for most other astronomical observations.

2.3.3 Dispersion and dedispersion

Since pulsars have no narrow spectral features, one might wonder about the need for
obtaining spectral information. This is primarily because of the phenomenon of
dispersion, and secondarily for the purposes of the rejection of radio frequency
interference, which tends to appear in a limited number of spectral channels.

Dispersion happens because the group velocity of radio waves in a cold, diluted
plasma is smaller than the speed of light in vacuum, c. If the radio frequency F is
much higher than the plasma frequency anywhere along the line of sight, then the
accumulated delay for the wave arriving at the Earth is given by the expression (in
cgs units):

DtdisðFÞ ¼ e2

2pmec

1

F2

Z Earth

pulsar
neðlÞ dl; ð1Þ

where F is the radio frequency, e and me are the charge and mass of the electron, and
ne is the density of free electrons of the interstellar medium (ISM) at a distance l
along the propagation path. If l is specified in parsecs and ne in cm�3, then the
integral—the electron column density between the pulsar and the Earth—is expressed
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in cm�3 pc and is known as the dispersion measure (DM). Specifying F in GHz, we
obtain:

DtdisðFÞ ¼ 4:1488
DM

F2
ms: ð2Þ

If the dispersive delays are not subtracted, the pulsar signal will be smeared in time,
and the pulsar signal lost (Lorimer and Kramer 2012).

This subtraction can be done in two ways, both requiring the use of channelisation
by a spectrometer. The simpler is to move the detected signal of each spectral channel
at frequency F forward by DtdisðFÞ, this is known as incoherent dedispersion. The
advantage is the simplicity and small amount of computing effort required, while the
disadvantage is that the dispersive smearing within each channel is not removed. The
method used for most modern timing observations is to remove the effect coherently,
before detection: after the two voltage streams are Fourier transformed, a rotation
proportional to DtdisðFÞ is applied to the complex number in the Fourier spectrum at
frequency F. Fourier transforming this signal back to the time domain gives two
voltage streams that are apparently unaffected by the ISM. From these voltage
streams, the Stokes parameters are computed as described above. This process is
known as coherent dedispersion (Hankins 1971). The advantage is that it eliminates
the dispersive smearing within each channel, while the disadvantage is the large
computational power required and the need for precise a priori knowledge of the
DM.

After dedispersion, all spectral channels can be added in frequency, producing a
data set recording the variation of the Stokes parameters with time—a time series—
which is the final product of the dedispersion procedure.

2.3.4 Individual pulses and the average pulse

The lighthouse model implies that by keeping track of the radio pulsations, we can in
principle measure precisely how the number of rotations of the NS N changes with
the proper time T of the reference frame of the pulsar (see Sect. 3.1)4. To leading
order, the relation is given by:

NðTÞ ¼ /ðTÞ � /0

2p
¼ mðT � T0Þ þ 1

2
_mðT � T0Þ2; ð3Þ

where /ðTÞ and /0 are the spin phases at time T and a reference time T0 (these
phases are not limited to the interval between 0 and 2p, they increase continuously
with time), m is the spin frequency of the NS and _m is its time derivative, both
measured at T0. For spin-powered pulsars, the rotation slows down with time (as
mentioned above for the Crab pulsar), implying that _m is negative.

In the intensity time series of the first pulsar (Fig. 1 and Fig. 1 of Hewish et al.
1968) it was already apparent that there is considerable variation not only in the
strength, but also in the particular shape of each pulse. This means that, by observing

4 The proper time of the pulsar, as for instance measured on its surface, is proportional to T. The
corresponding (constant) factor is irrelevant for pulsar timing observations.
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individual pulses, it is difficult to measure N(T). However, if in Fig. 1 we add all
individual pulses on top of each other—a process known as folding—we recover a
stable average pulse profile. Thus, folding is vitally important, not only to increase
the S/N of the signal, but also because it makes timing possible.

To fold a time series properly, one needs a good a priori estimate of spin
frequency of the pulsar as seen at the receiving radio telescope at the local time s5

when the observation is occurring, sobs. This local spin frequency mobs changes
constantly because of the constantly changing conversion factor between T and s (see
Sect. 3). If this is not taken into account, the phase of the radio emission will appear
to drift with time. The prediction of mobs is made by a timing programme using the
best available pre-existing timing model for a pulsar, its ephemeris, and the best
description of the motion of the radio telescope relative to the Solar System
barycentre (SSB).

For most pulsars, there are significant deviations from the simple spin-down given
by Eq. (3), which are generally categorised as either “timing noise” or “glitches”
(Lorimer and Kramer 2012). However, for some types of pulsars—especially the
recycled pulsars, described in the next section—the rotation can be described by
Eq. (3) to a very good approximation. This means that they have an extremely
stable rotation, making them ideal tools for the types of experiments described in this
review.

2.3.5 The time of arrival

This stable profile allows new measurements of NðsÞ from the data of the
observation. This could be done by measuring N at specific values of s, but instead
the convention used in pulsar astronomy is to measure s at specific values of N, in
particular its integer values. This is how it is done: a high S/N version of the pulse
profile is used as a template, with its zero phase representing the reference longitude
on the NS. Like longitudes on Earth, this has an arbitrary element to it; it can be set,
for instance, at the peak of radio emission. However, once this convention is
established, it is very important to use it consistently for the same pulsar, or at least
for measurements taken with the same instrument and frequency. This template is
then correlated with individual pulse profiles obtained, in each observation, after
dedispersion and folding of its data to derive the so-called time of arrival (ToA), si
(for details, see e.g., Taylor 1992).

Although the ToA uncertainties can be very small for some pulsars (e.g., 0:1 ls for
the timing of PSR J1909−3744, Liu et al. 2020), such precision is very rare. The
limitations stem from several of the aforementioned characteristics of the pulsar radio
signal. The faint signal implies that the ToA precision of most recycled pulsars is
limited by the S/N of the detections. Furthermore, small DM variations introduce
additional frequency-dependent noise into the timing. Another problem, which
dominates in the few cases when the S/N of the detections is very high, is pulse jitter.

5 This is generally measured with a local time standard, like a Hydrogen maser—clock corrections are
generally added later by the timing programme to convert this to a well-known time scale, like Universal
coordinated time (UTC).
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This is caused by the randomness of the individual pulses, which can, in some cases,
take a long time to average into “the” average profile of the pulsar. Furthermore, the
lack of sharp features in the profile can further limit the timing precision. Finally,
long-term deviations from Eq. (3)—the timing noise and glitches—can also degrade
the timing of some recycled pulsars.

2.4 Pulsar evolution and binary pulsars

The vast majority of known pulsars are found in our Galaxy and its retinue of
globular clusters: the most distant pulsars known to us are located in two satellite
galaxies of the Milky Way, the LMC and SMC, located about 50 and 60 kiloparsec
(kpc) away from Earth, respectively. Because of their intrinsic faintness, the
sensitivity of the observing instruments remains as the main limitation in the
discovery of pulsars: the known pulsar population (3473 pulsars at the time of
writing, Manchester et al. 2005) is thought to represent only a few percent of the
likely population of active pulsars in our own Galaxy, and a tiny fraction of its � 109

NSs.

2.4.1 Normal and recycled pulsars

In Fig. 2, we plot the spin period (P ¼ m�1, horizontal axis) and the spin period
derivative ( _P ¼ � _mm�2, vertical axis) for about 3000 rotation-powered pulsars (black

Fig. 2 Period-(intrinsic) period derivative diagram for radio pulsars, taken from Manchester et al. (2005).
Double NS systems are highlighted by red and all other binary pulsars by blue circles. The pulsar in the
stellar triple system is marked by a magenta triangle. The rest, i.e., the isolated pulsars, are marked with
black crosses. Dashed lines indicate constant characteristic age sc and surface magnetic field strength BS

(labeled accordingly)
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crosses) for which these parameters have been measured (Manchester et al. 2005).
From these two parameters, the age, magnetic field and energetics of the pulsars can
be inferred (dotted lines) using a variety of assumptions, like in this case that the
spindown is caused by the emission of a low-frequency electromagnetic (EM) wave,
as one would expect from a rotating magnetic dipole, and that the dipole is
orthogonal to the spin axis (Lorimer and Kramer 2012). For the rate of rotational
energy loss,

_Erot ¼ �4p2I
_P

P3
; ð4Þ

a MoI (I) of 1045 g cm2 is generally assumed (Lorimer and Kramer 2012).
Clearly, there are two main groups of pulsars in this diagram: the “normal” pulsars

form the central, more numerous group, with 0:1\P\5 s and
10�17 \ _P\ 10�11 s s�1. In the lower left, with values of P and _P (and magnetic
fields) three orders of magnitude smaller, are the “recycled” pulsars. Unlike the
normal pulsars, they were spun up (and their magnetic fields degraded) by accretion
of mass from a stellar companion after they formed. This is indicated by the fact that
about 80% of these pulsars are in binaries (indicated by the filled circles), while
among the normal pulsars this is less than 1%.

2.4.2 Binary pulsars

The two main types of binary pulsars are indicated in Fig. 2 by the coloured dots: red
for pulsars with NS companions and blue for pulsars with WD (and other types of)
companions.

How do these systems form? This is important for understanding why some
systems are more useful than others for GR tests. A detailed account of their
evolution is given by Tauris and van den Heuvel (2023), and in what follows we
present a very summarised outline. For simplicity, we start with a binary system
consisting of two main sequence (MS) stars. This is a common occurrence, especially
for massive stars, the majority of which form in binary and multiple systems.

As the more massive star (the primary) evolves, it eventually explodes as a SN,
forming a normal pulsar. The system will then very likely disrupt owing to the large
kick6 and mass loss associated with this SN. We know this not only from the
aforementioned fact that [ 99% of normal pulsars are not in binary systems, but also
from the observation that the few surviving normal pulsar - massive MS star systems
(e.g., Johnston et al. 1992; Lyne et al. 2015) have very high orbital eccentricities
(generally e� 0:9), indicating a near disruption.

Eventually, the pulsar might cease emitting radio waves. The secondary will also
evolve and become a giant star. Its large size will cause several effects, the first being
tidal circularisation of the orbit. When the secondary fills its Roche lobe, the transfer
of matter to the NS starts, and the system becomes an X-ray binary. The transfer of
matter can become unstable, in which case the system might go through a common

6 The average kick for young isolated radio pulsars is 400–500 km s�1, but ranges from barely measurable
to more than 1500 km s�1 (Hobbs et al. 2005).
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envelope phase. At this stage, the NS is slowly spun up, and its spin will become
aligned with the orbital angular momentum. It is thought that during this process the
magnetic flux density at the surface of the NS is ablated, becoming much smaller.

What happens next depends on the mass of the secondary:

● If the secondary is light, then it will slowly evolve into a WD star, in this case the
system will retain both the very low orbital eccentricity and the alignment
between the NS spin and orbital angular momentum acquired during the recycling
phase.

● If it is massive enough, it will also go through a SN explosion, the system then
either disrupts (a likely occurrence) or forms a double NS system (DNS, for a
detailed discussion, see Tauris et al. 2017). In most cases we observe only the
recycled pulsar because their NS companions are only observable as normal
pulsars for a short amount of time. However, in one case (the PSR J0737-3039A/
B system), we see both NSs as pulsars: as predicted by the laws of stellar
evolution, one of them (the first-formed NS) is a recycled pulsar (PSR J0737
−3039A, with P ¼ 22:7ms, Burgay et al. 2003) and the second-formed NS
(PSR J0737−3039B, with P ¼ 2:77 s) is a normal pulsar (Lyne et al. 2004).

After the demise of the companion, the primary is now spinning fast and emitting
radio waves again—this is why it is known as a recycled pulsar.

Fully recycled pulsars (the MSPs) appear overwhelmingly in the lower left corner
of Fig. 2, with spin periods of a few ms. Most of them have low-mass companions.
The pulsars in DNSs have spin periods that are one order of magnitude larger. The
reason is the time they spend as X-ray binaries: this is much shorter for the NSs with
high-mass companions, because the latter evolve much faster.

The high risk of disruption makes the DNSs relatively rare (\30 known,
representing less than 10% of the binary pulsar population and less than 1% of the
total pulsar population). These systems are necessarily eccentric because of the mass
loss and the kick associated with the second SN.7 Because of this kick, the orbital
plane after the SN might become very different from what it was before the
explosion, causing a misalignment between the spin of the recycled pulsar and post-
SN orbital angular momentum.

The energy loss due to GW damping in compact DNSs observed for the first time
in PSR B1913?16 (see Sect. 4.1) has an inevitable consequence: every year the
pulsar and companion come about 3.5 m closer, and in 300 million years—a short
time compared to the age of the Universe—this system will coalescence in a NS–NS
merger, producing extreme amounts of GW emission. This discovery meant that
future ground-based observatories will have a secure source of GWs. This was
repeatedly confirmed by the discovery of DNSs with even smaller coalescence times
in our Galaxy (Burgay et al. 2003; Cameron et al. 2018; Stovall et al. 2018). The
observation by the Advanced LIGO and Virgo of precisely such a NS–NS merger

7 The range of kicks could be smaller for NSs born in closely interacting binary systems, as is the case for
the second-formed NS in DNS systems, but nevertheless many systems are still expected to disrupt at this
stage (Tauris et al. 2013, 2015, 2017).
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event in August 2017, GW170817 (Abbott et al. 2017a) and its EM counterpart
(Abbott et al. 2017b) in the galaxy NGC 4993 not only confirmed beyond doubt the
connection between (a certain class of) gamma-ray bursts with the collision of two
NSs, but represented the fulfillment of the promise brought by the discovery of
PSR B1913?16.

3 Timing and relativistic effects in binary pulsars

Most (but not all) of the applications discussed below rely on a technique where
pulsars excel, timing. This technique yields highly precise measurements of many
astrophysical parameters, and is more precise (and therefore powerful) for recycled,
fast-spinning pulsars.

In this technique, we use the ToAs to infer fundamental characteristics of the
pulsar. This is done using a timing programme: by far, the most commonly used
programmes are TEMPO (Nice et al. 2015), TEMPO2 (Hobbs et al. 2006; Edwards et al.
2006) and “PINT is not tempo” (PINT, Luo et al. 2021). These programs use the pulsar
ephemeris and Eq. (3) to calculate predictions for ToAs (Ti;p) that are within less than
half a spin period from the observed ToAs Ti. The programme determines the optimal
timing parameters by minimising the sum of the squares of the normalised residuals:

v2 ¼
Xn
i¼1

Ti � Ti;p
ri

� �2

; ð5Þ

where n is the number of ToAs and ri is the measurement uncertainty of Ti. If all
residuals are small compared to the spin period and if the normalised residuals have a
normal distribution around zero, this is evidence that the ephemeris is precise enough
to determine, without ambiguity, the number of rotations between any two ToAs, i.e.,
it is a phase-coherent ephemeris. Without unambiguous knowledge of these rotation
numbers, no reliable ephemerides can be derived. In a good timing model, the value
of v2 is similar to the number of degrees of freedom in the fit, which is the number of
ToAs minus the number of parameters being fitted.

As can be deduced from Eq. (3), any small error in m will produce a linearly
increasing residual, and a small error in _m will produce a quadratically increasing
residual. Thus, by adjusting m and _m, the timing programme can make any such trends
in the residuals disappear.

3.1 Timing isolated pulsars

As discussed above, Eq. (3) is calculated assuming a time (T) in the reference frame
of the pulsar. However, as discussed below, we do not know the line-of-sight velocity
of the pulsar, so T is not directly accessible to us. Nonetheless, a suitably Doppler-
shifted version of this time can be calculated as (Taylor 1994; Edwards et al. 2006):
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T 0 ¼ sobs � DE;�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
tobs

� t0 � DR;� � DS;� � DtdisðFÞ; ð6Þ

where tobs is the coordinate time (in TCB) of the ToA, t0 is a reference epoch (in
TCB), DtdisðFÞ is given by Eq. (2) and the multiple D� terms correspond to three
different delays:

1. DE;�, the Einstein delay represents the time part of the full four-dimensional
transformation between the SSB coordinate time tobs and the proper time of the
observer sobs, along the observer’s world-line. To leading order, it is a result of
the special-relativistic time dilation due to the motion of the observer in the SSB
and the gravitational redshift caused by the masses in the Solar System (Soffel
et al. 2003; Edwards et al. 2006). (Note that there are different sign conventions
for this term in the literature.) This delay is independent of the direction to the
source.

2. DR;�, the “Rømer” delay, corresponds (in the Newtonian limit) to the geometric
light-propagation delay. This corresponds to the projection, along the direction of
the incoming wave from the pulsar (unit vector n̂), of the position vector of the
receiving radio telescope in the frame of the SSB at time tobs. This is the sum of
two (coordinate-position) vectors: the first is the position vector of the radio
telescope relative to the Earth’s centre; to calculate it, accurate coordinates for the
radio telescope are necessary, together with accurate information on the
orientation of the Earth. The second, the position vector of the Earth’s centre
relative to the SSB, is calculated using a Solar System ephemeris. Finally, a
direction to the pulsar (Right Ascension a and Declination d, unit vector

K̂0 ¼ �n̂) must be assumed in order for the timing programme to calculate the
projection correctly.

3. DS;�, the Shapiro delay (Shapiro 1964), is a relativistic light propagation delay
caused by the curvature of the Solar System’s spacetime. This has been measured
extensively with the aid of planetary radar and space probes moving in the Solar
System (e.g., Bertotti et al. 2003). Like DR;� it is also direction-dependent and
can be calculated precisely once a, d are specified.

Small errors in a, d will produce a nearly sinusoidal 1-year trend in the residuals,
which indicate an incorrect subtraction of Earth’s motion. Adjusting a and d the
timing programme can make such trends disappear. When a growing sinusoidal in

the residuals is observed, then additional linear variations of these terms ( _a, _d) can be
fitted, from which we can derive the proper motion of the pulsar (la ¼ _a cos d,

ld ¼ _d). Finally, if a pulsar is close enough to the Solar System and its timing
precision is good enough, then the parallax (- ¼ 1=d½au�, where d is the distance to
the pulsar measured in astronomical units) can also be measured from the timing.
These “astrometric” parameters of the pulsar (a; d; la; ld;-) can also be measured
with very long baseline interferometry (VLBI, see examples in Deller et al. 2013;
Ding et al. 2021, 2023; Kramer et al. 2021).
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3.2 Timing binary pulsars

In Fig. 3, we depict the more complex (and more interesting) situation that occurs
when the pulsar itself is in a binary system. In this case, Eq. (6) becomes (where we
ignore the constant factor between T and T 0):

T ¼ sobs � DE;� � t0 � DR;� � DS;� � DtdisðFÞ � DR � DS � DE � DA; ð7Þ
where the four last terms are, respectively, the Rømer, Shapiro, Einstein and aber-
ration delays of the binary. These delays are described in detail in the following
section. We now make a few general considerations about them:

● Any quantities with units of mass, length or time (for instance, the delays DR, DS,
DE, DA, the spin period of the pulsar, Pint) measured in the reference frame of its
centre of mass (CM) are related to the same quantity measured at the SSB (Pobs)
by Pint ¼ DPobs, where D is the special-relativistic Doppler factor (Damour and
Deruelle 1986). To leading order, Pobs is given by Damour and Taylor (1992):

Pobs ¼ D�1Pint ’ 1þ vCM � K̂0

c

� �
Pint; ð8Þ

where vCM the velocity of the CM of the binary relative to the SSB (its
“systemic” velocity). However, because Pint is unknown, we cannot calculate the

systemic radial velocity vr;CM ¼ vCM � K̂0 from Pobs.
8

Fig. 3 Spacetime perspective of timing observations of a binary pulsar. Depicted are the world lines of
pulsar (purple) and the observer (blue). A photon is emitted by the pulsar at the pulsar’s proper time spsr
(which is proportional to T in Eq. 7) and arrives at the observer at the observer’s proper time sobs. For
simplicity, we have assumed that the barycentres of the binary and the Solar System are at rest with respect
to each other. Rt depicted a hyper-surface of constant coordinate time t (corresponds to TCB)

8 The situation is different in astronomical spectroscopy because, unlike pulsars, all atoms of the same
element are identical, so their lines in stellar spectra have well-known “rest” wavelengths measured in
laboratories that can be compared to the observed wavelengths to measure vr;CM.
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For the tests described below the lack of knowledge of vr;CM is not a problem,
precisely because all physical quantities re-scale coherently with D (Damour and
Deruelle 1986; Damour and Taylor 1992). However, a relative acceleration
between the pulsar system and the SSB leads to (apparent) secular changes in the
dimensional parameters of the binary pulsar system, as discussed in detail in
Sect. 3.5.1.

● Pulsar timing or Doppler measurements only provide information for the motion
along the line of sight. For most binary pulsars, the transverse component of the
orbital motion is not measurable by any other means like VLBI9—only the
transverse component of the systemic velocity can be measured with VLBI
because its effects increase linearly with time.

● The measurement of the binary-related delays in Eq. (7) allows a much more
precise measurement of the pulsar’s orbital motion than is possible using Doppler
shift techniques. Although Doppler measurements are possible for binary pulsars
—and indeed, quite useful for the initial measurement of its orbital parameters—
their precision is limited by the length of the individual observations. Once a
phase-coherent ephemeris is obtained, the precision of the measurement of the
orbital motion increases by factors of thousands to millions (larger factors for
wider orbits, where the Doppler shifts are smaller and the delays are larger)—
while using the same radio data. This is especially relevant for the detection of
small relativistic effects, and is the main reason why binary pulsars can be
excellent laboratories for testing gravity theories.

3.3 Binary models

At the time of the discovery of the Hulse–Taylor pulsar no timing models for binary
pulsars were available, for the simple reason that no binary pulsars had been found
before. After this discovery, the development of such models became vital in order to
materialise the precision of the measurement of the orbital motion promised by the
discovery of a binary pulsar.

One of the first models to appear was developed by Blandford and Teukolsky
(1976), henceforth BT76. This model describes the observed orbital motion as a
Keplerian motion with small relativistic perturbations. This “quasi-Newtonian”
model was first used in the first phase-coherent ephemeris for PSR B1913?16
(Taylor et al. 1976). In their Table 1, we see that some orbital parameters derived
from the timing analysis are already two orders of magnitude more precise than the
same parameters estimated from the Doppler analysis; for the spin period the
improvement is 6 orders of magnitude.

A more complete timing formula was published in Damour and Deruelle (1986),
henceforth DD86. This is based on their elegant analytical, quasi-Keplerian solution

9 There is a single case where the orbital motion of a pulsar can be detected with VLBI, PSR J2222−0137,
a nearby binary pulsar with a massive WD companion (Deller et al. 2013; Guo et al. 2021). Scintillation
measurements can provide constraints on the transverse orbital motion of some pulsars (e.g., Rickett et al.
2014).
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to the first PN equations of motion of a binary system in harmonic coordinates
(Damour and Deruelle 1985).

In both models, the orbital motion along the radial direction is described by five
Keplerian parameters. In addition, there are a few PK parameters that quantify
relatively small relativistic deviations from a Keplerian orbit. All are listed in Table 1.
Some notes on these parameters:

● There are two additional Keplerian parameters, that we generally cannot
determine only with measurements of the radial motion. The first is the orbital
inclination i (but see Sect. 3.4). Since

x ¼ ap
c

sin i; ð9Þ

the lack of knowledge of i and sin i implies that the semi-major axis of the
pulsar’s orbit, ap, is also unknown. However, changes in the orbital plane w.r.t.
the plane of the sky (which is perpendicular to the line of sight and passes through
the CM of the system) can cause a change in i, which is detectable as a change in
x ( _x, see Sects. 3.5.2 and 3.5.3).

● The second unknown Keplerian parameter is the PA of the ascending node, X.
The ascending node is the point in the orbit where the pulsar, while moving away

Table 1 List of Keplerian and PK parameters of the DD86 model

Parameter Physical meaning Unit

Keplerian parameters

Pb Orbital period Day

x Projected semi-major axis of the pulsar’s orbit Second (s)

e Orbital eccentricity

x Longitude of periastron Degree

T0 Time of passage through periastron Modified Julian Date

PK parameters

_x Rate of advance of periastron Degree per year

c Amplitude of Einstein delay s

_Pb Rate of change of the orbital period 10�12 s s�1

r “Range” parameter of the Shapiro delay s

s “Shape” parameter of the Shapiro delay

dr Relativistic radial deformation of orbity 10�6

dh Relativistic angular deformation of orbity 10�6

_x Time derivative of x 10�12 s s�1

_e Time derivative of e 10�12 s�1

The units are those specified in the input and output files of standard pulsar software
yThese parameters are only in the DD86 model. dr is not separately measurable (Damour and Deruelle
1986; Damour and Taylor 1992)
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from us, crosses the plane of the sky. A change in X represents a rotation of the
orbital plane of the system around the line of sight, which for most cases leaves
the timing practically unchanged.

● Since x is the angle periastron–CM–ascending node, it is (like i) generally
affected by a change of the orbital plane w.r.t. the plane of the sky. Moreover, the
change of the position of the nodes caused by the proper motion causes a change
of the ascending node (and on x) that depends on X (Sect. 3.5.2).

● Unlike Pb, x and e, the parameters x, i, X and T0 have no astrophysical meaning,
merely specifying the orientation of the system and a particular occurrence of the
time of periastron as seen by the observer.

A major advantage of these models is that they describe the orbital motion for, at
least, any fully conservative, boost-invariant gravity theories that have a Newtonian
limit. This means that the PK parameters can be understood as phenomenological
parameters which can be measured in a theory-independent manner, providing a
parameterised PK (PPK) framework (see Damour and Deruelle 1986; Damour and
Taylor 1992 for more details).

We now discuss the DD86 timing formula. For each time T, there are two auxiliary
parameters that must be calculated. The first one is the eccentric anomaly, u. To relate
u to T, we use an analogue of Kepler’s equation, which must be solved numerically:

u� e sin u ¼ 2p
T � T0
Pb

� �
�

_Pb

2

T � T0
Pb

� �2
" #

: ð10Þ

We now calculate x at time T. To do this, one needs a second auxiliary parameter, the
true anomaly, AeðuÞ; this is the angle pulsar–CM–periastron:

AeðuÞ ¼ 2 arctan
1þ e

1� e

� �1=2

tan
u

2

" #
; ð11Þ

from which x can be calculated directly via a proportionality constant k:

x ¼ x0 þ kAeðuÞ; ð12Þ
where x0 is the reference value of x at time T0. The time-averaged periastron
advance h _xi is thus 2pk radians for each orbital period Pb:

h _xi ¼ 2p
Pb

k: ð13Þ

Equation (12) is the main difference between the DD86 and the BT76 orbital models,
in the latter x changes linearly with time, like x and e:

x ¼ x0 þ _xðT � T0Þ: ð14Þ
Equation (12) describes the observed evolution of x in binary pulsars significantly
better than Eq. (14) (Damour and Taylor 1992); for this reason the use of the DD86
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model is to be preferred. The meaning of _x in the latter model, and in the discussions
below, is really as a scaled version of k according to Eq. (13).

With u and AeðuÞ, plus the Keplerian and PK parameters, we can calculate the
time delays associated with the binary orbit in Eq. (7).

3.3.1 Rømer delay

In the DD86 model, the Rømer delay is given by the following equation:

DR ¼ x sinx
�
cos u� eð1þ drÞ

�þ x cosx
�
1� e2ð1þ dhÞ2

�1=2
sin u: ð15Þ

In the BT76 model, neither dr nor dh are taken into account. This is the second main
difference between the BT76 and DD86 models.

3.3.2 Shapiro delay

In a binary pulsar, the Shapiro delay is caused solely by the gravitational field of the
companion. To leading order it is given by:

DS ¼ �2 r ln 1� e cos u� s sinxðcos u� eÞ þ ð1� e2Þ1=2 cosx sin u
h in o

: ð16Þ

which is calculated assuming a static configuration (Blandford and Teukolsky 1976;
Damour and Deruelle 1986). The next-to-leading order term caused by the motion of
the companion during the propagation of the signal (Kopeikin and Schäfer 1999) has
to be taken into account in the case of the Double Pulsar (Kramer et al. 2021).

Freire and Wex (2010) introduced an “orthometric” parameterisation for the
Shapiro delay based on its Fourier expansion. The orthometric amplitude h3 and the
orthometric ratio 1 replace r and s via the relations

1 ¼ s

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ; h3 ¼ r 13: ð17Þ

This parameterisation is particularly advantageous for systems where i is far from
edge-on. In such cases the Shapiro delay is much smaller and r and s are strongly
correlated, while h3 and 1 are not.

3.3.3 Einstein delay

Unlike in the Solar System, the Einstein delay represents only the variable part of the
relativistic time dilation experienced by the pulsar—to leading order this can be
understood as the result of the second order Doppler effect due to the motion of the
pulsar in the centre-of-mass frame and the gravitational redshift caused by the
companion—as seen by distant observers. It is given by:

DE ¼ c sin u; ð18Þ
where we see that, unlike DR and DS, this term is independent of the orientation of
the binary relative to the observers (x, i, X). Note that this effect can only be
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measured in a timing baseline where x changes significantly. If that is not the case,
then the effect of c is re-absorbed in a small change from x and x to x0 and x0 (e.g.,
Wex et al. 1998):

x0 ¼ xþ cffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p cosx; ð19Þ

x0 ¼ x� c=xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p sinx; ð20Þ

where we ignored dh, which is generally of order 10�6. x0 and x0 are the parameters
in DD86 ephemerides of eccentric binary pulsars for which no c is being either
measured nor assumed.

3.3.4 Aberration delay

As the pulsar moves in its orbit, one needs to account for aberration, i.e., the velocity-
dependent transformation between the co-moving frame of the pulsar and the centre-
of-mass frame of the binary for the propagation of the radio signal (Smarr and
Blandford 1976; Damour and Deruelle 1986). This causes, at any given time, small
changes to the direction of the emission beam. For the emission to be directed to
Earth, more (or less) time—called the aberration delay—must be allowed for the
rotation of the pulsar to compensate for these small changes. This delay would be
zero if the pulsar were an actual pulsating, non-rotating source. In most cases, this
effect is very small and is absorbed by re-definitions of x, e, dh and dr (Damour and
Deruelle 1986; Damour and Taylor 1992). However, if the spin-orientation of the
pulsar changes due to geodetic precession (Sect. 3.5.3), then aberration becomes
time-dependent and needs to be properly accounted for Damour and Taylor (1992).

In the case of the Double Pulsar, additional changes to the direction of emission of
the beam of PSR J0737−3039A originate from light deflection near PSR J0737
−3039B when the latter is passing near the line of sight; its effect on the timing
cannot be absorbed by a re-definition of the Keplerian or PK parameters. The
observed magnitude of the effect (Kramer et al. 2021) matches the detailed GR
calculations presented there and in the references therein if PSR J0737−3039A is
rotating in the same sense as the orbital motion (see details in Sect. 4.2).

3.3.5 Gravitational radiation and the orbital decay

For the more compact double-degenerate binaries, the variation of the orbital period
( _Pb) used in Eq. (10) is dominated by the orbital decay caused by GW damping, but
has other contributions (Sect. 3.5.1). While the orbit shrinks due to the loss of energy
through GWs (an effect that has not yet been measured directly), the orbital period
shortens according to Kepler’s third law (see Eq. 21 below). As a result, one gets a
quadratic effect in the evolution of the orbital phase (see Eq. 10) which leads to a
prominent effect in the ToAs that builds up quickly with time.
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3.4 Keplerian and post-Keplerian parameters in GR

3.4.1 The mass ratio and the mass function

If we denote the semi-major axis of the relative orbit (the “separation” of the binary,
a) in time units (�a � a=c), we can write Kepler’s third law (to Newtonian order) as:

Pb

2p

� �2

¼ �a3

ðT�MÞ ; ð21Þ

where T� � ðGMÞN�=c3 ¼ 4:925490947641. . . ls is an exact quantity, the nominal
Solar mass parameter10 in time units and M is the (dimensionless) total mass of the
system expressed in units of the nominal Solar mass, which we denote by M� in this
review (see Prša et al. 2016 for details, who in their Table 2 suggest the symbolMN

�).
The reason for this is that the precision of the total mass in mass units (like grams),

m ¼ ðT�MÞ c
3

G
; ð22Þ

is limited by the comparably low precision of Newton’s gravitational constant G,
while M is tied to the precision of the measurements of Pb and �a in Eq. (21), which
can be much higher.11 From Eq. (21), we obtain

�a ¼ Pb

2p

� �2=3

ðT�MÞ1=3; ð23Þ

where we see that if M is known, �a can be estimated independently of the orbital
inclination. Furthermore,

bO � Pb

2p

� ��1=3

ðT�MÞ1=3 ð24Þ

is the relative orbital velocity, divided by c, for a circular binary of separation a. This
quantifies how relativistic the orbit is and will appear implicitly in many equations
below.

Since ap is the semi-major axis of the pulsar’s orbit, we obtain for the companion
ac ¼ a� ap. In this case, the ratio of the mass of the pulsar and the mass of the
companion is given by

10 This quantity was defined by the IAU 2015 Resolution B3 (Mamajek et al. 2015) to be

ðGMÞN� � 1:3271244	 1026 cm3 s�2. It is very close to GM�, where G is Newton’s gravitational
constant and M� is the mass of the Sun. Despite its high precision, GM� is tied to the mass of the Sun,

which is physically variable, but also subject to measurement uncertainty, while ðGMÞN� is defined exactly
in the international system of units (SI), which is more relevant for timing measurements.
11 This is why GM� is known much more precisely than either G or M�.
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R � Mp

Mc
¼ ac

ap
¼ xc

x
; ð25Þ

where xc ¼ ðac=cÞ sin i. Since M ¼ Mp þMc, we obtain a ¼ apðM=McÞ. From this
expression and Eqs. (9) and (21), one derives the (Newtonian) mass function
equation:

f ðMp;Mc; iÞ ¼ ðMc sin iÞ3
ðMp þMcÞ2

¼ x3

T�

Pb

2p

� ��2

; ð26Þ

which has on the right all the relevant information available to an observer that
cannot measure the additional mass constraints described below. Although in this
case we have a single equation for three unknowns, if one assumes a value for Mp

and i ¼ 90
 we can immediately derive a minimum value for Mc (for that Mp) by
solving Eq. (26) numerically. This is the only available mass constraint for � 80% of
binary pulsars.

To measure the component masses, two additional mass constraints are necessary.
Besides measuring PK parameters (see next section), there are two mass constraints
of relevance for the systems discussed below (Sects. 4.2, 4.4.1, 4.4.2):

1. Measurement of R: If the companion is sufficiently bright in the optical band,
then phase-resolved spectroscopy can yield many measurements of vr. These are
the sum of vr;CM and the orbital component of vr, which is generally
parameterised by optical spectroscopists using Pb, T0, e, xc ¼ xþ p and the
orbital velocity amplitude, Kc. The latter relates to xc via:

xc ¼ Kc

c

Pb

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
: ð27Þ

In the case of the Double Pulsar, xc is available directly from the radio timing of
PSR J0737−3039B.

2. Measurement of Mc: For systems with optically bright WD companions, the
width of the Balmer lines allows the determination of the surface gravity. This
can then be combined with the mass-radius relation for WDs to determine the
WD mass and the radius (see e.g., Antoniadis et al. 2012, 2013; Liu et al. 2020).

These constraints are very rarely available, and in the case of Mc they depend on
several assumptions and detailed modeling. Including the first PN corrections of the
Damour and Deruelle solution, the simple relation a ¼ ap þ ac and in particular
Eq. (25) still hold, not only in GR but for any Lorentz-invariant gravity theory
(Damour and Deruelle 1985; see also the detailed discussion in Damour 2009). The
spectroscopic determination of Mc, in case of a WD companion, is performed in the
well-tested Newtonian limit. For this reason, these constraints are of particular
importance for tests of alternatives to GR (see Sect. 5.5).

Finally, it should be noted that the Newtonian expression (26) has so far been
sufficient for all binary pulsars with the exception of the Double Pulsar, for which
first PN corrections to Eq. (26) are necessary (more in Sect. 4.2).
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3.4.2 Post-Keplerian parameters

In GR, to leading order, the PK parameters depend simply on the well-measured,
astrophysically meaningful Keplerian parameters (Pb, e and in one case x) and the
masses Mp and Mc, they are given by (Damour and Deruelle 1986; Taylor and
Weisberg 1989; Damour and Taylor 1992):

_x ¼ 3
Pb

2p

� ��5=3

ðT�MÞ2=3 ð1� e2Þ�1; ð28Þ

c ¼ Pb

2p

� �1=3

ðT�MÞ2=3 Xcð1þ XcÞ e; ð29Þ

_Pb ¼ � 192p
5

Pb

2p

� ��5=3

ðT�MÞ5=3 XpXc
1þ 73

24 e
2 þ 37

96 e
4

� 	
ð1� e2Þ7=2

; ð30Þ

r ¼ ðT�MÞXc ¼ T�Mc; ð31Þ

s ¼ x
Pb

2p

� ��2=3

ðT�MÞ�1=3 X�1
c ; ð32Þ

dh ¼ Pb

2p

� ��2=3

ðT�MÞ2=3 7

2
X 2
p þ 6Xp Xc þ 2X 2

c

� �
; ð33Þ

dr ¼ Pb

2p

� ��2=3

ðT�MÞ2=3 3X 2
p þ 6Xp Xc þ 2X 2

c


 �
; ð34Þ

where s � sin i, Xp ¼ Mp=M and Xc ¼ Mc=M . Equation (17) can then be used to
derive the correspondent values of h3 and 1.

This “PK simplicity” is a consequence of a fundamental property of GR, the
effacement of the internal structure of a self-gravitating mass (Damour 1987; Will
2018). Consequently, the motion of bodies in a N-body system is independent of their
internal structure.12 The PK simplicity has the following implications:

● The measurement of two PK parameters leads to a determination of both masses.
If none of these PK parameters is s or 1 (which yields sin i directly), we can then
use Eq. (32) (a re-write of Eq. 26) to determine sin i from the masses.

● Measuring additional PK parameters we can test the validity of GR from a test of
the self-consistency of these equations. This is the main method used in Sect. 4.

● This also means that additional NS properties, like their radius, tidal deformability
or I cannot be measured with this technique, at least with only the leading order
terms in the PK equations above. This would imply that the only way pulsar

12 This all has to be understood in an approximate sense. As soon as tidal effects (at fifth PN order) start to
play a role, also in GR the internal structure of a body becomes relevant.
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timing can constrain the EoS is via the measurement of large NS masses (see e.g.,
Fonseca et al. 2021). Measurements of other NS bulk parameters must therefore
come from other types of measurements: radii come from X-ray observations, in
some cases aided by radio measurements (Özel and Freire 2016; Miller et al.
2021; Vinciguerra et al. 2024) and tidal deformabilities come from the
observation of GWs from a DNS merger (Abbott et al. 2018).

However, for the Double Pulsar (Sect. 4.2) higher order contributions to Eq. (28)
become relevant for the description of the timing data, specifically the second PN
correction _x2pN as well as the Lense–Thirring (LT) contribution _xLT, which results
from the coupling between the orbital motion and the rotation of pulsar A (relativistic
spin-orbit coupling). More generally, with relativistic spin-orbit coupling, the spins of
the two binary components enter the equations of motion, which leads to an
additional spin (magnitude and orientation) and thus Ip and Ic dependence of some
PK parameters (cf. discussion in Sect. 3.5.3).

The PK simplicity is captured by the DDGR timing model, a version of the DD86
model that assumes the validity of GR (and thus of Eqs. 28–34): This model
describes the timing using only the measurable Keplerian parameters, M and Mc

(Damour and Deruelle 1986; Taylor and Weisberg 1989). This theory-dependent
model is very useful for many applications, where then GR is assumed to be the
correct theory of gravity.

Other theories of gravity, such as those with one or more scalar fields in addition
to a tensor field, have different mass dependencies for the PK parameters. In addition,
there is (unlike in the case of GR) also a dependence on the internal structure of the
bodies, meaning the PK parameters depend on the EoS of the pulsar and the EoS of
the companion, which, for instance, is very different for a WD companion. Some
specific examples of such theories will be discussed in Sect. 5.5 below.

3.5 “Contaminations” of the post-Keplerian parameters

In this sub-section, we do not aim at an exhaustive listing of terms that can affect the
measurement of the PK parameters; only a short discussion of the effects relevant for
the systems described in Sect. 4.

3.5.1 Variation of the orbital period

Re-writing Eq. (8) for Pb, and then differentiating it, we obtain:

_Pb

Pb

� �
int

¼
_Pb

Pb

� �
obs

� aCM � K̂0

c
� l2d

c
; ð35Þ

where aCM is the (small) acceleration of the CM of the pulsar binary relative to the

SSB (caused by the gravitational field of the Milky Way) and l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2a þ l2d

q
is the

magnitude of the proper motion. The same relations apply to any other derivative of a
time-like quantity of the binary system, like _P and _x.
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The term on the left is what we generally want to measure in most binary pulsars:
the intrinsic variation of the orbital period, caused by orbital decay due to GW
damping. Additional intrinsic terms are possible if the system is, for instance, losing
mass, but for most DNSs the mass loss term given by Eq. (4) (with _mp ¼ _Erot=c2)
(Damour and Taylor 1991) can be safely ignored, except in the case of the extreme
precision achieved for the Double Pulsar (Kramer et al. 2021).

The first term on the right generally improves fast with additional observations
(Sect. 3.3.5).

The second term is generally dominated by the difference of Galactic accelerations
of the SSB and the pulsar (Damour and Taylor 1991), this can be estimated from the
position of the pulsar in the Galaxy (which requires an accurate distance) and a
model of the Galactic potential (e.g., McMillan 2017). For many pulsars, additional
contributions come from the gravitational fields of globular clusters and in a few
cases of nearby stars.

The third term is known as the Shklovskii effect (Shklovskii 1970); this again
requires knowledge of d and l (the latter is generally easier to measure from the
timing, especially for pulsars with good timing precision and stability).

Thus, lack of precise knowledge of the second and third terms on the right (the
“extrinsic” terms) limits the precision of the measurement of _Pb;int. The situation can
be improved with precise measurements of d and more accurate Galactic potential
models.

3.5.2 Other effects of the proper motion

Differentiating Eq. (9) in time and then dividing the result by that equation, we
obtain, in the absence of a change in ap (for instance by GW damping):

_x

x
¼ cot i

di

dt
; ð36Þ

where the variation of the inclination di=dt can be due to a change in our viewing
angle of the binary (this section) or an intrinsic change of the orbital plane
(Sect. 3.5.3). For nearly edge-on systems (i � 90
), cot i � 1 and di=dt is much
more difficult to measure.

The proper motion of the system causes a change in our viewing angle of the
binary, which can change i as seen from Earth. This was first calculated by
Arzoumanian et al. (1996) and, in greater detail by Kopeikin (1996). The latter’s
expressions can be re-written as:

di

dt

� �
l

¼ l sinðHl � XÞ; ð37Þ

where Hl is the PA of the proper motion. Like any change of the viewing angle, the
proper motion also produces a change in the line of nodes, and therefore a change in
x:
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_xl ¼ l
sin i

cosðHl � XÞ: ð38Þ

These equations are valid in any right-handed coordinate system, like that described
in Damour and Taylor (1992) (where PAs are measured clockwise starting from East
through North, where a positive spin along the line of sight points away from us) or
the “observer’s convention” (PAs measured anti-clockwise from North through East,
where a positive spin along the line of sight points towards us) that is implemented in
most timing programs (Edwards et al. 2006).

Normally, a measurement of the Shapiro delay and di=dt allows four “degenerate”
solutions for i and X. However, the orbital motion of the Earth also changes the
viewing angle of the binary pulsar, leading to yearly variations of x and x, known as
the “annual orbital parallax” (Kopeikin 1995). These are measurable in the timing of
some nearby binary pulsars, especially wider systems with excellent timing precision
(for early examples, see van Straten et al. 2001; Splaver et al. 2005; Zhu et al. 2019;
Stovall et al. 2019, see also Guo et al. 2021); these measurements allow the
determination of i and X. The _xl term can introduce significant corrections to the
total mass derived from _x (Stovall et al. 2019).

One way of taking all these effects into account in a self-consistent way is to
introduce the orbital orientation (i, X) and all its effects into the timing model, which
are then fit like all other parameters, as done in the “T2” orbital model implemented
in TEMPO2 (Edwards et al. 2006).

3.5.3 Relativistic spin-orbit coupling

A fundamental property of a curved spacetime is that the spin (proper angular
momentum) of a freely-falling rotating body changes its direction with respect to a
distant observer. This is certainly the case for the spin of pulsars moving in an orbit
with a companion. The geodetic precession is the leading order contribution to such a
spin precession which results from the relativistic spin-orbit coupling (Barker and
O’Connell 1975). As a consequence, the spin of the pulsar precesses around the

conserved total angular momentum of the system at a rate Xgeod
p that depends, like the

PK parameters in Eqs. (28)–(34), simply on the masses and the Keplerian parameters
(Barker and O’Connell 1975; Börner et al. 1975; Damour 1978)13:

Xgeod
p ¼ 1

2

Pb

2p

� ��5=3

ðT�MÞ2=3ð1� e2Þ�1 3þ Xp

� 	
Xc

¼ 1

6
ð3þ XpÞXc _x:

ð39Þ

This “simplicity” means that a measurement of Xgeod
p can be used as a test of GR. If

Mc ¼ Mp, then Xc ¼ Xp ¼ 1=2 and Xgeod
p ¼ 7

24 _x ’ 0:29 _x.

13 In binary pulsars we have the situation that the orbital angular momentum is generally several orders of
magnitude larger than the pulsar spin. For that reason, the orbital angular momentum is nearly aligned with
the conserved total angular momentum of the system.
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It is detectable mostly by the fact that, as the spin axis of the pulsar precesses,
different parts of the pulsar’s emission beam become visible from Earth, thus causing
a long-term change in the pulse profile. In some cases, the pulsar might even become
completely undetectable from Earth, as in the case of pulsar B in the Double Pulsar
system (Perera et al. 2010). It is generally difficult to convert the observed changes in
the pulse profiles into a qualitative measurement of Xgeod

p , but several techniques can

help, particularly if polarimetric measurements are available, since these can tell us
about the changing angle between the spin axis and the line of sight. We will give
various examples in Sect. 4 where geodetic precession has been not only observed
but also quantified in binary pulsars, providing additional GR tests.

Given that the total angular momentum must be conserved (up to 2PN
approximation), a change in the direction of the spin of a pulsar (and that of a
rotating companion) must correspond to a change in the direction of the orbital
angular momentum—the LT precession of the orbital plane. This causes an intrinsic
change in i that is, when averaged over one orbit, given in GR by Damour and
Schäfer (1988):

di

dt

� 
LT

¼ 1

2

Pb

2p

� ��2

ðT�MÞ ð1� e2Þ�3=2
X
j¼p;c

ð3þ XjÞXj ðvj � ÎÞ; ð40Þ

where Î is a unit vector pointing from the CM of the system to the ascending node of
the pulsar orbit and the dimensionless spin of body j is given by:

vj �
c

Gm2
j

Sj ¼ G

c5
ðT�MjÞ�2 Sj; ð41Þ

where Sj is its spin angular momentum (“spin”). If its spin frequency (mj) is known,
we can relate it to its spin magnitude Sj � jSjj via:

Sj ¼ 2pmj Ij; ð42Þ
where Ij is, by definition, its MoI. For NSs and BHs, v � jvj varies between 0 and the
maximum value for an astrophysical BH, 0.998 (Lo and Lin 2011; Thorne 1974). For
the fastest-spinning NSs, we obtain, for reasonable values of I, v.0:5.

In DNSs, where we can find misaligned spins and measure di=dth iLT, the recycled
pulsar is found to be in a range v� 0:01 � � � 0:03 (Stovall et al. 2018). This is
generally much larger than the non-recycled pulsar; this means that only one spin in
the system matters in Eq. (40). On the long term, i will then change periodically with

a period of 2p=Xgeod
p . This is quite long for all DNSs discovered to date: the shortest,

PSR J1946?2052 (Stovall et al. 2018), has a geodetic precession cycle of about
48 years (assuming equal masses).

The spin-orbit coupling also has an effect on _x—the LT contribution to the
observed longitude of periastron. The detailed expressions are given in Damour and
Schäfer (1988), which simplify considerably in a DNS where only the spin of the
recycled pulsar matters. In the case of the Double Pulsar, discussed in Sect. 4.2.2, the
spin of the recycled pulsar (A) is nearly aligned with the orbital angular momentum
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(Ferdman et al. 2013), further simplifying the effect on x, which becomes a “secular”
increase given by Kramer et al. (2021), Hu et al. (2022):

h _xiLT ¼ � Pb

2p

� ��2

ðT�MÞ ð1� e2Þ�3=2 ð3þ XAÞXA vA; ð43Þ

where the “A” subscripts indicate parameters of pulsar A.

Neither hdi=dtiLT nor h _xiLT due to a NS spin have been measured precisely for
any binary pulsar,14 owing to the fact that the effects are next-to-leading order and

therefore very small. Nevertheless, the current upper limit on h _xiLT in the Double
pulsar system already introduces an independent and useful upper limit on the MoI
for J0737-3039A (IA\3:0	 1045 g cm2, 90% C.L., Kramer et al. 2021); improving
this measurement remains an important goal because a precise estimate of I and Mp

for the same pulsar would represent a powerful constraint of the EoS (Lattimer and
Schutz 2005; Hu et al. 2020; Hu and Freire 2024).

3.5.4 Measurability of relativistic effects

The reason why only � 20% of binary pulsars have one or more measured PK
parameters15 is that this requires several conditions which are often not fulfilled. A
fundamental issue for all measurements, discussed in Sect. 2.3.5, is the intrinsic
faintness of most pulsars and the resulting limits on the timing precision, which
highlights the importance of sensitive radio telescopes for these experiments.

The measurement of _x and c requires a reasonably eccentric orbit; the
measurement of c generally requires, in addition, a large change in x during the
timing baseline, otherwise, as discussed in Sect. 3.3.3, it is not separable from the
Keplerian parameters (but see discussion in Ridolfi et al. 2019). The fractional
uncertainty on both parameters decreases as DT�3=2, where DT is the timing baseline
(see Table II of Damour and Taylor 1992), but in the case of c, the uncertainty
decreases more slowly after a significant fraction of a precession cycle is completed.

The measurement of the Shapiro delay parameters (r, s or h3, 1) is strongly
favoured by nearly edge-on orbits and large companion masses. Because the Shapiro
delay is a periodic effect, the fractional uncertainty of these parameters decreases
slowly with time (as DT�1=2), so their measurement depends, more than other
parameters, on timing precision. Measurements of this effect are also helped by an
eccentric, precessing orbit, which help separate it effectively from the Rømer delay; a
large rate of precession might result in a faster improvement of the measurements,
especially as the superior conjunction moves through periastron (see Sect. 4.1).

14 However, in the case of the PSR J1141−6545 binary pulsar, an intrinsic hdi=dti of 14 arcseconds per
year has been measured using the DDGR timing model. This is caused by spin-orbit coupling, with some
unknown percentage being due to the LT effect (Venkatraman Krishnan et al. 2020). This measurement
implies that the companion WD spins very fast and its spin axis is not aligned with the orbital angular
momentum, which beautifully confirms our understanding of the evolution of this system (Tauris and
Sennels 2000).
15 An up-to-date list of binary pulsars with measured PK parameters is maintained at https://www3.mpifr-
bonn.mpg.de/staff/pfreire/NS_masses.html.
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The measurement of _Pb requires relatively short orbital periods, because the

contribution to _Pb from GW damping is proportional to P�5=3
b , while the kinematic

contribution described in Sect. 3.5.1 scales with Pb. The detection of dh requires, as in
the case of c, a large value of e, a large sweep in x and, more than even _Pb, a short
orbital period (see Table II of Damour and Taylor 1992); for _Pb and dh, the fractional
uncertainty decreases as DT�5=2, but as in the case of c, the uncertainty of dh decreases
more slowly once a significant fraction of a precession cycle is completed. In the case
of the Double Pulsar, one of the two systems where there is a hint of a detection of dh
(Sects. 4.1, 4.2), this parameter is strongly correlated with c (Kramer et al. 2021).

The measurement of the geodetic precession requires a pulsar spin that is
sufficiently misaligned with the orbital angular momentum. Generally, this is only

seen in DNS systems (see Sect. 2.4.2).16 The measurement of di=dth iLT requires, in
addition, that a misaligned NS has a sufficiently large spin. The measurement of

h _xiLT does not require such a misalignment, but instead extremely precise mass
measurements from other PK parameters (to calculate and subtract the non-LT
contributions to _x with sufficient precision, see Sect. 4.2.2).

Because of their high spin frequency, MSPs have the best timing precision;
however, their nearly circular and generally wider orbits severely restrict the number
of cases where _x and especially c can be measured. Furthermore their (generally)
low companion masses restrict the number of Shapiro delay measurements. The
alignment of the spin with the orbital angular momentum (Sect. 2.4.2) means that
geodetic precession cannot be measured in these systems. It is for these reasons that,
despite their much smaller numbers, DNS systems have been so important for tests of
gravity theories.

4 Strong-field GR tests with pulsars

To test GR in the presence of strong gravitational fields, i.e., in spacetimes that
deviate (at least in some regions) significantly from Minkowski spacetime, binary
pulsars provide some of the best and most precise experiments. Here, pulsars with
compact companions, such as another NS or a WD, are of particular interest. In such
binaries, the separation between the two bodies is still large compared to their size.
Meaning, we can study the gravitational dynamics of two essentially point-like
masses, without complicating contributions like tidal interaction. Pulsar-WD systems
are of particular interest for testing alternative theories of gravity, due to their high
asymmetry in gravitational self-energy.

In this section we will introduce pulsar tests of GR, before we then discuss tests of
specific deviations from GR and alternative gravity theories in Sect. 5. A particularly
clear way of illustrating these different GR tests is the mass–mass diagram: because
of the PK simplicity (see Sect. 3.4), each measurement of a PK parameter leads to a
constraint in the mp � mc parameter space. Hence, if all PK parameters agree on a
common region in the mp � mc plane GR has passed the test.

16 But see the pulsar-WD system PSR J1141−6545 (Manchester et al. 2010; Venkatraman Krishnan et al.
2019).
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4.1 The original system: PSR B1913116

It is certainly fair to say that the whole field of experimental gravity with radio
pulsars started with the discovery of pulsar B1913?16 in July 1974 by Russell Hulse
and Joseph Taylor (Hulse and Taylor 1975; Hulse 1994; Taylor 1994) using the
Arecibo telescope. PSR B1913?16, now called the ‘Hulse–Taylor pulsar’, is a 59 ms
pulsar in an eccentric (e ¼ 0:62) 7.75-h orbit with an unseen compact companion.
Based on the deduced masses (assuming GR), with Mp ¼ 1:44 and Mc ¼ 1:39, and
considering evolutionary scenarios (as discussed in Sect. 2.4), it became soon evident
that the companion is almost certainly also a NS. Soon after the discovery a
significant advance of periastron ( _x) of about 4:2
 per year was detected (Taylor
et al. 1976), and by 1978 the time dilation c and a decay in the orbital period _Pb were
measured (Taylor and McCulloch 1980; Taylor et al. 1979).

The agreement of those three PK parameters with GR confirmed, for the first time,
the existence of GWs as predicted by GR. More generally, it confirmed the validity of
GR for the gravitational interaction between two strongly self-gravitating masses.
Regular observations of this system over the ensuing decades have lead to a steady
improvement of that _x-c- _Pb test (mixture of quasi-stationary and radiative aspects)
(Taylor and Weisberg 1982, 1989; Damour and Taylor 1991; Weisberg et al. 2010),
where in the meantime there is even a detection of the Shapiro delay in that system
(Weisberg and Huang 2016) (see also Fig. 4). Despite the increasing timing base-line
and precision, the testing of the GW emission by the Hulse–Taylor system has
stagnated at around 0.3% (95% C.L.) for some time. The reason for this is the
imprecise knowledge of the system’s distance, which limits our ability to correct for
the extrinsic contributions to the observed _Pb (cf. Section 3.5.1) (Damour and Taylor
1991; Weisberg et al. 2010; Weisberg and Huang 2016; Deller et al. 2018).

Soon after the discovery of the Hulse–Taylor pulsar, its was pointed out that a
pulsar in binary is subject to geodetic precession (see Sect. 3.5.3) and that the Hulse–
Taylor pulsar is generally expected to show changes in its emission and polarisation
geometry with a precession rate of about 1:2
 yr�1 (Damour and Ruffini 1974;
Barker and O’Connell 1975; Dass and Radhakrishnan 1975; Börner et al. 1976;
Damour and Taylor 1992). Such changes have indeed been observed, as the pulsar’s
rotational axis is misaligned (� 21
, Graikou 2019) with respect to the orbital
angular momentum (a result of the SN kick; see Sect. 2.4) (Weisberg et al. 1989;
Kramer 1998; Weisberg and Taylor 2002). However, until today these observations
could not be converted into a quantitative test of geodetic precession. Other systems
turned out to be more useful for such a test, as we discuss below.

Finally, the discovery of the Hulse–Taylor pulsar was of great importance for the
development of ground-based GW detectors, as explained in detail in Sect. 2.4.2.

4.2 The double pulsar system: PSR J0737−3039A/B

In 2003, a truly remarkable binary pulsar system was discovered in a Parkes survey
of the Galactic anti-centre, the Double Pulsar PSR J0737−3039A/B, which up to
date is the only known binary system consisting of two active radio pulsars that are
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detectable from Earth (Burgay et al. 2003; Lyne et al. 2004). Pulsar A is a mildly
recycled 23 ms pulsar which is in a mildly eccentric (e ¼ 0:089) 2.5-h orbit with a
non-recycled 2.8 s pulsar B. The system is significantly more relativistic than the
Hulse–Taylor pulsar (Sect. 4.1) showing, e.g., an advance of periastron ( _x) of
16.9 degrees per year. In addition, the system is seen nearly edge on, which leads to a
very prominent Shapiro delay of about 130 ls in the timing of pulsar A near its
superior conjunction (Lyne et al. 2004; Kramer et al. 2006, 2021). The masses are
somewhat smaller than in the Hulse–Taylor pulsar, amounting to MA ¼ 1:338 and
MB ¼ 1:249, when assuming GR (Kramer et al. 2006, 2021).

From timing pulsars A and B one obtains the projected semi-major axes of both of
the pulsar orbits, xA and xB; from this one directly obtains the mass ratio R ¼
MA=MB ¼ 1:0714� 0:0011 (Lyne et al. 2004; Kramer et al. 2006). The uncertainty
in R is dominated by the uncertainty in xB. Therefore, any improvement is currently
limited by the fact that due to geodetic precession (5:07
 yr�1) pulsar B’s emission

Fig. 4 Mass–mass diagram for the PSR B1913?16 system based on GR, using the PK parameter _x, c,
intrinsic _Pb, and the orthometric Shapiro parameters 1 and h3. All curves agree on a small common region
in the mass–mass plane. Parameter values have been taken from Weisberg and Huang (2016). In their
Fig. 4 they display r and s for the Shapiro delay. As is obvious from the comparison of the two figures, the
h3-test is much more stringent than the r-test, which is one of the key advantages of the orthometric
parameterisation of Freire and Wex (2010). In this and all other mass–mass diagrams, the width of each
curve represents the one-sigma (68.3% C.L.) uncertainty in the corresponding PK parameter. In addition,
Weisberg and Huang (2016) reports a � 2-r measurement of the PK parameter dh, which is not shown here
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moved out of our line of sight in 2008 (Perera et al. 2010). More model based
approaches, in terms of the emission geometry of pulsar B (which is strongly affected
by the wind of pulsar A), can lead to a further reduction in the uncertainty of R (see e.
g., Noutsos et al. 2020).

Fortunately, the (integrated) pulse profile of the fast rotating pulsar A remained
stable over the past years, due to the fact that A’s spin is closely aligned with the
orbital angular momentum (Ferdman et al. 2013). As a consequence, all its timing
parameters significantly improved since its discovery in 2003, allowing for the
measurement of a total of six(!) PK parameters, some of them known to many
significant digits, and all of them in perfect agreement with GR (see Kramer et al.
2021 and Fig. 5). Furthermore, next-to-leading order (NLO) contributions of the
advance of periastron, the Shapiro and the aberration delay had to be taken into
account, in order to obtain a correct modelling and interpretation of these effects.
This will be explained in more detail below. In the following we will have a closer
look at four different predictions by GR tested in the Double Pulsar: GW damping,
periastron advance, signal propagation, and geodetic precession.

4.2.1 Gravitational wave damping

Like the Hulse–Taylor pulsar (Sect. 4.1), the Double Pulsar shows a significant
decrease in the orbital period due to the emission of GWs (PK parameter _Pb). As for
the Hulse–Taylor pulsar, also here the observed _Pb is “contaminated” by external
effects (cf. Sect. 3.5.1). Fortunately, the Double Pulsar is about ten times closer to us
which allows for a direct parallax measurement of its distance: 735� 60 pc (Kramer
et al. 2021). As a result, the extrinsic terms in Eq. (35) can be determined with
sufficient precision so that they do not limit the GW test, like in the case of the
Hulse–Taylor pulsar (Deller et al. 2009; Kramer et al. 2021). The intrinsic change of

the orbital period obtained in this way ( _P
int
b ¼ �1:247752ð79Þ 	 10�12) is in perfect

agreement with the prediction by GR (Kramer et al. 2021):

_P
int
b = _P

GR
b ¼ 0:999963ð63Þ; ð44Þ

where the GR prediction _P
GR
b is based on the masses MA and MB, calculated from the

PK parameters _x and s.17 Fig. 6 shows a comparison of the observed and the
calculated shift in the time of periastron passage, as a result of the accelerated
evolution in orbital phase due to the emission of GWs.18 The result (44) is by far the
most precise test of GR’s quadrupole formula for the leading-order emission of GWs
by accelerated masses. Moreover it confirms the validity of the quadrupole formula
in the presence of two strongly self-gravitating NSs, for which GR predicts the

17 Note, to obtain the result (44), for completeness Kramer et al. (2021) have accounted for a change in the
orbital period due to the spindown mass loss by pulsar A (see Eq. 4.2 in Damour and Taylor 1991) and the

NLO contribution in _P
GR
b (Blanchet and Schaefer 1989). Both contributions are still below the

measurement uncertainty in the observed _Pb.
18 Other effects of GW damping, like the shrinkage of the orbit, i.e., _xA\0, or a decrease in the orbital
eccentricity, i.e., _e\0, are so far not significant.

123

Gravity experiments with radio pulsars Page 35 of 86     5 



effacement of their internal structure (Damour 1987). The corresponding merger time
of the system is just 86 Myr.

4.2.2 Periastron advance

The advance of periastron (PK parameter _x) is the most precisely measured PK
parameter for the Double Pulsar and therefore, in principle, should give by far the
narrowest constraint curve in the mass–mass plane of Fig. 5 (see also the inset in
Fig. 13 of Kramer et al. 2021). At a fractional precision of about 8	 10�7 for the
observed _x, terms of the second PN (2PN) order (Damour and Schäfer 1988) must be
considered to obtain the correct mass constraints, since the 2PN correction _x2pN ¼
þ4:39	 10�4 deg yr�1 is about 35 times larger than the measurement uncertainty of
this PK parameter (Kramer et al. 2021). Furthermore, the LT contribution to _x from
the coupling between the orbital motion and the spin of pulsar A has a contribution

Fig. 5 Mass–mass diagram for the Double Pulsar based on GR. The PK parameters _x, _Pb, c, r, and s are
from timing observations of pulsar A. The mass ratio R comes from the observed projected semi-major

axes of A and B. The rate of geodetic precession of B (Xgeod
B ) is the result of modelling the eclipses of A

near superior conjunction. Timing of pulsar A also allows for a one-sigma detection of the PK parameter
dh, which is not shown here. All curves agree on a small region of masses at the centre of the plot, meaning
that GR provides a consistent description of the Double Pulsar system. The figure is based on the

parameters and the analysis in Kramer et al. (2021). The values for Xgeod
B are taken from Lower et al.

(2024)
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comparable in magnitude to the 2PN correction (with a negative sign, since the spin
of pulsar A is aligned with the orbital angular momentum) (Damour and Schäfer
1988; Königsdörffer and Gopakumar 2006; Iorio 2009; Hu et al. 2020).19 While the
2PN contribution is completely determined for given masses (and Kepler parameters
Pb and e), the determination of the LT contribution also requires knowledge of the
MoI IA (see Eq. 43). However, the calculation of IA comes with an uncertainty
related to our imperfect knowledge of the EoS of NS matter at supranuclear densities
(see e.g., Lattimer and Prakash 2001). Based on the latest multimessenger constraints
for the radius of a NS, Kramer et al. (2021) give a LT contribution of
_xLT ¼ �4:83þ0:29

�0:35 	 10�4 deg yr�1. Although the uncertainty in this contribution
is about a factor of three larger than the measurement uncertainty for _x, it is still not
the limiting factor in the GW test outlined in Sect. 4.2.1 above, where the masses are
estimated from _x and s. In turn, in the near future, in particular an improved
precision for the intrinsic _Pb (in combination with the Shapiro shape measurement)
should allow to put interesting constraints on the EoS for NSs (Lattimer and Schutz
2005; Kramer and Wex 2009; Kehl et al. 2018; Hu et al. 2020). The current
uncertainty for the intrinsic _Pb results in constraints on I which are not competitive to

Fig. 6 Cumulative shift in the time of periastron passage (“GW damping parabola”) for the Double Pulsar.
The red curve is the prediction by GR when using the pulsar masses calculated from the PK parameters _x
and s. The figure is based on the data and the analysis in Kramer et al. (2021)

19 The LT contribution from the slowly rotating pulsar B is two orders of magnitude smaller and therefore
totally negligible.
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current constraints from other observations (see Kramer et al. 2021 and references
therein).

4.2.3 Signal propagation

As it turns out, currently the Double Pulsar is the most edge-on binary pulsar
observed. The orbital plane is tilted by only 0:64
 � 0:03
 with respect to the line of
sight (Hu et al. 2022). At superior conjunction, the pulsar signal, on its way to the
observer on Earth, comes within � 10 000 km of the companion NS, resulting in a
strong Shapiro delay of � 130 ls (see Eq. 16). In particular the timing of pulsar A
resulted in a precise determination of the Shapiro parameters r and s, requiring PN
corrections to the mass function Eq. (32) for a consistent conversion into constraints
on the masses (Kramer et al. 2021; Hu et al. 2022). In addition, it became necessary
to account for the motion of the “lens” (pulsar B) while the radio signal is
propagating across the binary system (retardation effect, Kopeikin and Schäfer 1999;
Rafikov and Lai 2006a) in order to properly model the Shapiro delay near
conjunction (Kramer et al. 2021; Hu et al. 2022) (see also Sect. 3.3.2).

In addition to the Shapiro propagation delay, the radio signal of pulsar A is also
deflected by the curved spacetime of pulsar B. The deflection near superior
conjunction reaches up to � 0:03
. This deflection adds a higher order correction to
the aberration of flat spacetime (Doroshenko and Kopeikin 1995; Rafikov and Lai
2006b, a) which is well measured in the Double Pulsar (Kramer et al. 2021) (see also
Sect. 3.3.4). Based on precise timing with the MeerKAT telescope, Hu et al. (2022)
give the so far best test of this ‘longitudinal/rotational deflection delay with a
precision of 15%. While this uncertainty is certainly large compared to deflection
experiments in the gravitational field of the Sun (Will 2018), it is the first such
experiment in the gravitational field of a NS, i.e., a strongly self-gravitating material
body. In this context, it should be noted that the Double Pulsar tests described in this
subsection probe the propagation of photons in a spacetime curvature that is orders of
magnitude larger than in any other photon propagation experiment, even when
compared to the shadow of the supermassive black hole (BH) Sgr A
 (Event Horizon
Telescope Collaboration 2022a) imaged with the Event Horizon Telescope (see Fig. 7
in Wex and Kramer 2020).

4.2.4 Geodetic precession

The close edge-on orientation even leads to short intermittent eclipses of pulsar A by
the plasma-filled magnetosphere of pulsar B during A’s superior conjunction (Lyne
et al. 2004). While this reduces the number of ToAs and consequently the timing
precision near conjunction, modelling the eclipse pattern changing over time could
be used to measure the geodetic spin precession (cf. Section 3.5.3) of pulsar B with
moderate precision: 4:77þ0:66

�0:65

 yr�1 (Breton et al. 2008), 5:16þ0:32

�0:34

 yr�1 (Lower et al.

2024). These values agree well with the prediction by GR: 5:074
 yr�1. Compared to
the Solar System, where geodetic precession of a gyroscope has been tested with
high precision (Everitt et al. 2011), such a test with a radio pulsar is different in two
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ways: it tests geodetic precession in a binary system with nearly equal masses, and
more importantly, it tests geodetic precession with a strongly self-gravitating
“gyroscope”.

4.3 Other relativistic double neutron-star systems

Apart from the Hulse–Taylor pulsar and the Double Pulsar, there are several
additional DNS binary pulsars which have at least three measured PK parameters.20

In the following we discuss those systems which so far have played an important role
in testing GR and/or alternative gravity theories.

4.3.1 PSR B1534112

PSR B1534?12, discovered in 1990 also with the Arecibo telescope (Wolszczan
1991), was the second DNS system suitable for testing GR and alternative gravity
theories (Taylor et al. 1992). It is a 37.9-ms radio pulsar in an eccentric (e ¼ 0:27)
10.1-h orbit. Like for the Hulse–Taylor pulsar, the three PK parameters _x, c and _Pb

are measured in this system. Moreover, compared to the Hulse–Taylor pulsar system,
where i ¼ 47:2
 (s ¼ 0:734), this system is seen much more edge-on with an orbital
inclination i ¼ 77:2
 (s ¼ 0:975). As a result, the timing observations show a very
prominent Shapiro delay allowing for the measurement of two more PK parameters,
the Shapiro shape s and the Shapiro range r (Stairs et al. 1998, 2002; Fonseca et al.
2014). PSR B1534?12 thus provided the first precision test of the Shapiro delay in
the gravitational field of a strongly self-gravitating mass.

For a long time, the _Pb test was limited by the large (systematic) uncertainty in the
estimation of the distance to PSR B1534?12, which was mainly based on models for
the Galactic distribution of free electrons. As a result, this led to large uncertainties in
the correction for the Shklovskii contribution to the observed _Pb (cf. Sect. 3.5.1).
Fairly recently, a reliable distance measurement was obtained with the help of VLBI
(d ¼ 0:94þ0:07

�0:06 kpc) leading to a robust 4% (95% C.L.) radiative test with this system
(Ding et al. 2021).

As with the Hulse–Taylor pulsar, the kick of the second SN explosion in this
system also led to a misalignment between the pulsar’s rotational axis and the orbital
angular momentum (� 30
). Although the precession rate predicted by GR

(Xgeod
p ¼ 0:514
 yr�1) is significantly smaller than the one for the Hulse–Taylor

pulsar, the high S/N ratio obtained for the (integrated) pulse profile and polarisation
of PSR B1534?12 not only allowed for a detection of geodetic precession at an early
stage but also for the first time provided a quantitative test of the precession rate of a
pulsar (Stairs et al. 2004), with the latest value given in Fonseca et al. (2014):
0:59þ0:12

�0:08

 yr�1.

Figure 7 shows the result of the test of GR with the six PK parameters (5 quasi-
stationary, 1 radiative) of PSR B1534?12.

20 See footnote 15.
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4.3.2 PSR J190610746

Binary pulsar J1906?0746, discovered with the Arecibo telescope, has a relatively
slow spin period (144 ms) and a comparably large (inferred) surface magnetic field
(Lorimer et al. 2006). Therefore it is most likely a non-recycled young pulsar in a
mildly eccentric (e ¼ 0:085) 4.0-h orbit with a NS companion.21 Timing observa-
tions allowed the determination of three PK parameters ( _x, c, _Pb) with good
precision, allowing for a 5% radiative test (van Leeuwen et al. 2015). This alone does
not make this system particularly interesting for gravity tests. However, the pulsar’s
spin axis has a large misalignment of 104ð9Þ
 with respect to the orbital angular
momentum and shows a very characteristic polarisation pattern which changed over
time due to geodetic precession. Crucially, these changes were observed not only for
the main pulse but also for the interpulse; the observation of both magnetic poles
results in unusually robust estimates of the geometry of the magnetic field and the
direction of the spin axis. By modelling these polarisation changes, the precession

Fig. 7 Mass–mass diagram for the PSR B1534?12 system based on GR. PSR B1534?12 provides
constraints from six different PK parameters, including the geodetic precession of the pulsar (Xgeod

p ). Data
are taken from Fonseca et al. (2014), Ding et al. (2021)

21 It has been argued that the companion could in principle also be a high-mass ONeMg WD (Tauris et al.
2017). However, we consider it as more likely that this is a DNS system like the Double Pulsar (similar
masses and eccentricity) where we only see the pulsar that was formed during the second SN explosion.
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rate of the pulsar spin could be determined to be 2:17ð11Þ
 yr�1, which is in perfect
agreement with the GR value: 2:234ð14Þ
 yr�1. This is so far the best test of the
geodetic precession of a spinning NS (cf. Sects. 4.2.4, 4.3.1). Figure 8 shows the GR
mass–mass diagram for PSR J1906?0746.

4.3.3 PSR J1757−1854

PSR J1757−1854 is currently (in certain aspects) the most relativistic binary pulsar
with which GR has been tested. It is a 21.5 ms pulsar in a highly eccentric
(e ¼ 0:606) DNS system (Mp ¼ 1:34, Mc ¼ 1:39) (Cameron et al. 2018). In a sense,
it is a more relativistic version of the Hulse–Taylor pulsar. Although its orbital period
of 4.4 h is clearly larger than that of the Double Pulsar, it is the high eccentricity that
leads to a significantly stronger decrease in the orbital period due to GW damping
( _Pb ¼ �5:3	 10�12) and a correspondingly shorter merger time of 76 Myr. At
periastron the two NSs have a separation of just 0:75R�, leading to a relative
velocity of 1060 km/s, the largest for known binary pulsars.

Fig. 8 Mass–mass diagram for the PSR J1906?0746 system based on GR. The three PK parameters _x, c
and _Pb were measured in timing observations (van Leeuwen et al. 2015). The geodetic precession rate
Xgeod

p and orbital inclination i were obtained from modelling changes in the pulsar polarisation due to the
spin-precession of the pulsar (Desvignes et al. 2019)
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So far, there are five PK parameters measured for PSR J1757−1854, including the
two orthometric parameters of the Shapiro delay (see Fig. 9). All parameters agree on
a common region in the GR mass–mass plane, meaning GR has also passed this test.
However, there is a large systematic uncertainty in the intrinsic _Pb. The reason is the
unknown distance to the system, and therefore a large uncertainty in the extrinsic
contributions to the observed _Pb (Sect. 3.5.1, see also Fig. 13 in Cameron et al.
2023).22 If one assumes GR and a model for the Galactic gravitational potential, then
the _Pb can be used to estimate the distance of the system to about 8–13 kpc.

While it is still unclear how to obtain better constraints on the distance without
assuming GR, a promising additional GR test for the near future—due to the large
eccentricity—is the relativistic deformation of the orbit dh (Cameron et al. 2023),
which is only barely significant in the Hulse–Taylor pulsar (Sect. 4.1) and the Double
Pulsar (Sect. 4.2). In principle, PSR J1757−1854 could also be an excellent pulsar
binary system for testing the LT precession of the orbital plane (PK parameter _x; see
Eq. 40). However, the analysis of the pulse structure and the polarisation of

Fig. 9 Mass–mass diagram for the PSR J1757−1854 system based on GR. Parameter values are taken
from Cameron et al. (2023)

22 The only _Pb-independent distance estimation, currently available, is based on the column density of free
electrons obtained from the dispersion measure. Unfortunately, different models for the distribution of free
electrons in our Galaxy give vastly different results (see Cameron et al. 2023).
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PSR J1757−1854 leads to the conclusion that the spin is oriented such that _xLT is too
small to be measurable in the near future.

4.3.4 PSR J191311102

PSR J1913?1102 is a 27-ms pulsar which is in a mildly eccentric (e ¼ 0:09) 5.0-h
orbit with a NS companion (Lazarus et al. 2016). Regular timing observations since
its discovery in 2012, in particular with the 305-m Arecibo telescope, allowed the
measurement of three PK parameters: _x ¼ 5:6501ð7Þ deg yr�1, c ¼ 0:471ð15Þms,
and _Pb ¼ �0:480ð30Þ 	 10�12. Assuming GR, one obtains a pulsar mass of mp ¼
1:62ð3ÞM� and a companion mass of mc ¼ 1:27ð3ÞM� (Ferdman et al. 2020). With
a mass ratio of R � mp=mc ¼ 1:28ð4Þ, this is the most asymmetric DNS system

reported so far that shows significant GW damping, i.e., a significant (intrinsic) _Pb.
The observed GW damping agrees with GR, providing a 6% test (see Fig. 10). This
by itself cannot compete with most of the other GW tests presented so far. However,
the comparably large asymmetry in the NS masses, and the correspondingly large
asymmetry in the (fractional) gravitational binding energy makes this DNS system

Fig. 10 Mass–mass diagram for the PSR J1913?1102 system based on GR. For that pulsar three PK
parameters have been measured: advance of periastron ( _x, black), time dilation (c, purple), and change of
the orbital period due to GW damping ( _Pb, blue). They agree a common mass–mass region, meaning that
GR has passed this test with an asymmetric DNS system (cf. Fig. 1 in Ferdman et al. 2020)
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interesting for tests of dipolar GW emission, predicted by many alternatives to GR
(see Sect. 5.5).

4.4 Relativistic pulsar-white dwarf systems

Currently, about 400 binary pulsars are known, more than half of which have a WD
as a companion (Manchester et al. 2005). Several of these pulsar-WD systems have
orbital periods of less than one day. Many of the most precise “pulsar clocks” are
found in such systems (see discussion in Sect. 2.4). As a result of the mass transfer, a
circularisation of the orbit took place leading to very low eccentricities. As a
consequence of this, often neither the advance of periastron (PK parameter _x) nor the
Einstein delay (PK parameter c) has been measured in these systems. In some cases
the system is seen sufficiently edge on, so that a significant Shapiro delay is present
in the timing data. For quite a few pulsar-WD systems, the (intrinsic) change in the
orbital period (PK parameter _Pb) is the only measurable relativistic effect. If then
mass estimates can be obtained through alternative channels, e.g., high-resolution
spectroscopy observations of the WD companion, then such systems can still provide
valuable tests of GR. Pulsar-WD binaries are of particular interest for the study of
alternatives to GR, since such systems exhibit a large asymmetry in the (fractional)
gravitational binding energy, which in many alternative gravity theories leads to the
prediction of strong dipolar GWs that do not occur in the GR (see Sects. 5.2 and 5.5).
In the following, we will give a list of pulsar-WD systems that so far have been of
particular importance in gravity tests, most notably for constraining alternatives to
GR. For all of these systems, the masses can be determined (either from timing alone,
or with the help of optical observations) and at least one (additional) PK parameter
has been measured, so that the system is over-constrained.

4.4.1 PSR J173810333

PSR J1738?0333 is a fully recycled pulsar with a rotational period of 5.9 ms and an
optically bright low-mass Helium-core WD as a companion (Jacoby 2005; Jacoby
et al. 2007). The two stars orbit each other in about 8.5 h in a nearly circular orbit
(e\4	 10�7). Regular timing observations since 2003, in particular with the 305-m
William E. Gordon Arecibo radio telescope, allowed eventually the determination of
a significant change in the (intrinsic) orbital period (Freire et al. 2012). With the latest
distance measurement from VLBI, needed to correct for the extrinsic _Pb contribu-

tions, one finds _P
int
b ¼ �26:1� 3:1 fs s�1 (Ding et al. 2023). This change in the

orbital period due to GW damping is the only PK parameter known so far in this
system. Fortunately, masses can be obtained independently from optical observations
of the WD companion. High-resolution spectroscopy combined with WD models
lead to a mass ratio of R ¼ 8:1� 0:2 and a WD mass of mc ¼ 0:181þ0:007

�0:005 M�, which
converts into mp ¼ 1:47þ0:07

�0:06 M� (Antoniadis et al. 2012). With pulsar and
companion masses at hand, Eq. (30) can be used to determine the GR value for
the change in orbital period (�27:7þ1:5

�1:9 fs s�1) (Freire et al. 2012), which agrees
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within the uncertainties well with the observed value (see also Fig. 11). The precision
of this test is orders of magnitude weaker than the GW test with the Double Pulsar
(see Sect. 4.2.1). Nevertheless, due to the high asymmetry in the compactness
between the pulsar and the companion WD, this limit converts into tight constraints
on dipolar radiation as predicted by alternatives to GR (see Sects. 5.2 and 5.5 for
details).

The GW test is not the only gravity test with PSR J1738?0333. It has also been
used, for instance, in (generic) tests of preferred frame effects in the gravitational
interaction, as discussed in Sect. 5.4.1.

4.4.2 PSR J1909−3744

PSR J1909−3744 is a fully recycled pulsar with a rotational period of 2.9 ms (Jacoby
et al. 2003). Like PSR J1738?0333, it has an optically bright low-mass Helium-core
WD as a companion that allows for high resolution spectroscopy (Jacoby et al.
2003). With its orbital period of 1.53 days it is considerably less relativistic than
PSR J1738?0333. For that reason, and despite of its exquisite timing precision (one
of the most precise timers known, Perera et al. 2019), there is to date no significant

Fig. 11 Mass–mass diagram for PSR J1738?0333, assuming GR. Bands denote one-sigma ranges in the
parameters. The mass ratio R ¼ Mp=Mc (black) and the WD mass Mc (red) are obtained from optical

observations and WD models. The blue band is a result of Eq. (30) with _Pb ¼ _P
int
b . All three bands agree on

a common region in the mass–mass plane, meaning GR has passed this pulsar-WD test
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value for the intrinsic change in the orbital period. The limitation comes mainly from
the uncertainties in the correction for the Shklovskii contribution to _Pb (Liu et al.
2020). Still, this system could be used in a GW test, providing important constraints
on the strong-field scalarisation of NSs, as we discuss in Sect. 5.5.

Many years of high-precision timing of PSR J1909−3744 allowed a precise
measurement of two PK parameters. Due to its near edge-on orientation (i ¼ 86:4
 or
93:6
) with respect to the line of sight, precise measurements of the shape (s) and the
range (r) of the Shapiro delay were possible (see Liu et al. 2020 and references
therein). In combination with the mass ratio (from a combination of optical and radio
observation) one can do a PK parameter test (see Fig. 12). That test is not of
particular interest for GR and its alternatives. More importantly, the precise
determination of the WD mass via the Shapiro delay makes it possible to test
different WD models (Antoniadis 2013), which in turn is important for gravity tests
in other systems (see e.g., Sect. 4.4.1).

PSR J1909−3744 has been used in (generic) tests of gravitational preferred-frame
effects and is currently providing the most stringent limits on â1 (see Sect. 5.4.1).

Fig. 12 Mass–mass diagram for PSR J1909−3744, assuming GR. Band denote one-sigma ranges in the
parameters. The mass ratio R ¼ Mp=Mc (black) is obtained by combining pulsar timing with radial velocity
measurements of the WD by optical spectroscopy. The other two curves are from the detection of the
Shapiro delay in the timing data: Shapiro range in red and Shapiro shape in blue. All three bands agree on a
common region in the mass–mass plane, meaning GR has passed this pulsar-WD test. As is obvious,
assuming GR, the Shapiro delay gives precise masses for pulsar (mp ¼ 1:492ð14ÞM�) and companion
(mc ¼ 0:209ð1ÞM�). See Liu et al. (2020) for details
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Last but not least, due to its high timing precision, PSR J1909−3744 is of prime
importance for all PTAs and their efforts to detect nano-Hz GWs (Perera et al. 2019).

4.4.3 PSR J2222−0137

PSR J2222−0137 is a mildly recycled binary pulsar with a spin period of 32.8 ms
and an orbital period of 2.45 days (Boyles et al. 2013). The low orbital eccentricity
(e ¼ 3:8	 10�4) indicates that the companion is a massive WD. Despite this low
eccentricity, the relativistic advance of periastron could be measured with high
precision: _x ¼ 0:09605ð48Þ deg yr�1 (Guo et al. 2021). Besides _x, the system gives
access to two more PK parameters from the measurement of the Shapiro delay. In
combination, this 3-PK-parameter test leads to a � 1% confirmation of GR (see
Fig. 13). The corresponding GR masses for pulsar and companion are 1:831ð10ÞM�
and 1:319ð4ÞM� respectively (Guo et al. 2021).

The large mass of the pulsar makes this system particularly interesting for certain
non-linear deviations from GR in the strong-gravity regime of NSs. In particular, this
system plays a key role in closing the mass gap of spontaneous scalarisation in DEF

Fig. 13 Mass–mass diagram for PSR J2222−0137, assuming GR. Bands denote one-sigma ranges in the
parameters. Two parameters are associated with secular changes in the orbit: advance of periastron ( _x,
black) and change of orbital period due to GW damping ( _Pb, blue). The parameters h3 (red) and 1 (orange)
are part of the orthometric parametrisation of the Shapiro delay (Freire and Wex 2010), replacing the PK
parameters r and s according to Eq. (17). See Guo et al. (2021) for details
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gravity (see Sect. 5.5 for details). Two additional aspects are of particular importance
for this test. Firstly, the timing precision and the large ratio x=Pb allow a particularly
precise measurement of _Pb. Secondly, VLBI observations by Deller et al. (2013)
obtained the most precise VLBI distance for any pulsar (268� 1 pc) as well as
precise values for the proper motion of the system. As a result, precise corrections for
the extrinsic contributions to _Pb were possible, leading to a two-sigma significant
measurement of the GW damping ( _Pb ¼ �0:0143ð76Þ 	 10�12 s s�1), although the
orbital period is much larger than for any other binary pulsar that currently allows the
verification of GW damping.

4.4.4 Other pulsar-white dwarf systems

There are a number of short orbital period pulsar-WD systems that have been used
for gravity tests in the past but became less important in recent years (which in some
cases may change again in the future). There are various reasons for this. In many
cases, the precision of gravity tests with these systems has now simply been
surpassed by other systems. The most important examples are PSR J0348?0432
(Antoniadis et al. 2013), PSR J1012?5307 (Lazaridis et al. 2009; Ding et al. 2020),
PSR J1141−6545 (Bhat et al. 2008). In particular for the last one, an eccentric pulsar-
WD system in a 4.7-h orbit, we expect updated gravity tests in the near future that
will provide the best constraints within specific parameter ranges of scalar–tensor
theories (some preliminary results can already be found in Venkatraman Krishnan
2019).23

A completely different group of pulsar-WD systems relevant for gravity tests are
those with very wide orbits. In general, these systems do not allow the test of an
effect predicted by GR, like the pulsar-WD systems above (i.e., one cannot draw
three curves in a mass–mass plane), but due to their orbital properties they provide
important constraints on specific deviations from GR, such as a time dependent
gravitational constant G or a violation of the universality of free fall (see Sect. 5.5
below for more details). A particularly noteworthy pulsar in this context is the 4.6-ms
pulsar J1713?0747. It is in a 68-day low-eccentricity (e ¼ 7:5	 10�5) orbit with a
0:3M� WD. Mass measurements in this system were possible due to the detection of
a Shapiro delay, the only relativistic effect measured in this system. The latest timing
results for this pulsar can be found in Zhu et al. (2019).

A truly unique pulsar-WD system is that of the 2.7-ms pulsar J0337?1715
(Ransom et al. 2014). This pulsar is a member of a hierarchical triple, where the
1:44M� pulsar and a 0:20M� WD orbit each other in 1.63 days. This inner binary is
in a 327-day orbit with an outer WD of 0:41M�. Both orbits have a low eccentricity
of 7	 10�4 and 0.035, respectively. The only relativistic effect observed in this
system so far is the (varying) special relativistic time dilation caused by the
(epicyclic) motion of the pulsar in the inertial frame of the triple system.
Nevertheless, as we will see in Sects. 5.1 and 5.5.1, this system provides some of

23 See details on spin-orbit coupling detected in this system in footnote 14. However, it is important to
note that this did not provide a gravity test as the analysis in Venkatraman Krishnan et al. (2020) is entirely
based on the assumption that GR is the correct theory of gravity.
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the tightest limits on deviations from GR (generic and theory specific). For details see
also Refs. Archibald et al. (2018), Voisin et al. (2020).

5 Pulsar experiments and strong field deviations from GR

The fact that GR has passed all these tests presented in the previous chapter has
important consequences in two ways. On the one hand, GR can bee used as a tool in
binary pulsars to determine precise masses of NSs (Özel and Freire 2016; Fonseca
et al. 2021), to get pulsar distances (see e.g., PSR B1534?12 in Sect. 4.3), or to
confirm the fast rotation of a companion WD where, besides classical spin-orbit
coupling, the LT effect contributes to the precession of the orbital plane
(Venkatraman Krishnan et al. 2020), just to name a few.

On the other hand, the excellent agreement of pulsar experiments with GR also
means tight constraints on deviations from GR in the presence of strongly self-
gravitating bodies, i.e., deviations in the orbital motion, GW emission, photon
propagation, etc. In the following we will highlight some of such tests conducted
with radio pulsars. Our list is, however, far from complete. We distinguish between
generic tests of phenomena expected on the basis of general theoretical assumptions
on how deviations from GR might affect pulsar systems, and tests of specific theories
of gravity.

For generic tests in the weak-field regime, the most important framework is the
parametrised PN (PPN) framework, where 10 parameters quantify deviations from
GR at the first PN level (Will 1993, 2014). These PPN parameters assume different
values in different alternatives to GR, depending also on whether they are
conservative theories of gravity or not (see Table 2). It is important for pulsar

Table 2 List of generic parameters subject to gravity tests (including the ten PPN parameters; first group);
their physical meaning and predictions for them in GR and fully conservative and semi-conservative
gravity theories (under “c/sc”; the parameters a1 and a2 are 0 in fully conservative theories)

Parameter GR c/sc Physical meaning

cPPN 1 c Space curvature produced by unit rest mass

bPPN 1 b Non-linearity in superposition law for gravity

n 0 n Preferred-location effects

a1 0 a1 Preferred-frame effects

a2 0 a2 Preferred-frame effects

a3 0 0 Preferred-frame effects and non-conservation of momentum

f1 0 0 Non-conservation of momentum

f2 0 0 Non-conservation of momentum

f3 0 0 Non-conservation of momentum

f4 0 0 Non-conservation of momentum

g 0 g Nordtvedt effect; combination of seven PPN parameters (Will 1993)

jD 0 jD Dipolar radiation coupling

_G=G [yr�1] 0 _G=G Variation of Newton’s gravitational constant

Taken from the compilations by Will (2018)
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experiments that these PPN parameters become body-dependent in a system with
strongly self-gravitating bodies, which we will explain in more detail below.

If the symmetric spacetime metric glm is the only gravitational field in a four-
dimensional spacetime manifold then, under some plausible assumptions, GR
(including a cosmological constant) emerges as the unique theory of gravity. This is
the result of Lovelock’s uniqueness theorem (Lovelock 1972). To get around
Lovelock’s theorem, one has to relax one (or more) of the assumptions that go into it
(see e.g., Fig. 1 in Berti et al. 2015). Arguably the most popular assumption is the
existence of additional (generally dynamical) gravitational fields, for instance one or
more scalar fields. If non-gravitational fields do not couple directly to these
additional gravitational fields (only to glm; universal coupling), the theory is a metric
theory of gravity and by construction fulfills the EEP (see e.g., Will 2018).
Gravitational experiments, on the other hand, are generally expected to deviate from
GR due to the presence of additional gravitational fields. From a heuristic perspective
(and with some degree of approximation), certain aspects of such deviations have
been summarised in the “strong equivalence principle (SEP)”, an extension of the
EEP to local gravitational experiments:

● Extension of the universality of free fall (UFF) to self-gravitating bodies in an
external gravitational field.

● Absence of preferred-location effects, i.e., any local (including gravitational)
experiment is independent of where and when it is performed.

● Absence of preferred-frame effects, i.e., any local (including gravitational)
experiment is independent of motion of the (freely falling) local reference frame.

See Will (2014) for a detailed discussion. It is plausible that GR is the only viable
metric theory of gravity that embodies SEP completely (Will 2014, 2018).24

In contrast to GR, in alternative theories featuring auxiliary gravitational fields
(wa), the structure of a self-gravitating body generally depends on its external
gravitational environment. Therefore, the masses of the bodies that enter the action of

a N-body system depend on the boundary values wð0Þ
a . As a consequence of this,

unlike in GR, the dynamics of an N-body system depends on the actual structure of
the individual bodies, which leads to a violation of the SEP.25 An important set of
(body-dependent) parameters are the sensitivities, which describe the dependence of

certain properties of a body on the boundary values wð0Þ
a . For instance, the

sensitivities of the mass are defined by

24 Nordström’s conformally-flat scalar theory also fulfills the SEP. However, this theory is already
excluded by Solar System experiments, for instance by light deflection tests since it has cPPN ¼ �1. See
Deruelle (2011) for details.
25 This statement is to be understood in an approximate sense. If there is rotation or tidal interaction then at
some level the internal structure of a bodies also becomes relevant in GR.
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sðaÞA � o lnmA

o lnwð0Þ
a

 !
Nb

; ð45Þ

whereby the number of baryons Nb is kept constant. Sensitivities enter directly into
the dynamics of a system of gravitationally interacting bodies and in this sense
quantify the violation of the SEP. At the Newtonian level of the equations of motion,
sensitivities enter the effective gravitational constant GAB for the interaction between
two bodies, and therefore lead to a violation of the UFF. They further modify the
(weak-field) PPN parameters of Table 2 in a body-dependent way; for instance cPPN
gets replaced by cAB. Furthermore, sensitivities also enter aspects of GW damping,
which occurs beyond the first PN order. Sensitivities are theory dependent and
depend on the structure of the body, hence its EoS. For weakly self-gravitating bodies
the sensitivities are small. For instance, in mono-scalar-tensor theories sA is of the
order of the fractional binding energy of body A (see e.g., Will 2018), which is
.10�6 for bodies of the Solar System. Depending on the details of the theory, the
sensitivities for a strongly self-gravitating body such as a NS are generally of the
order of 0.1, but can also be much larger than that. Therefore, precision pulsar
experiments are ideal for searching for deviations from GR caused by the strong
internal fields of NSs. Many more details on the above can be found, e.g., in Will
(1993, 2018).

In the following, we will present various theory agnostic and theory specific
gravity tests based on radio-pulsar observations. Our theory agnostic discussions will
mainly focus on the PPN framework and its extensions to strongly self-gravitating
bodies via (body-dependent) effective PPN parameters. Table 3 gives a comparison
of experimental constraints on the parameters listed in Table 2 from Solar System and
pulsar experiments. However, there are other generic frameworks to discuss and
compare gravity experiments, for instance the Standard-Model Extension (SME;
Kostelecký 2004), where also pulsar experiments have provided interesting
constraints on some of the parameters of this effective field theory (Shao 2014;
Shao and Bailey 2019; Dong et al. 2024). Another popular framework, in particular
in the context of GW observations, is the parametrised post-Einsteinian (ppE)
framework. Pulsar experiments in the context of the ppE framework have been
discussed, e.g., in Yunes and Hughes (2010), Nair and Yunes (2020).

5.1 Strong-field Nordtvedt effect

GR is based on two basic postulates, namely a) the postulate of a universal coupling
between matter and gravity (where the Minkowski metric glm in the laws of special
relativity gets replaced by a curved spacetime metric glmðxaÞ), and b) Einstein’s field
equations that define the dynamics of glmðxaÞ (see e.g., Will 1993; Damour
2009, 2012). It follows from a) that a small (sufficiently idealised) test body with
negligible gravitational binding energy follows a geodesics in the curved spacetime
glm, independent of its mass and composition (weak equivalence principle (WEP);
see e.g., Ehlers and Geroch 2004; Damour and Lilley 2008; Steinhoff and Puetzfeld
2010; Di Casola et al. 2014 and references therein). From a Newtonian point of view,
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this can be understood as an equivalence between inertial and (passive) gravitational
mass (see e.g., Will 1993; Di Casola et al. 2015). Over the course of history, this UFF
for test bodies has been verified with ever greater precision and has currently reached
a precision of � 10�15 (Touboul et al. 2022). As discussed above in the introduction
to this section, for GR this UFF extends to self-gravitating bodies, including strongly
self-gravitating bodies like NSs and BHs.26

The postulate of universal coupling is not a unique feature of GR. As we have
discussed above, it is a basic postulate for all metric theories of gravity. These
theories of gravity differ from each other by the second postulate, i.e., the field
equations. It is these field equations that are responsible for a violation of the SEP by
alternatives to GR in general and specifically for a violation of the UFF by the
presence of gravitational binding energy (breakdown of the gravitational WEP
(GWEP)). As mentioned above, to leading order in the equations of motion, instead
of the Newtonian gravitational constant GN, we have an effective gravitational
constant GAB that depends on the structure of the bodies. To give an example, for the

Table 3 Comparison of Solar System and binary pulsar tests for various parameters

Parameter Solar-system test Limit Pulsar test (eff. PPN) Limit

cPPN Cassini, Shapiro delay 2	 10�5y Double pulsar, Shapiro delay
(Sect. 4.2.3)

7	 10�3y

bPPN Perihelion shift of Mercury;
MESSENGER

2	 10�5y – –

n Solar alignment with ecliptic 4	 10�7 Two solitary pulsars
(Sect. 5.3.3)

4	 10�9

a1 LLR 2	 10�4 J1909-3744 (Sect. 5.4.1) 2	 10�5

a2 Solar alignment with ecliptic 4	 10�7 Two solitary pulsars
(Sect. 5.4.2)

2	 10�9

a3 Perihelion shift of Earth and
Mercury

2	 10�7 J1713?0747 (Sect. 5.4.3) 4	 10�20

f1 Combined PPN limits 2	 10�2 – –

f2 – – Multiple binary pulsars
(Sect. 5.4.4)

10�5

f3 Lunar acceleration 10�8 – –

f4 Not independent – – –

g LLR 7	 10�5 J0337?1715 (Sect. 5.1) 2	 10�5

jD – – J1738?0333 (Sect. 5.2) 2	 10�4

_G=G
[yr�1]

LLR 10�14 J1713?0747 (Sect. 5.3.1) 5	 10�13

Binary pulsars test strong-field “effective” PPN parameters. MESSENGER results were taken from
Genova et al. (2018), and some of the LLR results from Biskupek et al. (2021). See also the review by
Fienga and Minazzoli (2024). For the sake of simplicity, we only give leading order values for all limits in
this table
yLimit on deviation from 1

26 To prove the latter, as stated in Will (2018), one needs “full general relativity in all its complex glory”
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class of Bergmann–Wagoner scalar-tensor theories of gravity this effective gravi-
tational constant is given by

GAB ¼ GN½1� 2fðsA þ sB � 2sAsBÞ� ðA 6¼ BÞ; ð46Þ
where f is a theory dependent constant (constrained to .10�5 in the Solar System
(Bertotti et al. 2003; Will 2014)) and sA is the sensitivity defined in Eq. (45), which is
body dependent and can assume very large values for NSs (see e.g., Will 2018).27

Equation (46) shows that interpreting a violation of the UFF in terms of body-specific
‘gravitational masses’ is no longer meaningful in a strong-field context (see also the
discussion in Di Casola et al. 2015).

In case of a violation of the UFF, a binary system falling freely in the external
gravitational field of a third body will experience a characteristic polarisation of the
orbit (a gravitational analogue to the Stark effect in atoms exposed to an external
electric field). The reason for this is the different (external) acceleration (g) of the two
components, A and B, of the binary system in the direction of the third body C:

DAB � gA � gB
1
2 ðgA þ gBÞ

’ GAC � GBC

G
: ð47Þ

It was Kenneth Nordtvedt who first discovered such an effect in an alternative to GR,
i.e., Jordan–Fierz–Brans–Dicke (JFBD) gravity, and suggested to test this with the
help of Lunar Laser Ranging (LLR) (Nordtvedt 1968). In the weak field of the Solar
System one can approximate for the Earth(E)–Moon(M) system:

DEM ’ gN
Egrav
E

mEc2
� Egrav

M
mMc2


 �
, where gN is the Nordtvedt parameter, a combination of

various PPN parameters (see e.g., Will 2018 for details).
In the meantime LLR has put tight constraints on the Nordtvedt parameter:

jgNj.7	 10�5 (Biskupek et al. 2021). However, Damour and Schaefer (1991)
pointed out that such a test in the weak-field regime of the Solar System is unable to
constrain any higher order/strong-field contributions to the Nordtvedt effect that
might become significant in the presence of strongly self-gravitating masses.
Furthermore, they proposed a test of such a strong-field Nordtvedt effect with the
help of pulsar-WD systems falling in the gravitational field of the Milky Way
(Damour–Schäfer test). If the pulsar were to experience a different acceleration in the
external gravitational field than the WD, the eccentricity of the binary pulsar system
would change in a characteristic way over time (see Fig. 14). By combining several
suitable pulsar-WD systems, this kind of test has lead to a limit of jDp0j.5	 10�3

(95% C.L., Stairs et al. 2005; Gonzalez et al. 2011), where the index 0 indicates that
this is with respect to the (well tested) acceleration of a weakly self-gravitating mass,
i.e., the WD. The best such limit from a pulsar-WD system comes from PSR J1713?
0747 (cf. Sect. 4.4.4): jDp0j.2	 10�3 (95% C.L., Zhu et al. 2019).

Compared to the Earth–Moon system in the Sun’s gravitational field, pulsar-WD
systems as described above have a decisive disadvantage in testing the Nordtvedt
effect: their external acceleration in the Galactic gravitational field is about seven

27 See Damour and Esposito-Farèse (1992), in particular their Eq. (8.11), for a general expression for GAB

in the context of the even wider class of multi-scalar-tensor theories.
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orders of magnitude smaller. In this sense, the discovery of PSR J0337?1715 as a
member of a hierarchical triple system with two WD companions (cf. Sect. 4.4.4)
was a decisive turning point. The inner pulsar-WD binary accelerates in the
gravitational field of the external WD with about 0:17 cm s�2 which is comparable to
the external acceleration of the Earth–Moon system (� 0:6 cm s�2). Consequently,
after about 6 years of timing observations of PSR J0337?1715 the above limits from
pulsar-WD binaries could be improved by three orders of magnitude: jDp0j\2:6	
10�6 (95% C.L.) (Archibald et al. 2018). In an independent approach using a
different set of timing data, Voisin et al. (2020) were able to slightly improve that
limit to Dp0 ¼ ð0:5� 1:8Þ 	 10�6 (95% C.L.). Due to the large fractional binding
energy of a NS, this limit implies the tightest limit for some alternative theories of
gravity, including JFBD gravity, which originally motivated Kenneth Nordtvedt to
suggest this type of test with LLR (see Sect. 5.5 for more details). Just to mention it
already here, for JFBD gravity, PSR J0337?1715 gives a conservative 95%
confidence lower limit for the Brans–Dicke parameter of xBDJ150; 000 (GR is
obtained for xBD ! 1), which is considerably stronger than the Solar System limit
of 40,000 obtained from Cassini (Bertotti et al. 2003; Will 2018) (see Fig. 15).

Finally, it should be noted that the triple system test has not made the tests with
pulsar WD systems that fall in the gravitational field of the Milky Way completely
obsolete. There are still aspects of the UFF that cannot be tested with PSR J0337?
1715. For instance, the limit from PSR J1713?0747 can be interpreted as a test of the
UFF towards dark matter in our Galaxy, which is of particular interest due to the
pulsar’s neutron-rich composition and the significant amount of gravitational binding
energy of the pulsar (see e.g., Shao et al. 2018).

5.2 Dipolar gravitational radiation

GR predicts that the lowest multipole for the generation of GWs is the mass
quadrupole. The absence of any time-varying mass monopole and mass dipole is
closely connected to the fulfillment of the SEP and the corresponding effacement of
the internal structure of bodies (Damour 1987; Will 2018). Alternative theories of
gravity, which violate the SEP are generally expected to predict gravitational

Fig. 14 “Polarisation” of a
nearly circular binary orbit under
the influence of a forcing vector
g, showing the relation between
the forced eccentricity, eF, the
eccentricity evolving under the
general-relativistic advance of
periastron, eRðtÞ, and the angle
h ¼ h0 þ _x t. The actually
observed eccentricity is given by
eobsðtÞ ¼ eF þ eRðtÞ. After Wex
(1997)

123

    5 Page 54 of 86 P. C. C. Freire, N. Wex



radiation at lower multipole moments, linked to additional gravitational fields (e.g., a
scalar field). The corresponding (specific) gravitational “charge” of a body depends
on the body’s internal structure. In a binary pulsar system with Mp 6¼ Mc this leads,
most notably, to a time-varying gravitational dipole moment (Will 1993; Gérard and
Wiaux 2002).28 As a consequence, there is an additional damping of the orbital
motion by dipolar GWs, leading to a contribution in the change of the orbital period,
which in terms of the sensitivities can be written as (Will 1993)

_P
Dipole
b ¼ �2p

Pb

2p

� ��1

ðT�MÞXpXc
1þ e2=2

ð1� e2Þ5=2
jDðsp � scÞ2 þOðc�5; s3Þ; ð48Þ

where jD is a theory-dependent constant of the theory. The constant G is Newton’s
gravitational constant as obtained in a Cavendish-type experiment. While in GR the
damping of the binary orbit enters the equations of motion at the 2.5 PN order

Fig. 15 95% Confidence lower limit on the Brans–Dicke parameter xBD from the pulsar in a stellar triple
system, for 64 different NS EoSs. The x-axis shows the radius of a 1:4M� NS predicted by the
corresponding EoS. Obviously, stiffer EoSs give weaker limits (GR is obtained for xBD ! 1). The red
band gives the 95% credible limit for R1:4 given as the more conservative range in Koehn et al. (2024),
hence we have the conservative lower limit of xBDJ150; 000 (see Voisin et al. 2020 for more details). The
64 EoSs were taken from Read et al. (2009), Kumar and Landry (2019), assuming the criterion of a
maximum mass of more than 1:92M� (99% confidence lower limit of PSR J0740?6620 Fonseca et al.
2021)

28 In principle also a difference in rotation can lead to a gravitational dipole moment (see e.g., Pani and
Berti 2014), which however is practically irrelevant for binary pulsar experiments.
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(Oðc�5Þ), the dipolar radiation—as can be seen from Eq. (48) (see e.g., also Mir-

shekari and Will 2013)—already enters at the 1.5 PN order, i.e., Oðc�3Þ. For jDðsp �
scÞ2 � 1 that means a change in the orbital period which is about six orders of
magnitude larger than the GR prediction for binary pulsars. Consequently, binary
pulsar experiments are generally very sensitive to any presence of dipolar radiation,
in particular if there is a significant asymmetry in the sensitivities between pulsar and
companion.

If there is a gravitational dipole moment, one would generally expect it to be
particularly large for pulsars with a WD companion, where, in comparison to the
pulsar, the WD can be considered as a body with weak self-gravity having sA.10�3.
For that reason, pulsar-WD systems are particularly interesting for constraining
alternatives to GR (see Sect. 5.5 for a detailed discussion). From those pulsar-WD
systems that allow a (mostly) theory independent determination of the masses, one
can even derive quite generic limits on dipolar radiation. One such pulsar is
PSR J1738?0333 which has a bright WD as companion that shows very prominent
Balmer lines (see Sect. 4.4.1 for more details on that system). High resolution
spectroscopy gives access to the mass ratio R and the mass of the WD (Mc)
(Antoniadis et al. 2012). The agreement of the (intrinsic) _Pb of the PSR J1738?0333

system with GR can then directly be converted into the limit jj1=2D spj.2	 10�3 (95%
confidence), for a NS of about 1:47M� (Freire et al. 2012).

Finally, theories that violate the SEP and predict the existence of dipolar radiation
generally also are expected to predict a temporal variation of the gravitational constant G.
A change in G, however, also leads to a change in the orbital period. To disentangle this
effect from dipolar radiation, one needs to combine (at least two) different binary pulsars
with different orbital periods (see Sect. 5.3.1 for more details).

5.3 Preferred-location effects

The SEP states that the outcome of any local experiment, including gravitational
experiments with self-gravitating bodies, is independent of where and when in the
universe it is performed. A violation of this local position invariance leads to a
location and/or time dependence of gravitational phenomena, for instance a
gravitational constant that evolves over time, with the expansion of the universe,
or depends on the spatial location in a gravitating system. Scalar–tensor theories of
gravity generally show such kind of preferred-location effects, for instance a change
in Newton’s gravitational constant (as measured in a Cavendish experiment) due to
the cosmological evolution of the (background) scalar field.

5.3.1 Time variation of Newton’s gravitational constant

That Newton’s gravitational constant is not in fact a constant of nature, but decreases
in value over time, was already proposed by Paul Dirac as part of his large numbers
hypothesis (Dirac 1937). Efforts to put Dirac’s heuristic reasoning on a field-
theoretical footing, together with the motivation to implement (certain aspects of)
Mach’s principle, eventually led to the development of scalar–tensor theories, with
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the JFBD theory of gravity (often just called Brans–Dicke gravity) as their best-
known representative (Jordan 1955; Fierz 1956; Brans and Dicke 1961; Brans 2005).

Quite generally, theories that violate the SEP by allowing for preferred location
effects are expected to permit Newton’s constant, G, to vary over time while the
universe expands. Purely heuristically, temporal variations in G are expected to occur

on the timescale of the age of the Universe, such that _G=G�H0 � 0:7	 10�10 yr�1,
where H0 is the Hubble constant. Three different pulsar-derived tests can be applied
to these predictions, as a SEP-violating time-variable G would be expected to alter
the properties of NSs and WDs, and to affect binary orbits.

The effects on the orbital period of a binary system of a varying G were first
considered in Damour et al. (1988), who expected:

_Pb

Pb

� �
_G

¼ �2
_G

G
: ð49Þ

Applying this equation to the limit on the deviation from GR of the _Pb for PSR 1913?

16, they found a value of _G=G ¼ ð1:0� 2:3Þ 	 10�11 yr�1.With the latest results from
the Double Pulsar (see in particular Sect. 4.2.1) one obtains
_G=G ¼ ð�0:8� 1:4Þ 	 10�13 yr�1. Applying Eq. (49) to the binary pulsar J1713?

0747, which has a WD companion, gives _G=G ¼ ð�0:8� 2:4Þ 	 10�13 yr�1. While

such an approach to obtain limits for _G from binary pulsars provides a first order
estimation, the actual numbers have to be taken with a grain of salt for several reasons.

Nordtvedt (1990) pointed out that for a strongly self-gravitating body a change in
G leads to a significant change in the mass of the body, which in turn adds significant
changes to the orbital period of a binary pulsar. Taking this effect into account leads
to a corrected expression for Eq. (49)

_Pb

Pb

� �
_G

¼ � 2� ðXpcp þ XcccÞ � 3

2
ðXpcc þ XccpÞ

� � _G

G
: ð50Þ

The compactness cA � �2o lnmA=o lnG � �2Egrav
A =ðmAc2Þ is a measure for the

change of a body’s mass due to a change of the (local) gravitational constant.29 It is
closely related to the body’s sensitivity sA and one often finds cA � 2sA (see e.g.,
Damour and Esposito-Farèse 1992 for multi-scalar-tensor theories). The corrections
by the compactnesses of pulsar and companion in Eq. (50) generally weaken the
limits which are obtained directly from Eq. (49). In fact, as already pointed out in
Nordtvedt (1990), depending on the masses, the EoS of NS matter, and the under-
lying theory gravity, for a pulsar with a NS companion the expression in box brackets
in Eq. (50) may easily be small compared to the factor 2 in Eq. (49). For that reason,

pulsars with WD companions provide a somewhat more reliable generic test of _G,
since there cc ’ 0 and therefore

29 Note that there is a difference of a factor of �2 in Nordtvedt’s definition of cA.
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_Pb

Pb

� �
_G

¼ � 2� 1þ 1

2
Xc

� �
cp

� � _G

G
: ð51Þ

For cp typically of order 0.2, limits are still comparable to what one obtains from
Eq. (49).

The approach discussed so far comes with the assumption that a limit on the
deviation of the (system intrinsic) _Pb from its GR expectation can directly be

converted into a limit for _P
_G
b . This assumption is unjustified insofar as a theory that

predicts a _G is quite generally also predicting a _Pb contribution from dipolar radiation

(see Sect. 5.2) that cannot be separated from _P
_G
b in a single system.30 Lazaridis et al.

(2009) have therefore suggested to do a combined test with two suitable pulsar-WD
systems that have a sufficiently large difference in their orbital periods, in order to
break that covariance. Combining the long orbital period binary pulsar J1713?0747
with different short orbital period pulsar-WD systems, eventually led to (Lazaridis
et al. 2009; Zhu et al. 2019; Ding et al. 2020)

j _G=Gj.10�12 yr�1 ¼ 0:014H0 ð95%C.L.Þ: ð52Þ
It must be kept in mind that the exact value for that limit depends on the values of cp
(respectively sp � cp=2) for the different NS masses that enter into Eqs. (48)
and (51), for which we can only give approximate numbers in generic tests, provided
certain additional assumptions hold (see e.g., Freire et al. 2012 for a discussion).

When compared to limits from Solar System experiments (e.g., Genova et al.
2018; Hofmann and Müller 2018; Biskupek et al. 2021), the pulsar limit (52) is more

than an order of magnitude weaker. However, binary pulsar timing tests _G in a very
different gravity regime, and is therefore complementary to tests in weak-field
environments like the Solar System. Just to give two examples. First, in theories like
Barker’s constant-G theory (Barker 1978) there would still be a change to the NS
mass if the background scalar field u changes with the expansion of the universe, and
hence a corresponding change in the orbital period of a binary pulsar ( _Pb / _u).
Secondly, in above equations we have ignored that in the interaction between pulsar
and companion there is actually an effective gravitational constant which has a body-
dependent contribution. Nordtvedt (1993) has written this effective gravitational
constant as Geff ðtÞ ¼ GðtÞKpcðtÞ, where KpcðtÞ depends on the structure of the two
bodies in the binary system (K12ðtÞ ’ 1 for two weakly self-gravitating masses m1

and m2). As shown in Wex (2014), depending on the details of the gravity theory, i.e.,
the details of KpcðtÞ, the strong-field of a NS can lead to a very significant

amplification of _Geff so that j _Geff j � j _Gj.

30 Interestingly, in the highly dynamical strong-field regime of merging NSs this degeneracy is broken
(Wang et al. 2022).
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5.3.2 Spatial variation of Newton’s gravitational constant

In addition to a temporal change in the locally measured gravitational constant Gloc,
beyond GR there can generally also be a spatially varying gravitational constant,
which depends on the position relative to (external) masses. Even for theories that in
the weak field only deviate in cPPN and/or bPPN, Gloc is generally expected to depend
on the distance r to the external mass m:

GlocðrÞ
G0

’ 1� ð4bPPN � cPPN � 3ÞG0m

c2r
¼ 1� gN

G0m

c2r
ð53Þ

where G0 corresponds to the local gravitational constant at spatial infinity (see e.g.,
Will 2018 for an expression that contains additional PPN parameters). For a strongly
self-gravitating body, gN in Eq. (53) gets replaced by a body dependent parameter,
which in the literature is often denoted by g
.

As a consequence of a distance-dependent Gloc, a pulsar moving in an eccentric
orbit around a strongly self-gravitating companion will experience a periodic
variation of Ip according to

DIp
Ip

’ �jp
DGlocðrÞ

G0
’ jp g



c

G0mc

c2r
ð54Þ

which in turn leads to a variation in the pulsar’s intrinsic rotation according to
Dm=m0 ¼ �DIp=Ip (Eardley 1975; Will 2018), due to the conservation of angular
momentum. The (body-dependent) quantity jp � ðo ln Ip=o lnGÞNb

is the sensitivity
of the MoI of the pulsar, describing how the MoI of a NS (with a specific mass)
changes in response to a variation in the local gravitational constant. The variation in
the (observed) spin-frequency m caused by such an effect would become apparent as a
modification of the PK parameter c of the Einstein delay (cf. Eq. 18 and e.g., Will
2018). Consequently, radio pulsars in eccentric DNS systems are ideal to test for a
change of the local gravitational constant in the vicinity of a strongly self-gravitating
body. The wealth of PK parameters measured in the Double Pulsar (see Sect. 4.2)
even allows a generic � 10�3 constraint on such a strong-field violation of the SEP
(Kramer and Wex 2009; Kramer et al. 2021). Apart from that, this effect also plays an
important role when constraining specific alternatives to GR, like scalar–tensor or
TeVeS-like theories (see e.g., Damour and Esposito-Farèse 1996; Kramer et al.
2021).

In the following we discuss constraints on preferred location effects related to a
non-vanishing Whitehead parameter n. Such a deviation from GR is closely
connected to a spatial anisotropy of the local gravitational constant.

5.3.3 Limits on n̂

A non-vanishing Whitehead parameter n leads to an anisotropy in the gravitational
interaction of localised systems, induced by the mass distribution of our Galaxy.
Such an anisotropy would lead to characteristic (non-GR) signatures in the dynamics
of self-gravitating systems. While in general the best pulsar constraints on deviations
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from GR are obtained from binary systems or the pulsar J0337?1715 as part of a
hierarchical triple system (Sect. 5.1), by far the best limits for (the strong-field
generalisation of) n come from fast spinning solitary MSPs. A violation of local
position invariance related to a non-vanishing n would lead to the precession of a
spinning self-gravitating body around the direction to the Galactic centre (as the CM
of the Milky Way) (Nordtvedt 1987). The rate of precession is given by (Nordtvedt
1987; Shao and Wex 2013)

Xprec
n ¼ n

2p
P

vG
c


 �2
cos#G; ð55Þ

where P denotes the rotational period of the body, vG the rotational velocity of the
Galaxy at the location of the pulsar (as a measure for the local Galactic potential UG),
and #G the angle between the direction to the Galactic centre and the spin of the
body.31 Nordtvedt (1987) used the alignment of the Sun with the planetary orbits to
set a constraint on n of the order of a few times 10�7. In the same publication,
Nordtvedt already hinted at the potential of using fast rotating solitary pulsars to
constrain n. Following this, Shao and Wex (2013) have used 15 years of continuous
observations of the two solitary MSPs B1937?21 (P ¼ 1:56 ms) and J1744-1134
(P ¼ 4:07 ms) with the 100-m Effelsberg radio telescope to infer a limit of

jn̂j\3:9	 10�9 ð95% confidenceÞ: ð56Þ
where the hat indicates that pulsars are testing a strong-field generalisation of the
Whitehead parameter n. Both of the pulsars are near the Galactic plane. The decisive
factor for obtaining the limit (56) was the stability of the pulse profiles over such a
long period of time, which gave no indication of any precession of the spins of these
two pulsars.

A non-vanishing n also leads to a precession of the orbital angular momentum of a
binary pulsar (in Eq. (62) the rotational period P gets replaced by the orbital period
Pb). Shao et al. (2015) have used the binary pulsars J1012?5307 and J1738?0333
(both with a WD companion) to derive a (orbital dynamics related) limit of

jn̂j\3:1	 10�4 (95% confidence) which, however, is five orders of magnitude
weaker than that from solitary pulsars.

The above limit on n̂ can straightforwardly be converted into a limit on the
anisotropy of the gravitational constant. If the local position invariance is violated,
for a self-gravitating system falling freely in the gravitational potential of the Galaxy
UG one could have a directional dependence in the local gravitational constant. For a
system with mass m, radius R and MoI I one then finds a variation in the gravitational
constant G of (Will 1993)

DG
G

’ n 1� 3I

mR2

� �
UG cos2 #loc; ð57Þ

where #loc denotes the angle between the direction to the Galactic centre and the
direction to the location where G is being measured, as seen from CM of the self-

31 Note, the n used in Nordtvedt (1987) differs by a factor� 1
2 from the n of the “standard” PPN formalism.
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gravitating system. Such an anisotropy is generally expected to cause a precession of
a rotating (self-gravitating) body like a pulsar. In case of a NS, one typically has
I=mR2 � 0:4. Using this number, from their limit on n (Eq. 56) Shao and Wex (2013)
then obtained

DG
G

����
����\4	 10�16 ð95% confidenceÞ; ð58Þ

which is the so far tightest limit on an anisotropy of G.

5.4 Preferred-frame effects and violation of the conservation of momentum

So far, we have dealt with deviations from GR that can already occur in fully
conservative theories of gravity. In the following we will summarise pulsar tests for
PPN parameters that are linked to the violation of the Lorentz invariance of the
gravitational interaction (preferred frame effects), leading to a violation of the
conservation of angular momentum, as well as tests of parameters that result in a
violation of the conservation of total momentum.

5.4.1 Limits on â1

A non-vanishing â1 implies that the (uniform) motion of a binary pulsar system with
respect to a “universal” reference frame (defined by the rest frame of the Cosmic
Microwave Background (CMB)) will affect its orbital evolution. Similar to the
violation of the UFF (see Sect. 5.1), the time evolution of the observed eccentricity
will depend on both a vector eR of constant length that rotates in the orbital plane
with angular velocity _x and a fixed vector eF as a result of the â1-induced
polarisation of the orbit. The “forced eccentricity” eF lies in the orbital plane and is
perpendicular to w, the velocity of the binary system with respect to the preferred
frame. The magnitude of eF (for e � 1) is written as (Damour and Esposito-Farèse
1992; Bell et al. 1996):

jeFj ’ jâ1j
12

Pb

2p

� �
jXp � Xcj w?

a
; ð59Þ

where w? denotes the length of the projection of the system’s velocity w onto the
orbital plane, and a the semimajor axis of the relative motion. In the above equation

we have neglected a factor ð23 ĉ� 1
3 b̂þ 2

3 þ 1
3 â1XpXcÞ�1, which is justified by the fact

that the effective (strong-field) Eddington parameters ĉ and b̂ are already sufficiently
constrained (to their GR value, i.e., 1) by other pulsar experiments, and the â1 term is
small compared to one.

There are various binary pulsars with very small eccentricities (e.10�6).
However, in principle a large eF could be hidden by an equally large eR, since the
observed eccentricity is the vector sum of the two. On the other hand, such a
fortunate cancellation of eF and eR will eventually break down, as eR rotates with
respect to eF at a rate of _x (see Fig. 14). For that reason, small-eccentricity binary
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pulsar systems with a short orbital period, a large difference in the two masses, and a
long observing time span should be the ideal systems for such a test.

Currently there are two systems that fit best the above criteria: PSRs J1738?0333
and J1909−3744. More details on these binary pulsars are given in Sects. 4.4.1
and 4.4.2 respectively. For both systems, high resolution spectroscopy observations
of their WD companions gave access to their systemic radial velocities, consequently
—when combined with the proper motion from timing—allowing the determination
of their 3D-velocity with respect to the Solar System and, furthermore, the
determination of w. For PSR J1738?0333, 10 years of observation with the 305-m
William E. Gordon Arecibo radio telescope lead to constraints of (Shao and Wex
2012)

â1 ¼ �0:4þ3:7
�3:1 	 10�5 ð95% confidenceÞ: ð60Þ

Using 15 years of observations of PSR J1909−3744 with the Nançay Radio Tele-
scope, Liu et al. (2020) were able to further improve this limit to

jâ1j\2:1	 10�5 ð95% confidenceÞ: ð61Þ
The above limits are both better in magnitude than the weak-field results from LLR,
and additionally also incorporate strong field effects related to the strong spacetime
curvature inside and near the pulsars.

5.4.2 Limits on â2

As with the pulsar test of n̂ in Sect. 5.3.3, by far the best constraints on (the strong-
field generalisation of) a2 also come from solitary MSPs. Nordtvedt (1987) has
shown that a non-zero a2 causes the spin of a self-gravitating body moving with
velocity w (relative to a preferred frame) to precess about the direction of w, with an
angular velocity

Xprec
a2 ¼ �a2

p
P

jwj
c

� �2

cos#w; ð62Þ

where P denotes the rotational period of the body and #w the angle between w and
the spin of the body.32 While Nordtvedt (1987) used the alignment of the Sun with
the planetary orbits to set the tightest constraint on a2, he already identified pulsars as
possible probes for an a2-related violation of Lorentz invariance. In a rough estimate
he derived an early pulsar limit of order few times 10�6 from the (then) recently
discovered MSP B1937?21. Shao et al. (2013) has used 15 years of continuous
observations of the two MSPs B1937?21 (P ¼ 1:56 ms) and J1744-1134
(P ¼ 4:07 ms) with the 100-m Effelsberg radio telescope to infer a limit of

jâ2j\1:6	 10�9 ð95% confidenceÞ: ð63Þ

32 Note, the a2 used in Nordtvedt (1987) differs by a factor 12 from the a2 of the “standard” PPN formalism.
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Like for the n-test in Sect. 5.3.3, the decisive factor for this analysis was again the
stability of the pulse profiles over such a long period of time, which gave no indi-
cation of any precession of the spins of these two pulsars.

A non-vanishing a2 also leads to a precession of the orbital angular momentum of
a binary pulsar (For a (nearly) circular orbit, the rotational period P in Eq. (62) gets
replaced by the orbital period Pb). In Shao and Wex (2012) the binary pulsars
J1012?5307 and J1738?0333 were used to derive a (orbital dynamics related) limit
of jâ2j\1:8	 10�4 (95% confidence) which, however, is five orders of magnitude
weaker than that from solitary pulsars.

5.4.3 Limits on â3

A non-vanishing â3 implies both a violation of local Lorentz invariance and non-
conservation of momentum in the gravitational sector. More specifically, it results in
the self-acceleration of a rotating, gravitationally bound body that moves with respect
to a preferred frame of reference. Within the first PN weak-field slow-motion
approximation of the PPN formalism one finds (Nordtvedt and Will 1972; Will
1993):

aselfA ¼ � a3
3

Egrav
A

mA c2
w	X: ð64Þ

where X is the rotational velocity vector of the body. As one can see from above
equation, the self-acceleration is perpendicular to the body’s spin and its velocity
with respect to the preferred frame, i.e., w. For a strongly self-gravitating body, one
needs to replace the fractional gravitational binding energy by the sensitivity (i.e.,
Egrav
A =ðmAc2Þ ! �sA) and the PPN parameter by its strong-field equivalent (i.e.,

a3 ! â3Þ.
In the case of a binary system consisting of two spinning bodies, both components

experience a self-acceleration according to Eq. (64). As a result, there is an
acceleration of the CM of the whole binary system and a modification of the relative
orbital motion of the two bodies (Bell and Damour 1996). As it turns out, the second
contribution is the key to constrain â3 with the help of binary pulsars. In systems
consisting of a MSP and a WD, both the sensitivity and rotational velocity of the
pulsar completely dominate those of the WD and the self-acceleration of the WD
therefore can be completely neglected. Furthermore, as a result of the recycling
process, the spin of the pulsar is expected to be parallel to the orbital angular
momentum of the system (see e.g., Bhattacharya and van den Heuvel 1991). In sum,
in small-eccentricity pulsar-WD system the eccentricity vector e will experience a
time evolution that is analogous to the one in Sects. 5.1 and 5.4.1, with a forced
eccentricity given by (Bell and Damour 1996):

jeFj ’ jâ3j
3

sp
Pb

2p

� �2 p m
ðT�MÞ

w
c

��� ��� sin#w; ð65Þ

where #w is the (generally unknown) angle between w and X, and m ¼ jXj=ð2pÞ is
the spin frequency of the pulsar.
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The figure of merit for systems used to test â3 is mP2
b=e, meaning fast spinning

pulsars in wide orbits with low eccentricities. Based on probabilistic considerations,
Gonzalez et al. (2011) have used an ensemble of suitable binary pulsar systems to
obtain a 95% confidence limit of jâ3j\5:5	 10�20. A similar limit could be
obtained from utilising just a single binary system. Based on a combined data set
from the North American Nanohertz Observatory for Gravitational Waves
(NANOGrav) and the European Pulsar Timing Array (EPTA) for binary pulsar
PSR J1713?0747, Zhu et al. (2019) obtained a 95% confidence interval of

�3	 10�20\â3\4	 10�20: ð66Þ
This limit results from a direct constraint on a temporal variation in the eccentricity
vector of the system, i.e., on _e. For the PSR J1713?0747 system, all parameters
involved in the evaluation of _e are measurable, except for the radial velocity of the
pulsar binary with respect to the Solar System, vr, which enters the calculation of w.
For that reason, vr is kept as a free parameter and chosen such, that it gives the most
conservative limits for â3.

5.4.4 Limits on f̂2

Another PPN parameter that is related to a violation of the conservation of
momentum is f2. It will join a3 in accelerating the CM of a binary pulsar system
(Will 1992, 1993):

aCM ¼ ðâ3 þ f̂2Þ
2p
Pb

� �2

ðT�MÞXpXcðXp � XcÞ e c

2ð1� e2Þ3=2
n̂peri; ð67Þ

where n̂peri is a unit vector from the CM of the system to the periastron of the pulsar
orbit. Again, the hat indicates that in the presence of NSs we have an effective
strong-field generalisation of the PPN parameter. If not perpendicular to the line of
sight, the acceleration aCM produces an extrinsic contribution to a binary pulsar’s _m as
it changes the radial velocity vr of the binary system and therefore the corresponding
Doppler effect. In general, this contribution would not be separable from the spin-
down _m intrinsic to the pulsar. However, in relativistic binary pulsar systems, like
PSR B1913?16 or the Double Pulsar, the large _x has lead to a significant change of
x since the pulsar’s discovery—for PSR B1913?16, it has advanced by more than
200
, and for the Double Pulsar by nearly 360
. In such cases, the projection of aCM
onto the line of sight would have changed considerably over the observing time span,
producing apparent higher order derivatives of the pulse frequency, i.e., €m, m

...
, etc. For

instance, the €m is given by (Will 1992):

€m
m
¼ ðâ3 þ f̂2Þ

2p
Pb

� �2

ðT�MÞXpXcðXp � XcÞ e

2ð1� e2Þ3=2
sin i cosx _x: ð68Þ

With the extremely tight constraints on â3 (see Sect. 5.4.3), Eq. (68) can be used to

directly set a limit on f̂2. A corresponding equation for m
...

can be used to derive

123

    5 Page 64 of 86 P. C. C. Freire, N. Wex



additional constraints on f̂2 which for some of the relativistic binary pulsars turned
out to be even more constraining (Miao et al. 2020). A combination of four carefully
selected short-orbital-period DNS systems (including the Hulse–Taylor pulsar) by
Miao et al. (2020) lead to the so far best limit for a f2-related violation of the
conservation of momentum:

jf̂2j\1:3	 10�5 ð95% confidenceÞ: ð69Þ
The Double Pulsar is not included in the above result, since the analysis was done
before the publication of Kramer et al. (2021).

With a limit such as (69), which results from a combination of different pulsars
with different masses, one must always bear in mind that the underlying assumption

is that the body-dependent parameter f̂2 has only a weak dependence on the mass of a
NS.

5.5 Alternative gravity theories

The excellent agreement of pulsar experiments with GR and the tight generic
constraints on deviations from GR in the presence of strongly self-gravitating
masses, as discussed above, consequently also means tight constraints on numerous
specific alternative theories of gravity. In this section we mention a few examples,
with a particular focus on mono-scalar-tensor theories of gravity. In view of the large
number of alternatives to GR, however, this overview must inevitably remain very
incomplete.

5.5.1 Damour–Esposito–Farèse gravity

A particularly well studied alternative to GR, at least in the context of pulsar
experiments, is the mono-scalar-tensor theory of Damour and Esposito-Farèse
with a quadratic coupling function (called DEF gravity in this review; see
Damour and Esposito-Farèse 1992, 1993, 1996 for details). This two-parameter
class of gravity theories shows various effects that quite generally illustrate how
gravity could deviate from GR, in particular in the presence of strongly self-
gravitating NSs. For this reason, DEF gravity is particularly suitable for a theory-
space approach to interpret tests of GR with pulsars (Damour 2009). JFBD
gravity (Jordan 1955; Fierz 1956; Brans and Dicke 1961), which for a long time
was the most important competitor to GR, represents a one-parameter sub-class of
DEF gravity.

Besides a spacetime metric glm, DEF gravity contains a mass-less scalar field u,
with asymptotic value u0 at spatial infinity. The field equations of DEF gravity can
be derived from the Einstein frame action

S ¼ c4

16pG


Z �
R½glm� � 2glmoluomu

	 ffiffiffiffiffiffiffi�g
p

d4xþ Smat½Wmat; ~glm�; ð70Þ
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where G
 is the bare gravitational constant and R the curvature scalar.33 All matter
fields Wmat couple universally to the physical (Jordan) metric

~glm � glm exp½2a0ðu� u0Þ þ b0ðu� u0Þ2�, and hence DEF gravity is a metric
theory of gravity and fulfills the EEP. Furthermore, DEF gravity is a fully conser-
vative gravity theory where only cPPN and bPPN differ from their GR values:

cPPN ¼ 1� 2a20
1þ a20

; bPPN ¼ 1þ b0a
2
0

2ð1þ a20Þ2
: ð71Þ

The two parameters of DEF gravity, a0 and b0, define the two-dimensional parameter
space of this class of alternatives to GR, which contains JFBD gravity (b0 ¼ 0) and
GR (a0 ¼ b0 ¼ 0). The Newtonian gravitational constant, as measured in a
Cavendish-type experiment, is related to the bare gravitational constant G
 by
G ¼ G
ð1þ a20Þ. There is a tight limit for ja0j of the order of a few times 10�3 from
Solar-System experiments (through tests on cPPN), while b0 remains unconstrained in
such weak-field experiments (Bertotti et al. 2003; Damour 2009; Fienga and
Minazzoli 2024).

The quantities (“gravitational form factors”) of a body with mass mA and MoI IA
that enter the PK parameters are

aA � o lnmA

ou0
; bA � oaA

ou0
; KA � � o ln IA

ou0
; ð72Þ

where the number of baryons is kept fixed when taking the partial derivatives.34 The
quantity aA is the effective scalar coupling of the body and gives its specific scalar
charge. For weakly self-gravitating masses aA approaches a0. In the parameter space
where spontaneous scalarisation does occur for NSs (b0.� 4:5), aA can be of order
unity even if a0 ¼ 0. Hence, in the strong gravitational fields of NSs DEF gravity can
deviate significantly from GR, even if it is very close (or even identical) to GR in the
weak-field regime. The other two gravitational form factors, i.e., bA and KA can show
a similarly extreme, non-linear behaviour in the presence of strongly self-gravitating
(material) bodies. For BHs, where there is a no-hair theorem they are identical to zero
(Damour and Esposito-Farèse 1992).

In an N-body system, the effective gravitational constant for the interaction of two
bodies is body dependent, and is given by

ĜAB ¼ G
ð1þ aAaBÞ ¼ G
1þ aAaB
1þ a20

� �
; with A 6¼ B: ð73Þ

Likewise, the PPN parameters become body dependent:

33 In principle the action S may also contain a potential for the scalar field, V ðuÞ, for instance to add mass
to the scalar field (Damour and Esposito-Farèse 1992; Alsing et al. 2012). We assume here that V ðuÞ only
changes on scales much larger than those associated with the pulsar systems (typically on cosmological
scales) and therefore can be neglected in pulsar experiments.
34 The sensitivity sA of Eq. (45) and aA are directly related by aA ¼ a0ð1� 2sAÞ for a0 6¼ 0 (Damour and
Esposito-Farèse 1992; Mirshekari and Will 2013; Will 2018). The relation between KA and the quantity jA
in Sect. 5.3.2 can be found in Damour and Esposito-Farèse (1996).
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ĉAB ¼1� 2aAaB
1þ aAaB

; with A 6¼ B; ð74Þ

b̂
A

BC ¼1þ bAaBaC
2ð1þ aAaBÞð1þ aAaCÞ ; with A 6¼ B;A 6¼ C: ð75Þ

These PPN parameters can differ significantly from GR as well as from their weak
field counterparts in Eq. (71). Figure 16 illustrates this for a specific case.

In a binary pulsar system, the PK parameters get modified by the gravitational
form factors. For the quasi-stationary effects at the 1PN level one finds

k ¼ b̂
2

O

1� e2
3� apac
1þ apac

� Xpa2pbc þ Xca2cbp

2ð1þ apacÞ2
 !

; ð76Þ

c ¼ Pb

2p
b̂
2

O

1þKpac
1þ apac

þ Xc

� �
Xc e; ð77Þ

s ¼ x
Pb

2p

� ��1

b̂
�1

O X�1
c ; ð78Þ

r ¼ G
mc

c3
; ð79Þ

where b̂O � ½2pĜpcðmp þ mcÞ=Pb�1=3=c. Depending on the parameters a0 and b0, for
a given binary pulsar system some of these PK parameters can differ significantly

Fig. 16 Strong-field Eddington parameter ĉAB in (quadratic) DEF gravity for the Double Pulsar system.
The plot shows the difference between GR and DEF, i.e., 1� ĉAB, as a function of b0, for the interaction
between the two NSs (red solid) and the interaction between pulsar B and a photon (red dashed). We have
assumed 1� cPPN ¼ 10�5 (i.e., ja0j ’ 0:00224; blue horizontal line), which agrees well with current
Solar-System experiments. To calculate the structure-dependent aA and aB we used the NS EoS ENG (see
Lattimer and Prakash 2001)
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from their GR values (Damour and Esposito-Farèse 1996). Above we have omitted
PK parameters that so far have not played any role in constraining the DEF gravity
parameter space, for instance, the rate of geodetic precession and the relativistic
deformations of the orbit dh and dr.

Concerning radiative aspects of gravity, in particular GW damping, one finds
modifications already at the 1.5PN order in the orbital dynamics due to (scalar)
dipolar GWs (see also Sect. 5.2 above). The corresponding change in the orbital
period reads

_P
dipole
b ¼ �2p b̂

3

O XpXc
1þ e2=2

ð1� e2Þ5=2
ðap � acÞ2
1þ apac

þOðb̂5OÞ: ð80Þ

Since for jap � acj � 1 dipolar GW damping would be many orders of magnitude

(�ðc=vÞ2) stronger than the GR GW damping, any confirmation of GR’s quadrupole
formula in the GW emission puts extremely tight constraints on jap � acj. However,
only for sufficiently asymmetric binary systems, in terms of compactness of the two
bodies, this converts into similarly stringent limits on DEF gravity. For that reason,
pulsar-WD systems (see Sect. 4.4) are of particular interest here.

Apart from the dipole contribution, there are also monopole and quadrupole
contributions related to the scalar field, which further enhance the orbital decay.

However, both of them enter at the 2.5PN level, i.e., Oðb̂5OÞ, and are usually

subdominant to _P
dipole
b . Detailed expressions can be found in Damour and Esposito-

Farèse (1992).
Like for GR (previous sections), one can use different binary pulsar systems and

their observed PK parameters to test the parameter space of DEF gravity. However,
for DEF gravity there is no effacement of the internal structure of the bodies—a
consequence of the violation of the SEP. Consequently, one has to assume an EoS for
NS matter and for every pair ða0; b0Þ one needs to integrate the structure equations
for slowly rotating NSs (see Damour and Esposito-Farèse 1996), certainly for the
pulsar but also its companion if the latter is also a NS. For given central pressures one
obtains the masses and the gravitational form factors for pulsar and companion,
which then can be used to calculate the PK parameters (Eqs. 76–80). By this, the PK
parameters become (rather complicated) functions of the Keplerian parameters and
the a priori unknown masses of the binary system. A point ða0; b0Þ in the DEF
gravity plane passes the test (for an assumed EoS) if there is a pair of masses, i.e.,
central pressures, where the corresponding PK parameters agree with the observa-
tions (see Damour and Esposito-Farèse 1996, 1998 for details of this approach).35

The procedure is somewhat simplified if the companion is a weakly self-gravitating
body, since in this case one can assume ac ’ a0 and bc ’ b0.

For the pulsar in the stellar triple system (see Sects. 4.4.4, 5.1) the situation is
different. There we have no PK parameters to test the DEF gravity, but we can
directly test the effective gravitational constant of Eq. (73). A difference in the
effective gravitation constant in the interaction between the pulsar and the outer WD

35 Recently, a theory specific approach for testing DEF gravity has been developed, which does not require
the intermediate step of fitting PK parameters (Batrakov et al. 2024)
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and between the inner and the outer WDs is a strong effect that already enters at the
Newtonian level in the equations of motion. To leading order the fractional difference
D in the accelerations towards the outer WD reads (cf. Damour 2009)

D ’ a0 ðap � a0Þ; ð81Þ
where for the weakly self-gravitating WDs aA ’ a0 has been assumed. From the
equation above, it can be seen that for very small a0 (or a0 ¼ 0), where we could still
have a scalarised pulsar (spontaneous scalarisation), the triple-system pulsar test does
not give useful constraints on ap.

Figure 17 shows constraints in the DEF-gravity parameter space obtained from
different Solar System and pulsar experiments. Concerning pulsar limits, one has to
keep in mind that the gravitational form factors of Eq. (72) depend on the structure of
the NS and are therefore EoS dependent. Consequently, the pulsar limits in Fig. 17
change to some extent if a different EoS is chosen to solve the NS structure
equations. To obtain robust limits, one needs to follow an EoS-agnostic approach like
in Voisin et al. (2020), where a point in the DEF gravity plane is only excluded if it is
excluded for a whole range (from soft to stiff) of viable EoSs. In Fig. 17 we have
chosen only one (rather stiff) EoS to illustrate qualitatively the pulsar limits. In the
highly non-linear regime of DEF gravity, the EoS dependence is particularly strong,

Fig. 17 Constraints on the DEF gravity parameter space from different experiments (95% confidence):
Shapiro delay with the Cassini spacecraft (Bertotti et al. 2003), dipolar radiation (J1738?0333, J2222-
0137; Sects. 4.4.1, 4.4.3), Nordtvedt effect (LLR Biskupek et al. 2021, Triple System Pulsar; Sect. 5.1),
and the Double Pulsar (Sect. 4.2). Areas above a curve are excluded by the corresponding experiment (see
Damour and Esposito-Farèse 1996, 1998 for details). Pulsar curves are computed with a comparably stiff
EoS (MPA1 in Lattimer and Prakash 2001), which for most of the parameter space gives conservative
limits. GR corresponds to a0 ¼ b0 ¼ 0, and JFBD theory is along the vertical b0 ¼ 0 line with Brans–
Dicke parameter xBD ¼ ða�2

0 � 3Þ=2
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and it requires a range of pulsars with a suitable distribution of masses in order to
constrain DEF gravity (Shao et al. 2017; Zhao et al. 2022).

5.5.2 Various other alternatives to GR

While DEF gravity is arguably the best studied class of alternatives to GR in the
context of pulsar experiments, there are many other theories that have been
significantly constrained or even ruled out using pulsar timing. A complete list is
beyond the scope of this review, so in this subsection we will only give a few
particularly informative examples. The biggest challenge in confronting an
alternative theory of gravity with pulsar observations is to calculate the “gravitational
form factors” for NSs, which goes far beyond a linear approximation, as it requires
the full non-linearity of the theory.

While in the previous section it was assumed that the potential of the scalar field
V ðuÞ only plays a role on cosmological scales, if at all, this assumption can certainly
be relaxed, for example to have a massive scalar field with a Compton wavelength
comparable to the length scales relevant in the pulsar experiment. Pulsar timing
results have been used to exclude certain parts of the parameter space of such
massive scalar–tensor theories (see e.g., Alsing et al. 2012; Ramazanoǧlu and
Pretorius 2016; Yazadjiev et al. 2016; Seymour and Yagi 2020a, b).

Binary pulsar observations have also been used to constrain or even exclude
some MOND-like gravity theories, i.e., relativistic theories that have modified
Newtonian dynamics as their non-relativistic limits and are an attempt to avoid
the need of dark matter in the Universe, at least on certain scales. The most
prominent example is Bekenstein’s tensor–vector–scalar (TeVeS) theory (Beken-
stein 2004) which is practically excluded by the Double Pulsar (Freire et al. 2012;
Kramer et al. 2021).36 The parameter space of a natural extension of Bekenstein’s
TeVeS with a quadratic coupling of matter to the scalar field, which by design
satisfies Solar system tests, has been constrained with binary pulsars in Freire
et al. (2012).

Other examples of the application of pulsar observation for testing alternative
gravity theories are tests of Mendes–Ortiz (MO) gravity (Mendes and Ortiz 2016;
Anderson et al. 2019), Einstein-Aether and khronometric gravity (Yagi et al. 2014;
Gupta et al. 2021), scalar-Gauss-Bonnet (Danchev et al. 2022; Yordanov et al. 2024),
and cubic Galileon model (Shao et al. 2020), just to name a few.

On a final note, there are various alternatives to GR that naturally or by design
pass all pulsar experiments the same way as GR does, because they either invoke
screening mechanisms that make them indistinguishable in their so-called “strong-
field regime” (which even includes the Solar System) or because they are sufficiently
short range in their modifications to GR, so that effects do not show up in the orbital

36 Bekenstein’s TeVeS (including generalised versions (Seifert 2007; Contaldi et al. 2008)) is also
excluded by the test for the speed of GWs with the GW170817 LIGO-Virgo event, which however tests a
different aspect of the theory (Gong et al. 2018). Double Pulsar probes directly the scalar sector which is
responsible for the MONDian behaviour in the (very) weak field (see e.g., Bruneton and Esposito-Farese
2007). For that reason, the Double Pulsar test should remain of interest for modifications of TeVeS that are
designed to bypass the GW170817 limit without modification of the coupling to the scalar field.
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dynamics of binary pulsars.37 Theories that predict deviations only in the context of
BHs also have not been tested in binary pulsar experiments, simply because no
binary pulsar with a BH companion was available until now, with the first strong
candidate having been published only this year (Barr et al. 2024).

6 Conclusions and future prospects

6.1 Summary

As the first half century since the discovery of the first binary pulsar comes to a close,
it is important to reflect on what has been achieved in terms of tests of gravity
theories. This includes the first tests of gravity theories with compact, strongly self-
gravitating objects and the first detection of GWs from the orbital decay of the first
binary pulsar. These represent qualitatively new tests in comparison with all previous
tests in the Solar System.

However, it is also important to realise that the most precise tests of gravity
theories based on the timing of binary (and triple) systems have been published since
the last Living Review in Relativity on this topic (Stairs 2003):

● The measurement of the orbital decay in the Double Pulsar published in 2021
(Kramer et al. 2021) improved the precision of tests of the radiative properties of
gravity—especially the leading order quadrupolar term predicted by GR—by a
factor of 25 over the best previous test. The results agree with GR within the
relative 1-r uncertainty of 6:3	 10�5.

● The same system allowed several other independent, high-precision tests of GR as
well, including the first pulsar tests of terms past the leading order.

● These include the most precise pulsar tests of the Shapiro delay, carried out in a
spacetime with a curvature that is six orders of magnitude larger than the
curvature probed with the Cassini-spacecraft test in the Solar system. More
generally, it is the photon propagation test with the highest spacetime curvature,
exceeding the images of the supermassive BHs M87
 (Event Horizon Telescope
Collaboration 2019a) and Sgr A
 (Event Horizon Telescope Collaboration 2022)
by more than nine and three orders of magnitude respectively.

● The MSP in a triple system, PSR J0337?1715, has allowed an improvement in
our test of the UFF for NSs by three orders of magnitude (Archibald et al. 2018;
Voisin et al. 2020). This test of the SEP provides some of the tightest constraints
for many alternatives to GR, including JFBD gravity and a large part of the DEF-
gravity parameter space.

● The latter parameter space was also constrained by tight constraints on the
possibility of dipolar GW emission in a set of pulsar-WD systems with a wide
range of pulsar masses;

37 If the short-range modification leads to a significant alteration of the MoI of a NS, such an effect could
in principle be tested through the LT precession of a binary pulsar orbit (see the discussion in Hu et al.
2020).
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● Regarding other gravity theories, pulsar tests have not only provided important
limits on other types of scalar–tensor theories, scalar-Gauss-Bonnet gravity,
Einstein-Aether (a tensor–vector theory which violates Lorentz invariance in the
gravitational sector), etc., but also entirely ruled out others, like Bekenstein’s
TeVeS and some of its variations.

Impressively, GR still passes all these precise and diverse tests. More generally, these
experiments test some fundamental aspects and symmetries of gravitation and
spacetime:

● The verification of the UFF for NSs via the non-detection of the Nordtvedt effect
and of dipolar GW emission.

● The stringent limits on UFF violation and on preferred-location and preferred-
frame effects for the gravitational interaction further support the SEP. This is of
fundamental importance, particularly in view of the conjecture that GR is the sole
valid gravity theory that fully embodies the SEP.

● Some of these radiative experiments are stringent probes into the nature of GWs,
showing that they are, to leading order, quadrupolar as predicted by GR. These
GW pulsar tests nicely complement GW tests obtained from merger observations
with ground-based GW observatories.

● These radiative experiments have also excluded some strong-field highly
nonlinear deviations from GR, like the phenomenon of spontaneous scalarisation
predicted by DEF gravity.

● Finally, pulsars have also provided tight constraints for parameters of generic
frameworks, like strong-field generalizations of PPN parameters and parameters
of the gravitational sector in the SME. Some of them are directly related to the
aforementioned limits on violations of symmetries associated with the SEP, like
the UFF, local position and local Lorentz invariance.

This flurry of recent results show that gravity experiments using radio pulsars are
thriving. They, and many results from the Solar System, EHT, LIGO/Virgo/KAGRA,
etc., demonstrate the continued interest in precision gravity experiments.

6.2 Prospects

The prospects for improvements in the precision of these tests for the near future
appear to be excellent. First, the mere continuation of some timing experiments will
greatly improve many of the tests done with these systems. As examples, 2 years of
additional data on PSR J0337?1715 allowed a (preliminary) doubling of the
precision of the test of the UFF with this system (Voisin et al. 2022). Furthermore,
simulations showed that continued timing of the Double Pulsar might constrain the
MoI of PSR J0737−3037A to within 10% until 2030 (Hu et al. 2020), apart from
significantly improving the precision in the measurement of the orbital decay.
Although such a determination of the MoI assumes GR to provide the correct
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description of the needed PK parameters (and will eventually help to constrain the
EoS), interpreted as a LT test it still allows to probe for significant short-range
deviations from GR that only affect pulsar A locally (see discussion in Hu et al.
2020).

A significantly improved radiative test and a LT test with the Double Pulsar rely
on good independent constraints on the EoS of dense matter. These are provided by
the measurement of large NS masses (Fonseca et al. 2021), the NICER constraints on
the radius and mass of NSs (e.g., Miller et al. 2021; Vinciguerra et al. 2024) and
measurements of the NS tidal deformability by ground-based GW detectors (Abbott
et al. 2018) (see discussion in Sect. 4.2.2); the latter are especially valuable as they
can be translated directly to constraints on the MoI via the I-Love-Q relation (Yagi
and Yunes 2013). Improving these EoS constraints will not only lead to more precise
radiative and LT tests with the Double Pulsar, but will also lead to more precise
constraints on alternative theories of gravity, which as discussed in Sect. 5.5 are still
subject to some uncertainties on this account.

The prospects for improvement of the pulsar gravity tests are further brightened by
the higher sensitivity of telescopes like FAST, MeerKAT and in the future the SKA.
FAST and MeerKAT are already improving the timing precision on all known
pulsars, allowing new and more precise measurements of PK parameters. As an
example, just 3 years of MeerKAT data yielded a photon propagation test in the
Double Pulsar (Hu et al. 2022) that is a factor of two better than the previous one
based on 16 years of data from 6 different telescopes (Kramer et al. 2021), which is
significantly better than even the most optimistic simulations.

More importantly, it is clear that the pulsar field in general has been driven, from
the start, by the discovery of new, better “laboratories”. The rate of pulsar discoveries
has recently increased significantly, with 1000 new pulsars having been found by
FAST and MeerKAT already.38 Furthermore, the rate of discovery of recycled pulsars
—and especially recycled pulsars in very compact orbits—is increasing even faster,
because of the much improved time and spectral resolution of the search data, the
much improved computing capabilities and search algorithms.

All this will very likely lead to the discovery not only of more extreme versions of
the currently known systems, which will allow new leaps in the precision for the
types of tests described above, but also of completely new types of systems, such as
pulsar—BH binaries, of which the first one might have already been found (Barr
et al. 2024). Such systems will allow gravity tests that were until now beyond the
testing power of pulsar timing (Wex and Kopeikin 1999; Liu et al. 2014; Seymour
and Yagi 2018). In particular, the discovery of a pulsar in a relativistic orbit around
the supermassive BH at the centre of our Galaxy would allow unprecedented tests of
BH physics, in particular in combination with tests from other observations in this
extreme gravity environment (see e.g., Psaltis et al. 2016 and references therein).

The prospect of detecting very compact binary pulsars, especially DNSs (or
pulsar-BH systems), is very alluring for tests of gravity theories. A general reason is

38 See e.g., GPPS (http://zmtt.bao.ac.cn/GPPS) and CRAFTS (http://groups.bao.ac.cn/ism/CRAFTS/
202203/t20220310_683697.html) surveys with FAST and the TRAPUM survey (https://trapum.org/
discoveries/) with MeerKAT.
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the attainable significance of the radiative test in the presence of contaminants, which

improves as P�8=3
b . Such systems would also allow the measurement of the full

precession cycle of relativistic spin-orbit coupling on reasonable timescales: for
instance, a DNS with an orbital period of 30 min would have a geodetic precession
period of about 5 years, which would then be measured precisely from the repeating
changes in the pulse profile of the system. In fact, such a test of geodetic precession
with repeating emission patterns could already be possible in the near future with
double pulsar B, which is expected to precess back into our line of sight within the
next few years (Breton et al. 2008; Perera et al. 2010; Lower et al. 2024).

Additionally, very compact binary pulsars will be detectable at good S/N by the
Laser Interferometer Space Antenna (LISA) mission if they are not too distant from
Earth (Thrane et al. 2020). This missionwill also find, independently, themost compact
NS–NS, NS–WDor NS–BH systems of our Galaxy (Lau et al. 2020). Perhaps some of
these NSs will be detectable as pulsars in targeted radio surveys. In either case, binary
pulsar experiments would become “multi-messenger” experiments, allowing entirely
new tests of gravity theories (Thrane et al. 2020; Miao et al. 2021).
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