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Abstract
The relativistic fluid is a highly successful model used to describe the dynam-
ics of many-particle systems moving at high velocities and/or in strong gravity. It
takes as input physics from microscopic scales and yields as output predictions of
bulk, macroscopic motion. By inverting the process—e.g., drawing on astrophysi-
cal observations—an understanding of relativistic features can lead to insight into
physics on the microscopic scale. Relativistic fluids have been used to model sys-
tems as “small” as colliding heavy ions in laboratory experiments, and as large as the
Universe itself, with “intermediate” sized objects like neutron stars being considered
along the way. The purpose of this review is to discuss the mathematical and theo-
retical physics underpinnings of the relativistic (multi-) fluid model. We focus on the
variational principle approach championed by Brandon Carter and collaborators, in
which a crucial element is to distinguish the momenta that are conjugate to the particle
number density currents. This approach differs from the “standard” text-book deriva-
tion of the equations of motion from the divergence of the stress-energy tensor in that
one explicitly obtains the relativistic Euler equation as an “integrability” condition on
the relativistic vorticity. We discuss the conservation laws and the equations of motion
in detail, and provide a number of (in our opinion) interesting and relevant applications
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of the general theory. The formalism provides a foundation for complex models, e.g.,
including electromagnetism, superfluidity and elasticity—all of which are relevant for
state of the art neutron-star modelling.

Keywords Fluid dynamics · Relativistic hydrodynamics · Relativistic astrophysics ·
Variational methods · Field theory
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1 Setting the stage

If one performs a search on the topic of relativistic fluids on any of the major physics
article databases one is overwhelmed by the number of “hits”. This reflects the impor-
tance that the fluid model has long had for physics and engineering. For relativistic
physics, in particular, the fluid model is essential. After all, many-particle astrophys-
ical and cosmological systems are the best sources of detectable effects associated
with General Relativity. Two obvious examples, the expansion of the Universe and
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oscillations (or, indeed, mergers) of neutron stars, indicate the vast range of scales on
which relativistic fluids are relevant. A particularly topical context for general rela-
tivistic fluids is their use in the modelling of gravitational-wave sources. This includes
the compact binary inspiral problem, either involving two neutron stars or a neu-
tron star and a black hole, the collapse of stellar cores during supernovae, or various
neutron star instabilities. One should also not forget the use of (special) relativistic
fluids in modelling collisions of heavy nuclei, astrophysical jets, and gamma-ray burst
emission.

This review provides an introduction to themodeling of fluids in General Relativity.
As the (main) target audience is graduate students with a need for an understanding of
relativistic fluid dynamicswe havemade an effort to keep the presentation pedagogical,
carefully introducing the central concepts. The discussion will (hopefully) also be
useful to researchers who work in areas outside of General Relativity and gravitation
per se (e.g., a nuclear physicist who develops neutron star equations of state), but who
require a working knowledge of relativistic fluid dynamics.

Throughout (most of) the discussion we will assume that General Relativity is the
proper description of gravity. From a conservative point of view, this restriction is not
too severe. Einstein’s theory is extremely well tested and it is natural to focus our
attention on it. At the same time, it is important to realize that the problem of fluids
in other theories of gravity has interesting aspects. And perhaps more importantly, we
know that General Relativity cannot be the ultimate theory of gravity—it absolutely
breaks on the quantum scale andmay also have trouble on the large scales of cosmology
(taking the presence of the mysterious dark energy as evidence that something is
missing in our understanding). As we hope that the reviewwill be used by students and
researchers who are not necessarily experts in General Relativity and the techniques
of differential geometry, we have included an introduction to the mathematical tools
required to build relativistic models. Our summary is not a proper introduction to
General Relativity, but we have made an effort to define all the tools we need for
the discussion that follows. Hopefully, our description is sufficiently self-contained to
provide a less experienced reader with a working understanding of (at least some of)
the mathematics involved. In particular, the reader will find an extended discussion of
the covariant and Lie derivatives. This is natural since many important properties of
fluids, both relativistic and non-relativistic, can be established and understood by the
use of parallel transport and Lie-dragging, and it is vital to appreciate the distinction
between the two. As we do not want to make the initial learning curve too steep, we
have tried to avoid the language of differential geometry. This makes the discussion
less “elegant” in places, but we feel that this is a price worth paying if the aim is to
make the material more generally accessible.

Ideally, the reader should have some familiarity with standard fluid dynamics, e.g.,
at the level of the discussion in Landau and Lifshitz (1959), basic thermodynamics
(Reichl 1984), and the mathematics of action principles and how they are used to gen-
erate equations of motion (Lanczos 1949). Having stated this, it is clear that we are
facing a challenge. We are trying to introduce a topic on which numerous books have
been written (e.g., Tolman 1987; Landau and Lifshitz 1959; Lichnerowicz 1967; Anile
1989; Wilson and Mathews 2003; Rezzolla and Zanotti 2013), and which requires an
understanding of a significant fraction of modern theoretical physics. This does not,
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however, mean that there is no place for this kind of survey. We continue to see excit-
ing developments for multi-constituent systems, such as superfluid/superconducting
neutron star cores.1 Much of the recent theory work has been guided by the geometric
approach to fluid dynamics championed by Carter (1983, 1989a, 1992), which pro-
vides a powerful framework that makes extensions to multi-fluid situations intuitive.
A typical example of a phenomenon that arises naturally is the so-called entrainment
effect, which plays a crucial role in a superfluid neutron star core. Given the flexible
nature of the formalism, its natural connection with General Relativity and the poten-
tial for future applications, we have opted to base much of our description on the work
of Carter and colleagues.

It is important to appreciate that, even though the subject of relativistic fluids is
far from new, issues still remain to be resolved. The most obvious shortcoming of
the available theory concerns dissipative effects. As we will see, different dissipa-
tion channels are (at least in principle) easy to incorporate in Newtonian theory but
the extension to General Relativity remains “problematic”. This is an issue—with a
number of notable recent efforts—of key importance for future gravitational-wave
source modelling (e.g., in numerical relativity) as well as the description of laboratory
systems (like heavy-ion collisions). In order to develop the required framework, we
need to make progress on both the underpinning theory and implementations (e.g.,
computationally “affordable” simulations)—a real, but at the same time inspiring,
challenge.

1.1 A brief history of fluids

The two fluids air and water are essential to human survival. This obvious fact implies
a basic need to divine their innermost secrets. Homo Sapiens have always needed to
anticipate air and water behaviour under a myriad of circumstances, such as those
that concern water supply, weather, and travel. The essential importance of fluids for
survival—and how they can be exploited to enhance survival—implies that the study of
fluids likely reaches as far back into antiquity as the human race itself. Unfortunately,
our historical records of this ever-ongoing study are not so great that we can reach
very far accurately.

A wonderful account (now in affordable Dover print) is “A History and Philosophy
of FluidMechanics” by Tokaty (1994). He points out that while early cultures may not
have had universities, government sponsored laboratories, or privately funded centers
pursuing fluids research (nor a Living Reviews journal on which to communicate
results!), there was certainly some collective understanding. After all, there is a clear
connection between the viability of early civilizations and their access to water. For
example, we have the societies associated with the Yellow andYangtze rivers in China,
the Ganges in India, the Volga in Russia, the Thames in England, and the Seine
in France, to name just a few. We must also not forget the Babylonians and their
amazing technological (irrigation) achievements in the land between the Tigris and

1 We use “superfluid” to refer to any system which has the ability to flow without friction. In this sense,
superfluids and superconductors are viewed in the same way. When we wish to distinguish charge-carrying
superfluids, we will call them superconductors.
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Euphrates, and the Egyptians, whose intimacy with the flooding of the Nile is well
documented. In North America, we have the so-calledMississippians, who left behind
their mound-building accomplishments. For example, the Cahokians (in Collinsville,
Illinois) constructed Monk’s Mound,2 the largest pre-Columbian earthen structure in
existence that is “…over 100 feet tall, 1000 feet long, and 800 feet wide (larger at its
base than the Great Pyramid of Giza)”.

In terms of ocean and sea travel, we know that the maritime ability of the Mediter-
ranean people was the key to ensuring cultural and economic growth and societal
stability. The finely-tuned skills of the Polynesians in the South Pacific allowed them
to travel great distances, perhaps reaching as far as South America, and certainly mak-
ing it to the “most remote spot on the Earth”, Easter Island. Apparently, they were
adept at reading the smallest of signs—water colour, views of weather on the horizon,
subtleties of wind patterns, floating objects, birds, etc.—as indications of nearby land
masses. Finally, the harsh climate of the North Atlantic was overcome by the highly
accomplished Nordic sailors, whose skills allowed them to reach North America. Per-
haps it would be appropriate to think of these early explorers as adept geophysical
fluid dynamicists/oceanographers?

Many great scientists are associated with the study of fluids. Lost are the names
of the individuals who, almost 400,000 years ago, carved “aerodynamically correct”
(Gad-el Hak 1998) wooden spears. Also lost are those who developed boomerangs and
fin-stabilized arrows. Among those not lost is Archimedes, the Greek mathematician
(287–212 BC), who provided a mathematical expression for the buoyant force on
bodies. Earlier, Thales of Miletus (624–546 BC) asked the simple question: What is
air and water? His question is profound as it represents a departure from the main,
myth-based modes of inquiry at that time. Tokaty ranks Hero of Alexandria as one of
the great, early contributors. Hero (c. 10–70) was a Greek scientist and engineer, who
left behind writings and drawings that, from today’s perspective, indicate a good grasp
of basic fluid mechanics. To make a complete account of individual contributions to
our present understanding of fluid dynamics is, of course, impossible. Yet, it is useful
to list some of the contributors to the field. We provide a highly subjective “timeline”
in Fig. 1. The list is to a large extent focussed on the topics covered in this review,
and includes chemists, engineers, mathematicians, philosophers, and physicists. It
recognizes those that have contributed to the development of non-relativistic fluids,
their relativistic counterparts, multi-fluid versions of both, and exotic phenomena like
superfluidity. The list provides context—both historical and scientific—and also serves
as an informal table of contents for this survey.

Tokaty (1994) discusses the human propensity for destruction when it comes to
water resources. Depletion and pollution are the main offenders. He refers to a “Battle
of the Fluids” as a struggle between their destruction and protection. His context for
this discussion was the Cold War. He rightly points out the failure to protect our water
and air resources by the two dominant powers—the USA andUSSR. In an ironic twist,
modern study of the relativistic properties of fluids has its own “Battle of the Fluids”.
A self-gravitating mass can become absolutely unstable and collapse to a black hole,
the ultimate destruction of any form of matter.

2 http://en.wikipedia.org/wiki/Monk’s_Mound.
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Fig. 1 A “timeline” focussed on the topics covered in this review, including chemists, engineers, mathe-
maticians, philosophers, and physicists who have contributed to the development of non-relativistic fluids,
their relativistic counterparts, multi-fluid versions of both, and exotic phenomena like superfluidity

1.2 Why are fluid models useful?

The Merriam-Webster online dictionary3 defines a fluid as “…a substance (as a liquid
or gas) tending to flow or conform to the outline of its container” when taken as a noun
and “…having particles that easily move and change their relative position without
a separation of the mass and that easily yield to pressure: capable of flowing” when
taken as an adjective. The best model of physics is the Standard Model which is ulti-
mately the description of the “substance” that makes up our fluids. The substance of
the StandardModel consists of a remarkably small set of elementary particles: leptons,
quarks, and the so-called “force” carriers (gauge-vector bosons). Each elementary par-

3 https://www.merriam-webster.com/.
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Fig. 2 An object with a
characteristic size D is modeled
as a fluid that contains M fluid
elements. From inside the object
we magnify a generic fluid
element of characteristic size L .
In order for the fluid model to
work we require M � N � 1
and D � L

D

L

M fluid elements N particles

ticle is quantum mechanical, but the Einstein equations require explicit trajectories.
Effectively, there is a disconnect between the quantum scale and our classical descrip-
tion of gravity. Moreover, cosmology and neutron stars are (essentially) many particle
systems and—even forgetting about quantum mechanics—it is not possible to track
each and every “particle” that makes them up, regardless of whether these are elemen-
tary (leptons, quarks, etc.) or collections of elementary particles (e.g., individual stars
in galaxies and the galaxies themselves in cosmology). The fluid model is such that
the inherent quantum mechanical behaviour, and the existence of many particles are
averaged over in such a way that it can be implemented consistently in the Einstein
equations.

Central to the model is the notion of a “fluid element”, also known as a “fluid
particle” or “material particle” (Lautrup 2005). This is an imagined, local “box” that
is infinitesimal with respect to the system en masse and yet large enough to contain
a large number of particles, N (e.g., an Avogadro’s number of particles). The idea is
illustrated in Fig. 2. We consider an object with characteristic size D that is modeled
as a fluid that contains M fluid elements. From inside the object we magnify a generic
fluid element of characteristic size L . In order for the fluid model to work we require
M � N � 1 and D � L . Strictly speaking, the model has L infinitesimal, M → ∞,
but with the total number of particles remaining finite. An operational point of view is
that discussed by Lautrup in his fine text “Physics of Continuous Matter” (2005). He
rightly points out the implicit connection to the intended precision. At some level, any
real system will be discrete and no longer represented by a continuum. As long as the
scale where the discreteness of matter and fluctuations are important is much smaller
than the desired precision, the continuum approximation is valid. The key point is
that the fluid model allows us to consider complex dynamical phenomena in terms of
a (relatively) small number of variables. We do not have to keep track of individual
particles. The connection between the different scales (macroscopic and microscopic)
plays a role, but many of the tricky issues are assumed to be “known” (read: encoded
in the matter equation of state, the determination of which may be someone else’s
“problem”).

The aim of this review is to describe how the fluid model can be used (and under-
stood) in the context of Einstein’s curved spacetime theory for gravity. As will become
clear, this necessarily involves attention to detail. For example, we need to consider
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Fig. 3 An illustration of the
fibration of spacetime associated
with a set of fluid “observers”,
each with their own four
velocity ua and notion of time
(the proper time measured on a
co-moving clock). In the fluid
model, individual worldlines are
assigned to specific fluid
elements (which involve
averages over the large number
of constituent particles)

xa(τ)

ua

how the coordinate invariance of General Relativity (with no preferred observers)
impacts on (by necessity) observer-dependent notions from thermodynamics and the
underlying microphysics. We also need to explore to what extent the dynamics of
spacetime enters the problem. This is particularly relevant in the context of numer-
ical simulations of energetic gravitational-wave sources (like merging neutron stars
or massive stars collapsing under their own weight). The first step we have to take
is natural—we need to consider how a given fluid element moves through spacetime
and how this fluid motion enters the Einstein field equations. To some extent, this is a
text-book problemwith a well-known solution (= the perfect fluidmodel). However, as
we will learn along the way, more realistic matter descriptions (including for example
superfluidity, as expected in the core of a mature neutron star, or the elasticity of the
star’s crust) require a more sophisticated approach. Nevertheless, the first step we have
to take is natural.

The explicit trajectories that enter the Einstein equations are those of the fluid
elements, not the much smaller (generally fundamental) particles that are “confined”
(on average) to the elements. Hence, when we talk about the fluid velocity, we mean
the velocity of fluid elements. In this sense, the use of the phrase “fluid particle” is
very apt. For instance, each fluid element traces out a timelike trajectory in spacetime
xa(τ ), such that the unit tangent vector

ua = dxa

dτ
, with uaua = −1 (1.1)

where τ is time measured on a co-moving clock (proper time), provides the four
velocity of the particle. The idea is illustrated in Fig. 3.

The fundamental variable that enters the fluid equations is the particle flux density,
in the following given by na = nua , where n ≈ N/L3 is the particle number density
of the fluid element whose worldline is given by ua . An object like a neutron star is
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then modelled as a collection of particle flux density worldlines that continuously fill a
portion of spacetime. In fact, wewill see later that the relativistic Euler equation is little
more than an “integrability” condition that guarantees that this filling (or fibration) of
spacetime can be performed.

Equivalently, we may consider the family of three-dimensional hypersurfaces that
are pierced by the worldlines at given instants of time, as illustrated later in Fig. 10.
The integrability condition in this case guarantees that the family of hypersurfaces
continuously fill a portion of spacetime. In this view, a fluid is a so-called three-brane
(see Carter 1992 for a general discussion of branes). In fact, the strategy adopted
in Sect. 6 to derive the relativistic fluid equations is based on thinking of a fluid as
living in a three-dimensional “matter” space (i.e., the left-hand-side of Fig. 10). At
first sight, this approach may seem confusing. However, as we will demonstrate, it
allows us to develop a versatile framework for complicated systems which (in turn)
enables progress on a number of relevant problems in astrophysics and cosmology.

Once we understand how to build a fluid model using the matter space, it is straight-
forward to extend the technique to single fluidswith several constituents, as in Sect. 8.1,
and multiple fluid systems, as in Sect. 9. An example of the former would be a fluid
with one species of particles at a non-zero temperature, i.e., non-zero entropy, that does
not allow for heat conduction relative to the particles. (Of course, entropy still flows
through spacetime.) The latter example can be obtained by relaxing the constraint
of no heat conduction. In this case the particles and the entropy are both considered
to be fluids4 that are dynamically independent, meaning that the entropy will have
a four-velocity that is generally different from that of the particles. There is thus an
associated collection of fluid elements for the particles and another for the entropy.
At each point of spacetime that the system occupies there will be two fluid elements,
in other words, there are two matter spaces (cf. Sect. 9). Perhaps the most important
consequence of this is that there can be a relative flow of the entropy with respect to
the particles. In general, relative flows lead to the so-called entrainment effect, i.e., the
momentum of one fluid in a multiple fluid system is in principle a linear combination
of all the fluid velocities (Andersson and Comer 2006). The canonical examples of
two fluid models with entrainment are superfluid He4 (Putterman 1974) at non-zero
temperature and a mixture of superfluid He4 and He3 (Andreev and Bashkin 1975).
We will develop a detailed understanding of all these concepts in due course, but as it
is important to proceed with care we will first focus on the physics that provide input
for the fluid model.

1.3 Notation and conventions

Throughout the article we assume the “MTW” (Misner et al. 1973) conventions. We
also generally assume geometrized units c = G = 1, unless specifically noted other-
wise, and set the Boltzmann constant kB = 1. A coordinate basis will always be used,
with spacetime indices denoted by lowercase Latin letters {a, b, . . .} etc. that range
over {0, 1, 2, 3} (time being the zeroth coordinate), and purely spatial indices denoted

4 The notion that heat can be considered a “fluid” may seem somewhat heretical, but we will demonstrate
that it allows us to explain aspects that otherwise remain somewhat ad hoc.
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by lowercase Latin letters {i, j, . . .} etc. that range over {1, 2, 3}. Unless otherwise
noted, we assume that the Einstein summation convention applies. Finally, we adopt
the convention that ux

a = gabub
x where x is a fluid constituent label. These are never

summed over when repeated. Also note that, while it is possible to build a chemically
covariant formalism (with the x treated on a par with spacetime indices) we will not
do so here. Our approach has the “advantage” that the constituent labels can be placed
up or down, without this having any particular meaning, which helps keep many of
the expressions tidy. We will also regularly have to deal with expressions where more
than two of these labels are repeated and this complicates a fully covariant approach.

2 Thermodynamics and equations of state

As fluids consists of many fluid elements—and each fluid element consists of many
particles—the state of matter in a given fluid element is (inevitably) determined ther-
modynamically (Reichl 1984). This means that only a few parameters are tracked as
the fluid element evolves. In a typical situation, not all the thermodynamic variables
are independent—they are connected through the so-called equation of state. More-
over, the number of independent variables may be reduced if the system has an overall
additivity property. As this is a very instructive example, we will illustrate this point
in detail.

2.1 Fundamental, or Euler, relation

Consider the standard form of the combined First and Second Laws5 for a simple,
single-species system:

d E = T d S − p dV + μ d N . (2.1)

This follows because there is an equation of state, meaning that E = E(S, V , N )
where

T = ∂E

∂S

∣
∣
∣
∣
V ,N

, p = − ∂E

∂V

∣
∣
∣
∣
S,N
, μ = ∂E

∂N

∣
∣
∣
∣
S,V
. (2.2)

The total energy E , entropy S, volume V , and particle number N are said to be
extensive if when S, V , and N are doubled, say, then E will also double. Conversely,
the temperature T , pressure p, and chemical potential μ are called intensive if they do
not change their values when V , N , and S are doubled. This is the additivity property
andwewill now showwhy it implies anEuler relation (also known as the “fundamental
relation”; Reichl 1984) among the thermodynamic variables. This relation is essential
for any effort to connect the microphysics and thermodynamics to the fluid dynamics.

Let a bar represent the change in thermodynamic variables when S, V , and N are
all increased by the same amount λ, i.e.,

S = λS, V = λV , N = λN . (2.3)

5 We say “combined” here because the First Law is a statement about heat and work, and says nothing
about the entropy, which enters through the Second Law. Heat is not strictly equal to T dS for all processes;
they are equal for quasistatic processes, but not for free expansion of a gas into vacuum (Schroeder 2000).
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Taking E to be extensive6 then means

E(S, V , N ) = λE(S, V , N ). (2.4)

Of course, we have for the intensive variables

T = T , p = p, μ = μ. (2.5)

Now,

d E = λ d E + E dλ = T d S − p dV + μ d N

= λ (T d S − pdV + μd N )+ (T S − pV + μN ) dλ, (2.6)

and (since the change in the energy should be proportional to λ) we find the Euler
relation

E = T S − pV + μN . (2.7)

If we let ε = E/V denote the total energy density, s = S/V the total entropy density,
and n = N/V the total particle number density, then

p + ε = T s + μn. (2.8)

The nicest feature of an extensive system is that the number of parameters required
for a complete specification of the thermodynamic state can be reduced by one, in
such a way that only intensive variables remain. To see this, let λ = 1/V , in which
case

S = s, V = 1, N = n. (2.9)

The re-scaled energy becomes just the total energy density, i.e., E = E/V = ε, and
moreover ε = ε(s, n) since

ε = E(S, V , N ) = E(S/V , 1, N/V ) = E(s, n). (2.10)

The first law thus becomes

d E = T d S − p dV + μ d N = T ds + μ dn, (2.11)

or
dε = T ds + μ dn. (2.12)

This implies

T = ∂ε

∂s

∣
∣
∣
∣
n
, μ = ∂ε

∂n

∣
∣
∣
∣
s
. (2.13)

6 Note that the issue of extensivity become complicated in systems where gravity play a role. However, here
(and in the following) we take the view that the themodynamical relations hold on the scale of an individual
fluid element and that this scale is much smaller than that associated with the spacetime curvature. In effect,
we are building the thermodynamics in a local inertial frame.
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That is,μ and T are the chemical potentials7 associated with the particles and entropy,
respectively. The Euler relation (2.8) then yields the pressure as

p = −ε + s
∂ε

∂s

∣
∣
∣
∣
n
+ n

∂ε

∂n

∣
∣
∣
∣
s
. (2.14)

In essence, we can think of a given relation ε(s, n) as the equation of state, to be
determined in the flat, tangent space at each point of spacetime, or, physically, small
enough patches across which the changes in the gravitational field are negligible, but
also large enough to contain a large number of particles. For example, for a neutron
star, Glendenning (1997) argues that the relative change in the metric over the size of
a nucleon with respect to the change over the entire star is about 10−19, and thus one
must consider many inter-nucleon spacings before a substantial change in the metric
occurs. In other words, it is sufficient to determine the properties of matter in special
relativity, neglecting effects due to the spacetime curvature.8 The equation of state
is the key link between the microphysics that governs the local fluid behaviour and
global quantities (such as the mass and radius of a star).

In what follows we will use a thermodynamic formulation that satisfies the fun-
damental scaling relation, meaning that the local thermodynamic state (modulo
entrainment, see later) is a function of the variables N/V , S/V , and so on. This
is in contrast to the discussion in, for example, “MTW” (Misner et al. 1973). In their
approach one fixes from the outset the total number of particles N , meaning that one
simply sets d N = 0 in the first law of thermodynamics. Thus, without imposing any
scaling relation, one can write

dε = d (E/V ) = T ds + 1

n
(p + ε − T s) dn. (2.15)

This is consistent with our starting point, because we assume that the extensive vari-
ables associated with a fluid element do not change as the fluid element moves
through spacetime. However, we feel that the scaling is necessary in that the fully
conservative (read: non-dissipative) fluid formalism presented below can be adapted
to non-conservative, or dissipative, situations where d N = 0 cannot be imposed.

2.2 Case study: neutron stars

With amass ofmore than that of the Sun squeezed inside a radius of about 10 km, a neu-
tron star representsmany extremes of physics. The relevantmatter description involves
issues that cannot be explored in terrestrial laboratories, yet relies on aspects similar to
those probed by high-energy colliders. However, while the LHC at CERN and RHIC
at Brookhaven (among others) probe low density matter at high temperatures, neutron
stars are cold (on the nuclear physics temperature scale) and reach significantly higher

7 Loosely speaking, the “energy” associated with adding or removing one particle of the given species from
the system.
8 This is fortunate, as we may otherwise have to face the thorny issue of quantum gravity head-on.
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Fig. 4 A broad-brush illustration of the phase space for dense matter physics, represented by the baryon
chemical potential (μb) (horizontal axis) and the temperature (vertical axis). Experiments carried out using
high-energy colliders, like the LHC and RHIC, aim to explore the nature of the quark-gluon plasma and
the conditions of the early Universe—hot matter at relatively low densities. In contrast, an understanding
of relativistic stars depends on the dense-low temperature regime, which unlikely to be within reach of
laboratory efforts. First principles calculation in the μb → ∞ limit of QCD suggests that the core of a
mature neutron star may contain a colour superconductor, but the exact nature of the quark pairing at the
relevant densitites is not (particularly) well understood (Alford et al. 2008)

densities. In effect, the problems are complementary, see Fig. 4 for a schematic illus-
tration. Moreover, atrophysical modelling of neutron star dynamics (e.g., the global
oscillations of the star) typically involves large enough scales that a fluid description
is an absolute necessity. Yet, such models must build on appropriate microphysics
input (encoded in the equation of state). This is problematic because first principle
calculations of the interactions for many-body QCD systems are not yet within reach
(due to the fermion sign problem). In essence, we do not know the composition of
matter. There may be a large population of hyperons present at densities relevant for
neutron star cores. Perhaps the quarks are deconfined to form a quark-gluon plasma?
Our models needs to be flexible enough to account for different possibilities, and the
problem is further complicated by the state of matter. At the relevant temperatures,
many of the particle constituents (neutrons, protons, hyperons, etc.) are expected to
exhibit Cooper pairing to form superfluid/superconducting condensates. This brings
in aspects from low-temperature physics and a realistic neutron-star model must rec-
ognize this. In short, the problem is overwhelming and one would typically (at some
point) have to resort to phenomenology, using experiments and observations to test
predictions as new models become available (Watts et al. 2016).

The details may be blurry but (at least) the rules that guide the exercise are fairly
clear.Weneed to buildmodels that allow for a complexmatter composition and account
for different states of matter (from solids to superfluids). This involves going beyond
the single-fluid setting and considering systems with distinct components exhibiting
relative flows. In short, we need to model multi-constituent multi-fluid systems. As
both concepts will be central to the discussion, let us introduce the main ideas already
at this point.
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It is natural to start by considering the matter in the outer core of a neutron star,
dominated by neutrons with a small fraction of protons and electrons. Assuming that
the different constituents flow together (we will relax this assumption later), we have
the thermodynamic relation (assuming matter at zero temperature, for simplicity)

p + ε =
∑

x

nxμx, with x = n, p, e, (2.16)

where nx are the respective number densities and μx the corresponding chemical
potentials. This is a straightforward extension of (2.14). At the microscopic scale
(e.g., the level of the equation of state), it is usually assumed that the matter is charge
neutral. The number of electronsmust balance the number of protons.Wehave np = ne
and it follows that

p + ε = nnμn + np(μp + μe) (2.17)

Next, we need to consider the issue of chemical equilibrium. For the case under
consideration this would involve the system being such that the Urca reactions are in
balance. In essence, this means that we have

β ≡ μn − (μp + μe) = 0. (2.18)

This condition determines how many neutrons we need per proton, which means that
the composition is specified. In general, we can rewrite the thermodynamical relation
as9

p + ε = nμn − npβ, (2.19)

where we have introduced the baryon number density n = nn + np. Assuming equi-
librium, this leads to

p = nμn(n)− ε(n); (2.20)

that is, we have a one-parameter equation of state. It is common to think of the equation
of state in this way—the pressure is provided as a function of the (baryon number)
density.

Many formulations for numerical simulations take this “barotropic” model as the
starting point. The usual logic works (in some sense) “backwards” by focussing on
the mass density and separating out the mass density contribution to the chemical
potential by introducing ρ = mn where m is the baryon mass. That is, we use

μn = m + μ. (2.21)

This expression reflects that simple fact that the (rest) mass of a particle in isola-
tion should be mc2, leaving the (to some extent) unknown aspects of the many-body
interactions to be encoded in μ. This allows us to write

p = ρ + (nμ− ε) = ρ(1 − ε), (2.22)

9 In general, one may have to worry about neutrinos here.
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where ε represents the (specific) internal energy. Numerical efforts often focus on ε.
The reason for this will become shortly. First, it is easy to see that we also have

ε = ρ(1 + ε), (2.23)

since

μ = d(ρε)

dn
. (2.24)

It is also useful to note that
dε = p

ρ2
dρ. (2.25)

Let us now see what happens when we try to account for additional aspects, like
the effects due to a finite temperature. Assuming that we are comfortable working
with the chemical potential (as we will do throughout much of this review) the natural
starting point would be (2.12). However, it could be that we would prefer to extend
the discussion using the internal energy. In that case, we first of all need to convince
ourselves that (2.22) and (2.23) remain valid when ε = ε(n, s). We then have ε =
ε(ρ, s), which leads to

∂ε

∂s
= T

ρ
(2.26)

and we find that

dε = p

ρ2
dρ + T

ρ
ds − sT

ρ2
dρ = p

ρ2
dρ + T dŝ (2.27)

where we have introduced the specific entropy

ŝ = s

ρ
. (2.28)

If we want to progress beyond this point, we need to provide the form for the internal
energy. This requires a finite temperature treatment on the microphysics level, as
discussedby (for example)Constantinou et al. (2015) andLattimer andPrakash (2016).

Before we move on, it is useful to note that many numerical simulations have been
based on implementing a pragmatic result drawn from the ideal gas law

p = nkB T , (2.29)

where kB is Boltzmann’s constant. Noting that this model leads to ε = CvT , with Cv
the specific heat capacity (at fixed volume), Mayer’s relation

kB

Cv
= m(Γ − 1), (2.30)

where Γ is the adiabatic index, leads to

p = ρε(Γ − 1). (2.31)
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For obvious reasons this is commonly referred to as the Gamma-law equation of state.
It may not be particularly realistic—at least not for neutron stars—but it is simple
(and relatively easy to implement). It also provides a straightforward measure of the
temperature. Combining (2.29) and (2.31) we arrive at

T = mε

kB
(Γ − 1) = m

kB

p

ρ
. (2.32)

This is useful, but we need to be careful with this result. In amore general setting—like
a multi-constituent system for which the ideal gas law argument is dubious—we are
not quantifying the actual temperature. This would require use of the relevant physics
from the beginning of the argument rather than at the end. However, sometimes you
have to accept a bit of pragmatism as the price of progress.

Up to this point, we have separated the microphysics (determining the equation of
state) from the hydrodynamics (governing stellar oscillations and the like). Let us now
consider the scale associated with fluid dynamics. For ordinary matter, the relevant
scale is set by interparticle collisions. Collisions tend to dissipate relative motion,
leading to the system reaching (local dynamical and thermodynamical) equilibrium.
Since we want to associate a single “velocity” with each fluid element, the particles
must be able to equilibrate in ameaningful sense (e.g., have a velocity distributionwith
a well defined peak, allowing us to average over the system). The relevant length-scale
is the mean-free path. This concept is closely related to the shear viscosity of matter
(which arises due to particle scattering). In the case of neutrons (which dominate the
outer core of a typical neutron star) we would have

λ ≈ η

ρvF
≈ 10−4

(
ρ

1014 g/cm3

)11/12 (108 K

T

)2

cm, (2.33)

where vF is the relevant Fermi velocity and we have used the estimate for the neutron-
neutron scattering shear viscosity η from Andersson et al. (2005). This estimate gives
us an idea of the smallest scale on which it makes sense to consider the system as
a fluid. Notably, the mean-free path is many orders of magnitude larger than the
interparticle separation (typically, the Fermi scale). The actual scale assumed in a fluid
model typically depends on the problem one wants to study and tends to be limited by
computational resources. For example, in current state of the art simulations of neutron
star mergers, the computational fluid elements tend to be of order a few tens to perhaps
a hundred meters across. They are in no sense microscopic entities. It is important to
appreciate that these models involve a significant amount of “extrapolation”.

Assuming that the averaging procedure makes sense (we will have more to say
about this later), the equations of hydrodynamics can be obtained from a set of (more
or less) phenomenological balance laws representing the conservation (or not...) of
the key quantities. The possibility that different fluid components may be able to
flow (or perhaps rather “drift”) relative to one another, leads to a multi-fluid system.
In order to model such systems we assume that the system contains a number of
distinguishable components, the dynamics of which are coupled. The formalism that
we will develop draws on experience from chemistry, where one regularly has to
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consider the mechanics of mixtures, but is adapted to the kind of systems that are
relevant for General Relativity. The archetypal such system is (again) represented
by the neutron star core, where we expect different components (neutrons, protons,
hyperons) to be in a superfluid state. However, the formalism is general enough that
it can be applied in a variety of contexts, including (as we shall see later) the problem
of heat conduction and the charged flows relevant for electromagnetism.

As the concept may not be familiar, it is worth considering the notion of a multi-
fluid system in a bit more detail before we move on. In principle, it is easy to see how
such a system may arise. Recall the discussion of the mean-free path, but consider a
system with two distinct particle species. Suppose that the mean-free path associated
with scattering of particles of the same kind is (for some reason) significantly shorter
than the scale for inter-species collisions. Then we have two clearly defined “fluids”.
In fact, any system where it is meaningful to consider one component drifting (on
average) relative to another one can be considered from this point of view (a liquid
with gas bubbles would be an obvious example).

Another relevant context involves systems that exhibit superfluidity. At the most
basic level, superfluidity implies that no friction impedes the flow. Technically, the
previous argument leading to a scale for averaging does not work anymore. However,
a superfluid system has a different scale associated with it; the so-called coherence
length. The coherence length arises from the fact that a superfluid is a “macroscopic”
quantum state, the flow of which depends on the gradient of the phase of the wave-
function (the so-called order parameter, see Sect. 13.1). On some small scale, the
superfluidity breaks down due to quantum fluctations. This defines the coherence
length. It can be taken as the typical “size” of a Cooper pair in a fermionic system. On
any larger scale the system exhibits collective (fluid) behaviour.

For neutron-star superfluids, the coherence length is of the order of tens of Fermi;
evidently, much smaller than the mean-free path in the normal fluid case. This means
that superfluids can exhibit extremely small scale dynamics. Since a superfluid is invis-
cid, superfluid neutrons and superconducting protons (say) do not scatter (at least not
at as long as thermal excitations can be ignored) and hence the outer core of a neutron
star demands a multi-fluid treatment (Glampedakis et al. 2011). One can meaningfully
take the fluid elements to have a size of the order of the coherence length, i.e. they are
tiny. However, in reality the problem is more complicated, as yet another length-scale
needs to be considered. First of all, on scales larger than the Debye screening length,
the electrons will be electromagnetically locked to the protons, forming a charge-
neutral conglomerate that does exhibit friction (due to electron-electron scattering).
This brings us back to the mean-free path argument. At finite temperatures we also
need to consider thermal excitations for both neutrons and protons (which may scatter
and dissipate), making the problem rather complex. Finally, ideal superfluids are irro-
tational and neutron stars are not. In order tomimic bulk rotation the neutron superfluid
must form a dense array of vortices (locally breaking the superfluidity). This brings
yet another length scale into the picture. In order to develop a useful fluid model, we
need to average over the vortices, as well. This makes the effective fluid elements
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much larger. The typical vortex spacing in a neutron star is of the order;

dn ≈ 4 × 10−4
(

P

1 ms

)1/2

cm, (2.34)

where P is the star’s spin period. In other words, the fluid elements we consider may
(at the end of the day) be quite large also in a superfluid system.

3 Physics in a curved spacetime

There is an extensive literature on Special and General Relativity and the spacetime-
based view10 of the laws of physics, providing historical context, technical insight
and topical updates. For a student at any level interested in developing a working
understandingwe recommendTaylor andWheeler (1992) for an introduction, followed
by Hartle’s excellent text (2003) designed for students at the undergraduate level. The
recent contribution from Poisson and Will (2014) provides a detailed discussion of
the link between Newtonian gravity and Einstein’s four dimensional picture. For more
advanced students, we suggest two of the classics, “MTW” (Misner et al. 1973) and
Weinberg (1972), or the more contemporary book by Wald (1984). Finally, let us not
forget the Living Reviews journal as a premier online source of up-to-date information!

In terms of the experimental and/or observational support for Special and General
Relativity, we recommend two articles by Will that were written for the 2005 World
Year of Physics celebration (2005, 2006). They summarize a variety of tests that have
been designed to expose breakdowns in both theories. (We also recommend Will’s
popular book Was Einstein Right? (1986) and his technical exposition Theory and
Experiment in Gravitational Physics (1993).) Updates including the breakthrough
observations of gravitational waves can be found in recent monographs (Maggiore
2018; Andersson 2019) . There have been significant recent developments, but... to
date, Einstein’s theoretical edifice is still standing!

For Special Relativity, this is not surprising, given its long list of successes: expla-
nation of the Michelson–Morley result, the prediction and subsequent discovery of
anti-matter, and the standard model of particle physics, to name a few. Will (2006)
offers the observation that genetic mutations via cosmic rays require Special Relativ-
ity, since otherwise muons would decay before making it to the surface of the Earth.
On a more somber note, we may consider the Trinity site in New Mexico, and the
tragedies of Hiroshima and Nagasaki, as reminders of E = mc2.

In support of General Relativity, there are Eötvös-type experiments testing the
equivalence of inertial and gravitational mass, detection of gravitational red-shifts
of photons, the passing of the solar system tests, confirmation of energy loss via
gravitational radiation in the Hulse–Taylor binary pulsar—and eventually the first
direct detection of these faint whispers from the Universe in 2015—and the expansion

10 There are three space and one time dimensions that form a type of topological space known as amanifold
(Wald 1984). Local, suitably small patches of a curved spacetime are practically the same as patches of flat,
Minkowski spacetime. Moreover, where two patches overlap, the identification of points in one patch with
those in the other is smooth.
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of the Universe. Incredibly, General Relativity even finds a practical application in the
GPS system. In fact, we need both of Einstein’s theories. The speed of the moving
clock leads to it slowing down by 7 micro-seconds every day, while the fact that a
clock in a gravitational field runs slow, leads to the orbiting clock appearing to speed
up by 45 micro-seconds each day. All in all, if we ignore relativity position errors
accumulate at a rate of about 10 km every day (Will 2006). This would make reliable
navigation impossible.

The evidence is overwhelming that General Relativity, or at least some closely
related theory that passes the entire collection of tests, is the proper description of
gravity. Given this, we assume the Einstein Equivalence Principle, i.e., that (Will
2006, 2005, 1993)

– test bodies fall with the same acceleration independently of their internal structure
or composition;

– the outcome of any local non-gravitational experiment is independent of the veloc-
ity of the freely-falling reference frame in which it is performed;

– the outcome of any local non-gravitational experiment is independent of where
and when in the Universe it is performed.

If the Equivalence Principle holds, then gravitation must be described by a metric-
based theory (Will 2006). This means that

1. spacetime is endowed with a symmetric metric,
2. the trajectories of freely falling bodies are geodesics of that metric, and
3. in local freely falling reference frames, the non-gravitational laws of physics are

those of Special Relativity.

For our present purposes this is very good news. The availability of a metric11 means
that we can develop the theory without requiring much of the differential geometry
edifice that would be needed in a more general case. We will develop the description
of relativistic fluids with this in mind. Readers that find our approach too “pedestrian”
may want to consult the article by Gourgoulhon (2006), which serves as a useful
complement to our description.

3.1 Themetric and spacetime curvature

Our strategy is to provide a “working understanding” of the mathematical objects that
enter the Einstein equations of General Relativity. We assume that the metric is the
fundamental “field” of gravity. For a four-dimensional spacetime themetric determines
the distance between two spacetime points along a given curve, which can generally
be written as a one parameter function with, say, components xa(τ ). For a material
body, it is natural to take the parameter to be proper time, but we may opt to make
a different choice. As we will see, once a notion of parallel transport is established,
the metric also encodes information about the curvature of spacetime, which is taken

11 The metric has a lot of “heavy lifting” to do. It allows us to measure spacetime intervals, provides a
causal structure—the local meaning of past and future—introduces the notions of proper time and local
inertial frames and dictates the motion of test particles.
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to be pseudo-Riemannian, meaning that the signature12 of the metric is − + ++ (cf.
Eq. (3.2) below).

In a coordinate basis, which we will assume throughout this review, the metric is
denoted by gab = gba . The symmetry implies that there are in general ten independent
components (modulo the freedom to set arbitrarily four components that is inherited
fromcoordinate transformations; cf. Eqs. (3.8) and (3.9) below). The spacetimeversion
of the Pythagorean theorem takes the form

ds2 = gab dxa dxb, (3.1)

and in a local set of Minkowski coordinates {t, x, y, z} (i.e., in a local inertial frame,
or small patch of the manifold) it looks like

ds2 = − (dt)2 + (dx)2 + (dy)2 + (dz)2 . (3.2)

This illustrates the − + ++ signature. The inverse metric gab is such that

gacgcb = δa
b, (3.3)

where δa
b is the unit tensor. The metric is also used to raise and lower spacetime

indices, i.e., if we let V a denote a contravariant vector, then its associated covariant
vector (also known as a covector or one-form) Va is obtained as

Va = gabV b ⇔ V a = gabVb. (3.4)

We can now consider three different classes of curves: timelike, null, and spacelike.
A vector is said to be timelike if gabV a V b < 0, null if gabV a V b = 0, and spacelike if
gabV a V b > 0. We can naturally define timelike, null, and spacelike curves in terms
of the congruence of tangent vectors that they generate. A particularly useful timelike
curve for fluids is one that is parameterized by the so-called proper time, i.e., xa(τ )

where
dτ 2 = −ds2. (3.5)

The tangent ua to such a curve has unit magnitude; specifically,

ua ≡ dxa

dτ
, (3.6)

and thus

gabuaub = gab
dxa

dτ

dxb

dτ
= ds2

dτ 2
= −1. (3.7)

Under a coordinate transformation xa → xa , contravariant vectors transform as

V
a = ∂xa

∂xb
V b (3.8)

12 It is worth noting that much work originating from particle physics assumes a metric signature −2. The
main impact of this difference as far as fluids are concerned is that it changes the normalization of the four
velocity.
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and covariant vectors as

V a = ∂xb

∂xa Vb. (3.9)

Tensors with a greater rank (i.e., a greater number of indices), transform similarly by
acting linearly on each index using the above two rules.

When integrating, as we have to when we discuss conservation laws for fluids, we
must make use of an appropriate measure that ensures the coordinate invariance of
the integration. In the context of three-dimensional Euclidean space this measure is
referred to as the Jacobian. For spacetime, we use the so-called volume form εabcd .
It is completely antisymmetric, and for four-dimensional spacetime, it has only one
independent component, which is

ε0123 = √−g and ε0123 = 1√−g
, (3.10)

where g is the determinant of the metric (cf. Appendix 1 for details). The minus sign
is required under the square root because of the metric signature. By contrast, for
three-dimensional Euclidean space (i.e., when considering the fluid equations in the
Newtonian limit) we have

ε123 = √
g and ε123 = 1√

g
, (3.11)

but now g is the determinant of the three-dimensional space metric. A general identity
that is extremely useful for writing the fluid vorticity in three-dimensional, Euclidean
space—using lower-case Latin indices and setting s = 0, n = 3 and j = 1 in Eq. (A.2)
of Appendix 1—is

εmi jεmkl = δi
kδ

j
l − δ j

kδ
i
l . (3.12)

The general identities in Eqs. (A.1–A.3) of Appendix 1 will be frequently used in the
following.

3.2 Parallel transport and the covariant derivative

In order to have a generally covariant prescription for fluids—in terms of spacetime
tensors—we must have a notion of derivative ∇a that is itself covariant. For example,
when ∇a acts on a vector V a a rank-two tensor of mixed indices must result:

∇bV
a = ∂xc

∂xb

∂xa

∂xd
∇cV d . (3.13)

The ordinary partial derivative does not work because under a general coordinate
transformation

∂V
a

∂xb
= ∂xc

∂xb

∂xa

∂xd

∂V d

∂xc
+ ∂xc

∂xb

∂2xa

∂xc∂xd
V d . (3.14)
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The second term spoils the general covariance, since it vanishes only for the restricted
set of rectilinear transformations

xa = aa
bxb + ba, (3.15)

where aa
b and ba are constants. Note that this includes the Lorentz transformation of

Special Relativity.
For both physical and mathematical reasons, one expects a covariant derivative to

be defined in terms of a limit. This is, however, a bit problematic. In three-dimensional
Euclidean space limits can be defined uniquely as vectors can bemoved aroundwithout
their length and direction changing, for instance, via the use of Cartesian coordinates
(the {i, j , k} set of basis vectors) and the usual dot product. Given these limits, those
corresponding to more general curvilinear coordinates can be established. The same
is not true for curved spaces and/or spacetimes because they do not have an a priori
notion of parallel transport.

Consider the classic example of a vector on the surface of a sphere (illustrated
in Fig. 5). Take this vector and move it along some great circle from the equator to
the North pole in such a way as to always keep the vector pointing along the circle.
Pick a different great circle, and without allowing the vector to rotate, by forcing it
to maintain the same angle with the locally straight portion of the great circle that it
happens to be on, move it back to the equator. Finally, move the vector in a similar way
along the equator until it gets back to its starting point. The vector’s spatial orientation
will be different from its original direction, and the difference is directly related to the
particular path that the vector followed.

On the other hand, we could consider the sphere to be embedded in a three-
dimensional Euclidean space, and let the two-dimensional vector on the sphere result
from projection of a three-dimensional vector. Then we move the projection so that its
higher-dimensional counterpart always maintains the same orientation with respect to
its original direction in the embedding space.When the projection returns to its starting
place it will have exactly the same orientation as it started out with (see Fig. 5). It is
now clear that a derivative operation that depends on comparing a vector at one point
to that of a nearby point is not unique, because it depends on the choice of parallel
transport.

Pauli (1981) notes that Levi-Civita (1917) is the first to have formulated the concept
of parallel “displacement”, with Weyl (1952) generalizing it to manifolds that do not
have a metric. The point of view expounded in the books of Weyl and Pauli is that
parallel transport is best defined as a mapping of the “totality of all vectors” that
“originate” at one point of a manifold with the totality at another point. (In modern
texts, this discussion tends to be based on fiber bundles.) Pauli points out that we
cannot simply require equality of vector components as the mapping.

Let us examine the parallel transport of the force-free, point particle velocity in
Euclidean three-dimensional space as ameans for motivating the form of themapping.
As the velocity is constant, we know that the curve traced out by the particle will be
a straight line. In fact, we can turn this around and say that the velocity parallel
transports itself because the path traced out is a geodesic (i.e., the straightest possible
curve allowed by Euclidean space). In our analysis we will borrow liberally from
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(a) (b)

Fig. 5 A schematic illustration of two possible versions of parallel transport. In the first case (a) a vector
is transported along great circles on the sphere locally maintaining the same angle with the path. If the
contour is closed, the final orientation of the vector will differ from the original one. In case (b) the sphere
is considered to be embedded in a three-dimensional Euclidean space, and the vector on the sphere results
from projection. In this case, the vector returns to the original orientation for a closed contour

the excellent discussion of Lovelock and Rund (1989). Their text is comprehensive
yet readable for anyone not well-versed with differential geometry. Finally, we note
that this analysis will be relevant later when we consider the Newtonian limit of the
relativistic equations, in an arbitrary coordinate basis.

We are all well aware that the points on the curve traced out by the particle can be
described, in Cartesian coordinates, by three functions xi (t) where t is the universal
Newtonian time. Likewise, we know that the tangent vector at each point of the curve
is given by the velocity components vi (t) = dxi/dt , and that the force-free condition
is equivalent to

ai (t) = dvi

dt
= 0 ⇒ vi (t) = const. (3.16)

Hence, the velocity components vi (0) at the point xi (0) are equal to those at any
other point along the curve, say vi (T ) at xi (T ), and so we could simply take vi (0) =
vi (T ) as the mapping. But as Pauli warns, we only need to reconsider this example
using spherical coordinates to see that the velocity components {ṙ , θ̇ , φ̇} must change
as they undergo parallel transport along a straight-line path (assuming the particle
does not pass through the origin). The question is what should be used in place of
component equality? The answer follows oncewe find a curvilinear coordinate version
of dvi/dt = 0.

What we need is a new “time” derivative D/dt , that yields a generally covariant
statement

Dvi

dt
= 0, (3.17)
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where the vi (t) = dxi/dt are the velocity components in a curvilinear system of
coordinates. Consider now a coordinate transformation to the new coordinate system
xi , the inverse being xi = xi (x j ). Given that

vi = ∂xi

∂x j
v j (3.18)

we can write
dvi

dt
=
(

∂xi

∂x j

∂v j

∂xk
+ ∂2xi

∂xk∂x j
v j

)

vk, (3.19)

where
dvi

dt
= ∂vi

∂x j
v j . (3.20)

Again, we have an “offending” term that vanishes only for rectilinear coordinate
transformations. However, we are now in a position to show the importance of this
term to the definition of the covariant derivative.

First note that the metric gi j for our curvilinear coordinate system is obtained from

gi j = ∂xk

∂xi

∂xl

∂x j
δkl , (3.21)

where

δi j =
{

1 for i = j,
0 for i �= j .

(3.22)

Differentiating Eq. (3.21) with respect to x , and permutating indices, we can show
that

∂2xh

∂xi∂x j

∂xl

∂xk
δhl = 1

2

(

gik, j + g jk,i − gi j,k
) ≡ gil

{

l
j k

}

, (3.23)

where we use commas to indicate partial derivatives:

gi j,k ≡ ∂gi j

∂xk
. (3.24)

Using the inverse transformation of gi j to δi j implied by Eq. (3.21), and the fact that

δi
j = ∂xk

∂x j

∂xi

∂xk
, (3.25)

we get
∂2xi

∂x j∂xk
=
{

l
j k

}∂xi

∂xl
. (3.26)

Now we substitute Eq. (3.26) into Eq. (3.19) and find

dvi

dt
= ∂xi

∂x j

Dv j

dt
, (3.27)
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where
Dvi

dt
= v j

(

∂vi

∂x j
+
{

i
k j

}

vk

)

. (3.28)

The operator D/dt is easily seen to be covariantwith respect to general transformations
of curvilinear coordinates.

We now identify the generally covariant derivative (dropping the overline) as

∇ jv
i = ∂vi

∂x j
+
{

i
k j

}

vk ≡ vi ; j . (3.29)

Similarly, the covariant derivative of a covector is

∇ jvi = ∂vi

∂x j
−
{

k
i j

}

vk ≡ vi; j . (3.30)

One extends the covariant derivative to higher rank tensors by adding to the partial

derivative each term that results by acting linearly on each index with
{

i
j k

}

using the

two rules given above.
Relying on our understanding of the force-free point particle, we have built a notion

of parallel transport that is consistent with our intuition based on equality of compo-
nents in Cartesian coordinates. We can now expand this intuition to see how the vector
components in a curvilinear coordinate system must change under an infinitesimal,
parallel displacement from xi (t) to xi (t + δt). Setting Eq. (3.28) to zero, and noting
that viδt = δxi , implies

δvi ≡ ∂vi

∂x j
δx j = −

{

i
k j

}

vkδx j . (3.31)

In General Relativity we assume that under an infinitesimal parallel transport from
a spacetime point xa(τ ) on a given curve to a nearby point xa(τ + δτ) on the same
curve, the components of a vector V a will change in an analogous way, namely

δV a‖ ≡ ∂V a

∂xb
δxb = −Γ a

cbV cδxb, (3.32)

where

δxa ≡ dxa

dτ
δτ. (3.33)

Weyl (1952) refers to the symbol Γ a
bc as the “components of the affine relationship”,

but we will use the modern terminology and call it the connection. In the language of
Weyl and Pauli, this is the mapping that we were looking for.

For Euclidean space, we can verify that the metric satisfies

∇i g jk = 0 (3.34)
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for a general, curvilinear coordinate system. Themetric is thus said to be “compatible”
with the covariant derivative. Metric compatibility is imposed as an assumption in
General Relativity. This results in the so-called Christoffel symbol for the connection,
defined as

Γ a
bc = 1

2
gad (gbd,c + gcd,b − gbc,d

)

. (3.35)

The rules for the covariant derivative of a contravariant vector and a covector are the
same as in Eqs. (3.29) and (3.30), except that all indices are spacetime ones.

Comment: In addition to covariant derivative, we will need to draw on some
aspects of differential geometry. In particular, it is useful to understand the
wedge product and the exterior derivative. The wedge product is (simply) an
antisymmetrized tensor product. In the particular case of two one-forms A and
B, we have

(A ∧ B)ab = 2!A[a Bb]

In general, we can get away with suppressing the indices when we use forms
because we know that we are dealing with forms (all indices downstairs) and
the tensors are anti-symmetric.
Meanwhile, the exterior derivative is defined as a (normalized) anti-symmetric
partial derivative:

(d A)ab = 2∂[a Ab]

The advantage of this definition is that the exterior derivative is a tensor, even
though the partial derivative is not. From the definition—and the fact that
partial derivatives commute—it follows that (for any form A) we have

d(d A) = 0

This leads to the notion that a form is closed if d A = 0 and exact if A = dB
for some form B.

3.3 The Lie derivative and spacetime symmetries

From the above discussion it should be evident that there are other ways to take
derivatives in a curved spacetime. A particularly important tool for measuring changes
in tensors from point to point in spacetime is the Lie derivative. It requires a vector
field, but no connection, and is a more natural definition in the sense that it does not
even require a metric. The Lie derivative yields a tensor of the same type and rank
as the tensor on which the derivative operated (unlike the covariant derivative, which
increases the rank by one). It is as important for Newtonian, non-relativistic fluids as
for relativistic ones (a fact which needs to be continually emphasized as it has not yet
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permeated the fluid literature for chemists, engineers, and physicists). For instance,
the classic papers on the gravitational-wave driven Chandrasekhar–Friedman–Schutz
instability (Friedman and Schutz 1978a, b) in rotating stars are great illustrations of
the use of the Lie derivative in Newtonian physics. We recommend the book by Schutz
(1980) for a complete discussion and derivation of the Lie derivative and its role in
Newtonian fluid dynamics (see also the series of papers by Carter and Chamel 2004,
2005a, b). Here, we will adapt the coordinate-based discussion of Schouten (1989), as
it may be more readily understood by readers not well-versed in differential geometry.

In a first course on classical mechanics, when students encounter rotations, they are
introduced to the idea of active and passive transformations. An active transformation
would be to fix the origin and axis-orientations of a given coordinate system with
respect to some external observer, and then move an object from one point to another
point of the same coordinate system. A passive transformation would be to place an
object so that it remains fixed with respect to some external observer, and then induce a
rotation of the object with respect to a given coordinate system, rotating the coordinate
system itself with respect to the external observer. We will derive the Lie derivative
of a vector by first performing an active transformation and then following it with a
passive transformation to determine how the final vector differs from its original form.
In the language of differential geometry, we will first “push-forward” the vector, and
then subject it to a “pull-back”.

Comment: In the following we will make regular use of maps between dif-
ferent manifolds. The basic idea is that, given two manifolds, M , and N (say),
possibly of different dimension and with coordinates xa and X A, we imagine
a map φ : M → N and a function f : N → R, in turn, a function on M . This
set-up allows us to construct a map ( f ◦ φ) : M → R, giving a function on
M . This is referred to as the pull-back of f by φ, the idea being that we are
pulling back the function from N to M .
The inverse of this does notwork—we cannot push a function “forward”.How-
ever, we know that we can think of a vector as a derivative that maps smooth
functions into numbers. This then allows us to define the push-forward of a
vector. The idea may seem somewhat abstract at this point, but should become
clear later. The Lie derivative provides the first example of the procedure.

In the active (push-forward) sense we imagine that there are two spacetime points
connected by a smooth curve xa(λ). Let the first point be at λ = 0, and the second,
nearby point at λ = ε, i.e., xa(ε); that is,

xa
ε ≡ xa(ε) ≈ xa

0 + ε ξa, (3.36)

where xa
0 ≡ xa(0) and

ξa = dxa

dλ

∣
∣
∣
∣
λ=0

(3.37)
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Fig. 6 A schematic illustration
of the Lie derivative. The
coordinate system is dragged
along with the flow, and one can
imagine an observer “taking
derivatives” as he/she moves
with the flow (see the discussion
in the text)

xa(λ)

x̄a

xa

λ = ϵ

λ = 0

is the tangent to the curve at λ = 0. In the passive (pull-back) sense we imagine that
the coordinate system itself is changed to xa = xa(xb), but in the very special form

xa = xa − ε ξa . (3.38)

In this second step the Lie derivative differs from the covariant derivative. If we insert
Eq. (3.36) into Eq. (3.38) we find the result xa

ε = xa
0 . This is called “Lie-dragging”

of the coordinate frame, meaning that the coordinates at λ = 0 are carried along so
that at λ = ε (and in the new coordinate system) the coordinate labels take the same
numerical values.

As an interesting aside it is worth noting that Arnold (1989)—only a little
whimsically—refers to this construction as the “fisherman’s derivative”. He imag-
ines a fisherman sitting in a boat on a river, “taking derivatives” as the boat moves
along with the current. Let us now see how Lie-dragging reels in vectors.

For some given vector field that takes values V a(λ), say, along the curve, we write

V a
0 = V a(0) (3.39)

for the value of V a at λ = 0 and

V a
ε = V a(ε) (3.40)

for the value at λ = ε. Because the two points xa
0 and xa

ε are infinitesimally close
(ε � 1) we have

V a
ε ≈ V a

0 + ε ξb ∂V a

∂xb

∣
∣
∣
∣
λ=0

(3.41)
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for the value of V a at the nearby point and in the same coordinate system. However,
in the new coordinate system (at the nearby point) we find

V a
ε =

(
∂xa

∂xb
V b
)∣
∣
∣
∣
λ=ε

≈ V a
ε − ε V b

0
∂ξa

∂xb

∣
∣
∣
∣
λ=0
. (3.42)

The Lie derivative now is defined to be

LξV a = lim
ε→0

V a
ε − V a

ε

= ξb ∂V a

∂xb
− V b ∂ξ

a

∂xb

= ξb∇bV a − V b∇bξ
a, (3.43)

where we have dropped the “0” subscript and the last equality follows easily by noting
Γ c

ab = Γ c
ba .

The Lie derivative of a covector Aa is easily obtained by acting on the scalar Aa V a

for an arbitrary vector V a :

Lξ (Aa V a) = V aLξ Aa + AaLξV a

= V aLξ Aa + Aa

(

ξb∇bV a − V b∇bξ
a
)

. (3.44)

But, because Aa V a is a scalar,

Lξ (Aa V a) = ξb∇b(Aa V a)

= ξb (V a∇b Aa + Aa∇bV a) , (3.45)

and thus
V a
(

Lξ Aa − ξb∇b Aa − Ab∇aξ
b
)

= 0. (3.46)

Since V a is arbitrary we have

Lξ Aa = ξb∇b Aa + Ab∇aξ
b. (3.47)

Equation (3.32) introduced the effect of parallel transport on vector components.
By contrast, the Lie-dragging of a vector causes its components to change as

δV a
L = LξV a ε. (3.48)

We see that ifLξV a = 0, then the components of the vector do not change as the vector
is Lie-dragged. Suppose now that V a represents a vector field and that there exists
a corresponding congruence of curves with tangent given by ξa . If the components
of the vector field do not change under Lie-dragging, we can show that this implies
a symmetry, meaning that a coordinate system can be found such that the vector
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components donot dependononeof the coordinates. This is a potentially verypowerful
statement.

Let ξa represent the tangent to the curves drawn out by, say, the a = φ coordinate.
Then we can write xa(λ) = λ which means

ξa = δa
φ. (3.49)

If the Lie derivative of V a with respect to ξb vanishes we find

ξb ∂V a

∂xb
= V b ∂ξ

a

∂xb
= 0. (3.50)

Using this in Eq. (3.41) implies V a
ε = V a

0 , that is to say, the vector field V a(xb) does
not depend on the xa coordinate. Generally speaking, every ξa that exists that causes
the Lie derivative of a vector (or higher rank tensors) to vanish represents a symmetry.

Let us take the spacetime metric gab as an example. A spacetime symmetry can be
represented by a generating vector field ξa such that

Lξ gab = ∇aξb + ∇bξa = 0. (3.51)

This is known asKilling’s equation, and solutions to this equation are naturally referred
to as Killing vectors. It is now fairly easy to demonstrate the claim that the existence
of a Killing vector relates to an underlying symmetry of the spacetime metric. First
we expand (3.51) to get

gbc∂aξ
c + gac∂bξ

c + ξd∂d gab = 0. (3.52)

Then we assume that the Killing vector is associated with one of the coordinates, e.g.,
by letting ξa = δa

0 . The first two terms in (3.52) then vanish by definition, and we are
left with

ξd∂d gab = ∂0gab = 0, (3.53)

demonstrating that the metric does not depend on the x0 coordinate.
An important application of this idea is provided by stationary, axisymmetric, and

asymptotically flat spacetimes—highly relevant in the present context as they capture
the physics of rotating, equilibrium configurations. The associated geometries are
fundamental for the relativistic astrophysics of spinning black holes and neutron stars.
Stationary, axisymmetric, and asymptotically flat spacetimes are such that (Bonazzola
et al. 1993)

1. there exists a Killing vector ta that is timelike at spatial infinity, and the indepen-
dence of the metric on the associated time coordinate leads to the solution being
stationary;

2. there exists a Killing vector φa that vanishes on a timelike 2-surface—the axis of
symmetry—is spacelike everywhere else, and whose orbits are closed curves; and

3. asymptotic flatness means the scalar products tata , φaφ
a , and taφa tend to, respec-

tively, −1, +∞, and 0 at spatial infinity.
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3.4 Spacetime curvature

The main message of the previous two Sects. 3.2 and 3.3 is that one must have an a
priori idea of how vectors and higher rank tensors are moved from point to point in
spacetime. An immediate manifestation of the complexity associated with carrying
tensors about in spacetime is that the covariant derivative does not commute. For a
vector we find

∇b∇cV a − ∇c∇bV a = Ra
dbcV d , (3.54)

where Ra
dbc is the Riemann tensor. It is obtained from

Ra
dbc = Γ a

dc,b − Γ a
db,c + Γ a

ebΓ
e

dc − Γ a
ecΓ

e
db. (3.55)

Closely associated are the Ricci tensor Rab = Rba and scalar R that are defined by
the contractions

Rab = Rc
acb, R = gab Rab. (3.56)

We will also need the Einstein tensor, which is given by

Gab = Rab − 1

2
Rgab. (3.57)

It is such that ∇bGb
a vanishes identically. This is known as the Bianchi identity.

A more intuitive understanding of the Riemann tensor is obtained by seeing how its
presence leads to a path-dependence in the changes that a vector experiences as itmoves
from point to point in spacetime. Such a situation is known as a “non-integrability”
condition, because the result depends on the whole path and not just the initial and
final points. That is, it is not like a total derivative which can be integrated and depends
on only the limits of integration. Geometrically we say that the spacetime is curved,
which is why the Riemann tensor is also known as the curvature tensor.

To illustrate the meaning of the curvature tensor, let us suppose that we are given
a surface that is parameterized by the two parameters λ and η. Points that live on this
surface will have coordinate labels xa(λ, η). We want to consider an infinitesimally
small “parallelogram” whose four corners (moving counterclockwise with the first
corner at the lower left) are given by xa(λ, η), xa(λ, η + δη), xa(λ + δλ, η + δη),
and xa(λ + δλ, η). Generally speaking, any “movement” towards the right of the
parallelogram is effected by varying η, and ones towards the top results by varying
λ. The plan is to take a vector V a(λ, η) at the lower-left corner xa(λ, η), parallel
transport it along a λ = const curve to the lower-right corner at xa(λ, η + δη) where
it will have the components V a(λ, η+ δη), and end up by parallel transporting V a at
xa(λ, η+δη) along an η = const curve to the upper-right corner at xa(λ+δλ, η+δη).
We will call this path I and denote the final component values of the vector as V a

I . We
then repeat the process except that the path will go from the lower-left to the upper-left
and then on to the upper-right corner. We will call this path II and denote the final
component values as V a

II .

123



Relativistic fluid dynamics: physics for many different… Page 33 of 251 3

Recalling Eq. (3.32) as the definition of parallel transport, we first of all have

V a(λ, η + δη) ≈ V a(λ, η)+ δηV a‖ (λ, η) = V a(λ, η)− Γ a
bcV bδηxc (3.58)

and

V a(λ+ δλ, η) ≈ V a(λ, η)+ δλV a‖ (λ, η) = V a(λ, η)− Γ a
bcV bδλxc, (3.59)

where

δηxa ≈ xa(λ, η + δη)− xa(λ, η), δλxa ≈ xa(λ+ δλ, η)− xa(λ, η). (3.60)

Next, we need

V a
I ≈ V a(λ, η + δη)+ δλV a‖ (λ, η + δη), (3.61)

V a
II ≈ V a(λ+ δλ, η)+ δηV a‖ (λ+ δλ, η). (3.62)

Working things out, we find that the difference between the two paths is

ΔV a ≡ V a
I − V a

II = Ra
dbcV dδλxcδηxb, (3.63)

which follows because δλδηxa = δηδλxa , i.e., we have closed the parallelogram.

3.5 The Einstein field equations

We now have the tools we need to outline the argument that leads to the field equations
of General Relativity. This sketch will be complemented by a variational derivation in
Sect. 4.4.

Consider two freely falling particles moving along neighbouring geodesics with
a vector ξa measuring the separation. Assuming that this vector is purely spatial
according to the trajectory of one of the bodies, who we also assign to measure time
(such that the corresponding four-velocity only has a time-component), we have

uaξa = 0. (3.64)

The second derivative of the separation vector will be affected by the spacetime cur-
vature. With this set-up it follows that

ua∇aξ
b − ξa∇aub = 0 (3.65)

and we find that

uc∇c(u
b∇bξ

a) = ucξb(∇c∇b − ∇b∇c)u
a = −Ra

dbcudξbuc, (3.66)

where we have used the fact that the Riemann tensor encoded the failure of second
covariant derivatives to commute. This is the equation of geodesic deviation.
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At this point it is useful to introduce a total time derivative, such that

D

Dτ
= ua∇a (3.67)

which means that (3.66) becomes

D2ξa

Dτ 2
= −Ra

dbcudξbuc. (3.68)

This provides us with an expression for the relative acceleration caused by the space-
time curvature. As gravity is a tidal interaction, we can meaningfully compare our
relation to the corresponding relation in Newtonian gravity. This leads to the identifi-
cation

R j
0k0 = E j

k = δ jl
(
∂2Φ

∂xl∂xk

)

, (3.69)

where E k
j is the tidal tensor and Φ is the gravitational potential. This provides a

constraint that the curved spacetime theory must satisfy (in the limit of weak gravity
and low velocities).

After some deliberation, including a careful counting of the dynamical degrees
of freedom (noting the freedom to introduce coordinates), one arrives at the field
equations for General Relativity:

Gab = 8πG

c4
Tab, (3.70)

where G is Newton’s constant and c is the speed of light.
At this point it is evident that any discussion of relativistic physics (involvingmatter)

must include the energy-momentum-stress tensor,13 Tab. This is where the messy
physics of reality enter the problem. Misner et al. (1973) refer to Tab as “…a machine
that contains a knowledge of the energy density, momentum density, and stress as
measured by any and all observers at that event.” Encoding this is a severe challenge.
However, we need to understand how this works—both phenomenologically (allowing
us to move swiftly to the challenge of solving the equations) and from a detailed
microphysics point of view (as required in order for our models to be realistic). We
will develop this understanding step by step, starting with the simple perfect fluid
model and proceeding towards more complex settings including distinct components
exhibiting relative flows and dissipation. However, before we take the next step in this
direction we need to introduce the main technical machinery that forms the basis for
much of the discussion.

13 Even though it is less descriptive, and even somewhat deceiving when there are multiple flows, we will
adopt the convention that Tab is referred to as the “stress-energy” tensor from now on.
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4 Variational analysis

The key geometric difference between generally covariant Newtonian fluids and their
general relativistic counterparts is that the former have an a priori notion of time (Carter
andChamel 2004, 2005a, b). Newtonian fluids also have an a priori notion of space (cf.
the discussion in Carter and Chamel 2004). Such a structure has clear advantages for
evolution problems, where one needs to be unambiguous about the rate-of-change of
a given system. However, once a problem requires, say, electromagnetism, then the a
priori Newtonian time is at odds with the spacetime covariance of the electromagnetic
fields (as the Lorentz invariance of Maxwell’s equations dictates that the problem
is considered in—at least—Special Relativity). Fortunately, for spacetime covariant
theories there is the so-called “3+1” formalism (see, for instance, Smarr and York
1978 and the discussion in Sect. 11) which allows one to define “rates-of-change” in
an unambiguous manner, by introducing a family of spacelike hypersurfaces (the “3”)
given as the level surfaces of a spacetime scalar (the “1”) associated with a timelike
progression.

Something that Newtonian and relativistic fluids have in common is that there are
preferred frames for measuring changes—those that are attached to the fluid elements.
In the parlance of hydrodynamics, one refers to Lagrangian and Eulerian frames, or
observers. In Newtonian theory, an Eulerian observer is one who sits at a fixed point
in space, and watches fluid elements pass by, all the while taking measurements of
their densities, velocities, etc. at the given location. In contrast, a Lagrangian observer
rides along with a particular fluid element and records changes of that element as it
moves through space and time. A relativistic Lagrangian observer is the same, but
the relativistic Eulerian observer is more complicated to define (as we have to explain
what we mean by a ”fixed point” in space). One way to do this, see Smarr and York
(1978), is to define such an observer as one who moves along a worldline that remains
everywhere orthogonal to the family of spacelike hypersurfaces.

The existence of a preferred frame for a fluid system can be a great advantage. In
Sect. 5.2 we will use an “off-the-shelf” approach that exploits a preferred frame to
derive the standard perfect fluid equations. Later, we will use Eulerian and Lagrangian
variations to build an action principle for both single andmultiple fluid systems. In this
problem the Lagrangian displacements play a central role, as they allow us to introduce
the constraints that are required in order to arrive at the desired results.Moreover, these
types of variations turn out to be useful for many applications, e.g., they can be used
as the foundation for a linearized perturbation analysis of neutron stars (Kokkotas
and Schmidt 1999). As we will see, the use of Lagrangian variations is essential for
establishing instabilities in rotating fluids (Friedman and Schutz 1978a, b). However,
it is worth noting already at this relatively early stage that systems with several distinct
flows are more complex as they can have as many notions of Lagrangian observers as
there are fluids in the system (Fig. 6).
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4.1 A simple starting point: the point particle

The simplest physics problem, i.e. the motion of a point particle, serves as a guide to
deep principles used inmuch harder problems.We have used it already tomotivate par-
allel transport as the foundation for the covariant derivative. Let us call upon the point
particle again to set the context for the action-based derivation of the fluid equations.
We will simplify the discussion by considering only motion in one dimension—
assuring the reader that we have good reasons for this, and asking for patience while
we remind him/her of what may be very basic facts.

Early on in life (relatively!) we learn that an action appropriate for the point particle
is

I =
∫ t f

ti
T dt =

∫ t f

ti

(
1

2
mẋ2

)

dt, (4.1)

where m is the mass and T the kinetic energy. A first-order variation of the action with
respect to x(t) yields

δ I = −
∫ t f

ti
(mẍ) δxdt + (mẋδx)|t f

ti , (4.2)

see Fig. 7. If this is all the physics to be incorporated, i.e. if there are no forces acting
on the particle, then we impose d’Alembert’s principle of least action, which states
that the trajectories x(t) that make the action stationary, i.e. δ I = 0, yield the true
motion. We then see that functions x(t) that satisfy the boundary conditions

δx(ti ) = 0 = δx(t f ), (4.3)

and the equation of motion
mẍ = 0, (4.4)

will indeed make δ I = 0. The same logic applies in the substantially more difficult
variational problems that will be considered later.

Comment: The simple text-book variational derivation of Newton’s second
law (4.10) may seem somewhat out of place in a discussion of general rel-
ativistic fluids. However, as we proceed it is useful to keep this problem in
mind. It provides an intuitive understanding of the more complicated settings
we will explore. The general aim is to use a variation of an action—involving
(off-shell) deviations away from the solution curve in the relevant parameter
space. The steps generally involve “integration by parts” (as in the derivation
of (4.10)) and an assumption of fixed “boundary conditions”. The boundary
terms—in general representing the behaviour on a surface in spacetime—can
be ignored, as long as we are mainly focussed on the equation of motion. We
will make this assumption throughout the discussion, often without spelling it
out.
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Fig. 7 A simple illustration of the variation that leads to the point particle equations of motion. The solid
line in this parameter space represents a curve which is understood to be a solution to the equations of
motion, while the dashed line is some arbitrarily specified curve. At a given value of time, the variation δx
represents the vertical displacement between the curves; obviously, at the endpoints t = t1 and t = t2, the
two curves meet and the displacement vanishes. Keeping the endpoints fixed, the equations of motion are
obtained from the extrema of the action, as demonstrated in the main text. The same idea applies in the more
complicated cases of field theories that we consider later; the fields have actions, and the field equations of
motion are obtained by locating the extrema. The field values at the extrema are often referred to as being
“on shell’ (or “on the mass shell”) for reasons we do not really have to elaborate on here

In general we need to account for forces acting on the particle. First on the list are
the so-called conservative forces, describable by a potential V (x), which are placed
into the action according to:

I =
∫ t f

ti
L(x, ẋ)dt =

∫ t f

ti

[
1

2
mẋ2 − V (x)

]

dt, (4.5)

where L = T − V is known as the Lagrangian. The variation now leads to

δ I = −
∫ t f

ti

(

mẍ + ∂V

∂x

)

δxdt + (mẋδx)|t f
ti . (4.6)

Assuming no externally applied forces, d’Alembert’s principle yields the equation of
motion

mẍ + ∂V

∂x
= 0. (4.7)

An alternative way to write this is to introduce the momentum p (not to be confused
with the fluid pressure introduced earlier) defined as

p = ∂L

∂ ẋ
= mẋ, (4.8)
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in which case

ṗ + ∂V

∂x
= 0. (4.9)

In the most honest applications, one has the obligation to incorporate dissipative,
i.e., non-conservative, forces. Unfortunately, dissipative forces Fd cannot be put into
action principles (at least not directly, see the discussion in Sect. 16 where we discuss
recent progress towards dissipative variational models). Fortunately, Newton’s second
law is great guidance, since it states

mẍ + ∂V

∂x
= Fd , (4.10)

when both conservative and dissipative forces act. A crucial observation of Eq. (4.10)
is that the “kinetic” (mẍ = ṗ) and conservative (∂V /∂x) forces, which enter the
left-hand side, still follow from the action, i.e.,

δ I

δx
= −

(

mẍ + ∂V

∂x

)

, (4.11)

where we have introduced the “variational derivative” δ I/δx . When there are no dissi-
pative forces acting, the action principle gives us the appropriate equation of motion.
When there are dissipative forces, the action defines the kinetic and conservative
force terms that are to be balanced by the dissipative contribution. It also defines the
momentum. These are the key lessons from this toy-problem.

We should emphasize that this way of using the action to define the kinetic and
conservative pieces of the equation of motion, as well as the momentum, can also be
used in situations when a system experiences an externally applied force Fext. The
force can be conservative or dissipative (see, e.g., Galley 2013), and will enter the
equation of motion in the same way as Fd did above. That is

− δ I

δx
= Fd + Fext. (4.12)

Like a dissipative force, the main effect of the external force can be to siphon kinetic
energy from the system. Of course, whether a force is considered to be external or not
depends on the a priori definition of the system.

4.2 More general Lagrangians

Returning to the discussion of the variational approach for obtaining the dynamical
equations that govern a given system, let us consider a generalized version of the
problem.Basically, wewant to extend the idea to the case of a field theory in spacetime.
To do this, we assume that the system is described by a set of fields Φ A defined
on spacetime, i.e., depending on the coordinates xa . At this level, we can keep the
discussion abstract and consider any number of fields, labelled by A. This set can (in
principle) contain any number of scalar, vector or tensor fields. If we are interested in

123



Relativistic fluid dynamics: physics for many different… Page 39 of 251 3

models containing vector fields, then the label A runs over all four components of each
of the relevant fields. In that situation, the label A essentially becomes a spacetime
index, like a. Tensor fields are treated in a similar way. As an example, discussed in
more detail later, consider electromagnetism, for which the set of fields would be the
vector potential Aa and the spacetime metric gab, so that we have Φ A = {Aa, gab}.

The action for the system should now take the form of an integral of a Lagrangian
(density) L, which depends on the fields Φ A and their various derivatives (as “appro-
priate”). Integrating over a spacetime region R we would have

I =
∫

R
L
(

Φ A, ∂aΦ
A, ∂a∂bΦ

A, . . .
)

d4x (4.13)

Since we expect the theory to be covariant, we need the action to transform as a
scalar under a general coordinate transformation. To ensure this, we need to involve
the invariant volume element

√−gd4x , where g is the determinant of the metric, as
before. Defining the scalar Lagrangian L we then have

I =
∫

R
L
√−g d4x (4.14)

(which is a scalar by construction).

Comment: This is the first time that we come across the volume element in
spacetime. This notion requires some care and involves the Levi-Civita tensor
which we will make frequent use of later. The connection is quite intuitive.
Consider the well-known fact (from linear algebra) that the volume of the
parallelepiped spanned by three vectors A, B and C is given by the triple
product

V = |A · (B × C)| = |εi jk Ai B j Ck | .

Taking the vectors to represent the edges of a volume element, that shears and
stretches as it moves, we see that the volume element may be associated with
an anti-symmetric tensor. In flat space and Cartesian coordinates, we have

εi jk = [i, j, k] =
⎧

⎨

⎩

+1 if i jk = 123 or a cyclic permutation ,
−1 if i jk = 213 or a cyclic permutation ,
0 otherwise
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This should be quite familiar. Inspired by this, we identify the volume ele-
ment with the antisymmetric tensor density (using the wedge product from
differential geometry)

d4x = dx0 ∧ dx1 ∧ dx2 ∧ dx3 .

However, in this expression the right-hand side is coordinate dependent, so
we replace it by

d4x = dx0 ∧ dx1 ∧ dx2 ∧ dx3 = 1

4! [a, b, c, d] dxa ∧ dxb ∧ dxc ∧ dxd .

However, the symbol [a, b, c, d] is (by definition) the same in all coordinate
systems, so the object we have written down transforms as a density, not a
tensor. We have

d4x ′ =
∣
∣
∣
∣
∣

∂xa′

∂xa

∣
∣
∣
∣
∣
d4x .

This is problematic, but there is a simple solution. Noting that the determinant
of the spacetime metric (= g) also transforms as a density;

g
(

xa′) =
∣
∣
∣
∣
∣

∂xa′

∂xa

∣
∣
∣
∣
∣

2

g
(

xa) ,

we simply multiply by
√−g to get the invariant volume element

√−gdx0 ∧ dx1 ∧ dx2 ∧ dx3 ≡ √−gd4x .

The argument also leads us to introduce the Levi-Civita tensor

εabcd = √−g [a, b, c, d] .

As it is a tensor object, we can raise the indices with the metric, as we have
become accustomed to. The logic is, of course, equally relevant in three dimen-
sions and flat space. As soon as we move away from Cartesian coordinates,
we must include the metric determinant in the definition of the εi jk tensor.

As in the case of a point particle, we can derive the field equations by demanding
that the action is stationary under variations in the fields. Letting

Φ A → Φ A + δΦ A (4.15)
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and assuming, for simplicity, that the theory is “local” (meaning that only first deriva-
tives of the fields appear in the action) we need also

∂aΦ
A → ∂aΦ

A + ∂a

(

δΦ A
)

= ∂aΦ
A + δ

(

∂aΦ
A
)

(4.16)

Given these relation, the variation in the action is I + δ I , where

δ I =
∫

R
δLd4x =

∫

R

[

∂L
∂Φ A

δΦ A + ∂L
∂
(

∂aΦ A
)δ
(

∂aΦ
A
)
]

d4x (4.17)

To make progress we need to factor out δΦ A from the second term in the integrand.
This is achieved by integrating by parts;

∫

R

∂L
∂
(

∂aΦ A
)δ
(

∂aΦ
A
)

d4x

=
∫

R
∂a

[

∂L
∂
(

∂aΦ A
)δΦ A

]

d4x −
∫

R
∂a

[

∂L
∂
(

∂aΦ A
)

]

δΦ A d4x (4.18)

At this point we make use of the fact that the first term is a total derivative, which
can be turned into a integral over the bounding surface (in the usual way). Inspired by
the boundary conditions imposed on the variations in the point-particle case, we then
restrict ourselves to variations δΦ A that vanish on the boundary. Thus, we can neglect
the first integral (later referred to as the “surface terms”), ending up with

δ I =
∫

R

{

∂L
∂Φ A

− ∂a

[

∂L
∂
(

∂aΦ A
)

]

δΦ A

}

δΦ Ad4x (4.19)

Demanding that δ I = 0 we see that the variational derivative satisfies

δL
δΦ A

= ∂L
∂Φ A

− ∂a

[

∂L
∂
(

∂aΦ A
)

]

= 0. (4.20)

These are the Euler-Lagrange equations that govern the evolution of the fields Φ A.
So far, we have developed the theory for the Lagrangian density L, rather than the

Lagrangian L itself. This is not a problem, we can simply consider the components of
the metric as belonging to the set of fields that we vary. However, the added complica-
tion (due to the presence of

√−g and the derivatives that need to be evaluated) may be
unnecessary in many cases. In such situations one can often express the Lagrangian in
terms of the covariant derivative ∇a instead of the partial ∂a . Essentially, this involves
reworking the algebra taking as starting point an action of form

I =
∫

R
L
(

Φ A,∇aΦ
A, . . . , gab, ∂cgab, . . .

)√−g d4x (4.21)

123



3 Page 42 of 251 N. Andersson, G. L. Comer

where the fieldsΦ A are now independent of the metric, although the Lagrangian may
still contain gab in contractions of spacetime indices to construct the required scalar.
After some algebra, we find that

δL

δΦ A
= ∂L

∂Φ A
− ∇a

[

∂L

∂
(∇aΦ A

)

]

= 0 (4.22)

This is the form of the Euler-Lagrange equations that wewill be using in the following.

4.3 Electromagnetism

As a first “explicit” example of the variational approach, let us derive the field equa-
tions for electromagnetism (Hobson et al. 2006). In this case, the starting point is the
electromagnetic vector potential Aa , which (in turn) leads to the Faraday tensor

Fab = ∇a Ab − ∇b Aa (4.23)

Because of the anti-symmetry, this object has 6 components which can (as we will see
later) be associated with the electric and magnetic fields, leading to a (presumably)
more familiar picture. However, these fields are manifestly observer dependent (a
moving charge leads to amagnetic field etc.) so, from a formal point of view, it is better
to develop the theory in terms of Fab. Making contact with the previous discussion
and the variational approach, the fields Φ A to be varied will be the four components
of Aa . The first step of the derivation is to construct a suitable scalar Lagrangian from
Aa and its first derivatives. However, already at this point do we run into “trouble”.
We know that the theory is gauge-invariant, since we can add ∇aψ = ∂aψ (where ψ
is an arbitrary scalar) to the vector potential without altering the physics (read: Fab).
The upshot of this is that we need to ensure that the electromagnetic action is invariant
under the transformation

Aa → Aa + ∇aψ (4.24)

This constrains the permissible Lagrangians. For example, we cannot use the contrac-
tion Aa Aa = gab Aa Ab since this combination is not gauge invariant. However, it is
easy to see that Fab exhibits the required invariance, so we can use it as our main build-
ing block. The obvious thing to do would be to try to use the scalar Fab Fab to build
the Lagrangian. However, this would not account for the fact that the charge current
ja acts as source of the electromagnetic field. To reflect this, we add an “interaction
term” − ja Aa to the Lagrangian (leaving the details of this for later). At the end of the
day, the Lagrangian takes the form

L = − 1

4μ0
Fab Fab + ja Aa (4.25)

where μ0 is a constant (describing the strength of the coupling).
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At this point, we realize that the current term is not gauge-invariant. It would
transform as

ja Aa → ja Aa + ja∇aψ = ja Aa + ∇a
(

ψ ja)− ψ (∇a ja) (4.26)

We already know that the second term contributes a surface term to the action integral,
and hence can be “ignored”. The third term is different. In order to ensure that the
action is gauge-invariant, we must demand that the current is conserved, i.e.

∇a ja = 0. (4.27)

The field equations that we derive require this constraint to be satisfied. Later, when
we consider the fluid problem, we will see that the conservation of the matter flux
plays a similar role.

Having established an invariant scalar Lagrangian, we determine the Euler-
Lagrange equations by varying the fields Aa (keeping the source ja fixed). From
(4.22) we then have

∂L

∂Aa
− ∇b

[
∂L

∂ (∂b Aa)

]

= 0. (4.28)

From the stated form of the action (and recalling the discussion of the point particle)
we see that

∂L

∂Aa
= ja (4.29)

The second term is messier, but after a bit of work we arrive at;

∂L

∂ (∂b Aa)
= − 1

μ0
Fab (4.30)

which leads to the final field equation

∇b Fab = μ0 ja . (4.31)

The relativistic Maxwell equations are completed by

∇[c Fab] = 0 �⇒ ∇c Fab + ∇b Fca + ∇a Fbc = 0 (4.32)

which is automatically satisfied for our definition of Fab, as it is anti-symmetric.
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Comment:At this pointwe have an opportunity to comment on the connection
with differential geometry and also introduce the Hodge dual, which will play
a role later. The Hodge dual of the electromagnetic field tensor is defined bya

�Fab = 1

2!ε
cd

ab Fcd

where we adopt the convention that the contraction always involves the first
indices of the Levi-Civita tensor. A different choice may affect the overall
sign. The generalization to other tensor objects is natural.
It is also worth noting that, in terms of the exterior derivative, (4.32) represents
the fact that the two-form Fab is closed:

dF = 0

This means that there must exist a one-form, Aa such that

F = d A �⇒ Fab = ∂a Ab − ∂b Aa = ∇a Ab − ∇b Aa

This is, of course, the vector potential.

a Later, we will use tildes to identify duals in some places. This is simply in order to avoid
cluttering already busy notation. The meaning of different quantities is explained in the different
contexts.

4.4 The Einstein field equations

Having discussed the underlying principles and considered the explicit example of
electromagnetism, we have reached the level of confidence required to derive the field
equations of General Relativity. We know that the metric gab is the central object
of the theory (essentially, because we are looking for a theory where the geometry
plays a key role). To build the Lagrangian we therefore want to construct a simple
(for elegance) scalar from the metric and its derivatives. The simplest object we can
think of is the Ricci scalar, R. This is, in fact, the only scalar that contains only the
metric and its first two derivatives. Moreover, it is natural that the Lagrangian involves
a quantity which is directly linked to the spacetime curvature, and the Ricci scalar fits
this bill, as well.

This argument leads to the celebrated Einstein–Hilbert action

IEH =
∫

R
R
√−g d4x . (4.33)
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In this case, where the Lagrangian depends on the metric, it is natural to work
directly with the density L = R

√−g. From (4.20) we then see that

∂L
∂gab

− ∂c

[
∂L

∂ (∂cgab)

]

+ ∂d∂c

[
∂L

∂ (∂d∂cgab)

]

= 0, (4.34)

where we have allowed for the fact that the Lagrangian also depends on the second
derivatives of the metric (the extension of the analysis to allow for this is straightfor-
ward). Having a go at evaluating the required derivatives, we soon appreciate that this
task is formidable. Luckily, there is an easier way to arrive at the answer.

Let us consider the variation in the action that results from a metric variation
gab → gab + δgab. Carrying out this analysis we need the variation of the covariant
metric, which follows readily:

gabgbc = δa
c �⇒ δgab = −gacgbdδgcd . (4.35)

Making use of the fact that R = gab Rab, we then have

δ IEH =
∫

R

[

δgab Rab + gabδRab

]√−g d4x +
∫

R
gab Rabδ

√−g d4x . (4.36)

Since the metric is the fundamental variable, we need to factor out δgab (somehow).
The terms in the second integral are easiest to deal with. Given that g is the determinant
of the metric, the expression we need follows from (A.11). That is, we have

δ
√−g = −1

2

√−g gabδg
ab. (4.37)

Turning to the second term in the first bracket of (4.36), the easiest way to progress is
to consider the variation of the Riemann tensor and then constructing the expression
for the Ricci tensor by contraction.Moreover, noting that the Riemann tensor variation
is expressed in terms of variations of the connection, δΓ c

ab, which is a tensor, we can
simplify the analysis by working in a local inertial frame (where Γ c

ab = 0). Thus, we
have

δRd
abc = ∇b

(

δΓ d
ac

)

− ∇c

(

δΓ d
ab

)

. (4.38)

As this is also a tensor expression it is valid in any coordinate system. Carrying out
the required contraction, we find that

δRab = ∇b
(

δΓ c
ac

)− ∇c
(

δΓ c
ab

)

. (4.39)

Using this expression we see that

gabδRab = ∇b

(

gabδΓ c
ac − gacδΓ b

ac

)

. (4.40)
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In other words, the term that we need in (4.36) can be written as a total derivative.
Given that this leads to a surface term, we duly neglect it and arrive at the final result:

δ IEH =
∫

R

(

Rab − 1

2
gab R

)

δgab√−g d4x . (4.41)

The vanishing of the variation leads to the vacuum Einstein equations

Gab = Rab − 1

2
gab R = 0. (4.42)

The derivation highlights the fact that Einstein’s theory is one of the most elegant
constructions of modern physics.

4.5 The stress-energy tensor as obtained from the action principle

However aesthetically pleasing the theory may be, our main interest here is not in the
vacuum dynamics of Einstein’s theory. Rather, we want to explore the matter sector.
In Einstein’s Universe, matter plays a dual role—it (actively) provides the origin of
the spacetime curvature and the gravitational field and (perhaps not quite passively)
adjusts its motion according to this curvature.

In particular, we want to explore systems of astrophysical relevance for which
general relativistic aspects are crucial. Inevitably, this involves some rather complex
physics. However, the coupling to the spacetime curvature remains relatively straight-
forward as it is encoded in a single object; the stress-energy tensor Tab. This object
is as important for General Relativity as the Einstein tensor Gab in that it enters the
Einstein equations in as direct a way as possible, i.e. (in geometric units)

Gab = 8πTab. (4.43)

From a conceptual point-of-view it is relatively easy to incorporate matter in the vari-
ational derivation from the previous section. Essentially, we add a matter component
such that (cf. the argument for electromagnetism)

I = IEH + IM =
∫

R

(
1

2κ
R + L

)√−g d4x (4.44)

where κ = 8πG/c4 is a coupling constant fixed by Newtonian correspondence in the
weak-field limit. Given the results for the vacuum gravity problem, it is easy to see that
the matter contribution to the field equations follow from the variation of the matter
action with respect to the metric. This insight will be very important later. In essence,
the Einstein equations take the form

Gab = κTab (4.45)
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provided that

Tab = − 2√−g

δLM

δgab
= − 2√−g

δ
(√−gL

)

δgab
, (4.46)

or, equivalently,

T ab = 2√−g

δ
(√−gL

)

δgab
. (4.47)

Applying this result to the case of electromagnetism and (4.25), we see that the relevant
stress-energy tensor takes the form

T EM
ab = − 1

μ0

[

gcd Fac Fbd − 1

4
gab

(

Fcd Fcd
)]

. (4.48)

5 Case study: single fluids

Without an a priori, physics-based specification for Tab, solutions to the Einstein
equations are void of physical content, a pointwhichhas been emphasized, for instance,
by Geroch and Horowitz (in Hawking and Israel 1979). Unfortunately, the following
algorithm for producing “solutions” has been much abused: (i) specify the form of the
metric, typically by imposing some type of symmetry (or symmetries), (ii) work out
the components of Gab based on this metric, (iii) define the energy density to be G00
and the pressure to beG11, say, and thereby “solve” those two equations, and (iv) based
on the “solutions” for the energy density and pressure solve the remaining Einstein
equations. The problem is that this algorithm is little more than amathematical parlour
game. It is only by sheer luck that it will generate a physically relevant solution for
a non-vacuum spacetime. As such, the strategy is antithetical to the raison d’être of,
say, gravitational-wave astrophysics, which is to use observed data as a probe of the
microphysics, say, in the cores of neutron stars. Much effort is currently going into
taking given microphysics and combining it with the Einstein equations to model
gravitational-wave emission from astrophysical scenarios, like binary neutron star
mergers (Baiotti and Rezzolla 2017). To achieve this aim, we need an appreciation of
the stress-energy tensor and how it is encodes the physics.

5.1 General stress decomposition

Readers familiar with Newtonian fluids will be aware of the roles that the internal
energy (recall the discussion inSect. 2), the particle flux, and the stress tensor play in the
fluid equations. In special relativity we learn that, in order to have spacetime covariant
theories (e.g., well-behaved with respect to the Lorentz transformation) energy and
momentum must be combined into a spacetime vector, whose zeroth component is
the energy while the spatial components give the momentum (as measured by a given
observer). The fluid stress must also be incorporated into a spacetime object, hence
the necessity for Tab. Because the Einstein tensor’s covariant divergence vanishes

123



3 Page 48 of 251 N. Andersson, G. L. Comer

identically, we must have
∇bT b

a = 0. (5.1)

This provides us with four equations, often interpreted as the equations for relativistic
fluid dynamics.Aswewill soon see, this interpretationmakes “sense” (as the equations
we arrive at reduce to the familiar Newtonian ones in the appropriate limit). However,
from a formal point of view the argument is somewhat misleading. It leaves us with
the impression that the job is done, but this is not (quite) the case. Sure, we are able
to speedily write down the equations for a perfect fluid. But, we still have work to
do if we want to consider more complex settings (e.g., including relative flows). This
requires additional assumptions or a different approach altogether. One of the main
aims with this review is to develop such an alternative and explore the results in a
variety of settings. Having done this, we will see that (5.1) follows automatically once
the “fluid equations” are satisfied. This may seem like splitting hairs at the moment,
but the point we are trying to make should become clear as we progress.

The fact that we advocate a different strategy does not mean that the importance of
the stress-energy tensor is (somehow) reduced. Not at all. We still need Tab to provide
the matter input for the Einstein equations and we may opt to use (5.1) to get (some
of) the dynamical equations we need. Given this, it is important to understand the
physical meaning of the components of Tab. In order to do this, we need to introduce a
suitable observer (someone has to measure energy etc. for us). This then allows us to
express the tensor components in terms of projections into the timelike and spacelike
directions associated with this observer, in essence providing a fibration of spacetime
as illustrated in Fig. 3.

In order to project a tensor along an observer’s timelike direction we contract that
index with the observer’s four-velocity, U a . The required projection of a tensor into
spacelike directions perpendicular to the timelike direction defined by U a is effected
via the operator ⊥a

b , defined as

⊥a
b= δa

b + U aUb, U aUa = −1 �⇒ ⊥a
b U b = 0 (5.2)

Any tensor index that has been “hit” with the projection operator will be perpendicular
to the timelike direction defined (locally) byU a . It is then easy to see that any vector can
be expressed in terms of its component along a given U a and components orthogonal
(in the spacetime sense) to it. That is, we have

V a = δa
b V b + (U aUbV b − U aUbV b)

︸ ︷︷ ︸

=0

= −(UbV b)U a+ ⊥a
b V b (5.3)

The two projections (of a vector V a for an observer with unit four-velocity U a) are
illustrated in Fig. 8. More general tensors are projected by acting with U a or ⊥a

b on
each index separately (i.e., multi-linearly).

Let us now see how we can use the projection to give physical “meaning” to the
components of the stress-energy tensor. The energy density ε as perceived by the
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Fig. 8 The projections of a
vector V a onto the worldline
defined by Ua (providing a
fibration of spacetime) into the
perpendicular hypersurface
(obtained from a projection with
⊥a

b )

observer is (see Eckart 1940 for one of the earliest discussions)

ε = U aU bTab, (5.4)

while
Pa = − ⊥b

a U cTbc (5.5)

is the spatial momentum density (as it does not have a contribution along U a it is a
three vector), and the spatial stresses are encoded in

Sab =⊥c
a⊥d

b Tcd . (5.6)

As usual, the manifestly spatial component Si j is understood to be the i th-component
of the force across a unit area perpendicular to the j th-direction. With respect to the
observer, the stress-energy tensor can now be written (in complete generality) as

Tab = εUaUb + 2U(aPb) + Sab, (5.7)

where 2U(aPb) ≡ UaPb + UbPa . Because U aPa = 0, we see that the trace T = T a
a

is
T = S − ε, (5.8)

where S = Sa
a .

It is important at this stage to appreciate that we are discussing a mathematical
construction. We need to take further steps to connect the phenomenology to the
underlying physics.

5.2 “Off-the-shelf” analysis

As we have already suggested, there are different ways of deriving the general rela-
tivistic fluid equations. Our purpose here is not to review all possible approaches, but
rather to focus on a couple: (i) an “off-the-shelf” consistency analysis for the simplest
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fluid a la Eckart (1940), to establish some of the key ideas, and then (ii) a more pow-
erful method based on an action principle that varies fluid element world lines. We
now consider the first of these. The second avenue will be explored in Sect. 6.

We have seen how the components of a general stress-energy tensor can be projected
onto a coordinate system carried by an observer moving with four-velocity U a . Let
us now connect this with the motion of a fluid. The simplest fluid is one for which
there is only one four-velocity ua . As both four velocities are normalized (to unity)
we must have

ua = γ (U a + va), with Uav
a = 0 and γ = (1 − v2)−1/2 (5.9)

the familiar redshift factor from special relativity. Clearly, the problem simplifies if we
assume that the observer rides along with the fluid. That is, we introduce a preferred
frame defined by ua , and then simply takeU a = ua . With respect to the fluid there will
then (by definition) be nomomentum flux, i.e.,Pa = 0.Moreover, since we use a fully
spacetime covariant formulation, i.e., there are only spacetime indices, the resulting
stress-energy tensor will transform properly under general coordinate transformations,
and hence can be used for any observer.

In general, the spatial stresses are given by a two-index, symmetric tensor, and
the only objects that can be used to carry the indices (in the simple model we are
considering at this point) are the four-velocity ua and the metric gab. Furthermore,
because the spatial stress must also be symmetric, the only possibility is a linear
combination of gab and uaub. Given that ubSba = 0, we must have

Sab = 1

3
S(gab + uaub). (5.10)

As the system is assumed to be locally isotropic, it is possible to diagonalize the
spatial stress tensor. This also implies that its three independent diagonal elements
should actually be equal to the same quantity, which turns out to be the local pressure.
Hence we have p = S/3 and

Tab = (ε + p) uaub + pgab = εuaub + p ⊥ab . (5.11)

This is the well-established result for a perfect fluid.
Given a relation p = p(ε) (an equation of state), there are four independent fluid

variables. Because of this the equations of motion are often understood to be given by
(5.1). Let us proceed along these lines, but first simplify matters by assuming that the
equation of state is given by a relation of the form ε = ε(n) where n is the particle
number density. As discussed in Sect. 2, the chemical potential μ is then given by

dε = dε

dn
dn ≡ μ dn, (5.12)

and we know from the Euler relation (2.8) that

μn = p + ε. (5.13)

In essence, we have connected the model to the thermodynamics. This is an important
step.
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Let us now get rid of the free index of∇bT b
a = 0 in two ways: first, by contracting

with ua and second, by projecting with ⊥a
b (recalling that U a = ua). Given that

uaua = −1 we have the identity

∇a

(

ubub

)

= 0 �⇒ ub∇aub = 0. (5.14)

Contracting (5.1) with ua and using this identity gives

ua∇aε + (ε + p)∇aua = 0. (5.15)

The definition of the chemical potential μ and the Euler relation allow us to rewrite
this as

μua∇an + μn∇aua = 0 �⇒ ∇ana = 0, (5.16)

where we have introduced the particle flux, na ≡ nua . This result simply represents
the fact that the particles are conserved.

Meanwhile, projection of the free index in (5.1) using ⊥b
a leads to

(ε + p)aa = − ⊥b
a ∇b p, (5.17)

where aa ≡ ub∇bua is the fluid (four) acceleration. This is reminiscent of the Euler
equation for Newtonian fluids. In fact, we demonstrate in Sect. 7.1 that the non-
relativistic limit of (5.17) leads to the Newtonian result.

However, we should not be too quick to think that this is the only way to understand
(5.1)! There is an alternative form that makes the perfect fluid have more in common
with vacuum electromagnetism. If we define

μa = μua, (5.18)

then the stress-energy tensor can be written in the form

T a
b = pδa

b + naμb. (5.19)

We have here our first encounter with the fluid elementmomentumμa that is conjugate
to the particle flux, the number density current na . Its importance will become clearer
as this story develops, particularly when we discuss the multi-fluid problem. For now,
we simply note that uadua = 0 implies that we will have

dε = −μa dna . (5.20)

This relation will serve as the starting point for the fluid action principle in Sect. 6,
where −ε will be taken to be the fluid Lagrangian.

If we project onto the free index of (5.1) using ⊥b
a , as before, we arrive at

fa +
(

∇bnb
)

μa = 0, (5.21)
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where the force density fa is
fa = nbωba, (5.22)

and the vorticity ωab is defined as

ωab ≡ 2∇[aμb] = ∇aμb − ∇bμa . (5.23)

Contracting Eq. (5.21) with na we see (since ωab = −ωba) that

∇ana = 0 (5.24)

and, as a consequence, the equations of motion take the form

fa = nbωba = 0. (5.25)

The vorticity two-formωab has emerged quite naturally as an essential ingredient of
the fluid dynamics (Lichnerowicz 1967; Carter 1989a; Bekenstein 1987; Katz 1984).
This is a key result. Readers familiar with Newtonian fluids should be inspired by
this, as the vorticity is used to establish theorems on fluid behaviour (for instance the
Kelvin–Helmholtz theorem; Landau andLifshitz 1959) and is at the heart of turbulence
modelling (Pullin and Saffman 1998).

Comment: While we have inferred the equations of motion from the iden-
tity ∇bT b

a = 0, we now emphatically state that—while the equations are
correct—the logic is limited. In fact, from a field theory point of view it is
completely wrong! The proper way to think about the identity is that the equa-
tions ofmotion are satisfiedfirst,which then guarantees that∇bT b

a = 0. There
is no clearer way to understand this than to study the multi-fluid case. The van-
ishing of the covariant divergence represents only four equations, whereas the
multi-fluid problem clearly requires more information (as there are additional
fluxes that need to be determined).

To demonstrate the role of ωab as the vorticity, consider a small region of the fluid
where the time direction ta , in local Minkowski coordinates, is adjusted to be the
same as that of the fluid four-velocity so that ua = ta = (1, 0, 0, 0). Eq. (5.25) and the
antisymmetry then imply that ωab can only have purely spatial components. Because
the rank of ωab is two, there are two “nulling” vectors, meaning their contraction with
either index of ωab yields zero (a condition which is true also for vacuum electromag-
netism). We have arranged already that ta be one such vector. By a suitable rotation
of the coordinate system the other one can be taken to be za = (0, 0, 0, 1), implying
that the only non-zero component of ωab is ωxy .

Geometrically, this kind of two-form can be pictured as a collection of oriented
worldtubes, whose walls lie in the x = const and y = const planes (Misner et al.
1973). Any contraction of a vector with a two-form that does not yield zero implies
that the vector pierces the walls of the worldtubes. But when the contraction is zero, as
in Eq. (5.25), the vector does not pierce the walls. This is illustrated in Fig. 9, where
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Fig. 9 A local, geometrical view
of the Euler equation as an
integrability condition of the
vorticity for a single-constituent
perfect fluid

the red circles indicate the orientation of each world-tube. The individual fluid element
four-velocities lie in the centers of theworld-tubes. Finally, consider the closed contour
in Fig. 9. If that contour is attached to fluid-element worldlines, then the number of
worldtubes containedwithin the contourwill not change because theworldlines cannot
pierce the walls of the worldtubes. This is essentially the Kelvin–Helmholtz theorem
on the conservation of vorticity. From this we learn that the Euler equation is (in fact)
an integrability condition which ensures that the vorticity two-surfaces mesh together
to fill spacetime.

Comment:We get a different perspective onEq. (5.25) ifwe view it as amatrix
equation. Basically, the result implies that na is an eigenvector associated with
a zero eigenvalue; specifically,

⎡

⎢
⎢
⎣

0 ω01 ω02 ω03
−ω01 0 ω12 ω13
−ω02 −ω12 0 ω23
−ω03 −ω13 −ω23 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

n0

n1

n2

n3

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦

(5.26)

Of course, a solution then exists only if the determinant of the 4 × 4 matrix
vanishes; i.e.

det

⎡

⎢
⎢
⎣

0 ω01 ω02 ω03
−ω01 0 ω12 ω13
−ω02 −ω12 0 ω23
−ω03 −ω13 −ω23 0

⎤

⎥
⎥
⎦

= (ω01ω23 − ω02ω13 + ω03ω12)2 = 0 .

(5.27)
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This argument relates directly to the wedge product ω ∧ ω of the two-form ω

with itself a four-form, and thus its components must be proportional to εabcd

meaning the only independent component is εabcdωabωcd (up to normaliza-
tion). An explicit calculation shows

εabcdωabωcd = ω01ω23 − ω02ω13 + ω03ω12 = 0 (5.28)

and therefore ω ∧ ω vanishes. The geometric meaning of this is discussed in
more detail in the lead-up to Eq. (13.116).

5.3 Conservation laws

The variational model we will develop contains the same information as the standard
approach (a point that is emphasized by the Newtonian limit in Sect. 7.1)—as it must if
we want it to be useful—but it is more directly linked to the conservation of vorticity.
In fact, the definition of the vorticity implies that its exterior derivative vanishes. This
means that

∇[aωbc] = 0. (5.29)

Whenever the Euler equation (5.25) holds, this leads to the vorticity being conserved
along the flow. That is, we have

Luωab = 0. (5.30)

The upshot of this is that, Eq. (5.25) can be used to discuss the conservation of vorticity
in an elegant way. It can also be used as the basis for a derivation of other theorems in
fluid mechanics.

As is well-known, constants of motion are often associated with symmetries of
the problem under consideration. In General Relativity, spacetime symmetries can be
expressed in terms of Killing vectors, ξ̂a (the hat is used to make a distinction from
the Lagrangian displacement later). As an example, let us assume that the spacetime
does not depend on the coordinate a = X . The corresponding Killing vector would
be

ξ̂a = δa
X
∂

∂X
, (5.31)

and the symmetry leads to Killing’s equation

L
ξ̂
gab = 0 �⇒ ∇a ξ̂b + ∇b ξ̂a = 0. (5.32)

Associated with each such Killing vector will be a conserved quantity. In the vacuum
case, it is easy to combine the geodesic equation

ub∇bua = 0, (5.33)
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with Killing’s equation to show that

ub∇b

(

ξ̂aua

)

= d

dτ

(

ξ̂aua

)

= 0. (5.34)

In other words, the combination ξ̂aua remains constant along each geodesic.
Let us now consider how this argument extends to the fluid case. Assuming that the

flow is invariant with respect to transport by the vector field ξ̂a , we have

L
ξ̂
μa = 0, �⇒ ξ̂b∇bμa + μb∇a ξ̂

b = 0. (5.35)

Now combine this with the equation of motion in the form (5.25) to find

ξ̂anb (∇bμa − ∇aμb) = nb∇b

(

ξ̂aμa

)

= 0. (5.36)

Since na = nua we see that the quantity ξ̂aμa is conserved along the fluid world
lines, reminding us of the vacuum result. The difference is due to the fact that pressure
gradients in the fluid leads to the flow no longer being along geodesics. One may
consider two specific situations. If ξ̂a is taken to be the four-velocity, then the scalar
ξ̂aμa represents the “energy per particle”. If instead ξ̂a represents an axial generator
of rotation, then the scalar will correspond to an angular momentum. For the purposes
of the present discussion we can leave ξ̂a unspecified, but it is still useful to keep these
possibilities in mind.

Given that the flux is conserved, i.e. (5.16) holds, we can take one further step to
show that we have

na∇a

(

μb ξ̂
b
)

= ∇a

(

naμb ξ̂
b
)

= 0, (5.37)

and we have shown that naμb ξ̂
b is a conserved quantity.

Inmany cases one can also obtain integrals of themotion, analogous to theBernoulli
equation for stationary rotating Newtonian fluids. Quite generally, the derivation pro-
ceeds as follows. Assume that ξ̂a is such that

ξ̂bωba = 0. (5.38)

This condition can be written

L
ξ̂
μa − ∇a

(

ξ̂bμb

)

= 0 (5.39)

where the first term vanishes as long as (5.35) holds. Hence, we arrive at the first
integral

∇a

(

ξ̂bμb

)

= 0 �⇒ ξ̂bμb = constant. (5.40)

An obvious version of this analysis is an irrotational flow, when ωab = 0. Another
situation of direct astrophysical interest is “rigid” flow—when ξ̂a = λua for some
scalar field λ. Rotating compact stars, in equilibrium, belong to this category. In that
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case, one would have ξ̂a = ta +Ωφa , where Ω is the rotation frequency and ta and
φa represent the timelike Killing vector and the spatial Killing vector associated with
axisymmetry, respectively (the system permits a helical Killing vector).

5.4 A couple of steps towards relative flows

With the comments at the close of the previous section, we have reached the end of
the road as far as the “off-the-shelf” strategy is concerned. We will now move towards
an action-based derivation of the fluid equations of motion. As a first step, let us look
ahead to see what is coming and why we need to go in this direction.

Return to the perfect fluid stress-energy tensor but now let us not associate the
observer with the fluid flow. The thermodynamical relations still hold in the co-moving
(fluid) frame associatedwith ua , but the observer sees the fluid flow bywith the relative
velocity va from (5.9). In essence, we then have

Tab = (p+ε)γ 2(Ua +va)(Ub + vb)+ pgab

=εγ 2UaUb+ p(UaUb+gab)+2(p+ε)γ 2U(avb)+(p+ε)γ 2vavb (5.41)

We learn several important lessons from this. The perfect fluid does not seem quite so
simple in the frame of a general observer. First of all, the different thermodynamical
quantities will be redshifted (as expected from Special Relativity) so we need to keep
track of the γ factors. Secondly, we now appear to have both a momentum flux and
anisotropic spatial stresses. In order to arrive at the main point we want to make, let us
assume that the relative velocity is small enough that we can linearize the problem. As
we will see later, this should be an adequate assumption in many situations of interest.
Leaving out terms quadratic in va we lose the spatial stresses and γ → 1 (which is
convenient as the thermodynamics then remains as before). We are left with

Tab ≈ εUaUb + p(UaUb + gab)+ 2(p + ε)U(avb). (5.42)

At this point, we canmake use of the freedom to choose the observer.Wemay return to
the case where the observer rides along with the fluid by setting (va = 0). This choice
is commonly called the Eckart frame, as it was first introduced in the discussion of
relativistic heat flow (seeSect. 15). This is the obvious choice for a single fluid problem,
but when we are dealing with multiple flows there are alternatives.

As an illustration, in the case of a problem with both matter and heat flowing, we
have to replace the stress energy tensor by (don’t worry, we will derive this later)

Tab ≈ pgab + nμuaub + sT us
aus

b, (5.43)

where s and T are the entropy (density) and temperature, respectively, and ua
s accounts

for the heat flux. We have assumed that both flows may be linearized relative to the
observer so

ua
s ≈ U a + qa, with U aqa = 0, (5.44)
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where qa is the heat flux. This means that we have

Tab ≈ pgab + (nμ+ sT )UaUb + 2nμU(avb) + 2sT U(aqb)

= εUaUb + p(UaUb + gab)+ 2nμU(avb) + 2sT U(aqb). (5.45)

In this case, the momentum flux relative to the observer will be

Pa = − ⊥b
a U cTbc = nμva + sT qa . (5.46)

Basically, an observer riding along with the matter will experience heat flowing. We
may, however, work with a different observer according to whom no energy flows. It
is easy to see that this involves setting

va = − sT

nμ
qa = − sT

p + ε − sT
qa . (5.47)

With this choice we are left with

Tab ≈ εUaUb + p(gab + UaUb), (5.48)

reminding us of the perfect fluid situation, even though we are considering a more
complicated problem. It follows that

U aT b
a = −εU b. (5.49)

Formally, the energy density ε is an eigenvalue of the stress-energy tensor (with the
observer four velocity U a the corresponding eigenvector). This choice of observer is
usually referred to as the Landau–Lifshitz frame (Landau and Lifshitz 1959).

Weare free toworkwithwhatever observerwe like—different options havedifferent
advantages—but there is no free lunch. For example, with the Landau–Lifshitz choice
the fluid equations simplify, but the particle conservation law becomes more involved.
We now have

∇ana ≈ ∇a(nU a + nva) = ∇a

(

nU a − nsT

p + ε − sT
qa
)

= 0. (5.50)

The contribution from the heat flux is not particularly intuitive.
The main lesson we learn from this exercise is that any situation with relative flows

involvesmaking choices, andwehave to keep careful track of how these choices impact
on the connection with the underlying physics. This motivates the formal development
of the variational approach for general relativistic multifluid systems, to be described
in Sect. 9.
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5.5 Frommicroscopic models to the equation of state

We have discussed how the equations for relativistic fluid dynamics relate to a given
stress-energy tensor, involving a set of suitably averaged variables (energy, pressure,
four-velocity etc.). We have also seen how one can obtain the equations of motion
from

∇aT ab = 0, (5.51)

as required by the Einstein field equations (by virtue of the Bianchi identities). More-
over, in Sect. 4 we showed how the stress-energy tensor can be obtained via a variation
of the Lagrangian with respect to the spacetime metric. This description is neatly self-
consistent—and we will make frequent use of it later—but it is helpful to pause and
consider the logic. In principle, the relation (5.51) follows from the fact that the Ein-
stein tensor Gab is divergence free, which in turn represents the fact that the problem
involves four “unphysical” degrees of freedom, usually taken to mean that we have
the freedom to choose the four spacetime coordinates. However, by turning (5.51) into
the equations for fluid dynamics we are changing the perspective. The four degrees
of freedom now represent the conservation of energy and momentum. Why are we
allowed to do this? Is it simply a fluke that the four degrees of freedom involved can
be suitably interpreted in a manner that fits out purpose? One can argue that this is,
indeed, the case and we will discuss this later.

For the moment, we want to consider a different aspect of the problem. If it is the
case that (5.51) encodes the fluid equations of motion, then there ought to be a way
to derive the stress-energy tensor from some underlying microscopical theory (pre-
sumably involving quantum physics). This issue turns out to be somewhat involved.
As a starting point, suppose we focus on a one-parameter system, with the parame-
ter being the particle number density. The equation of state will then be of the form
ε = ε(n), representing the energy per particle. In many-body physics (as studied in
condensed matter, nuclear, and particle physics) one can then in principle construct
the quantum mechanical particle number density nQM, stress-energy tensor TQM

ab , and
associated conserved particle number density current na

QM (starting from some fun-
damental Lagrangian, say; cf. Walecka 1995; Glendenning 1997; Weber 1999). But
unlike in quantum field theory in a curved spacetime (Birrell and Davies 1982), one
typically assumes that the matter exists in an infinite Minkowski spacetime.

Once TQM
ab is obtained, and after (quantum mechanical and statistical) expectation

values with respect to the system’s (quantum and statistical) states are taken, one
defines the energy density as

ε = uaub〈TQM
ab 〉, (5.52)

where

ua ≡ 1

n
〈na

QM〉, n = 〈nQM〉. (5.53)

Similarly, the pressure is obtained as

p = 1

3

(

〈TQMa
a〉 + ε

)

(5.54)
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and it will also be a function of n.
One must be very careful to distinguish TQM

ab from Tab. The former describes
the states of elementary particles with respect to a fluid element, whereas the lat-
ter describes the states of fluid elements with respect to the system. Comer and
Joynt (2003) have shown how this line of reasoning applies to the two-fluid case.

This outline description stays close to the fluid picture, but it does not shed much
light on the origin of TQM

ab . This is where we run into “trouble”. A typical field theory
description would take a given symmetry of the system as its starting point, and then
obtain equations of motion for conserved quantities associated with this symmetry.
Let us consider this problem in flat space and use a scalar field with Lagrangian L =
L(φ, ∂aφ) as our example. Assuming that the system is symmetric under spacetime
translations, we have four conserved (Noether) currents given by

τ a
b = ∂L

∂(∂aφ)
∂bφ − δa

b L. (5.55)

That is, we have
∂aτ

a
b = 0, (5.56)

which follows by virtue of the Euler-Lagrange equations:

∂a

(
∂L

∂(∂aφ)

)

− ∂L

∂φ
= 0, (5.57)

and the fact that we are working in flat space (so partial derivatives commute). It may
seem tempting to take τ a

b to be the stress-energy tensor—intuitively, we can change
partial derivatives to covariant ones, introduce the spacetime metric (instead of ηab,
as appropriate), to arrive at an expression similar to (5.51). However, the Devil is in
the detail. The flat-space field equations represent a true conservation law (with four
conserved currents, one for each value of b in (5.56)), which is what we expect, but τ a

b
is (in general) not symmetric. Since symmetry is required for the gravitational stress-
energy tensor T ab (as long as we do not deviate from Einstein’s theory) we have a
problem. The issue is resolved by invoking the Belinfante-Robinson “correction” to
τ a

b (see for example Ilin and Paston 2018 for a recent discussion). This is a uniquely
defined objectwhich effects the change fromaflat to a curved spacetime.Whilewewill
not need to understand the details of this procedure to make progress, it is important
to be aware of it.

6 Variational approach for a single-fluid system

Let us now consider the single-fluid problem from a different perspective and derive
the equations ofmotion and the stress-energy tensor froman action principle. The ideas
behind this variational approach can be traced back to Taub (1954) (see also Schutz
1970). Our approach relies heavily on the work of Brandon Carter, his students, and
collaborators (Carter 1989a; Comer and Langlois 1993, 1994; Carter and Langlois
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1995b, 1998; Langlois et al. 1998; Prix 2000, 2004). This strategy is attractive as it
makes maximal use of the tools of the trade of relativistic fields, i.e., no special tricks
or devices will be required (unlike even the case of the “off-the-shelf” approach). Our
footing is made sure by well-grounded, action-based arguments. As Carter has made
clear: When there are multiple fluids, of both the charged and uncharged variety, it
is essential to distinguish the fluid momenta from the velocities, in order to make the
geometrical and physical content of the equations transparent. A well-posed action is,
of course, perfect for systematically constructing the momenta.

Specifically, we will make use of a “pull-back” approach (see, e.g., Comer and
Langlois 1993, 1994; Comer 2002) to construct a Lagrangian displacement of the
particle number density flux na , whose magnitude n is the particle number density.
This will form the basis for the variations of the fundamental fluid variables in the
action principle.

6.1 The action principle

It is useful to begin by explaining why we need to develop a constrained action prin-
ciple. The argument is quite simple. Consider a single matter component, represented
by a flux na . For an isotropic system the matter Lagrangian, which we will call Λ
(taking over the role of L from Sect. 4), should be a relativistic invariant and hence
depend only on n2 = −gabnanb. In effect, this means that it depends on both the
flux and the spacetime metric. This is, of course, important as the dependence on the
metric leads to the stress-energy tensor (again, as in Sect. 4). An arbitrary variation
ofΛ = Λ(n2) = Λ(na, gab) now leads to (ignoring terms that can be written as total
derivatives representing “surface terms”, as in the point-particle discussion)

δ
(√−gΛ

) = √−g

[

μaδn
a + 1

2

(

Λgab + naμb
)

δgab

]

, (6.1)

where μa is the canonical momentum, which is given by

μa = ∂Λ

∂na
= −2

∂Λ

∂n2 gabnb. (6.2)

We have also used (see Sect. 4.4)

δ
√−g = 1

2
gabδgab. (6.3)

Here is the problem: As it stands, Eq. (6.1) suggests that the equations of motion
would simply be μa = 0, which means that the fluid carries neither energy nor
momentum. This is obviously not what we are looking for,
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In order to make progress, we impose the constraint that the flux is conserved.14

That is, we insist that
∇ana = 0. (6.4)

From a strict field theory point of view, it makes sense to introduce this constraint.
The conservation of the particle flux (the number density current) should not be a part
of the equations of motion, but rather should be automatically satisfied when evaluated
on a solution of the “true” equations.

For reasons that will become clear shortly, it is useful to rewrite the conservation
law in terms of the dual three-form15

nabc = εdabcnd , (6.5)

such that

na = 1

3!ε
bcdanbcd . (6.6)

It also follows that

n2 = −gabnanb = 1

3!nabcnabc, (6.7)

which shows that nabc acts as a volume measure which allows us to “count” the
number of fluid elements. In Fig. 9 we have seen that a two-form is associated with
worldtubes. A three-form is the next higher-ranked object and it can be thought of, in
an analogous way, as leading to boxes (Misner et al. 1973). This is quite intuitive, and
we will comment on it again later.

As we develop the variational approach, we need to be comfortable with vol-
ume forms. This, in particular, involves working with contractions of εabcd .
The general relations we need are provided in Appendix 1, but let us note a
couple of particularly pertinent ones here. First of all, we have already used

εdabcεde f g = −3!δ[ae δ
b
f δ

c]
g ,

where the sign comes from (−1)s where s is the number of minus signs in the
spacetime metric (e.g., s = 1 in our case). Meanwhile, when we work in three
dimensions (as in the case of the spatial part of 3+1 decomposition later), we
have the familiar relation

εi jkεilm = 2!δ[ j
l δ

k]
m = δ j

l δ
k
m − δ j

mδ
k
l .

14 It is worth pointing out that we are restricting the problem somewhat by imposing particle conservation
already from the outset. As wewill see later, one canmake good progress on less constrained problems, e.g.,
related to dissipation, using an extended variational approach (inspired by the point particle example from
Sect. 4.1). However, we feel that it is useful to first understand the simpler, fully conservative, situation.
15 In order to be fully consistent we should really introduce notation to identify the dual here, but as we
will keep the indices explicit there is little risk of confusion.
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Fig. 10 The pull-back from “fluid-particle” points in the three-dimensional matter space, labelled by the
coordinates {X1, X2, X3}, to fluid-element worldlines in spacetime. Here, the pull-back of the “I th” (I =
1, 2, . . . , n) fluid-particle to, say, an initial point on a worldline in spacetime can be taken as X A

I =
X A(0, xi

I ) where xi
I is the spatial position of the intersection of the worldline with the t = 0 time slice

With this set-up, the conservation of the matter flux is ensured provided that the
three-form nabc is closed. It is easy to see that

∂[anbcd] = ∇[anbcd] = 0 �⇒ ∇ana = 0. (6.8)

The main reason for introducing the dual is that it is straightforward to construct
a particle number density three-form that is automatically closed. We achieve this by
introducing a three-dimensional “matter” space—the left-hand part of Fig. 10—which
is labelled by coordinates X A, where A, B,C, . . . = 1, 2, 3. For each time slice in
spacetime, we have the same configuration in the matter space. That is, as time moves
forward, the fluid particle positions in the matter space remain fixed—even through
the worldlines weave through spacetime. In this sense we are “pulling back” from the
matter space to spacetime (cf. the discussion of the Lie derivative). The nabc three-
form can then be “pushed forward” to the three-dimensional matter space by using the
map associated with the coordinates X A (which represent scalar fields on spacetime):

ψ A
a = ∂a X A. (6.9)

This construction leads to a matter-space three form NABC ,

nabc = ψ A
a ψ

B
b ψ

C
c NABC , (6.10)

which is completely anti-symmetric in its indices. The final step involves noting that

∂[anbcd] = ψ A
a ψ

B
b ψ

C
c ψ

D
d ∂[AnBC D] = 0, (6.11)

is automatically satisfied if
∂[AnBC D] = 0, (6.12)

123



Relativistic fluid dynamics: physics for many different… Page 63 of 251 3

which, in turn, follows if n ABC is taken to be a function only of the X A coordinates.
This completes the argument.

Nowwe need to connect this idea to the variational principle. The key step involves
introducing the Lagrangian displacement ξa , tracking the motion of a given fluid
element. From the standard definition of Lagrangian variations, we have

ΔX A = δX A + Lξ X A = 0, (6.13)

where δX A is the Eulerian variation and Lξ is the Lie derivative along ξa . This means
that we have

δX A = −Lξ X A = −ξa ∂X A

∂xa
= −ξaψ A

a . (6.14)

It also follows that

Δψ A
a = δψ A

a + ξb∂bψ
A
a + ψ A

b ∂aξ
b = ∂aδX A + ξb∂bψ

A
a + ψ A

b ∂aξ
b

= ∂a

(

ΔXa − ξb∂b Xa
)

+ ξb∂bψ
A
a + ψ A

b ∂aξ
b = 0, (6.15)

since partial derivatives commute. Given these results, it is easy to show that

Δnabc = ψ A
a ψ

B
b ψ

C
c ∂D NABCΔX D = 0. (6.16)

This implies that
δnabc = −Lξnabc, (6.17)

and hence

δna = 1

3!δ
(

εbcdanbcd

)

= 1

3!
(

δεbcdanbcd − εbcdaLξnbcd

)

. (6.18)

Making use of a little bit of elbow grease and the standard relations

δgdb = −gdagbcδg
ac, (6.19)

and

δεabcd = 1

2
εabcd gef δg

ef , (6.20)

we arrive at

δna = 1

3!δ(ε
bcdanbcd) = nb∇bξ

a − ξb∇bna − na
(

∇bξ
b − 1

2
gbcδg

bc
)

= −Lξna − na
(

∇bξ
b − 1

2
gbcδg

bc
)

, (6.21)

or

Δna = −na
(

∇bξ
b + 1

2
gbdδgbd

)

= −1

2
na
(

gbdΔgbd

)

, (6.22)
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where
Δgab = δgab + 2∇(aξb), (6.23)

(the parentheses indicate symmetrization, as usual). Equation (6.22) has a natural
interpretation: The variation of a fluid worldline with respect to its own Lagrangian
displacement has to be along the worldline and can only measure the changes of the
volume of its own fluid element. This is one of the advantages of the Lagrangian
variation approach.

Comment:At first glance, there appears to be a glaring inconsistency between
the pull-back construction and the Lagrangian variation, since the latter seems
to have four independent components, but the former clearly has three. How-
ever, there is a gauge freedom in the Lagrangian variation that can be used to
reduce the number of independent components. Take Eq. (6.21) and substitute

ξa = ξa + Ga , (6.24)

to get

δna = δna + ∇b

(

nbGa − naGb
)

− Ga∇bnb , (6.25)

where δna is as in Eq. (6.21) except ξa is replaced with ξ
a
. Using the fact that

∇ana = 0, and setting

Ga = Gna , (6.26)

the last two terms vanish and δna = δna . Thus, we can use the arbitrary func-
tion Ga (the gauge freedom) to reduce the number of independent components
of ξa to three.

Expressing the variations of the matter Lagrangian in terms of the displacement ξa ,
rather than the perturbed flux, we ensure that the flux conservation is accounted for in
the equations of motion. The variation of Λ now leads to

δ
(√−gΛ

) = √−g

{

faξ
a − 1

2

[(

Λ− ncμc
)

gab + naμb
]

δgab
}

+∇a

(
1

2

√−gμabcnbcdξ
d
)

, (6.27)

and the fluid equations of motion are given by

fb ≡ 2na∇[aμb] = 0, (6.28)

123



Relativistic fluid dynamics: physics for many different… Page 65 of 251 3

(where the square brackets indicate anti-symmetrization, as usual). Finally, introducing
the vorticity two-form

ωab = 2∇[aμb], (6.29)

we have the simple relation
naωab = 0, (6.30)

which should be familiar (see Sect. 5.2).
We can also read off the stress-energy tensor from (6.27). We need (see Sect. 4)

Tab = − 2√−g

δ
(√−gΛ

)

δgab
= Λgab − 2

δΛ

δgab
. (6.31)

Finally, introducing the matter four-velocity, such that na = nua and μa = μua ,
where μ is the chemical potential (as before), we see that the energy is

ε = uaubT ab = −Λ. (6.32)

Moreover, we identify the pressure from the thermodynamical relation:

p = −ε + nμ = Λ− ncμc. (6.33)

This means that we have

T ab = pgab + naμb = εuaub + p ⊥ab, (6.34)

and it is straightforward to confirm that

∇aT ab = − f b + ∇bΛ− μb∇ana = − f b = 0, (6.35)

given that (i)Λ is a function only of na and gab, and (ii) the definition of themomentum
μa .

Let us pause to recall the discussion of the point particle, where we pointed out
that only the fully conservative formofNewton’s SecondLaw follows from the
action. External or dissipative forces are excluded. However, we argued that a
well-established formofNewton’s second law is known that allows for external
and/or dissipative forces (cf. Eq. (4.10)). This lendsmeaning to the use of fa in
Eq. (5.25). We may take the fa to be the relativistic analogue of the left-hand-
side of Eq. (4.10) in every sense. In particular, when dissipation and/or external
“forces” act in a general relativistic setting, they may be introduced as in the
right-hand-side of Eq. (5.25)—essentially as a generalisation of d’Alembert’s
notion of virtual work. However, it is natural to wonder if it is possible to
do better than this somewhat phenomenological approach. Is it possible to
incorporate dissipative aspects in the action? Later, in Sect. 16, we will argue
that this can, indeed, be done.
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6.2 Lagrangian perturbations

Later,wewill consider linear dynamics of different systems—both at the local level and
for macroscopic bodies like rotating stars. This inevitably draws on an understanding
of perturbation theory, which (in turn) makes contact with the variational argument we
have just completed. Given this, it is worth making a few additional remarks before
we move on.

First of all, an unconstrained variation ofΛ(n2) is with respect to na and the metric
gab, and allows the four components of na to be varied independently. It takes the
form

δΛ = μaδn
a + 1

2
naμbδgab, (6.36)

where

μa = Bna, B ≡ −2
∂Λ

∂n2 . (6.37)

The use of the letter B is to remind us that this is a bulk fluid effect, which is present
regardless of the number of fluids and constituents. The momentum covector μa is (as
we have seen) dynamically, and thermodynamically, conjugate tona , and itsmagnitude
is the chemical potential of the particles (recalling that Λ = −ε).

Next, by introducing the displacement ξa , effectively tracking the fluid elements,we
have prepared the ground for a study of general Lagrangian perturbations (for example,
those used in relativistic studies of neutron-star instabilities (Friedman 1978), see
Sect. 7.4). In fact, given the results from the variational derivation it is straightforward
to write down the perturbed fluid equations.

By introducing the decomposition na = nua we can show that the argument that
led to (6.22) also provides16

δn = −∇a
(

nξa)− n

(

uaub∇bξ
a + 1

2
⊥ab δgab

)

, (6.38)

and

δua = (

δa
b + uaub

) (

uc∇cξ
b − ξ c∇cub

)

+ 1

2
uaubucδgbc. (6.39)

Similar arguments lead to

Δua = 1

2
uaubucΔgbc, (6.40)

Δεabcd = 1

2
εabcd gefΔgef , (6.41)

Δn = −n

2
⊥ab Δgab. (6.42)

16 This step may lead to conceptual confusion as we (deliberately) represent the displacement vector by
ξa . The mathematics for (say) the perturbed flux δna is the same as in the variation derivation of the
fluid equation, but the meaning of the variation is different. In the fluid derivation we consider variations
away from the actual solution curve in parameter space, as illustrated in Fig. 7. In the case of Lagrangian
perturbations, the displacement relates different configurations within the solution space, i.e. that satisfy
the equations of motion.
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These results and their Newtonian analogues were used by Friedman and Schutz in
establishing the so-called Chandrasekhar–Friedman–Schutz (CFS) instability (Chan-
drasekhar 1970; Friedman and Schutz 1978a, b) (see Sect. 7.4).

6.3 Working with thematter space

The derivation of the Euler equations (6.28) made “implicit” use of the matter space as
a device to ensure the conservation of the particle flux. In many ways it makes sense to
introduce the argument this way, but—as we will see when we consider elasticity—it
can be useful to work more explicitly with the matter space quantities.

Let us first note that, as implied by Fig. 10, the X A coordinates are comoving with
their respective worldlines, meaning that they are independent of the proper time τ ,
say, that parameterizes each curve. This is easy to demonstrate. Introducing the four
velocity associated with the world line through na = nua , we have

n
d X A

dτ
= n

dxa

dτ
∂a X A = na∂a X A = Ln X A

= − 1

3!ε
bcdaψ A

a ψ
B
b ψ

C
c ψ

D
d NBC D = 0. (6.43)

We see that the time part of the spacetime dependence of the X A is somewhat ad hoc.
If we take the flow of time ta to provide the proper time of the worldlines (ta is parallel
to na and hence ua), the X A do not change. An apparent time dependence in spacetime
means that ta is such as to cut across fluid worldlines (ta is not parallel to na), which
of course have different values for the X A.

It is also worth noting the (closely related) fact that nabc is a “fixed” tensor, in the
sense that

uanabc = nuaudεdabc = 0, (6.44)

(i.e. the three-form is spatial) and

Lunabc = 0, (6.45)

(it does not change along the flow). The latter is equivalent to requiring that the three-
form nabc be closed; i.e.,

∇[anbcd] = ∂[anbcd] = 0, (6.46)

which, of course, holds by construction.
From a formal point of view, we have changed perspective by taking the (scalar

fields) X A to be the fundamental variables. The construction also provides matter
space with a geometric structure. As a first example of this note that, if integrated over
a volume in matter space, n ABC provides a measure of the number of particles in that
volume. To see this, simply introduce a matter space three form εABC such that

n ABC = nεABC , (6.47)
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and recall that such an object represents a volume. Since n is the number density, it
follows immediately that n ABC represents the number of particles in the volume. This
object is directly linked to the spacetime version;

nabc = nudεdabc ≡ nεabc (6.48)

where εabc is associated with a right-handed tetrad moving along ua . It then follows
immediately that

εabc = ψ A
a ψ

B
b ψ

C
c εABC . (6.49)

Inspired by this, we may also introduce

g AB = ψ A
a ψ

B
b gab = ψ A

a ψ
B
b ⊥ab, (6.50)

representing the induced metric on matter space.
Equipped with these matter space quantities, it is fairly natural to ask; is it possible

to express the LagrangianΛ(n2) in terms of matter space quantities? The answer will
soon be relevant, so let us consider it now. It is straightforward to show that we may
consider Λ to be a function of g AB and n ABC :

n2 = −gabnanb = 1

3!nabcnabc

= 1

3!
(

ψ A
a gadψD

d

) (

ψ B
b gbeψ E

e

) (

ψC
c gcfψ F

f

)

n ABC nDE F

= 1

3!g ADgB E gC F n ABC nDE F . (6.51)

It follows that, if we introduce

γAB =
(√

det (gG H )n
)2/3

gAB, (6.52)

then (using Eq. (B.8) from Appendix 2)

n2 = 1

3!γ
ADγ B Eγ C F [ABC][DE F] = det

(

γ AB
)

. (6.53)

and
Λ(n2) ⇔ Λ

(

det
(

γ AB
))

. (6.54)

Finally, it is worth noting that, alongside the number three-form we may introduce
the analogous object for the momentum:

μabc = εdabcμd , μa = 1

3!εbcdaμ
bcd . (6.55)

This then leads to

nμ = −naμa = nabcμ
abc = n ABCμ

ABC , (6.56)
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where
μABC = ψ A

a ψ
B
b ψ

C
c μ

abc. (6.57)

6.4 A step towards field theory

The quantities we introduced in the previous section may seem somewhat abstract at
this point, but their meaning will (hopefully) become clearer later. As a first exercise
in working with them, let us ask what happens if we consider the matter space “fields”
as the fundamental variables of the theory.

In general, we might take the Lagrangian to be Λ = Λ(X A, ψ A
a , gab) (as in, for

example, Jezierski and Kijowski 2011). This leads to

δ
(√−gΛ

) = √−g

{
∂Λ

∂X A
δX A + ∂Λ

∂ψ A
a
δψ A

a +
[
∂Λ

∂gab
− Λ

2
gab

]

δgab
}

. (6.58)

If we introduce the Lagrangian displacement, as before, we already know that

ΔX A = 0, (6.59)

and

Δψ A
a = 0 �⇒ δψ A

a = −ξ c∇cψ
A
a − ψ A

c ∇aξ
c = −∇a

(

ξ cψ A
c

)

, (6.60)

where we have used the fact that partial derivatives commute. It then follows that

∂Λ

∂X A
δX A + ∂Λ

∂ψ A
a
δψ A

a = −ξ cψ A
c

[
∂Λ

∂X A
− ∇a

(
∂Λ

∂ψ A
a

)]

, (6.61)

and we see that the Euler-Lagrange equations are

ψ A
c

[
∂Λ

∂X A
− ∇a

(
∂Λ

∂ψ A
a

)]

= 0. (6.62)

We also see that the stress-energy tensor is

Tab = − 2√−g

δ
(√−gΛ

)

δgab
= Λgab − 2

∂Λ

∂gab
. (6.63)

It is easy to see that these results lead us back to (4.46).
In order to compare the Euler–Lagrange equations for the fields to the Euler equa-

tions (5.25), we need two intermediate results. First of all,

∂Λ

∂ψ A
a

= μb
∂nb

∂ψ A
a

= 1

3!μbε
cdebnC DE

∂

∂ψ A
a

(

ψC
c ψ

D
d ψ

E
e

)

= 1

2
μbε

adebψD
d ψ

E
e n ADE = −1

2
μadeψD

d ψ
E
e n ADE
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= −1

2
μadeδB

Aψ
D
d ψ

E
e nB DE = −1

2
μade

(

ψb
Aψ

B
b

)

ψD
d ψ

E
e nB DE

= −1

2
ψb

Aμ
adenbde = ψb

A

[

δa
b

(

μcnc)− μbna] . (6.64)

This is true because (i) the metric is held fixed in the partial derivative, and (ii) n ABC

depends only on the matter space coordinates X A. We then see that

ψ A
b
∂Λ

∂ψ A
a

=⊥c
b

[

δa
c

(

μdnd
)

− μcna
]

= −nμ ⊥a
b, (6.65)

since na = nua , μa = μua and ⊥c
b uc = 0. Secondly, we need

ψ A
c
∂Λ

∂X A
= ∇cΛ− ∂Λ

∂ψ A
b

∇cψ
A
b , (6.66)

Making use of these results, we get

ψ A
b

[
∂Λ

∂X A
− ∇a

(
∂Λ

∂ψ A
a

)]

= ∇a

[

δa
bΛ− ψ A

b
∂Λ

∂ψ A
a

]

= ∇a
[

δa
bΛ+ nμ ⊥a

b

]

= ∇a
[

δa
b (Λ− ncμc)+ naμb

] = ∇aT a
b = 0. (6.67)

In essence, the two descriptions are consistent—as they had to be.
What we have outlined is a field-theory approach to the problem, based on the idea

that the matter space variables can be viewed as fields in spacetime (Endlich et al.
2011). It is, of course, not a truly independent variational approach, and (as we have
seen) the equations of motion one obtains need to be massaged into a more intuitive
form. However, this does not mean that the argument is without merit. Looking at
a problem from different perspectives tends to help understanding. In this particular
instance, we may explore the connection between the symmetries of the problem and
the matter space variables. By changing the focus from the familiar macroscopic fluid
degrees of freedom to three scalar functions X A it is easy to keep track of the expected
Poincaré invariance. First of all, if we expect the system to be homogeneous and
isotropic we have to require the fields to be invariant under internal translations and
rotations. This means that

X A → X A + a A, (6.68)

for constant a A, and
X A → O A

B X B, (6.69)

where O A
B is an SO(3) matrix (associated with rotation). These conditions do not

restrict us to fluids, however, as they will also hold for isotropic solids. The final
condition we need relates to invariance under volume-preserving diffeomorphisms,
leading to

X A → ξ A(X B), with det
∂ξ A

∂X B
= 1. (6.70)
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In practice, this corresponds to the dynamics being invariant as the fluid elements
move around without expansion or contraction.

What are the implications of these conditions? First of all, we need each of the X A

fields to be acted on by at least one derivative (although see Andersson et al. 2017a
for a discussion on how this assumption can be relaxed for dissipative systems). This
means that the Lagrangian cannot depend on X A directly (as we assumed). Moreover,
taking a field-theory view of the problem (see the discussion of the fluid-gravity
correspondence in Sect. 16.4) we may focus on low momenta/low frequencies, for
which the most relevant terms are those with the fewest derivatives. In effect, the
lowest order Lagrangian will involve exactly one derivative acting on each X A. The
focus then shifts to the map, ψ A

a . As we expect to work with Lorentz scalars, it would
be natural to assume that the Lagrangian must involve the contraction

g AB = gabψ A
a ψ

B
b , (6.71)

from before (i.e., the induced metric on the matter space). Moreover, we have already
seen that the symmetries require us to work with invariant functions of g AB and the
volume preserving argument picks out the determinant as the key combination.

The connection with quantum field theory is explored by Endlich et al. (2011), with
particularly interesting developments relating to symmetry breaking and the emer-
gence of superfluidity (Dubovsky et al. 2006, 2012) and extensions to incorporate
quantum anomalies17 in the field theory (Dubovsky et al. 2014). And example of the
latter is the Wess–Zumino anomaly, which leads to terms that remain only after inte-
gration by parts. In effect, the action is invariant, but the Lagrangian is not. Somewhat
simplistically, one may associate such terms with the surface terms we neglected in
the variational argument. There has also been some effort to extend the approach to
dissipative systems (Endlich et al. 2013).

7 Newtonian limit and Lagrangian perturbations

7.1 The Newtonian limit

Having written down the equations that govern a single (barotropic) relativistic fluid,
it is natural to consider the connection between the final expressions and standard
Newtonian fluid dynamics. In order to make this connection, we need to establish
how one arrives at the Newtonian limit of the relativistic equations. It is useful to
work this out because—even though the framework we are developing is intended to
describe relativistic systems—modellingoftendrawson intuitiongained fromgoodold
Newtonian physics. This is especially the casewhen one considers “new” applications.
Useful qualitative understanding can often be obtained from a Newtonian analysis,
but we need relativistic models for precision and in order to explore unique aspects,
like rotational frame-dragging and gravitational radiation.

17 The idea is that the fluid dynamics is modified in the presence of an external (gauge) field, leading to
the current no longer being conserved.
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There has beenmuch progress on the analysis ofNewtonianmultifluid systems. Prix
(2004) has developed an action-based formalism, analogous to the model we consider
here (based on the notion of time-shifts, closely related to the Lagrangian variations
in spacetime). Carter and Chamel (2004, 2005a, b) have done the same, except that
they use a fully spacetime covariant formalism (taking the work of Milne and Cartan
as starting points), taking full account of the fact that the Newtonian limit is singular.
Our aim here is less ambitious. We simply want to demonstrate how the Newtonian
fluid equations can be extracted as the non-relativistic limit of the relativistic model.

We take as the starting point the leading order line element in the weak-field limit;

ds2 = −c2dτ 2 = −c2
(

1 + 2Φ

c2

)

dt2 + ηi j dxi dx j , (7.1)

where xi (i = 1−3) are Cartesian coordinates, ηi j is the flat three-dimensional metric
and Φ is the gravitational potential. The Newtonian limit then follows by writing the
equations to leading order in an expansion in powers of the speed of light c. Formally,
the Newtonian results are obtained in the limit where c → ∞.

Let us apply this strategy to the equations of fluid dynamics. With τ the proper time
measured along a fluid element’s worldline, the curve it traces out can be written

xa(τ ) = {ct(τ ), xi (τ )}. (7.2)

In order to work out the four-velocity,

ua = dxa

dτ
, (7.3)

we note that (7.1) leads to

dτ 2 =
(

1 + 2Φ

c2
− ηi jv

iv j

c2

)

dt2, (7.4)

with vi = dxi/dt the Newtonian three-velocity of the fluid. Since the velocity is
assumed to be small, in the sense that

∣
∣vi
∣
∣

c
� 1, (7.5)

this leads to
dt

dτ
≈ 1 − Φ

c2
+ v2

2c2
, (7.6)

where v2 = ηi jv
iv j , and

u0 = dx0

dτ
= c

dt

dτ
≈ c

(

1 − Φ

c2
+ v2

2c2

)

. (7.7)
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It is also easy to see that

ui = dxi

dτ
= vi dt

dτ
≈ vi . (7.8)

In order to obtain the covariant components, we use the metric (which is manifestly
diagonal). Thus, we find that

u0 = g00u0 = −c

(

1 + 2Φ

c2

)(

1 − Φ

c2
+ v2

2c2

)

≈ −c

(

1 + Φ

c2
+ v2

2c2

)

, (7.9)

and
ui = vi . (7.10)

Note that these relations lead to

uaua = −c2
(

1 − Φ

c2
+ v2

2c2

)(

1 + Φ

c2
+ v2

2c2

)

+ v2 ≈ −c2, (7.11)

as expected.
We can now work out the Newtonian limit for the conserved particle flux

∇a(nua) = 0 �⇒ 1

c
∂t

(

nu0
)

+ ∇i

(

nvi
)

= 0

�⇒ ∂t n + ∇i

(

nvi
)

= O
(

c−1
)

(7.12)

To leading order we retain the expected result

∂t n + ∇i

(

nvi
)

= 0, (7.13)

recovering the usual continuity equation by introducing the mass density ρ = mn,
with m the mass per particle.

In order to work out the corresponding limit of the Euler equations, we need the
curvature contributions to the covariant derivative. However, from the definition (3.35)
and the weak-field metric, we see that only g00 gives a non-vanishing contribution.
Moreover, it is clear that

Γ a
bc = O(1/c2), (7.14)

which is why we did not need to worry about this in the case of the flux conservation.
The curvature contributes at higher orders.

Explicitly, we have

ua∇aub = ua∂aub + Γ b
cauauc = 1

c
u0∂t u

b + ui∂i u
b + Γ b

cauauc. (7.15)
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We only need the spatial components, so we set b = j to get

ua∇au j = 1

c
u0∂t u

j + ui∂i u
j + Γ j

cauauc

= ∂tv
j + vi∂iv

j + c2Γ j
00 + higher order terms

= ∂tv
j + vi∂iv

j + 1

2
η jk∂k

(
2Φ

c2

)

= ∂tv
j + vi∂iv

j + η jk∂kΦ. (7.16)

Finally, we need the pressure contribution. For this we note that the projection
becomes

⊥ab= gab + 1

c2
uaub, (7.17)

in order to be dimensionally consistent. We also need ε � p. This means that we have

⊥ba ∇a p �⇒ η jk∂k p, (7.18)

and we (finally) arrive at the Euler equations

∂tv
j + vi∂iv

j = −η jk
(
1

ρ
∂k p + ∂kΦ

)

, (7.19)

which represent momentum conservation.

7.2 Local dynamics

In principle, the fluid equations (from Sect. 5.2 or above) completely specify the
problem for a single-component barotropic flow (once an equation of state has been
provided, of course). In general, the problem is nonlinear and difficult to solve ana-
lytically. Once we couple the fluid motion to the dynamic spacetime of the Einstein
equations, it becomes exceedingly so.However, if wewant to understand the behaviour
of a given system we can make progress using linearized theory. This approach
would be suitable whenever the dynamics only deviates slightly from a known back-
ground/equilibrium state. The deviations should be small enough that we can neglect
nonlinearities. This is a very common strategy, for example, to study the oscillations of
neutron stars. Moreover, it is a good strategy if we want to explore the local dynamics
of a given system.

Consider the case where the length and time scales of the deviations are such that
the spacetime curvature can be ignored; then, we can work in the local inertial frame
associated with the flow—i.e. use Minkowski coordinates xa = [t, xi ] and assume
that the spacetime curvature is flat. Letting τ be the proper time associated with a
given fluid worldline, we see from Eqs. (7.2) and (7.3) and the normalization of the
four-velocity ua (i.e. uaua = −1) that—in the local inertial frame—the particle flux
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density takes the form

na = nua = n
(

1 − v2
)−1/2 [1, vi ], (7.20)

where vi = dxi/dt is the local three-velocity and v2 = ηi jv
iv j . In the linearized case,

the three-velocity vi is small and therefore a deviation. The background four-velocity
is thus uniform, taking the form ua = [1, 0, 0, 0], and it is obviously the case that
∇bua = 0. As long as the associated scales of the deviations are sufficiently small,
we should be able to take the background particle number density n to be uniform
both temporally and spatially so that ∇an = 0. Therefore, it is easy to see that the
background/equilibrium state trivially satisfies the dynamical equations.

Now consider (Eulerian) variations, such that n → n +δn and vi → δvi and let the
deviations be expressed as plane waves (making use of a Fourier decomposition). The
normalization of the four-velocity ua demands that the perturbed velocity is spatial
(uaδua = 0), which is consistent with the linearization of Eq. (7.20):

δna = [δn, nδvi ]. (7.21)

Astandard sound speedderivation, however, takes thepoint of view that the energyden-
sity and four-velocity are the fundamental variables. For now, we adopt this approach
in order to make contact with the well-known results.

From Eq. (5.12), we see a perturbation in n leads to a perturbation in ρ (recall
ε ≈ ρ = mn in the weak-field limit); namely,

δρ = μδn. (7.22)

Likewise, Eq. (5.13) shows that there are corresponding perturbations in the pressure
and chemical potential. With that in mind, we linearize Eqs. (5.15) and (5.17), and
find that the perturbation problem becomes

∂tδρ + (p + ρ)∇iδv
i = 0, (7.23)

and
(p + ρ) ∂tδvi + ∇iδ p = 0. (7.24)

To close the system, we introduce a barotropic equation of state:

p = p(ρ) −→ δ p =
(

dp

dρ

)

δρ ≡ C2
s δρ. (7.25)

The plane-wave Ansatz means that we have

δ p = Apeik(−σ t+k̂ j x j ) (7.26)

δρ = Aρeik(−σ t+k̂ j x j ) (7.27)
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and
δvi = Ai

ve
ik(−σ t+k̂ j x j ). (7.28)

In these expressions, the constant σ is the wave-speed, the constant ki is the (spa-
tial) wave-vector, such that k2 = ki ki (ki = gi j k j ) and k̂i = ki/k. We see from
Eq. (7.25) that the pressure amplitude Ap must satisfy (assuming that the perturba-
tions are described by the same equation of state as the background)

Ap = C2
s Aρ. (7.29)

Inserting the plane-wave decompositions for δρ and δvi into (7.23) and (7.24) we find

σ Aρ + (p + ρ)k̂i Ai
v = 0 (7.30)

and
(p + ρ)σ Ai

v + C2
s Aρ k̂i = 0. (7.31)

It is easy to see that we cannot have non-trivial transverse waves; i.e., if k̂i Ai
v = 0

thenwemust have Aρ = 0 as well. Focussing on the longitudinal case, we can contract
the second equation with k̂i to obtain a scalar equation. Making use of this equation,
we obtain the dispersion relation

σ 2 − C2
s = 0 �⇒ σ = ±Cs . (7.32)

In this simple situation it is obvious that we should identify Cs as the speed of sound.
It is worth noting that we can go back to the case where the particle flux na is taken

to be fundamental and the equation of state has the form ρ = ρ(n). If we do that, then
we have

dρ = μdn and dp = ndμ (7.33)

and it follows that the speed of sound is given by

C2
s = dp

dρ
= n

μ

dμ

dn
. (7.34)

7.3 Newtonian fluid perturbations

Studies of the stability properties of rotating self-gravitating bodies are of obvious
relevance to astrophysics. By improving our understanding of the relevant issues we
can hope to shed light on the nature of the various dynamical and secular instabilities
that may govern the spin-evolution of rotating stars. The relevance of such knowledge
for neutron star astrophysics may be highly significant, especially since instabilities
may lead to detectable gravitational-wave signals. In this section we will outline the
Lagrangian perturbation framework developed by Friedman and Schutz (1978a, b) for
rotating non-relativistic stars, leading to criteria that can be used to decide when the
oscillations of a rotating neutron star are unstable.We also provide an explicit example
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proving the instability of the so-called r-modes at all rotation rates in a perfect fluid
star.

Following Friedman and Schutz (1978a, b), we work with Lagrangian variations.
We have already seen that the Lagrangian perturbation ΔQ of a quantity Q is related
to the Eulerian variation δQ by

ΔQ = δQ + LξQ, (7.35)

where (as before) Lξ is the Lie derivative (introduced in Sect. 3). The Lagrangian
change in the fluid velocity now follows from the Newtonian limit of Eq. (6.39):

Δvi = ∂tξ
i , (7.36)

where ξ i is the Lagrangian displacement. Given this, and

Δgi j = ∇iξ j + ∇ jξi , (7.37)

where gi j is the flat three-dimensional metric, we have

Δvi = ∂tξi + v j∇iξ j + v j∇ jξi . (7.38)

Let us consider the simplest case, namely a barotropic ordinary fluid for which
ε = ε(n). Then we want to perturb the continuity and Euler equations. The conser-
vation of mass for the perturbations follows immediately from the Newtonian limits
of Eqs. (6.38) and (6.40) (which as we recall automatically satisfy the continuity
equation):

Δn = −n∇iξ
i , δn = −∇i (nξ

i ). (7.39)

Consequently, the perturbed gravitational potential follows from

∇2δΦ = 4πGδρ = 4πGm δn = −4πGm∇i (nξ
i ). (7.40)

In order to perturb the Euler equations we first rewrite Eq. (7.19) as

(∂t + Lv)vi + ∇i

(

μ̃+Φ − 1

2
v2
)

= 0, (7.41)

where μ̃ = μ/m. This form is particularly useful since the Lagrangian variation
commutes with the operator ∂t + Lv . Perturbing Eq. (7.41) we thus have

(∂t + Lv)Δvi + ∇i

(

Δμ̃+ΔΦ − 1

2
Δ(v2)

)

= 0. (7.42)

We want to rewrite this equation in terms of the displacement vector ξ . After some
algebra we arrive at

∂2t ξi + 2v j∇ j∂tξi + (v j∇ j )
2ξi + ∇iδΦ + ξ j∇i∇ jΦ
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−(∇iξ
j )∇ j μ̃+ ∇iΔμ̃ = 0. (7.43)

Finally, we need

Δμ̃ = δμ̃+ ξ i∇i μ̃ =
(
∂μ̃

∂n

)

δn + ξ i∇i μ̃ = −
(
∂μ̃

∂n

)

∇i (nξ
i )+ ξ i∇i μ̃. (7.44)

Given this, we have arrived at the following form for the perturbed Euler equation:

∂2t ξi + 2v j∇ j∂tξi + (v j∇ j )
2ξi + ∇iδΦ + ξ j∇i∇ j (Φ + μ̃)

−∇i

[(
∂μ̃

∂n

)

∇ j (nξ
j )

]

= 0. (7.45)

This equation should be compared to Eq. (15) of Friedman and Schutz (1978a).

7.4 The CFS instability

Having derived the perturbed Euler equations, we are interested in constructing con-
served quantities that can be used to assess the stability of the system. To do this, we
first multiply Eq. (7.45) by the number density n, and then write the result (schemati-
cally) as

A∂2t ξ + B∂tξ + Cξ = 0, (7.46)

omitting the indices since there is little risk of confusion. Defining the inner product

〈

ηi , ξi

〉

=
∫

ηi∗ξi dV , (7.47)

where η and ξ both solve the perturbed Euler equation, and the asterisk denotes
complex conjugation (and we integrate over the volume of the body, V ), one can
now show that

〈η, Aξ 〉 = 〈ξ, Aη〉∗ and 〈η, Bξ 〉 = − 〈ξ, Bη〉∗ . (7.48)

The latter requires the background relation ∇i (nvi ) = 0, and holds as long as n → 0
at the surface of the star. A slightly more involved calculation leads to

〈η,Cξ 〉 = 〈ξ,Cη〉∗ . (7.49)

Inspired by the fact that the momentum conjugate to ξ i is ρ(∂t + v j∇ j )ξi , we now
consider the symplectic structure

W (η, ξ) =
〈

η, A∂tξ + 1

2
Bξ

〉

−
〈

A∂tη + 1

2
Bη, ξ

〉

. (7.50)
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It is straightforward to show that W (η, ξ) is conserved, i.e., ∂t W = 0. This leads us
to define the canonical energy of the system as (with m the baryon mass, not to be
confused with the angular multipole m later)

Ec = m

2
W (∂tξ, ξ) = m

2
{〈∂tξ, A∂tξ 〉 + 〈ξ,Cξ 〉} . (7.51)

After some manipulations, we arrive at the explicit expression:

Ec = 1

2

∫ {

ρ|∂tξ |2 − ρ|v j∇ jξi |2 + ρξ iξ j∗∇i∇ j (μ̃+Φ)

+
(
∂μ

∂n

)

|δn|2 − 1

4πG
|∇iδΦ|2

}

dV , (7.52)

which can be compared to Eq. (45) of Friedman and Schutz (1978a). In the case of
an axisymmetric system, e.g., a rotating star, we can also define a canonical angular
momentum as

Jc = −m

2
W (∂ϕξ, ξ) = −Re

〈

∂ϕξ, A∂tξ + 1

2
Bξ

〉

. (7.53)

The proof that this quantity is conserved relies on the fact that (i) W (η, ξ) is conserved
for any two solutions to the perturbed Euler equations, and (ii) ∂ϕ commutes with
ρv j∇ j in axisymmetry, which means that if ξ solves the Euler equations then so does
∂ϕξ .

As discussed in Friedman and Schutz (1978a, b), the stability analysis is compli-
cated by the presence of so-called “trivial” displacements. These trivials can be thought
of as representing a relabeling of the physical fluid elements. A trivial displacement ζ i

leaves the physical quantities unchanged, i.e., is such that δn = δvi = 0. This means
that we must have

∇i (ρζ
i ) = 0, (7.54)

(∂t + Lv) ζ i = 0. (7.55)

The solution to the first of these equations can be written

ρζ i = εi jk∇ jχk, (7.56)

where, in order to satisfy the second equations, the vector χk must have time-
dependence such that

(∂t + Lv)χk = 0. (7.57)

This means that the trivial displacement will remain constant along the background
fluid trajectories. Or, as Friedman and Schutz (1978a) put it, the “initial relabeling is
carried along with the unperturbed motion”.

The trivials cause trouble because they affect the canonical energy. Before one can
use the canonical energy to assess the stability of a rotating configuration one must
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deal with this “gauge problem”. To do this one should ensure that the displacement
vector ξ i is orthogonal to all trivials. A prescription for this is provided by Friedman
and Schutz (1978a). In particular, they show that the required canonical perturbations
preserve the vorticity of the individual fluid elements. Most importantly, one can also
prove that a normal mode solution is orthogonal to the trivials. Thus, mode solutions
can serve as canonical initial data, and be used to assess stability.

The importance of the canonical energy stems from the fact that it can be used to
test the stability of the system. In particular:

– Dynamical instabilities are only possible for motions such that Ec = 0. This
makes intuitive sense since the amplitude of a mode for which Ec vanishes can
grow without bound and still obey the conservation laws.

– If the system is coupled to radiation (e.g., gravitational waves) which carries pos-
itive energy away from the system (which should be taken to mean that ∂t Ec < 0)
then any initial data for which Ec < 0 will lead to an unstable evolution.

Consider a real frequency normal-mode solution to the perturbation equations, a
solution of form ξ = ξ̂ei(ωt+mϕ). One can readily show that the associated canonical
energy becomes

Ec = ω
[

ω 〈ξ, Aξ 〉 − i

2
〈ξ, Bξ 〉

]

, (7.58)

where the expression in the bracket is real. Similarly, for the canonical angularmomen-
tum, we get

Jc = −m

[

ω 〈ξ, Aξ 〉 − i

2
〈ξ, Bξ 〉

]

. (7.59)

Combining Eqs. (7.58) and (7.59) we see that, for real frequency modes, we have

Ec = −ω
m

Jc = σp Jc, (7.60)

where σp is the pattern speed of the mode.
Now note that Eq. (7.59) can be rewritten as

Jc
〈

ξ̂ , ρξ̂
〉 = −mω + m

〈

ξ, iρv j∇ jξ
〉

〈

ξ̂ , ρξ̂
〉 . (7.61)

Using cylindrical coordinates, and v j = Ωϕ j , one can show that

− iρξ∗
i v

j∇ jξ
i = ρΩ

[

m
∣
∣
∣ξ̂

∣
∣
∣

2 + i(ξ̂∗ × ξ̂ )z
]

. (7.62)

But
∣
∣
∣(ξ̂

∗ × ξ̂ )z
∣
∣
∣ ≤

∣
∣
∣ξ̂

∣
∣
∣

2
(7.63)
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Fig. 11 An illustration of the instabilities affecting the fundamental f-mode of a rotating neutron star. The
horizontal axis represents the rotation, expressed in terms of the ratio between the kinetic energy and the
gravitational potential energy (β = T /|W |). The angular velocity is not a (particularly) useful parameter
as values beyond (something like) β ≈ 0.11 requires some degree of differential rotation. That is, rigidly
rotating bodies never reach the dynamically unstable regime (at least not in Newtonian gravity). The vertical
axis gives the pattern speed of the mode, with waves that appear to move forwards (according to a distant
observer) having positive values, while backwards moving modes lead to negative values. The originally
backwards moving f-mode becomes secularly unstable at β ≈ 0.14, at the point where the mode first
appears to move forwards (because of the rotation of star). The mode becomes dynamically unstable (this
is the so-called bar-mode instability) when the two modes merge at β ≈ 0.24 (adapted from Andersson
2003)

and hence we must have (for uniform rotation)

σp −Ω
(

1 + 1

m

)

≤ Jc/m2
〈

ξ̂ , ρξ̂
〉 ≤ σp −Ω

(

1 − 1

m

)

. (7.64)

Equation (7.64) forms a key part of the proof that rotating perfect fluid stars are
generically unstable in the presence of radiation (Friedman and Schutz 1978b). The
argument goes as follows: Consider modes with finite frequency in theΩ → 0 limit.
Then Eq. (7.64) implies that co-rotating modes (with σp > 0) must have Jc > 0, while
counter-rotating modes (for which σp < 0) will have Jc < 0. In both cases Ec > 0,
which means that both classes of modes are stable. Now consider a small region near
a point where σp = 0 (at a finite rotation rate). Typically, this corresponds to a point
where the initially counter-rotating mode becomes co-rotating. In this region Jc < 0.
However, Ec will change sign at the point where σp (or, equivalently, the frequency
ω) vanishes. Since the mode was stable in the non-rotating limit this change of sign
indicates the onset of instability at a critical rate of rotation. The situation for the
fundamental f-mode of a rotating star is illustrated in Fig. 11.

In order to further demonstrate the usefulness of the canonical energy, let us prove
the instability of the inertial r-modes (these are oscillation modes that owe their exis-
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tence to the rotation of the star, and which are predominantly associated with the
Coriolis force). For a general inertial mode we have (cf. Lockitch and Friedman 1999
for a discussion of the single fluid problem using notation which closely resembles
the one we adopt here)

vi ∼ δvi ∼ ξ̇ i ∼ Ω and δΦ ∼ δn ∼ Ω2. (7.65)

In particular, modes like the r-modes are dominated by convective currents, so we
have δvr ∼ Ω2 and the continuity equation leads to

∇iδv
i ∼ Ω3 �⇒ ∇iξ

i ∼ Ω2. (7.66)

Under these assumptions we find that Ec becomes (to order Ω2)

Ec ≈ 1

2

∫

ρ

[

|∂tξ |2 −
∣
∣
∣v

i∇iξ

∣
∣
∣

2 + ξ i∗ξ j∇i∇ j (Φ + μ̃)
]

dV . (7.67)

We can rewrite the last term using the equation governing the axisymmetric equilib-
rium. Keeping only terms of order Ω2 we have

ξ i∗ξ j∇i∇ j (Φ + μ̃) ≈ 1

2
Ω2ξ i∗ξ j∇i∇ j (r

2 sin2 θ). (7.68)

A bit more work then leads to

1

2
Ω2ξ i∗ξ j∇i∇ j (r

2 sin2 θ) = Ω2r2
[

cos2 θ
∣
∣ξθ
∣
∣
2 + sin2 θ

∣
∣ξϕ
∣
∣
2
]

, (7.69)

and

∣
∣
∣v

i∇iξ j

∣
∣
∣

2 = Ω2
{

m2 |ξ |2 − 2imr2 sin θ cos θ
[

ξθ ξϕ∗ − ξϕξθ∗]

+ r2
[

cos2 θ
∣
∣ξθ
∣
∣
2 + sin2 θ

∣
∣ξϕ
∣
∣2
]}

, (7.70)

which means that the canonical energy can be written in the form

Ec ≈ −1

2

∫

ρ
{

(mΩ − ω)(mΩ + ω)|ξ |2

−2imΩ2r2 sin θ cos θ
[

ξθ ξϕ∗ − ξϕξθ∗]
}

dV . (7.71)

Introducing the axial stream function U we have

ξθ = − iU

r2 sin θ
∂ϕY m

l eiωt , (7.72)

ξϕ = iU

r2 sin θ
∂θY

m
l eiωt , (7.73)

123



Relativistic fluid dynamics: physics for many different… Page 83 of 251 3

where Y m
l = Y m

l (θ, ϕ) are the spherical harmonics. This leads to

|ξ |2 = |U |2
r2

[
1

sin2 θ
|∂ϕY m

l |2 + |∂θY m
l |2

]

, (7.74)

and

ir2 sin θ cos θ
[

ξθ ξϕ∗ − ξϕξθ∗]

= 1

r2
cos θ

sin θ
m|U |2 [Y m

l ∂θY
m∗
l + Y m∗

l ∂θY
m
l

]

. (7.75)

After performing the angular integrals, we find that

Ec = − l(l + 1)

2

{

(mΩ − ω)(mΩ + ω)− 2m2Ω2

l(l + 1)

}∫

ρ|U |2 dr . (7.76)

Combining this with the r-mode frequency (Lockitch and Friedman 1999)

ω = mΩ

[

1 − 2

l(l + 1)

]

, (7.77)

we see that Ec < 0 for all l > 1 r-modes, i.e., they are all unstable. The l = m = 1
r-mode is a special case, as it leads to Ec = 0.

7.5 The relativistic problem

The theoretical framework for studying stellar stability in General Relativity was
mainly developed during the 1970s, with key contributions from Chandrasekhar and
Friedman (1972a, b) and Schutz (1972a, b). Their work extends the Newtonian anal-
ysis discussed above. There are basically two reasons why a relativistic analysis is
more complicated than the Newtonian one. First of all, the problem is algebraically
more complex because one must solve the Einstein field equations in addition to the
fluid equations of motion. This is apparent from the perturbation relations we have
written down already. For any given equation of state—represented byΛ(n)—we can
express the perturbed equations of motion in terms of the displacement vector ξa and
the Eulerian variation of the metric, δgab. In doing this it is worth noting that the
usual approach to relativistic stellar perturbations is to work with this combination
of variables (see, e.g., Kojima 1992). Essentially, we need the Eulerian perturbation
of the Einstein field equations and the Lagrangian variation of the momentum equa-
tion (6.28). The description of the perturbed Einstein equations is standard (see, e.g.,
Andersson 2019), so we focus on the fluid aspects here.

The perturbations of (5.25) are easy to work out once we note that the Lagrangian
variation commutes with the exterior derivative. We immediately get

(Δna)∇[aμb] + na∇[aΔμb] = 0. (7.78)
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This simplifies further if we use (6.22) and assume that the background is such that
(5.25) is satisfied. The first term then vanishes, and we are left with

na∇[aΔμb] = 0. (7.79)

To complete this expression, we need to work outΔμa . This is a straightforward task
given the above results, and we find

Δμa =
(

B + n
dB
dn

)

gabΔnb +
(

μbδd
a − dB

dn2 nanbnd
)

Δgbd . (7.80)

An additional complication is associated with the fact that one must account for
gravitational waves, leading to the system being dissipative. The work culminated in
a series of papers (Friedman and Schutz 1975, 1978a, b; Friedman 1978) in which
the role that gravitational radiation plays in these problems was explained, and a
foundation for subsequent research in this area was established. The main result was
that gravitational radiation acts in the sameway in the full theory as in a post-Newtonian
analysis of the problem. If we consider a sequence of equilibrium models, a mode
becomes secularly unstable at the point where its frequency vanishes (in the inertial
frame). Most importantly, the proof does not require the completeness of the modes
of the system.

8 A step towardsmulti-fluids

Returning to the relativistic setting, let us consider what happens if one tries to extend
the off-the-shelf analysis from Sect. 5.2 to the case of two components. Take, for
example, the case of a single particle species at finite temperature; a case where we
have to account for the presence of entropy. In general, one would have to allow for
the heat (i.e. entropy) to flow relative to the matter (see Sect. 15), but we will assume
that this is not the case here. If the entropy is carried along with the matter flow, we
are dealing with a single-fluid problem and we should be able to make progress with
the tools we have at hand. The equation of state is, however, no longer barotropic
since we have ε = ε(n, s), with n the matter number density and s the entropy density
(as before). Nevertheless, the stress-energy tensor can still be expressed in terms of
the pressure p and the energy density ε, as in Sect. 5.2. The fluid equations obtained
from its divergence will take the same form as in the barotropic case. The difference
becomes apparent only when we try to close the system of equations. Now the energy
variation takes the form

dε = μdn + T ds, (8.1)

where the temperature is identified as the chemical potential of the entropy:

T =
(
∂ε

∂s

)

n
. (8.2)
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This means that we have

T ab = (nμ+ sT )uaub + pgab (8.3)

and, if we note that

dp = ndμ+ sdT �⇒ ∇a p = n∇aμ+ s∇aT , (8.4)

it follows that energy conservation leads to

μ∇ana + T ∇asa = 0, (8.5)

or

μ
(

ṅ + n∇aua)+ T
(

ṡ + s∇aua) = 0, (8.6)

ṅ = dn

dτ
= ua∇an, (8.7)

and similar for ṡ. At this pointwe need tomake additional assumptions. If, for example,
the motion is adiabatic then the entropy is conserved and the second term on the left-
hand side of (8.6) vanishes. It then follows that the first bracket must vanish as well, so
the matter flux is also conserved. If the flow is not adiabatic, the situation is different.
Suppose there are no sources or sinks for the matter. Then the matter flux should still
be conserved, but now the entropy is not. So the first term in (8.6) still vanishes, but
the second can not. We obviously have a problem, unless we relax the assumption
that the entropy flows with the matter. Introducing a heat flux relative to the matter,
we avoid the issue. However, by doing so, we introduce extra degrees of freedom that
need to be accounted for and understood. We will consider this problem in detail once
we have extended the variational formalism to deal with additional flows. We could
also consider the implication the other way; in order for a single particle flow to be
adiabatic, the entropy must be carried along with the matter.

Moving on to the momentum equations arising from ∇aT ab = 0, replicating the
analysis from Sect. 5.2, recalling the definition μa = μua and introducing the analo-
gous quantity θa = T ua , we can write (5.25) as

2na∇[aμb] + 2sa∇[aθb] = 0 (8.8)

That is, we arrive at a “force balance” equation with two vorticity terms instead of
the single one we had before. The implication is that, even in the absence of external
agents we have to consider possible interactions between the two components. By
extending the variational approach we gain insight that helps address this issue (also
in more complicated situations).

It is also worth highlighting that, by using notation that highlights the entropy
component we have made the problem look less “symmetric” than it really is. In
many situations it is practical to introduce constituent indices (labels telling us which
component the quantity belongs to), e.g., use na

n and na
s instead of na and sa . Noting
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also that the temperature is the chemical potential associated with the entropy, i.e.
θa = μs

a , we can write the above result as

∑

x=n,s

f xa =
∑

x=n,s

2nb
x∇[bμx

a] =
∑

x=n,s

2nb
xω

x
ba = 0. (8.9)

The generalisation of this result to situations where additional components are car-
ried along by the same four velocity is now obvious. The problem with distinct four
velocities, which we turn to in Sect. 9, requires additional thinking.

8.1 The two-constituent, single fluid

Before we move on to the general problem, let us consider how the problem discussed
in the previous Sect. 7.2 would be described in the variational approach. Generally
speaking, the total energy density ε can be a function of independent parameters other
than the particle number density nn, like the entropy density s = ns in the case we
just considered, assuming that the system scales in the manner discussed in Sect. 2 so
that only densities need enter the equation of state.

Comment: There is an an important transition happening at this point. In the
following we will, almost exclusively, work with the constituent indices x, y,
etc., which range over the individual components of the system (here {n, s})
and which do not satisfy any kind of summation convention.

As we have already suggested, if there is no heat flow (say) then this is a single fluid
problem, meaning that there is still just one flow velocity ua . This is what we mean
by a two-constituent, single fluid. We assume that the particle number and entropy
are both conserved along the flow. Associated which each parameter there is then a
conserved current flux, i.e. na

n = nnua for the particles and na
s = nsua for the entropy.

Note that the ratio xs = ns/nn (the specific entropy) is co-moving in the sense that

ua∇a xs = ẋs = 0. (8.10)

This is, of course, the relation (8.6) from before.
Making use of the constituent indices, the associated first law can be written in the

form
dε =

∑

x=n,s

μxdnx = −
∑

x=n,s

μx
adna

x, (8.11)

since ε = ε(nn, ns), where

na
x = nxua, n2

x = −gabna
xnb

x, (8.12)

and

μx
a = gabBxnb

x, Bx ≡ 2
∂ε

∂n2
x
. (8.13)
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Given that we only have one four-velocity, the system will still just have one fluid
element per spacetime point. But unlike before, there is an additional conserved num-
ber, Ns, that can be attached to each worldline, like the particle number Nn of Fig. 10.
In order to describe the worldlines we can use the same three scalars X A(xa) as before.
But how do we get a construction that allows for the additional conserved number?
Recall that the intersections of the worldlines with some hypersurface, say t = 0, is
uniquely specified by the three X A(0, xi ) scalars. Each worldline will also have the
conserved numbers Nn and Ns assigned to them. Thus, the values of these numbers
can be expressed as functions of the X A(0, xi ). But most importantly, the fact that
each Nx is conserved, means that this specification must hold for all of spacetime, so
that the ratio xs is of the form xs(xa) = xs(X A(xa)). Consequently, we now have a
construction where this ratio identically satisfies Eq. (8.10), and the action principle
remains a variational problem in terms of the three X A scalars.

The variation of the action follows just like before, except now a constituent index
x must be attached to the particle number density current and three-form:

nx
abc = εdabcnd

x . (8.14)

Once again it is convenient to introduce the momentum form, now defined as

μabc
x = εdabcμx

d . (8.15)

Since the X A are the same for each nx
abc, the above discussion indicates that the

pull-back construction is now to be based on

nx
abc = ψ A

a ψ
B
b ψ

C
c N x

ABC , (8.16)

where N x
ABC is completely antisymmetric and a function only of the X A. After a

little thought, it should be obvious that the only thing required here (in addition to the
single-component arguments) is to attach an x index to na and n in Eqs. (6.21) and
(6.38), respectively.

If we now define the Lagrangian to be

Λ = −ε (8.17)

and the generalized pressure Ψ as

Ψ = Λ−
∑

x=n,s

μx
ana

x = Λ+
∑

x=n,s

μxnx, (8.18)

then the first-order variation of Λ is (ignoring a surface term, as usual)

δ
(√−gΛ

) = 1

2

√−g
[

Ψ gab + (Ψ −Λ) uaub
]

δgab

−√−g

(
∑

x=n,s

f xa

)

ξa + ∇a

(

1

2

√−g
∑

x=n,s

μabc
x nx

bcdξ
d

)

, (8.19)

123



3 Page 88 of 251 N. Andersson, G. L. Comer

where
f xa = 2nb

xω
x
ba, (8.20)

and
ωx

ab = ∇[aμx
b]. (8.21)

At the end of the day, the equations of motion are

∑

x=n,s

f xa = 0, (8.22)

and
∇ana

x = 0, (8.23)

while the stress-energy tensor takes the form

T ab = Ψ gab + (Ψ −Λ)uaub. (8.24)

Not surprisingly, these results accord with the expectations from the previous analysis.

8.2 Speed of sound (again)

We have already considered the problem of wave propagation in the case of a sin-
gle component (barotropic) fluid, see Sect. 7.2. Now we are equipped to revisit this
problem in the more complex case of a two-constituent single-fluid—a fluid that is
“stratified” either by thermal or composition gradients. As before, the analysis is
local—assuming that the speed of sound is a locally defined quantity—and performed
using local inertial frame (Minkowski) coordinates xa = (t, xi ). The purpose of
the analysis is twofold: The main aim is to illuminate how the presence of various
constituents impacts on the local dynamics, but we also want to illustrate how the
problem works out if we take the variational equations of motion as our starting point.
An additional motivation is to develop notation that is flexible enough that we can deal
with problems of increasing complexity, ideally without losing sight of the underlying
physics.

Focussing on a small spacetime region, we can make the same argument as in
Sect. 7.2 that the configuration of the matter with no waves present is locally isotropic,
homogeneous, and static. Thus, for the background na

x = [nx, 0, 0, 0] and the vorticity
ωx

ab vanishes. The general form of the (Eulerian) variation of the force density f xa for
each constituent is then

δ f xa = 2nb
x∂[bδμx

a]. (8.25)

Similarly, the conservation of the flux na
x gives

∂aδn
a
x = 0. (8.26)
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We are now taking the view that the na
x are the fundamental fluid fields and thus

plane-wave propagation means that we have (the covariant analogue fo (7.28))

δna
x = Aa

xeikbxb
, (8.27)

where the amplitudes Aa
x and the wave vector ka are constant. Combining Eqs. (8.26)

and (8.27) we see that
kaδn

a
x = 0, (8.28)

i.e. the waves are “transverse” in the spacetime sense. It is worth pointing out that this
requirement is not in contradiction with the fact that sound waves are longitudinal (in
the spatial sense), as established in Sect. 7.2. It is easy to see that (8.28) is exactly
what we should expect, if we note that δna

x = δnxua + nxδv
a and identify k0 = −kσ

where, recall, σ is the mode speed and k is the spatial part magnitude obtained from
k2 = k j k j (ki = gi j k j ).

Moving on to the equations of motion, as given by (8.25), we need the perturbed
momentum δμx

a . For future reference, we will work out its general form, and only
afterwards assume a static, homogeneous, and isotropic background.However, in order
to establish the strategy, it is useful to start by revisiting the barotropic case. Suppose
there is only one constituent, with index x = n. The LagrangianΛ then depends only
on n2

n, and the variation in the chemical potential due to a small disturbance δna
n is

δμn
a = Bn

abδn
b
n, (8.29)

where

Bn
ab = Bngab − 2

∂Bn

∂n2
n

nn
ann

b. (8.30)

There are two terms, simply because we need to perturb both Bn and na
n in (8.13).

The single-component equation of motion is δ f na = 0. It is not difficult to show,
by using the condition of transverse wave propagation, Eq. (8.28), and contracting
with the spatial part of the wave vector ki (the time part is trivial because (8.25) is
orthogonal to na

n which in turn is aligned with ua), that the equation of motion reduces
to (

Bn + Bn
00

k j k j

k20

)

kiδn
i
n = 0. (8.31)

From this we see that the dispersion relation takes the form

σ 2 = k20
k j k j

= −Bn
00

Bn = 1 + 2
n2
n

Bn

dBn

dn2
n

= 1 + d lnBn

d ln nn
. (8.32)

We have used the fact that we areworking in a locally flat spacetime, so that gab = ηab.
If we have done this right, thenwe should recover the expression for the speed of sound
C2

s from before, cf. Eq. (7.34). To see that this is the case, recall that μn = nnBn and
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work out the required derivative. That is

C2
s = σ 2 = n

μ

dμ

dn
= dp

dε
. (8.33)

In order to ensure that the behaviour of the system is “physical”, we need to consider
two conditions:

1. absolute stability, σ 2 ≥ 0 , and
2. causality, C2

s ≤ 1 .

These conditions provide constraints which can be imposed on, say, parameters in
equation of state models, the net effect being absolute limits on the possible forms for
the master functionΛ. As an example, take the result from Eq. (8.32) and impose the
two constraints to find that

0 ≤ 1 + d lnBn

d ln nn
≤ 1 �⇒ −1 ≤ d lnBn

d ln nn
≤ 0. (8.34)

From the definition of Bn, cf. Eq. (8.13), we have two bounds on Λ.
Even with the aid of the constraint from Eq. (8.34), the mode frequency solution in

Eq. (8.32) is obviously less transparent than the simple statement of the speed of sound
as the variation of the pressure with changing density. However, as we will establish,
the formalism we are developing readily deals with much more complex situations
(such as multiple sound speeds and so-called “two-stream” instabilities). The main
reason is that the fluxes enter the formalism on equal footing as four-vectors, whereas
starting with energy density typically requires the introduction of an ad-hoc reference
frame (e.g., the U a from Sect. 5), in order to define what the energy density is, and
any independent fluid motion (like heat flow) is then defined as a three-velocity with
respect to this frame.

As a further example, let us consider the case when there are the two constituents
with densities nn and ns, two conserved density currents na

n and na
s , two chemical

potential covectors μn
a and μs

a , but still only one four-velocity ua . (We are primarily
thinking about matter and entropy, as before, but it could be any two individually
conserved components which move together.) The matter Lagrangian Λ may now
depend on both n2

n and n2
s meaning that

δμx
a = Bx

abδn
b
x + X xy

ab δn
b
y, y �= x, (8.35)

where we recall that summation is not implied for repeated constituent indices, and
we have defined

X xy
ab = −Ccc

√
BxByux

aux
b, (8.36)

(with ux
a = uy

a = ua in this specific example) where

C2cc ≡ 1

BxBy

(

2nxny
∂Bx

∂n2
y

)2

. (8.37)
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The Bn
ab coefficient is defined as before and Bs

ab is given by the same expression
(Eq. (8.30)) with each n replaced by s. The Ccc coefficient represents a true multi-
constituent effect, which depends on the composition (e.g., the entropy per baryon
xs = ns/nn used in the discussion surrounding Eq. (8.10)).

The fact that na
s is parallel to na

n implies that it is only the magnitude of the entropy
density current that is independent. One can show that the condition of transverse
propagation, as applied to both currents, implies

δna
s = xsδn

a
n . (8.38)

It is worth taking a closer look at this condition. First of all, the time component leads
to

δns = xsδnn = ns

nn
δnn �⇒ δxs = 0. (8.39)

That is, the entropy per particle is constant—the perturbations are adiabatic. Mean-
while, it is easy to show that the spatial part of (8.38) is trivial, since the twocomponents
move together.

Now, we proceed as in the previous example. Noting that the equation of motion is

δ f na + δ f sa = 0, (8.40)

we find
[(

Bn + x2s Bs
)

σ 2 −
(

Bnc2n + x2s Bsc2s − 2xsX ns
00

)]

kiδn
i
n = 0, (8.41)

where, inspired by the result for the speed of sound in the single component case
[cf. Eq. (8.32)], we have defined

c2x ≡ 1 + ∂ lnBx

∂ ln nx
. (8.42)

We find that the speed of sound is given by

C2
s = σ 2 = Bnc2n + x2s Bsc2s − 2xsX ns

00

Bn + x2s Bs . (8.43)

As this result looks quite complicated, let us see if we can manipulate it to make it
more intuitive. The obvious starting point is to replace the abstract coefficients we have
introduced with the underlying thermodynamical quantities, i.e. use μn = nnBn = μ
and μs = nsBs = T leading to

c2n = n

μ

(
∂μ

∂n

)

s
and c2s = s

T

(
∂T

∂s

)

n
. (8.44)

We also see that

X ns
00 = −

(
∂μ

∂s

)

n
= −

(
∂T

∂n

)

s
, (8.45)
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where the identity follows since we have mixed partial derivatives (both μ and T arise
as derivatives of ε). Given these results, we find that

C2
s = 1

p + ε
[

n2
(
∂μ

∂n

)

s
+ 2sn

(
∂T

∂n

)

s
+ s2

(
∂T

∂s

)

n

]

, (8.46)

which already looks a little bit more transparent. However, we can also use the fact
that dp = ndμ+ sdT to rewrite this as

C2
s = 1

p + ε
[

n

(
∂ p

∂n

)

s
+ s

(
∂ p

∂s

)

n

]

. (8.47)

Finally, let us ask what happens if we work with xs instead of s.
To do this, we need

dp =
(
∂ p

∂n

)

xs

dn +
(
∂ p

∂xs

)

n
dxs

=
[(
∂ p

∂n

)

xs

− s

n2

(
∂ p

∂xs

)

n

]

dn + 1

n

(
∂ p

∂s

)

n
ds. (8.48)

From this we see that (
∂ p

∂n

)

xs

=
(
∂ p

∂n

)

s
+ s

n

(
∂ p

∂s

)

n
(8.49)

and once we combine with the fact that, when xs is kept constant we have

dε = p + ε
n

dn, (8.50)

we get the expected result for the adiabatic sound speed:

C2
s =

(
∂ p

∂ε

)

xs

. (8.51)

8.3 Multi-component cosmology

Themodern description of cosmology draws on ideas from fluid dynamics. In the sim-
plest picture—after averaging up to a suitably large scale—planets, stars and galaxies
are treated as collisionless “dust”, represented by the simple stress-energy tensor

T ab = εuaub. (8.52)

This introduces a natural flow of cosmological time—associated with the proper time
linked to ua—and the associated fibration of spacetime (Barrow et al. 2007). The
focus on the “fluid observer” worldlines means that the model is closely related to our
description of fluid dynamics, and it is fairly straightforward to build more complex
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(read:realistic) models by, for example, adding the cosmological constant to the Ein-
stein equations (or viewing it as a “dark energy” contribution with negative pressure,
p = −ε) or accounting for more complicated description of the matter content in
the Universe. The matter description relies on ideas we have already introduced. In
particular, the cosmological principle states that the Universe is homogeneous and
isotropic, suggesting that the relevant matter Lagrangian should be built from scalars.
Given the increased quality of cosmological observations, this fundamental principle
is now becoming testable, and (perhaps) questionable.

The most pressing issues that arise in cosmology relate to the simple fact that we do
not have a good handle on the nature of dark components that appear to dominate the
“standard model” (Peter and Uzan 2009). A number of alternative models—including
alternatives to Einstein’s relativistic gravity—have been suggested, but few of these are
compelling. The treatment of the different matter components, in particular, tends to
remain based on the notion of coupled perfect fluids or scalar fields. If we are to under-
stand the bigger picture, we may need to review this aspect, especially if we want to be
able to consider issues like heat flow (Modak 1984; Triginer and Pavón 1995; Ander-
sson and Lopez-Monsalvo 2011), dissipative mechanisms (Weinberg 1971; Patel and
Koppar 1991; Velten and Schwarz 2011), Bose–Einstein condensation of dark mat-
ter (Sikivie and Yang 2009; Harko 2011) and possibly many others. Many issues are
similar to ones that arise in more realistic models of neutron star astrophysics.

A particularly interesting aspect, given the focus of this review, may be the sug-
gestion that there could have been phases during which the Universe would have
effectively been anisotropic (see Tsagas et al. 2008 for a useful review), with differ-
ent components evolving “independently” (Comer et al. 2012a, b). For the most part,
models considered in the current literature, including initially anisotropic geometries,
describe the matter content in terms of either effectively many component single fluid
models (Gromov et al. 2004), or a single component (Gümrükçüoglu et al. 2007; Pitrou
et al. 2008; Kim and Minamitsuji 2010); although an evolution towards isotropy is
expected in such settings, as required to end upwith a realistic (read: in agreement with
observational data) model (Dechant et al. 2009). Having said that, interesting new con-
sequences may be inferred by enhancing an initially vanishingly small non-Gaussian
signal (Dey and Paban 2012).

Within this context, it is relevant to ask how distinct fluid flows may lead to
anisotropy, with the spacetimemetric taking the form of a Bianchi I solution of the Ein-
stein equations. In this case there is a spacelike privileged vector, associated with the
relative flowbetween twomatter components. Aswewill soon establish, such a feature
is natural in the multi-fluid context, but it can never arise in the usual multi-constituent
single fluid. This point has been considered in some detail in Comer et al. (2012a, b).
It has been suggested (Barrow and Tsagas 2007; Adhav et al. 2011; Cataldo et al.
2011) that, sinceBianchi universes—seen as averaged inhomogeneous and anisotropic
spacetimes—can have effective strong energy condition violating stress-energy ten-
sors, they could be part of a backreaction driven acceleration model.

Yet another reason for studying such cosmological models stem, perhaps sur-
prisingly, from the observations: Large angle anomalies in the Cosmic Microwave
Background (CMB) have been observed and discussed for quite some time (Schwarz
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et al. 2004; Copi et al. 2010; Perivolaropoulos 2011; Ma et al. 2011) and may be
related with underlying Bianchi models (Pontzen and Challinor 2007; Pontzen 2009).

9 The “pull-back” formalism for two fluids

Having discussed the single fluidmodel, and how one accounts for stratification (either
thermal or composition gradients), it is time to move on to the problem of modelling
multi-fluid systems. We will experience for the first time novel effects due to a relative
flow between two interpenetrating fluids, and the fact that there is no longer a single,
preferred rest-frame. This kind of formalism is necessary, for example, for the simplest
model of a neutron star, since it is generally accepted that the inner crust is permeated by
an independent neutron superfluid, and the outer core is thought to contain superfluid
neutrons, superconducting protons, and a highly degenerate gas of electrons. Still
unknown is the number of independent fluids required for neutron stars that have
deconfined quark matter in the deep core (Alford et al. 2000). The model can also be
used to describe superfluid Helium and heat-conducting fluids, problems which relate
to the incorporation of dissipation (see Sect. 16). We will focus on this example here,
as a natural extension of the case considered in the previous section. It should be noted
that, even though the particular system we concentrate on consists of only two fluids,
it illustrates all new features of a general multi-fluid system. Conceptually, the greatest
step is to go from one to two fluids. A generalization to a system with further degrees
of freedom is straightforward.

In keeping with the previous section, we will rely on use of constituent indices,
which throughout this section will range over x, y = n, s. In the example we consider
the two fluids represent the particles (n) and the entropy (s). Once again, the number
density four-currents, to be denoted na

x, are taken to be separately conserved, meaning
that

∇ana
x = 0. (9.1)

As before, we use the dual formulation, i.e., introduce the three-forms

nx
abc = εdabcnd

x , na
x = 1

3!ε
bcdanx

bcd . (9.2)

Also like before, the conservation rules are equivalent to the individual three-forms
being closed (the arguments proceeds in exactly the same way); i.e.

∇[anx
bcd] = 0. (9.3)

However, we need a formulation whereby such conservation obtains automatically, at
least in principle.

Wemake this happen by introducing the three-dimensional matter space, the differ-
ence being that we now need two such spaces. These will be labelled by coordinates
X A
x , and we recall that A, B,C, etc. = 1, 2, 3. The idea is illustrated in Fig. 12, which

indicates the important facts that (i) a given point in space can be intersected by each
fluid’s worldline and (ii) the individual worldlines are not necessarily parallel at the
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n

s

s

s

n

n

Fig. 12 The pull-back from a point in the xth-constituent’s three-dimensional matter space (on the left)
to the corresponding “fluid-particle” worldline in spacetime (on the right). The points in matter space are
labelled by the coordinates {X1

x, X2
x, X3

x}, and the constituent index x = n, s. There exist as many matter
spaces as there are dynamically independent fluids, which for this case means two

intersection, i.e., the independent fluids are interpenetrating and can exhibit a relative
flow with respect to each other. Although we have not indicated this in Fig. 12 (in
order to keep the figure as uncluttered as possible) attached to each worldline of a
given constituent will be a fixed number of particles N x

1 , N x
2 , etc. (cf. Fig. 10). For the

same reason, we have also not labelled (as in Fig. 10) the “pull-backs” (represented
by the arrows) from the matter spaces to spacetime.

By “pushing forward” each constituent’s three-form onto its respectivematter space
we can once again construct three-forms that are automatically closed on spacetime,
i.e., let

nx
abc = ψ A

xaψ
A
xbψ

C
xc N x

ABC , (9.4)

where

ψ A
xa = ∂X A

x

∂xa
, (9.5)

and N x
ABC is completely antisymmetric in its indices and is a function only of the

X A
x . Using the same reasoning as in the single fluid case, the construction produces

three-forms that are automatically closed, i.e., they satisfy Eq. (9.3) identically. If we
let the scalar fields X A

x (as functions on spacetime) be the fundamental variables, they
yield a representation for each particle number density current that is automatically
conserved. The variations of the three-forms can now be derived by varying themwith
respect to the X A

x .
The Lagrangian displacements on spacetime for each fluid, to be denoted ξa

x , are
related to the variations δX A

x via

ΔxX A = δX A
x + ξa

x ∂a X A
x = δX A

x + ξa
xψ

A
xa = 0. (9.6)
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In general, the various single-fluid equations we have considered are easily extended
to the two-fluid case, except that each displacement and four-current will now be
associated with a constituent index, using the decomposition

na
x = nxua

x, ux
aua

x = −1. (9.7)

Associated with each constituent’s Lagrangian displacement is its own Lagrangian
variation. As above, these are naturally defined to be

Δx ≡ δ + Lξx , (9.8)

so that it follows that
Δxnx

abc = 0, (9.9)

as expected for the pull-back construction.Likewise, two-fluid analogues ofEqs. (6.40–
6.42) exist which take the same form except that the constituent index is attached.
However, in contrast to the ordinary fluid case, there are more options to consider.
For instance, we could also look at the Lagrangian variation of the first constituent
with respect to the second constituent’s flow, i.e., Δsnn, or the other way around, i.e.,
Δnns. The Newtonian analogues of these Lagrangian displacements were essential to
an analysis of instabilities in rotating superfluid neutron stars (Andersson et al. 2004a).

We are now in a position to construct an action principle that yields the equa-
tions of motion and the stress-energy tensor. Again, the central quantity is the matter
Lagrangian Λ, which is now a function of all the different scalars that can be formed
from the na

x, i.e., the scalars nx together with

n2
xy = n2

yx = −gabna
xnb

y. (9.10)

In the limit where all the currents are parallel, i.e., the fluids are comoving, −Λ
corresponds (As before) to the local thermodynamic energy density. In the action
principle, Λ is the Lagrangian density for the fluids.

Comment: It should be noted that our choice to use only the fluid currents
to form scalars implies that the system is “locally isotropic” in the sense that
there are no a priori preferred directions—the fluids are equally free to move
in any direction. Structures like the crust close to the surface of a neutron star
generally could be locally anisotropic, e.g., with sound waves moving in a
preferred direction associated with the lattice or the local magnetic field.

An unconstrained variation ofΛwith respect to the independent vectors na
x and the

metric gab takes the form

δΛ =
∑

x={n,s}
μx

a δn
a
x + 1

2

⎛

⎝
∑

x={n,s}
na
xμ

b
x

⎞

⎠ δgab, (9.11)
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where

μx
a = Bxnx

a + Axyny
a, (9.12)

Axy = Ayx = − ∂Λ

∂n2
xy
, for x �= y. (9.13)

Themomentumcovectorsμx
a are each dynamically, and thermodynamically, conjugate

to their respective number density currents na
x, and their magnitudes are the chemical

potentials. Here we note something new: the Axy coefficient represents the fact that
each fluid momentum μx

a may, in general, be given by a linear combination of the
individual currents na

x. That is, the current and momentum for a particular fluid do
not have to be parallel. This is known as the entrainment effect. We have chosen to
represent it by the letter A for historical reasons. When Carter first developed his
formalism he opted for this notation, referring to the “anomaly” of having misaligned
currents and momenta. It has since been realized that the entrainment is a key feature
of most multi-fluid systems and it would, in fact, be anomalous to leave it out!

In the general case, the momentum of one constituent carries along some mass
current of the other constituents. The entrainment only vanishes in the special case
where Λ is independent of n2

xy (x �= y) because then we obviously have Axy =
0. Entrainment is an observable effect in laboratory superfluids (Putterman 1974;
Tilley and Tilley 1990) (e.g., via flow modifications in superfluid 4He and mixtures
of superfluid 3He and 4He). In the case of neutron stars, entrainment—in this case
related to the mobility of the superfluid neutrons that permeate the neutron star crust—
plays a key role in the discussion of pulsar glitches glitches (Radhakrishnan and
Manchester 1969; Reichley and Downs 1969). As we will see later (in Sect. 15),
these “anomalous” terms are necessary for causally well-behaved heat conduction in
relativistic fluids, and by extension necessary for building well-behaved relativistic
equations that incorporate dissipation (see also Andersson and Comer 2010, 2011).

In terms of the constrained Lagrangian displacements, a variation ofΛ now yields

δ
(√−gΛ

) = 1

2

√−g

⎛

⎝Ψ gab +
∑

x={n,s}
na
xμ

b
x

⎞

⎠ δgab − √−g
∑

x={n,s}
f xa ξ

a
x

+∇a

⎛

⎝
1

2

√−g
∑

x={n,s}
μabc
x nx

bcdξ
d
x

⎞

⎠ , (9.14)

where f xa is as defined in Eq. (8.20) except that the individual velocities are no longer
parallel. The generalized pressure Ψ is now

Ψ = Λ−
∑

x={n,s}
na
xμ

x
a . (9.15)

At this point we return to the view that na
n and na

s are the fundamental variables.
Because the ξa

x are independent variations, the equations of motion consist of the two
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original conservation conditions from Eq. (6.8), plus two Euler-type equations

f xa = nb
xω

x
ba = 0, (9.16)

and of course the Einstein equations (obtained exactly as before by adding in the
Einstein–Hilbert term, see Sect. 4.4). We also find that the stress-energy tensor is

T a
b = Ψ δa

b +
∑

x={n,s}
na
xμ

x
b. (9.17)

When the complete set of field equations is satisfied then it is automatically true that
∇bT b

a = 0. One can also verify that Tab is symmetric. The momentum form μabc
x

entering the boundary term is the natural extension of Eq. (8.15) to this two-fluid case.
It must be noted that Eq. (9.16) is significantly different from the multi-constituent

version from Eq. (8.22). This is true even if one is solving for a static and spheri-
cally symmetric configuration, where the fluid four-velocities would all necessarily
be parallel. Simply put, Eq. (9.16) represents two independent equations. If one takes
entropy as an independent fluid, then the static and spherically symmetric solutions
will exhibit thermal equilibrium (Comer et al. 1999). This explains, for instance, why
onemust specify an extra condition (e.g., convective stability;Weinberg 1972) to solve
for a double-constituent star with only one four-velocity.

10 Waves inmulti-fluid systems

Crucial to the understanding of black holes is the effect of spacetime curvature on
the light-cone structure, that is, the null vectors that emanate from each spacetime
point. Crucial to the propagation of massless fields (and gravitational waves!) is the
light-cone structure. In the case of fluids, it is both the speed of light and the speed
(and/or speeds) of sound that dictate howwaves propagate through thematter.We have
already used a local analysis of plane-wave propagation to derive the speed of sound
for both the single-fluid case (in Sect. 7.2) and the two-constituent single-fluid case
(in Sect. 8.2). We will now repeat the analysis for a general two-fluid system, using
the same assumptions as before (see Carter 1989a for a more rigorous derivation).
However, we will provide an important extension by allowing a relative flow between
the two fluids in the background/equilibrium state. While this extension is straight-
forward, we will see that the final results are quite astonishing—demonstrating the
existence of a two-stream instability.

10.1 Two-fluid case

As a reminder,wefirst note that the analysis is, in principle, performed in a small region
(where the meaning of “small” is dictated by the particular system being studied)
and we assume that the configuration of the matter with no waves present is locally
isotropic, homogeneous, and static. Thus, for the background, na

x = [nx, 0, 0, 0] and
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the vorticity ωx
ab vanishes. The linearized fluxes take the plane-wave form given in

Eq. (8.27).
The two-fluid problem is qualitatively different from the previous cases, since there

are now two independent currents. This impacts on the analysis in two crucial ways:
(i) The Lagrangian Λ depends on n2

n, n2
s , and n2

ns = n2
sn (i.e. entrainment is present),

and (ii) the equations of motion, after taking into account the transverse flow condition
of Eq. 8.28 for both fluids, are doubled to δ f na = 0 = δ f sa . The key point is that there
can be two simultaneous wave propagations, with each distinct mode having its own
sound speed.

Another ramification of having two fluids is that the variation δμx
a has more terms

than in the previous, single-fluid analysis. There are individual fluid bulk effects, cross-
constituent effects due to coupling between the fluids, and entrainment. We can isolate
these various effects by writing δμx

a in the form

δμx
a = (Bx

ab + Ax
ab

)

δnb
x + (X xy

ab + Axy
ab

)

δnb
y. (10.1)

The bulk effects are contained in

Bx
ab = Bx

(

⊥x
ab −c2xux

aux
b

)

, (10.2)

which is just the two-fluid extension of Eq. (8.30) [with n replaced by x and
using Eq. (8.42)]. The cross-constituent coupling enters via X xy

ab [defined already
in Eq. (8.36)]. Finally, entrainment enters through the coefficientsAx

ab andAxy
ab given

by, respectively,

Ax
ab = −

[

Bx
,xy

(

ux
auy

b + ux
buy

a
)+ ny

nx
Axy
,xyuy

auy
b

]

, (10.3)

Axy
ab = Axy ⊥x

ab

−
[(

Axy + nx

ny
Bx
,xy

)

ux
aux

b + ny

nx
By
,xyuy

auy
b + Axy

,xyuy
aux

b

]

, (10.4)

where we have introduced the notation

Bx
,xy ≡ nxny

∂Bx

∂n2
xy
, (10.5)

and

Axy
,xy ≡ nxny

∂Axy

∂n2
xy
. (10.6)

The same procedure as in the previous two examples—the single fluid with one
and then two constituents—leads to the dispersion relation

(

Bnσ 2 − [Bn
00 + Ann

00

]) (Bsσ 2 − [Bs
00 + Ass

00

])
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−
(

Ansσ 2 − [X ns
00 + Ans

00

])2 = 0, (10.7)

recalling from Eq. (8.32) that σ 2 = k20/ki ki . This is a quadratic in σ 2, meaning that
there are two sound speeds. This is a natural result of the doubling of fluid degrees of
freedom.

To finish this discussion of local mode solutions in the two-fluid problem, it is
useful to consider what constraints the simplest solutions of zero interaction impose
on the equation of state. The dispersion relation becomes simply

(σ 2 − c2n)(σ
2 − c2s ) = 0, (10.8)

so the mode speed solutions σn and σs are

σ 2n = c2n = 1 + ∂ logBn

∂ log nn
, σ 2s = c2s = 1 + ∂ logBs

∂ log ns
. (10.9)

The constraints of absolute stability and causality implies that Λ must be such that

− 1 ≤ ∂ logBn

∂ log n
≤ 0, −1 ≤ ∂ logBs

∂ log s
≤ 0. (10.10)

A general analysis which keeps in entrainment and cross-constituent coupling has
been performed by Samuelsson et al. (2010).

While the sound speed analysis is local, the doubling of the fluid degrees of freedom
naturally carries over to the global scale relevant for the analysis ofmodes of oscillation
of a fluid body.

Comment: For a neutron star, the full spectrum of oscillation modes is quite
impressive (see McDermott et al. 1988): polar (or spheroidal) f-, p-, and g-
modes, and the axial (or toroidal) r-modes. Epstein (1988) was the first to
suggest that there should be even more modes in superfluid neutron stars
because the superfluidity allows the neutrons to move independently of the
protons. The new degree of freedom is analogous to the emergence of the
second sound in laboratory superfluids and heat conducting solids (see Sects.
13 and 15 for discussions). Mendell (1991a) developed the idea by using an
analogywith coupled pendulums.He argued that the newmodes should feature
a counter-motion between the neutrons and protons, i.e., as the neutrons move
out radially, say, the protons will move in. This is in contrast to ordinary fluid
motion that would have the neutrons and protons move in more or less “lock-
step”. Analytical and numerical studies (Lee 1995; Lindblom and Mendell
1995; Comer et al. 1999; Andersson and Comer 2005; Krüger et al. 2015) have
confirmed this basic picture and the new modes of oscillation are commonly
known as superfluid modes.
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10.2 The two-stream instability

Consider a system having two components between which there can be a relative
flow, such as ions and electrons in a plasma, entropy and matter in a superfluid, or
even the rotation of a neutron star as viewed from asymptotically flat infinity. If the
relative flow reaches a speed where a mode in one of the components looks like
it is going one direction with respect to that component, but the opposite direction
with respect to the other component, then the mode will have a negative energy and
become dynamically unstable. This kind of “two-stream” instability has a long history
of investigation in the area of plasma physics (see Farley 1963; Buneman 1963). The
Chandrasekhar–Friedman–Schutz (CFS) instability (Chandrasekhar 1970; Friedman
and Schutz 1978a, b) (already discussed in Sect. 7.4) develops when a mode in a
rotating star appears to be retrograde with respect to the star itself, and yet prograde
with respect to an observer at infinity. The possible link between two-stream instability
in the superfluid in the inner crust and pulsar glitches is more recent (Andersson et al.
2003, 2004b). Another relevant discussion considers a cosmological model consisting
of a relative flow between matter and blackbody radiation (Comer et al. 2012a). Two-
stream instability between two relativistic fluids in the linear regime has been examined
in general bySamuelsson et al. (2010), and extended to the non-linear regimebyHawke
et al. (2013). Finally, a discussion on the relationship between energetic and dynamical
instabilities, starting from a Lagrangian for two complex scalar fields, was provided
by Haber et al. (2016).

Repeating the key steps from Samuelsson et al. (2010), we start with a system
having plane-wave propagation (as before, in a locally flat region of spacetime) on
backgrounds such that ωx

ab = 0. The various background quantities are considered
constant, and there is a relative flow between the fluids. As in the previous sound-
speed analyses, we let ua

x represent the background four-velocity of the x-fluid. Its
total particle flux then takes the form

na
x = nxua

x + Aa
x exp

ikbxb
, (10.11)

Because ωx
ab = 0 for the background and there is flux conservation, the analysis still

leads to the linearized equations;

∇aδn
a
x = 0, na

x∇[aδμx
b] = 0. (10.12)

The variation δμx
a is the same as in Eq. (10.1).

However, the system flow is now such that ua
x does not equal ua

y, the y-fluid four-
velocity. There is a non-zero relative velocity of, say, the y-fluid with respect to the
x-fluid given by

γxyv
a
xy =⊥xa

b ub
y, (10.13)

where vxy = vyx represents the magnitude of the relative flow,

⊥xb
a = δab + ux

aub
x, ⊥xb

a ua
x = 0, (10.14)
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and

γxy = γyx = −uc
xuy

c = 1
√

1 − v2xy
. (10.15)

This leads to (adapting (5.9) to the present context)

ua
y = γxy

(

ua
x + va

xy

)

. (10.16)

For convenience, we will work in the material frame associated with the x fluid
component, meaning that ka and Aa

x will be decomposed into timelike and spatial
pieces as defined locally by ua

x. For ka we write

ka = kx
(

σxux
a + k̂xa

)

, (10.17)

where σx, kx, and the unit wave vector k̂xa are obtained from ka via

kxσx = −kaua
x, kaka = −k2x

(

1 − σ 2x
)

, k̂xa = 1

kx
⊥b

xa kb. (10.18)

Similarly, the wave amplitude Aa
x becomes

Aa
x = Ax||ua

x + Aa
x⊥, (10.19)

where
Ax|| = −ux

a Aa
x, Aa

x⊥ =⊥a
xb Ab

x. (10.20)

It is necessary to point out that the three quantities σx, kxa , and v
a
xy are determined

by an observer moving along with the x-fluid. Of course, we could choose the frame
attached to the other fluid. Fortunately, there are well-defined transformations between
the two frames, which we determine as follows: The relative flow va

yx of the x
th-fluid

with respect to the yth-fluid frame is related to va
xy via

va
yx = −γxy

(

v2xyua
x + va

xy

)

, (10.21)

using the fact that vyx = vxy. Since ka is a tensor, we must have

ka = ky
(

σyuy
a + k̂ya

)

= kx
(

σxux
a + k̂xa

)

. (10.22)

Noting that

ua
x = −v−2

xy

(

va
xy + γ−1

xy v
a
yx

)

, (10.23)

ua
y = −v−2

xy

(

va
yx + γ−1

xy v
a
xy

)

, (10.24)
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and contracting each with the wave-vector ka , we obtain the matrix equation

[
vxyσx − cos θxy −γ−1

xy cos θyx
−γ−1

xy cos θxy vxyσy − cos θyx

] [

kx
ky

]

=
[

0
0

]

. (10.25)

The non-trivial solution requires that the determinant of the 2 × 2 matrix vanishes;
therefore,

σy = cos θyx
σx − vxy cos θxy
vxyσx − cos θxy

. (10.26)

It is not difficult to show that if σ 2x ≤ 1 then σ 2y ≤ 1, and clearly if σx is real then so
is σy.

The equation of flux conservation is the same as (8.28) (except x ranges over two
values). Here, it implies for each mode that

− σxAx|| + k̂xa Aa
x⊥ = 0. (10.27)

The two-fluid Euler equations become

0 = K x
ab Ab

x + K xy
ab Ab

y, (10.28)

0 = K y
ab Ab

y + K yx
ab Ab

x, (10.29)

where the “dispersion” tensors are

K x
ab = nc

x

(

k[cBx
a]b + k[cAx

a]b
)

, (10.30)

K xy
ab = nc

x

(

k[cX xy
a]b + k[cAxy

a]b
)

. (10.31)

Note that K y
ab and K yx

ab are obtained via the interchange of x ↔ y in (10.30) and
(10.31).

The general solution to (10.29) requires, say, using Eq. (10.29) to determine Aa
y,

and then substitute that into Eq. (10.28). This means we need the four inverses

K̃ ac
x K x

cb = δa
c, K̃ ac

yx K xy
cb = δa

c. (10.32)

With these in hand, we can write

0 =
(

K̃ ac
y K yx

cb − K̃ ac
yx K x

cb

)

Ab
x ≡ Ma

b Ab
x. (10.33)

Having a non-trivial solution requires that ka be such that detMa
b = 0. However, the

examples which follow will be kept simple enough that the general procedure will not
be required. For example, we will focus on the case of aligned flows.

Samuelsson et al. (2010) have shown that the relative flow between the two fluids
enters through the inner product v̂a

xyk̂xa (where v̂a
xy = va

xy/vxy), and so it is natural to
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introduce the angle θxy between the two vectors. This means that, the inner product
becomes

v̂a
xyk̂xa = cos θxy. (10.34)

Having an aligned flow means, say, setting θxy = 0 and θyx = π . The wave vector
takes the form

ka = 1

γxyvxy

(

kxua
y − kyua

x

)

, (10.35)

and the flux conservation becomes

kxuy
a Aa

x = kyux
a Aa

x . (10.36)

This, in turn, implies that the problem is reduced from four equations with four
unknowns to a much simpler 2 × 2 system. Finally, we note that Eqs. (10.22) and
(10.26) imply, respectively,

ky
kx

=
√

1 − σ 2x
1 − σ 2y

(10.37)

and

σy = σx − vxy
1 − vxyσx . (10.38)

It will prove useful later to note that this last result implies

1 − σ 2y = 1

γ 2xy

1 − σ 2x
(

1 − vxyσx
)2 (10.39)

and therefore
ky
kx

= γxy
√
(

1 − vxyσx
)2
. (10.40)

Another place where we will simplify the analysis is the choice of equation of state;
namely, to consider forms with just enough complexity in the Bx

ab,Ax
ab,X xy

ab , andAxy
ab

coefficients to establish themain featurewe are interested in: the two-stream instability.
Obviously, any fluid must have non-zero bulk properties; the other two properties
of entrainment and cross-constituent coupling depend on the particular features of
the fluid system incorporated into the equation of state. We will first consider the
case where only bulk features are present and then follow this up by incorporating
entrainment.

Let us first set both the entrainment and cross-constituent coupling to zero. This
implies K xy

ab = 0 and the mode equations are

0 = K x
ab Ab

x = −1

2
Bxnxkx

(

σx ⊥x
ab +c2x k̂xaux

b

)

Ab
x, (10.41)

0 = K y
ab Ab

y = −1

2
Bynyky

(

σy ⊥y
ab +c2y k̂yauy

b

)

Ab
y. (10.42)
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We contract each mode equation with ka to find

0 =
(

σ 2x − c2x
)

Ax||, 0 =
(

σ 2y − c2y
)

Ay
||, (10.43)

and, as the solution reduces to the 2 × 2 matrix problem

[(

σ 2x − c2x
)

0

0
(

σ 2y − c2y
)

][
Ax||
Ay

||

]

=
[

0
0

]

, (10.44)

it is easy to see that the resulting dispersion relation is

(

σ 2x − c2x
) (

σ 2y − c2y
)

= 0. (10.45)

The modes of this system are the “bare” sound waves with speeds cx or cy, as one
would have expected. There are no interactions between the two fluids and so there
is no sense in which they “see” each other. Generally, we conclude that the existence
of a two-stream instability requires more than just a background relative flow. Some
coupling agent is required.

With this in mind, we include coupling via entrainment. As we are ignoring the
cross-constituent coupling term we still have X xy

ab = 0. The simplest inclusion of
entrainment is to set Bx

,xy = 0 and Axy
,xy = 0. This means Ax

ab = 0, Axy
ab = Axygab,

and therefore

K x
ab = −1

2
Bxnxkx

(

σx ⊥x
ab +c2x k̂xaux

b

)

, (10.46)

K xy
ab = −1

2
Axynxkx

(

σx ⊥x
ab +k̂xaux

b

)

. (10.47)

The mode equations then become

0 = Bx
(

σx ⊥x
ab +c2x k̂xaux

b

)

Ab
x + Axy

(

σx ⊥x
ab +k̂xaux

b

)

Ab
y, (10.48)

0 = By
(

σy ⊥y
ab +c2y k̂yauy

b

)

Ab
y + Axy

(

σy ⊥y
ab +k̂yauy

b

)

Ab
x. (10.49)

By contracting each with ka , using Eqs. (10.35) and (10.36), we get

0 = 1

kx

{

Bx
(

σx ⊥x
ab ka + c2xkxux

b

)

Ab
x

+Axy
[

σxka + kx
(

1 − σ 2x
)

ux
a

]

Aa
y

}

= Bx
[
σx

γxyvxy

(
ky
kx

− γxy
)

+ c2x

]

ux
a Aa

x + Axy
(

1 − σ 2x
) kx

ky
uy

a Aa
y, (10.50)

0 = By
[
σy

γxyvxy

(
kx
ky

− γxy
)

+ c2y

]

uy
a Aa

y + Axy
(

1 − σ 2y
) ky

kx
ux

a Aa
x . (10.51)
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The dispersion relation now becomes

0 =
(

σ 2x − c2x
) (

σ 2y − c2y
)

−
( Axy

√BxBy

)2 (

1 − σ 2x
) (

1 − σ 2y
)

. (10.52)

This can be rewritten in a form more useful for numerical solutions; namely,

0 =
(

x2 − b2
) [

(x − y)2 −
(

1 − c2y yx
)2
]

− a2

(

1 − c2yx2
)2

γ 2xy
, (10.53)

where x = σx/cy, y = vxy/cy, b = cx/cy. and

a2 =
(

Axy

c2y
√BxBy

)2

. (10.54)

The immediate thing to note is that the relative speed changes the equation from a
quadratic in σ 2x to being fully quartic in σx; thus, it is inevitable that complex solutions
will result. The question is if the imaginary contributions can be realized for physical
parameters. Recall that this means the system must exhibit absolute stability and
causality. Samuelsson et al. (2010) have shown that these are guaranteed when

0 ≤
( Axy

√BxBy

)2

≤ c2xc2y �⇒ a2 ≤ b2. (10.55)

In the Newtonian limit the dispersion relation takes the same mathematical form
for entrainment as it does for non-zero cross-constituent coupling; namely,

(

x2 − b2
)

a2

[

(x − y)2 − 1
]

= 1. (10.56)

As this is quartic in x , the exact solutions are known. However, they are quite tedious
and their main use is to serve as the basis for numerical evaluations of the modes. A
basic algorithm would be to fix a and b, subject to the constraint in Eq. (10.55), and
then evaluate the real and imaginary parts of σx as functions of y. The end result of this
process is to reveal that the instability exists in a “window” of y-values (Andersson
et al. 2003, 2004b; Samuelsson et al. 2010). As an example we may consider the
example from Andersson et al. (2004b), illustrated in Fig. 13. A more recent study
(Andersson and Schmitt 2019), in the framework of relativity, highlights the fact that
the system will be prone to an energy instability (closely related to the CFS instability
from Sect. 7.4, as it sets in at the point where originally backwards moving modes are
dragged forwards by the background flow). As indicated by the left panel of Fig. 13 this
energy instability tends to set in before the system suffers the (dynamical) two-stream
instability.
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Fig. 13 An illustration of the two-stream instability, showing the real (left panel) and imaginary (right panel)
parts of the four roots of the dispersion relation for the model parameters (a2 = 0.0249 and b2 = 0.0379)
used in Andersson et al. (2004b). For these parameters the quartic dispersion relation has four real roots
for both y = 0 and y = 2, while it has two real roots and a complex conjugate pair for y in the range
0.6 < y < 1.5. In this range, the two-stream instability is active. Image reproduced with permission from
Andersson et al. (2004b), copyright by RAS

Finally, let us take the opportunity to note that the relativistic two-stream instability
has also been analyzed in the non-linear regime (Hawke et al. 2013). This first nonlinear
numerical simulation of the effect in relativisticmulti-species hydrodynamical systems
shows that the onset and initial growth of the instability match closely the results of
linear perturbation theory. But, in the later stages of the evolution, the linear and
nonlinear description have only qualitative overlaps. The main conclusion is that the
instability does not saturate in the nonlinear regime by purely ideal hydrodynamic
effects.

11 Numerical simulations: fluid dynamics in a live spacetime

Many astrophysical phenomena involve violent nonlinear matter dynamics. Such sys-
tems cannot (meaningfully) be described within perturbation theory. Instead, the
modelling requires fully nonlinear—and multi-dimensional, given the lack of sym-
metry of (say) turbulent flows—simulations, taking into account the live spacetime of
General Relativity. The last decades have seen considerable progress in the develop-
ment of the relevant computational tools, especially for gravitational-wave sources like
supernova core collapse (Müller 2016) and neutron star mergers (Baiotti and Rezzolla
2017). The state-of-the-art technology includes the consideration of fairly sophisti-
cated matter models. In the case of supernova modelling, neutrinos are expected to
play an important role in triggering the explosion (Janka 2012) and the role ofmagnetic
fields may also be significant (Mösta et al. 2015). Meanwhile, for neutron star merg-
ers, finite temperature effects are central as shock heating ramps up the temperature of
the merged object to levels beyond that expected even during core collapse (see, e.g.,
Bauswein et al. 2010 or Kastaun and Galeazzi 2015). Magnetic fields are expected to
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have decisive impact on the post-merger dynamics are likely to leave an observational
signature, e.g., in terms of short gamma-ray bursts (e.g., Kumar and Zhang 2015).

11.1 Spacetime foliation

We have already explored some aspects of the problem (like the thermodynamics and
the matter equation of state, see Sect. 2) and we have considered features that arise in
models of increasing complexity (in particular whenwe need to account for the relative
flow of distinct fluid components). So far, the discussion has assumed a fibration of
spacetime associated with a family of fluid observers. This approach is natural if one is
mainly interested in the local fluid dynamics (e.g., wave propagation) and it also leads
to the 1+3 formulation often used in cosmology (where “clocks” associated with the
fluid observers define the notion of cosmic time), see Barrow et al. (2007) for a relevant
discussion. The strategy is, however, not natural for numerical simulations with a
live spacetime. Instead, most such work makes use of a 3+1 spacetime foliation (see
Baumgarte and Shapiro 2003 for a relevant discussion), where progression towards the
“future” is associated with a set of Eulerian observers. Hence, we need to understand
how we extend the multifluid model from fibration to foliation.

The standard approach to numerical simulations takes as its starting point a “foli-
ation”of spacetime into a family of spacelike hypersurfaces, Σt , which arise as level
surfaces of a scalar time t (see, e.g., Alcubierre 2008). Given the normal to this surface

Na = −α∇at, (11.1)

where the function α is known as the lapse, we have

Na = (−α, 0, 0, 0), (11.2)

and the normalisation Na N a = −1 (we are thinking of the normal as associated with
an observer moving through spacetime in the usual way) leads to α2 = −1/gtt . The
sign in (11.1) ensures that time flows into the future. The dual to ∇at leads to a time
vector

ta = αN a + βa, (11.3)

where the so-called shift vector βa is spatial, in the sense that Naβ
a = 0. It follows

that
N a = α−1(1,−β i ), (11.4)

and the spacetime can be written in the Arnowitt–Deser–Misner (ADM) form
(Arnowitt et al. 2008; York 1979):

ds2 = −α2dt2 + γi j

(

dxi + β i dt
) (

dx j + β j dt
)

, (11.5)

where the (induced) metric on the spacelike hypersurface is

γab = gab + Na Nb. (11.6)
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t+dt

t

dt
u

Fig. 14 An illustration of the two formulations for the relativistic fluid problem. The fibration approach,
which focuses on the worldline associated with a given fluid element (and a four velocity uwith components
ua ), provides a natural description of the microphysics and issues relating to thermodynamics. Meanwhile,
a spacetime foliation, based on the use of spatial slices and normal observers (with the coordinate freedom
encoded in the lapse α and the shift vector βi ), is typically used in numerical simulations. In order to ensure
that the local physics is appropriately implemented in simulations, we need to understand the translation
between the two descriptions

Note that γ a
b represents the projection orthogonal to Na and that γab and its inverse

can be used to raise and lower indices of purely spatial tensors. For example, we have
βi = γi jβ

j .
In essence, the lapse α determines the rate at which proper time advances from one

time slice to the next, along the normal Na , while the vector β i determines how the
coordinates shift from one spatial slice to the next. This is illustrated in Fig. 14. The
two functions encode the coordinate freedom of General Relativity.

Reading off the metric from the line element, we have

gab =
(−α2 + βiβ

i βi

βi γi j

)

, (11.7)

with inverse

gab =
(−1/α2 β i/α2

β i/α2 γ i j − β iβ j/α2

)

. (11.8)

Having specified the spacetime foliation, we can decompose any tensor into time
and space components (adapting the logic from the discussion of the stress-energy
tensor in Sect. 5). Suppose, for example, that we have a fluid associated with a four
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velocity ua . Then we can introduce the decomposition18

ua = W (N a + v̂a) = W

α

(

ta − βa + αv̂a) , (11.9)

where Na v̂
a = 0 and the Lorentz factor is given by

W = −Naua = αut = (1 − v̂2)−1/2, (11.10)

where v̂2 = γi j v̂
i v̂ j and the last equality follows from uaua = −1, as usual. From

this relation it is easy to see that

v̂t = 0, v̂i = ui

W
− N i = 1

α

(
ui

ut
+ β i

)

, (11.11)

and it follows that

v̂t = gta v̂
a = βi v̂

i , v̂i = γia v̂
a = γi j

α

(
u j

ut
+ β j

)

. (11.12)

Wealso need to consider derivatives. First of all,we introduce a derivative associated
with the hypersurface. Thus, we use the (totally) projected derivative

Da = γ b
a ∇b, (11.13)

where all free indices should be projected into the surface. This derivative is compatible
with the spatial metric (see Sect. 3) in the sense that

Daγbc = γ d
a γ

e
b γ

f
c ∇dγe f = 0, (11.14)

which means that it acts as a covariant derivative in the surface orthogonal to N a .
The upshot of this is that we can construct a tensor algebra for the three-dimensional
spatial slices. In particular, we can introduce a three-dimensional Riemann tensor.
This projected Riemann tensor does not contain all the information from its four-
dimensional cousin; the missing information is encoded in the extrinsic curvature,
Kab. This is a symmetric spatial tensor, such that N a Kab = 0. The extrinsic curvature
provides a measure of how theΣt surfaces curve relative to spacetime. In practice, we
measure how the normal Na changes as it is parallel transported along the hypersurface.
That is, we define19

Kac = −Da Nc = −γ b
a γ

d
c ∇b Nd = −∇a Nc − Na(N

b∇b Nc), (11.15)

18 In order to make the distinction clear, we are using the convention that all velocities measured by the
Eulerian observer have hats, while velocities relative to the fluid frame do not.
19 Note that it follows from the definition of Na in terms of the lapse (and the projections) that Kac is
symmetric. The symmetry is also evident from (11.17).
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where the second term is analogous to the fluid four-acceleration. We also have

K = K a
a = gab Kab = −γ ab Da Nb = −∇a N a . (11.16)

Alternatively, we can use the properties of the Lie derivative to show that

Ki j = −1

2
LNγi j , (11.17)

but since

LN = 1

α
(Lt − Lβ) = 1

α
(∂t − Lβ), (11.18)

we have
∂tγi j = −2αKi j + Lβγi j . (11.19)

From the trace of this expression we get

αK = −∂t ln γ
1/2 + Diβ

i , (11.20)

where γ = gabγab and γ i j∂tγi j = ∂t ln γ .

11.2 Perfect fluids

The spacetime foliation provides uswith the toolsweneed to formulate relativistic fluid
dynamics in a way suitable for numerical simulations (compatible with the solution
of the Einstein field equations for the spacetime metric, which needs to be carried out
in parallel; Alcubierre 2008; Baumgarte and Shapiro 2010). However, our immediate
focus is on the equations of fluid dynamics (see Font 2008 for more details).

Let us start with the simple case of baryon number conservation. That is, we assume
the flux nua is conserved, where n is the baryon number density according to an
observer moving along with the fluid. Thus, we have

∇a(nua) = ∇a[W n(N a + v̂a)] = 0. (11.21)

First we note that the particle number density measured by the Eulerian observer is

n̂ = −Nanua = nW , (11.22)

so we have
N a∇an̂ + ∇i (n̂v̂

i ) = −n̂∇a N a = n̂K , (11.23)
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(since v̂i is spatial). Making use of the Lie derivative and (11.18) this can be written

N a∇an̂ = LN n̂ = 1

α
(∂t − Lβ)n̂ = −∇i (n̂v̂

i )+ n̂K , (11.24)

or
∂t n̂ + (αv̂i − β i )∇i n̂ + αn̂∇i v̂

i = αn̂K . (11.25)

Finally, since v̂i and β i are already spatial, we have

∂t n̂ + (αv̂i − β i )Di n̂ + αn̂Di v̂
i = αn̂K = −n̂∂t ln γ

1/2 + n̂Diβ
i , (11.26)

or
∂t

(

γ 1/2n̂
)

+ Di

[

γ 1/2n̂(αv̂i − β i )
]

= 0. (11.27)

This simply represents the advection of the baryons along the flow, as seen by an
Eulerian observer. In arriving at this result, we have used the fact that

(−g)1/2 = αγ 1/2, (11.28)

so
∇a(−g)1/2 = ∇a(αγ

1/2) = 0. (11.29)

For future reference, it is also worth noting that

Diγ
1/2 = ∂iγ

1/2 − Γ j
j iγ

1/2 = 0, (11.30)

where the Christoffel symbol is the one associated with the covariant derivative in the
hypersurface.
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Comment: As a slight aside, we have expressed (11.27) in the usual flux-
conservative form. However, in some situations it may be useful to pay closer
attention to the local physics experienced by a family of observers that ride
along with the fluid (e.g., when we consider the microphysics). Then we have
(at least) two alternatives.We can choose to describe the physics in a local fluid
frame associated with the four velocity ua (as we have done) or we can try to
make the equations look “similar” to the more familiar flat space (Newtonian)
ones. In this latter approach [see for example Thorne+Macdonald] one would
introduce a global time (associated with ta) and use a spatial tetrad (relative to
this time coordinate) to describe the fluid. In essence, the fluid then has four
velocity

ua = γ

α

(

ta + V a) .

Comparing to (11.9) we have γ = W and

V i = αv̂i − β i . (11.31)

Making use of this result, we can rewrite (11.27) as

(∂t + LV )
(

γ 1/2n̂
)

+ γ 1/2n̂Di V i = 0 ,

or, if we define n̄ = γ 1/2n̂,

∂t n̄ + Di

(

n̄V i
)

= 0 .

Moving on, the fluid equations of motion follow from ∇aT ab = 0, where we recall
that a perfect fluid is described by the stress-energy tensor

T ab = (p + ε)uaub + pgab. (11.32)

Here p and ε are the pressure and the energy density, respectively. As discussed in
Sect. 2 these quantities are related by the equation of state, which encodes the relevant
microphysics. In order to make contact with this discussion, a numerical simulation
must allow us to extract these quantities from the evolved variables.

However, a numerical simulation is naturally carried out using quantities measured
by the Eulerian observer. That is, we decompose the stress-energy tensor into normal
and spatial parts as (again, see the discussion in Sect. 5)

T ab = ρN a N b + 2N (a Sb) + Sab, (11.33)
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with (noting the conflict in notation from the discussion in Sect. 11, where ρ repre-
sented the mass density)

ρ = Na NbT ab = εW 2 − p
(

1 − W 2
)

, (11.34)

Si = −γ i
c Nd T cd = (p + ε)W 2v̂i , (11.35)

and
Si j = γ i

c γ
j

d T cd = pγ i j + (p + ε)W 2v̂i v̂ j . (11.36)

A projection of the equations of motion along Na then leads to the energy equation.
From

N a∇aρ + ρ∇a N a + ∇a Sa − Nb N a∇a Sb − Nb∇a Sab = 0, (11.37)

we get
N a∇aρ + ∇a Sa = ρK − Sb N a∇a Nb − Sab∇a Nb, (11.38)

where we have used
N a∇a Nb = Db ln α (11.39)

We also have

1

α

(

∂t − Lβ
)

ρ + ∇a Sa = ρK − Sb Db ln α + Sab Kab, (11.40)

leading to

∂t

(

γ 1/2ρ
)

+ Di

[

γ 1/2
(

αSi − ρβ i
)]

= γ 1/2
(

αSi j Ki j − Si Diα
)

. (11.41)

Comment: It is common to evolve τ = ρ−m0n̂ (wherem0 is themean baryon
rest mass density) rather than ρ. This is done to avoid numerical issues arising
from the fact that (11.41) matches (to leading order in velocity) the evolution
equation for the conserved proper rest-mass density [m0 times (11.27)]. This
has no impact on the formal discussion here, but it is nevertheless an important
point. Note also that, one may opt to evolve the entropy instead of the energy.
Indeed, in the multifluid formalism it is natural to focus on the entropy and it is
easy to show that the energy equation leads directly to an advection equation for
the entropy. However, the energy equation is typically preferred in numerical
simulations as its balance law form is compatible with conservative evolution
schemes and ensures suitable behaviour when shocks appear (Font 2000).

Turning to the momentum equation, which is obtained by a projection orthogonal
to Na , we have

ρN a∇a N c + γ c
b N a∇a Sb + Sc∇a N a + Sa∇a N c + γ c

b∇a Sab = 0, (11.42)

123



Relativistic fluid dynamics: physics for many different… Page 115 of 251 3

which leads to

(

∂t − Lβ
)

Si − S j (∂t − Lβ
)

γi j − αK Si + ρDiα + αγi j Dk Sk j = 0, (11.43)

where we have used

N a∇a Sc = LN Sc + Sa∇a N c = LN Sc − Sa K c
a . (11.44)

This leads to the final result

∂t (γ
1/2Si )+ D j

[

γ 1/2
(

αS j
i − Siβ

j
)]

= γ 1/2
(

S j Diβ
j − ρDiα

)

. (11.45)

This completes the set of equations we need in order to carry out a perfect fluid
simulation. The extension to more general setting follows, at least formally, the same
steps.

11.3 Conservative to primitive

We have written down the set of evolution equations we need for a single-component
problem. This leaves us with one important issue to resolve. How do we connect the
evolution to the underlying microphysics and the equation of state? In order to do
this, we have to consider the inversion from the variables used in the evolution to the
“primitive” fluid variables associated with the equation of state.

Let us, in the interest of conceptual clarity, focus on the case of a cold barotropic
fluid, such that the equation of state provides the energy as a function of the baryon
number density ε = ε(n) (see Sect. 2). This then leads to the chemical potential

μ = dε

dn
, (11.46)

and the pressure p follows from the thermodynamical relation:

p = nμ− ε. (11.47)

We see that, in order to connect with the thermodynamics we need the evolved number
density. We also need to decide which observer measures equation of state quantities.
In the single-fluid case this question is relatively easy to answer; we need to express
the equation of state in the fluid frame (use the fibration associated with ua).

In the simple case we consider here the evolved system, (11.27) and (11.45), pro-
vides (assuming that γ 1/2 is known from the evolution of the Einstein equations)

n̂ = nW = n(1 − v̂2)−1/2, (11.48)

and
Si = (p + ε)W 2v̂i . (11.49)
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We need to invert these two relations to extract the primitive variables, n and v̂i . This
can be formulated as a one-dimensional root-finding problem. For example, we may
start by guessing a value for n = n̄. This then allows us to work out ε from the equation
of state and p from (11.47). With these variables in hand we can solve

S2

(p + ε)2 = W 4v̂2, with S2 = γi j Si S j , (11.50)

for v̂2. This, in turn, allows us to work out the Lorentz factor W and then v̂i follows
from (11.49). Finally, we get n = n̂/W from (11.48). The result can be compared
to our initial guess n̄. Iterating the procedure gives a solution consistent with the
conserved quantities, and hence all primitive quantities.

Unfortunately, the numerical implementation of this strategymay not be as straight-
forward as it sounds. For example, the result may be sensitive to the initial guess and
the algorithm may not converge. This is particularly true for more complex situations
(e.g., multi-parameter equations of state or problems involving magnetic fields; Font
2000; Dionysopoulou et al. 2013). However, our aim here is not to resolve the possible
numerical issues. We are only outlining the logic of the approach.

11.4 The state of the art

Without attempting an exhaustive survey of the relevant literature, it is useful to provide
comments on the current state of the art along with suggestions for further reading.
The area of numerical simulations of general relativistic fluids is developing rapidly,
stimulated by the breakthrough discoveries in gravitational-wave astronomy—in par-
ticular, the astonishing GW170817 neutron star binary merger event (Abbott et al.
2017c, b), observations of which engaged a large fraction of the global astronomy
community.

Focus on nonlinear simulations with a live spacetime, one may identify (at least)
four (more or less) separate bodies of work:

– First of all, numerical simulations have been used to explore the problem of
instabilities in rotating stars and disks. This is a classic problem in applied math-
ematics/fluid dynamics, where perturbative studies may be used to establish the
existence of an instability (for simpler models) but where numerical simulations
are required for a higher level of realism and also to investigate the nonlinear
evolution of an unstable system (to what extent the nonlinear coupling of differ-
ent oscillation models leads to an instability saturating at some level, etcetera).
The archetypal problems—basically because they involve instabilities that grow
sufficiently rapidly that they can be tracked by (expensive) multi-dimensional
simulations—are the bar-mode instability of (rapidly and differentially) rotating
stars (Tohline et al. 1985; Williams and Tohline 1987; New et al. 2000; Shibata
et al. 2000; Baiotti et al. 2007) and the run-away instability of (thick) accretion
disks (Zanotti et al. 2003).

– A second setting that has been explored since the early days of numerical relativity
(Stark and Piran 1985; Piran and Stark 1986) involve the gravitational collapse
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to form a black hole (Baiotti et al. 2005; Ott et al. 2007, 2011). The typical
collapse time-scale is short enough that these simulations can be carried outwithout
extortionate cost, but the problem involves a number of complicating issues relating
to the formation of the black-hole horizon. The typical set-up involves initial data
representing a stable fluid body fromwhich pressure support is artificially removed
to trigger the collapse. The main conclusion drawn from this body of work may be
that the gravitational-wave signal from collapse and black-hole formation tends to
be dominated by quasinormal mode ringing.

– Realistic modelling of the core-collapse of star that reaches the endpoint of its
main-sequence life is exceedingly complicated (Janka et al. 2007; Morozova et al.
2018). The problem involves complex physics and a vast range of scales that need
to be accurately tracked in a simulation. In spite of the challenges, there has been
huge progress on understanding the problem in the last two decades. From the
fluid dynamics point of view, the main developments involve the implementation
of a (more) realistic matter description (based on nuclear physics and accounting
for thermal effect; Richers et al. 2017) and developments towards an accurate
implementation of neutrinos (Roberts et al. 2016; Andresen et al. 2017; Glas et al.
2019; Endrizzi et al. 2020). The latter is crucial, as the neutrinos are thought to be
necessary to trigger the supernova explosion.

– The final problem setting—attracting a lot of interest at the present time (Baiotti
and Rezzolla 2017; Bernuzzi 2020)—involves the inspiral and merger of binary
neutron stars. Many of the challenges, regarding the physics, are the same as in the
case of core-collapse simulations. The problem involves a vast range of scale, not
somuch involvedwith an explosion as the outflow ofmatter that is unbound during
the merger, undergoes rapid nuclear reactions and give rise to a kilonova signal
(Goriely et al. 2011; Bauswein et al. 2012; Kasen et al. 2015; Radice et al. 2018;
Margalit and Metzger 2019). At the same time the hot merger remnant oscillates
wildly (Stergioulas et al. 2011; Bernuzzi et al. 2015; Rezzolla and Takami 2016)
until it loses enough angular momentum (or cools enough) that it (most likely)
collapses to form a black hole. An important additional complication involves the
presence of magnetic fields (Palenzuela et al. 2009), hugely relevant as neutron
star mergers are expected to be the source of observed short gamma-ray bursts
(Rezzolla et al. 2011; Paschalidis et al. 2015). This connection was observationally
confirmed by theGW170817 event, but numerical simulations have not yet reached
the stagewhere the detailed engine of of these events can be explored (Ciolfi 2020).

12 Relativistic elasticity

Shortly after a neutron star is born, the outer layers freeze to form an elastic crust
and the temperature of the high-density core drops below the level where superfluid
and superconducting components are expected to be present. The different phases of
matter impact on the observations in a number of ways. The crust is important as

– it anchors the star’s magnetic field (and provides dissipative channels leading to
the gradual field evolution; Viganò et al. (2013)),
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– there is an immediate connection between observed quasi-periodic oscillations in
the tails of magnetar flares (Strohmayer and Watts 2005) (see Watts et al. 2016
for an overview the relevant literature) and the dynamics of the elastic nuclear
lattice. An understanding of the properties of the crust is essential for efforts
to match the theory to observed seismology. The idea of associating observed
variability with torsional oscillation of the crust was first put forward by Duncan
(1998). Relativistic aspects of the problem (particularly relevant for the present
discussion) were developed by Samuelsson and Andersson (2007, 2009).

– the ability of the crust to sustain elastic strain is key to the formation of asymmetries
which may lead to detectable gravitational waves from a mature spinning neutron
star. Continuous gravitational-wave searches with the LIGO-Virgo network of
interferometers is beginning to set interesting upper limits for such signals for
a number of known pulsars (Abbott et al. 2017a), in some instances reaching
significantly below the expected maximum “mountain” size estimated from state
of the art molecular dynamics simulations of the crustal breaking strain (Horowitz
and Kadau 2009; Johnson-McDaniel and Owen 2013) (see Baiko and Chugunov
(2018) for an alternative estimate, and note that while the model of a lattice of
point-like ions may apply to the outer crust, the situation in the inner crust—with
a superfluid component and possible pasta phases—is much less clear).

In essence, the elastic properties of the crust are crucial for anunderstandingof neutron-
star phenomenology. In order for suchmodels to reach the required level of realismwe
must consider the problem in the context of General Relativity. Interestingly, relativis-
tic elasticity turns out to represent a (more or less) natural extension of the variational
framework, with the key step involving the structure of matter space.

12.1 Thematter spacemetric

The modern view of elasticity (Carter and Quintana 1972, 1975a, b; Kijowski and
Magli 1992, 1997; Beig and Schmidt 2003a, b; Carter et al. 2006a) relies on comparing
the actual matter configuration to an unstrained/relaxed reference shape (see Carter
and Chachoua 2006; Carter and Samuelsson 2006 for discussions of how the problem
changes when an interpretating superfluid component is present, as in the inner crust of
a neutron star). In order to keep track of the reference state relative towhich the strain is
measured, we introduce a positive definite and symmetric tensor field, kab (Karlovini
and Samuelsson 2003). The geometric meaning of this object is quite intuitive; it
encodes the (three-)geometry of the solid (as seen by the solid itself). We will mostly
cite key results from the extant literature about the properties of kab; in particular, for
the discussion that follows, the Appendix of Andersson et al. (2019) may be the most
relevant.

From the point of view of the variational framework, the tensor kab is similar to
nabc in the sense that it is flow-line orthogonal (Carter and Quintana 1972)

uakab = 0. (12.1)
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The main properties of kab are established by introducing the corresponding matter
space object, kAB(= kB A), via the usual map:

kab = ψ A
a ψ

B
b kAB . (12.2)

The tensor kAB is “fixed” on matter space, in the same sense as n ABC , because it is
(assumed to be) a function of its ownmatter space coordinates X A only. The associated
volume form is n ABC (see Andersson et al. 2019). If we introduce

g AB = ψ A
a ψ

B
b gab = ψ A

a ψ
B
b ⊥ab, (12.3)

as before, and use Eqs. (6.5) and (6.10), then we can show that20

n2 = −gabnanb = 1

3! det (kAB) det
(

g AB
)

. (12.4)

Moreover, using the relations (6.13) and (12.2), we can easily establish that the
Lagrangian variation of kab vanishes. That is, we have

δkab = −Lξ kab �⇒ Δkab = 0. (12.5)

Finally, since uaψ A
a = 0, and kAB is a function of X A, we have

LukAB = uaψC
a
∂kAB

∂XC
= 0, (12.6)

and it follows that

Lukab = kABLu

(

ψ A
a ψ

B
b

)

= kAB

[

uc ∂

∂xc

(

ψ A
a ψ

B
b

)

+ ψ A
c ψ

B
b
∂uc

∂xa
+ ψ A

a ψ
B
c
∂uc

∂xb

]

= kABuc
[
∂2X A

∂xc∂xa
ψ B

b + ψ A
a
∂2X B

∂xc∂xb
− ∂2X A

∂xa∂xc
ψ B

b − ψ A
a
∂2X B

∂xb∂xc

]

= 0.(12.7)

Following Karlovini and Samuelsson (2003) we now introduce the matter space
tensor ηAB to quantify the unsheared state. Its defining characteristic is that it is the
inverse to g AB but only for the relaxed configuration (when the energy density ε = ε̌,
using a check to indicate the reference shape from now on):

g ACηC B = δA
B , ε = ε̌. (12.8)

If we introduce
εABC = ψ A

a ψ
B
b ψ

C
c udε

dabc, (12.9)

20 We should point out that the determinants used in this section can be tricky in that they involve anti-
symmetric volume forms which may not be the same, see Appendix 2 here, or the Appendix of Andersson
et al. (2019), for more details.
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then it follows from (6.10) that

n ABC = nεABC . (12.10)

In other words,
εABC = √

det (ηAB) [A B C] . (12.11)

The tensor ηAB is useful because it provides us with a straightforward way to model
conformal elastic deformations. Specifically, if f is the conformal factor, we let

kAB = f ηAB �⇒ det (kAB) = f 3 det (ηAB). (12.12)

But,

n ABC = √

det (kAB) [A B C] = nεABC = n
√

det (ηAB) [A B C] , (12.13)

which shows that f = n2/3. This demonstrates that k (a suitably defined 3D determi-
nant of kab, see Andersson et al. 2019) is such that k = n2 (Karlovini and Samuelsson
2003), even though kab does not itself depend on the number density.

Comment: It is possible to develop a framework for elasticity such that the
mapψ A

a is elevated to a dynamical variable. This is, indeed, the strategy of one
of the few ventures into numerical simulations of elastic materials in relativity
(Gundlach et al. 2012). It is an interesting approach, but we will not go into
the details here.

12.2 Elastic variations

Let us now consider the variational derivation of the equations of motion for an elastic
system. First of all, the fact that the Lagrangian variation of kab vanishes means that
kab, in addition to being a natural quantity for describing the elastic configuration, is
useful in the development of Lagrangian perturbation theory.

Letting the LagrangianΛ depend also on the new tensor (in essence, incorporating
the energy associated with elastic strain) we have

δ
(√−gΛ

) = √−g

[

μaδn
a +

(
1

2
Λgab + ∂Λ

∂gab

)

δgab + ∂Λ

∂kab
δkab

]

. (12.14)

We proceed as in Sect. 6 and replace δna with the Lagrangian displacement ξa . In
addition, it follows from (12.5) that

δkab = −ξd∇dkab − kdb∇aξ
d − kad∇bξ

d . (12.15)
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Again ignoring surface terms, we have (as kab is symmetric)

∂Λ

∂kab
δkab = ξa

[

2∇b

(
∂Λ

∂kbd
kad

)

− ∂Λ

∂kbd
∇akbd

]

. (12.16)

Making use of this result, we arrive at

δ
(√−gΛ

) = √−g

{[
1

2

(

Λ− ndμd

)

gab + ∂Λ

∂gab

]

δgab + f̃aξ
a
}

, (12.17)

where

f̃a = 2nb∇[aμb] + 2∇b

(
∂Λ

∂kbd
kad

)

− ∂Λ

∂kbd
∇akbd = 0. (12.18)

As in the fluid case, this result provides the equations of motion for the system.
However, we need to do a bit of work in order to get the result into a more user-
friendly form. To start with, we read off the stress-energy tensor from (12.17):

T ab =
(

Λ− ndμd

)

gab + 2
∂Λ

∂gab
. (12.19)

The next step involves giving physicalmeaning to kab . This involves quantifying the
deviation of a given state from the relaxed configuration. This is where the additional
matter space tensor ηAB comes into play (Karlovini and Samuelsson 2003). This
object depends on n, and relates directly to the relaxed state, see (12.8). Its spacetime
counterpart is

ηab = ψ A
a ψ

B
b ηAB . (12.20)

and we have already seen that
ηab = n−2/3kab. (12.21)

This relation is important, as we have already established that kab is a fixed matter
space tensor.

Let us now imagine that the system evolves away from the relaxed state. This
means that (12.8) no longer holds: ηAB retains the value set by the initial state, but
g AB evolves along with the spacetime. This leads to the build up of elastic strain,
simply quantified in terms of the strain tensor

sab = 1

2
(⊥ab −ηab) = 1

2

(

⊥ab −n−2/3kab

)

. (12.22)

In the relaxed configuration, we have ηab =⊥ab by construction so it is obvious that
sab vanishes.

This model is fairly intuitive, but in practice it is more natural to work with scalars
formed from ηab (which can be viewed as “invariant”). This helps make the model
less abstract. Hence, we introduce the strain scalar s2 (not to be confused with the
entropy density from before) as a suitable combination of the invariants of ηab:

I1 = ηa
a = g ABηAB, (12.23)
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I2 = ηa
bη

b
a = g ADgB EηE AηDB, (12.24)

I3 = ηa
bη

b
dη

d
a = g AE gB F gDGηE BηF DηG A. (12.25)

However, the number density n also can be seen to be a combination of invariants,
since

k = n2 = 1

3!
(

I 31 − 3I1 I2 + 2I3
)

. (12.26)

Given this, it makes sense to replace one of the IN (N = 1, 2, 3) with n, which now
becomes one of the required invariants. Then we define s2 to be a function of two of
the other invariants. We can choose different combinations, but we must ensure that
s2 vanishes for the relaxed state. For example, Karlovini and Samuelsson (2003) work
with

s2 = 1

36

(

I 31 − I3 − 24
)

. (12.27)

In the limit ηab →⊥ab we have I1, I3 → 3 and we see that the combination for s2 in
Eq. (12.27) vanishes.

Next, we assume that the Lagrangian of the system depends on s2, rather than the
tensor kab. In doing this, we need to keep in mind that Eqs. (12.21) and (12.25) show
that the invariants IN depend on n (and hence both na and gab) as well as kab.

So far, the description is nonlinear, but in most situations of astrophysical interest
it should be sufficient to consider a slightly deformed configuration.21 In effect, we
may focus on a Hookean model, such that

Λ = −ε̌(n)− μ̌(n)s2 = −ε, (12.28)

where μ̌ is usual shear modulus, associated with a linear stress-strain relation for small
deviations away from the relaxed state. (It should not to be confused with the chemical
potential!) As mentioned earlier, the checks indicate that quantities are calculated for
the unstrained state, with the specific understanding that s2 = 0, and it should be
apparent from (12.28) that we have an expansion in (a supposedly small) s2.

Since the strain scalar is given in terms of invariants, as in (12.27), it might be
tempting to suggest a change of variables such that s2 = s2(I1, I3). Our final equations
of motion will, indeed, reflect this, but it would be premature to make the change at
this point. Instead we note that the momentum is now given by

μa = ∂Λ

∂na
= ∂n2

∂na

∂Λ

∂n2

= −1

n

∂Λ

∂n
gabnb = 1

n

(
d ε̌

dn
+ dμ̌

dn
s2 + μ̌∂s2

∂n

)

gabnb, (12.29)

while
∂Λ

∂gab
= −

(
d ε̌

dn
+ dμ̌

dn
s2 + μ̌∂s2

∂n

)
∂n

∂gab
− μ̌ ∂s2

∂gab
. (12.30)

21 Note that this assumption is distinct from that of linear perturbations describing the dynamics.
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Here we need (note that na is held fixed in the partial derivative)

∂n

∂gab
= − 1

2n
nanb, (12.31)

and it is useful to note that

∂s2

∂gab
= −gad gbe ∂s2

∂gde
. (12.32)

Also, when working out this derivative, we need to hold n fixed [as is clear from
(12.30)]. At the end of the day, we have for the stress-energy tensor

T ab =
[

Λ+ n

(
d ε̌

dn
+ dμ̌

dn
s2 + μ̌∂s2

∂n

)]

gab

+1

n

(
d ε̌

dn
+ dμ̌

dn
s2 + μ̌∂s2

∂n

)

nanb + 2μ̌gad gbe ∂s2

∂gde

= Λgab + n

(
d ε̌

dn
+ dμ̌

dn
s2 + μ̌ ∂s2

∂n

)

hab + 2μ̌gad gbe ∂s2

∂gde
. (12.33)

Let us nowmake the changeof variableswehinted at previously. In order to establish
the procedure, let us consider a situation where s2 depends only on I1. Then we need

I1 = ηa
a = n−2/3gabkab, (12.34)

(
∂s2

∂n

)

1
= −2I1

3n

∂s2

∂ I1
, (12.35)

(
∂Λ

∂kab

)

1
= −μ̌ ∂s2

∂kab
= −μ̌n−2/3gab ∂s2

∂ I1
, (12.36)

(recall the comment on the partial derivative from before) and

(
∂s2

∂gde

)

1
= ∂s2

∂ I1
ηde. (12.37)

Making use of these results, we readily find

T ab = −εgab + n

(
d ε̌

dn
+ dμ̌

dn
s2
)

⊥ab +2μ̌
∂s2

∂ I1

(

ηab − 1

3
I1 ⊥ab

)

= −εgab + n

(
d ε̌

dn
+ dμ̌

dn
s2
)

⊥ab +2μ̌
∂s2

∂ I1
η〈ab〉, (12.38)
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where the 〈. . .〉 brackets indicate the symmetric, trace-free part of a tensor with two
free indices. In our case, we have

η〈ab〉 = η(ab) − 1

3
ηd

d ⊥ab . (12.39)

Comparing this result to the standard decomposition of the stress-energy tensor,

T ab = εuaub + p̄ ⊥ab +πab, where πa
a = 0, (12.40)

and p̄ is the isotropic pressure (which differs from the fluid pressure, p, as it accounts
for the elastic contribution). We see that elasticity introduces an anisotropic contribu-
tion

π1
ab = 2μ̌

∂s2

∂ I1
η〈ab〉. (12.41)

Following the same steps for the other two invariants (see Andersson et al. 2019
for details), I2 and I3, we find that

π2
ab = 4μ̌

∂s2

∂ I2
ηd〈aη d

b〉, (12.42)

and

π3
ab = 6μ̌

∂s2

∂ I3
ηdeηd〈aηb〉e, (12.43)

respectively. Combining these results with (12.27), we have

πab =
∑

N

πN
ab = μ̌

6

[(

ηd
d

)2
η〈ab〉 − ηdeηd〈aηb〉e

]

, (12.44)

which agrees with equation (128) from Karlovini and Samuelsson (2003).
Now consider the final stress-energy tensor. Note first of all that, if we consider n

and s2 as the independent variables of the energy functional, then the isotropic pressure
should follow from

p̄ = n

(
∂ε

∂n

)

s2
− ε = p̌ +

(
n

μ̌

dμ̌

dn
− 1

)

μ̌s2, (12.45)

where

p̌ = n
d ε̌

dn
− ε̌, (12.46)

is identical to the fluid pressure from before. However, we may also introduce a
corresponding momentum, such that

μ̄a = −
(
∂Λ

∂na

)

s2
=
(

d ε̌

dn
+ dμ̌

dn
s2
)

na, (12.47)
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which leads to

p̄ = Λ− naμ̄a = p̌ +
(

n

μ̌

dμ̌

dn
− 1

)

μ̌s2. (12.48)

Finally, in order to obtain the equations of motion for the system we can either take
the divergence of (12.40) or return to (12.18) and make use of our various definitions.
The results are the same (as they have to be). After a little bit of work we find that
(12.18) leads to

2nb∇[bμ̄a]+ ⊥d
a

(

∇bπbd − μ̌∇ds2
)

= 0, (12.49)

where it is worth noting that the combination in the parentheses is automatically flow
line orthogonal.

12.3 Lagrangian perturbations of an unstrainedmedium

Many applications of astrophysical interest—ranging from neutron star oscillations
to tidal deformations in binary systems and mountains on spinning neutron stars—are
adequately modelled within perturbation theory. As should be clear from the develop-
ment of the elastic model, this requires the use of a Lagrangian framework. Luckily,
we have already done most of the work needed to consider this problem. In particular,
we know that

Δkab = 0. (12.50)

We now make maximal use of this fact.
If we assume that the background configuration is relaxed, i.e. that s2 = 0 vanishes

for the configuration we are perturbing with respect to, then the fluid results from
Sect. 6 together with (12.50) make the elastic perturbation problem straightforward
(although it still involves some algebra).

Consider, first of all, the strain scalar. A few simple steps lead to

Δs2 = 0. (12.51)

To see this, recall that s2 is a function of the invariants, IN . Express these in terms of the
number density n, the spacetimemetric and kab. Once this is done, make use of (12.50)
and the fact that the background is unstrained, i.e. ηab =⊥ab, to see that ΔIN = 0,
which makes intuitive sense. Since the strain scalar is quadratic, linear perturbations
away from a relaxed configuration should vanish. An important implication of this
result is that the last term in (12.49) does not contribute to the perturbed equations of
motion.

This leads to

Δηab = 1

3
ηab ⊥de Δgde, (12.52)

and

Δηab =
[

−2ga(eηd)b + 1

3
ηab ⊥de

]

Δgde. (12.53)
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It then follows from (12.22) and (12.44), that

Δπab = −2μ̌Δsab, (12.54)

where

2Δsab =
(

⊥e
a⊥d

b −1

3
⊥ab⊥de

)

Δgde. (12.55)

It is worth noting that the final result for an isotropic material agrees with, for
example, Schumaker and Thorne (1983) where the relevant strain term is simply
added to the stress-energy tensor (without detailed justification).

Next, let us consider the perturbed equations of motion. In the case of an unstrained
background, it is easy to see that the argument that led to (7.79) still holds. This gives
us the perturbation of the first term in (12.49) (after replacing μa → μ̄a). Similarly,
since πab vanishes in the background, the Lagrangian variation commutes with the
covariant derivative in the second term. Thus, we end up with a perturbation equation
of form

2na∇[aΔμ̄b] + ∇aΔπab = 0. (12.56)

This is the final result, but in order to arrive at an explicit expression for the perturbed
momentum, it is useful to note that

Δμa = − 1

2n
β̌ua ⊥bd Δgbd + μ

(

δb
aud + 1

2
uaubud

)

Δgbd , (12.57)

where we have defined the bulk modulus β̌ as

β̌ = n
d p̌

dn
= ( p̌ + ε̌)d p̌

d ε̌
= ( p̌ + ε̌)Č2

s , (12.58)

Č2
s is the sound speed in the elastic medium andwe have used the fundamental relation

p̌ + ε̌ = nμ. It also follows that

Δp = − β̌
2

⊥ab Δgab. (12.59)

When we consider perturbations of an elastic mediumwe need to pay careful atten-
tion to themagnitude of the deviation away from the relaxed state. If the perturbation is
too large, thematerial will yield (Horowitz andKadau 2009). It may fracture or behave
in some other fashion that is not appropriately described by the equations of perfect
elasticity.We need to quantify the associated breaking strain. In applications involving
neutron stars, this is important if we want to consider star quakes in a spinning down
pulsar, establish to what extent crust quakes in a magnetar lead to the observed flares
(Watts et al. 2016) and whether the crust breaks due to the tidal interaction in an inspi-
ralling binary (Strohmayer and Watts 2005; Penner et al. 2012; Tsang et al. 2012). A
commonly used criterion to discuss elastic yield strains in engineering involves the
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von Mises stress, defined as

ΘvM =
√

3

2
sabsab (12.60)

When this scalar exceeds some critical valueΘvM > Θ
crit
vM, say, the material no longer

behaves elastically. In order to work out the dominant contribution to the von Mises
stress in general we need to (at least formally) consider second order perturbation
theory (Andersson et al. 2019), but in the simple case of an unstrained background we
have

ΘvM =
√

3

2
ΔsabΔsab =

√

3

8
⊥a〈c⊥d〉b ΔgabΔgcd (12.61)

This allows us to quantify when a strained crust reaches the point of failure. This
allows us to work out the maximal deformation, but unfortunately it is difficult to
model what happens beyond this point. The same is true for terrestrial materials.

13 Superfluidity

Low temperature physics continues to be a vibrant area of research, providing inter-
esting and exciting challenges, many of which are associated with the properties of
superfluids/superconductors. Basically, matter appears to have two options when the
temperature decreases towards absolute zero.According to classical physics onewould
expect the atoms in a liquid to slow down and come to rest, forming a crystalline struc-
ture. It is, however, possible that quantum effects become relevant before the liquid
solidifies, leading to the formation of a superfluid condensate (a quantum liquid). This
will only happen if the interaction between the atoms is attractive and relatively weak.
The archetypal superfluid system is Helium. It is well established that 4He exhibits
superfluidity below T = 2.17 K. Above this temperature liquid Helium is accurately
describedby theNavier-Stokes equations.Below the critical temperature themodelling
of superfluid 4He requires a “two-fluid” description. Two fluid degrees of freedom are
required to explain, for example, “clamped” flow through narrow capillaries and the
presence of a second sound (associated with heat flow).

Many other low temperature systems are known to exhibit superfluid properties.
The different phases of 3He have been well studied, both theoretically and experimen-
tally, and there is considerable current interest in atomic Bose–Einstein condensates.
The relevance of superfluid dynamics reaches beyond systems that are accessible in
the laboratory. It is generally expected that neutron stars will contain a number of
superfluid phases. This expectation is natural given the extreme core density (reach-
ing several times the nuclear saturation density) and low temperature (compared to the
nuclear scale of the Fermi temperatures of the different constituents, about 1012 K) of
these stars.

The rapid spin-up and subsequent relaxation associated with radio pulsar glitches
provides strong, albeit indirect, evidence for neutron-star superfluidity (Haskell and
Sedrakian 2018). The standard model for these events is based on, in the first instance,
the pinning of superfluid vortices (e.g., to the crust lattice) which allows a rotational lag
to build up between the superfluid and the part of the star that spins down electromag-
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netically, and secondly the sudden unpinningwhich transfers angular momentum from
one component to the other, leading to the observed spin-change. Recent observations
of the youngest known neutron star in the galaxy, the compact object in the Cassiopeia
A supernova remnant, with an estimated age of around 330 years, are also relevant in
this context. The cooling of this objects seems to accord with our understanding of
neutron stars with a superfluid component in the core (Page et al. 2011; Shternin et al.
2011). The idea remains somewhat controversial—see, for example Elshamouty et al.
(2013), Posselt et al. (2013), Ho et al. (2015) and Posselt and Pavlov (2018)— but
in principle the data can be used to infer the pairing gap for neutron superfluidity in
the core, which helps constrain current theory. Similarly, the slow thermal relaxation
observed in neutron stars that enter quiescence at the end of an accretion phase requires
a superfluid component to be present in the neutron star crust (Wijnands et al. 2017).

Basically, neutron star astrophysics provides ample motivation for us to develop a
relativistic description of superfluid systems. At one level this turns out to be straight-
forward, given the general variational multi-fluid model. However, when we consider
the fine print we uncover a number of hard physics questions. In particular, we need
to make contact with microphysics calculations that determine the various parameters
of the relevant multi-fluid systems. We also need to understand how to incorporate
quantized vortices (Barenghi et al. 2001), and the associated mutual friction, in the
relativistic context. In order to establish the proper context for the discussion, it makes
sense to first discuss the multi-fluid approach to Newtonian superfluids. We do this
for the particular case of Helium, the archetypal laboratory two-fluid system.

13.1 Bose–Einstein condensates

In order to understand the key aspects of the connection between the fluid model and
the underlying quantum system, it is natural to consider the problem of a single com-
ponent Bose–Einstein condensate. In recent years there has been a virtual explosion
of interest in such systems. A key reason for this is that atomic condensates lend
themselves to precision experiments, allowing researchers to probe the nature of the
associated macroscopic quantum behaviour (Pethick and Smith 2008) In addition,
from the relativity point of view, the description of Bose–Einstein condensates is rel-
evant as it connects with issues that may play a role in cosmology (Sikivie and Yang
2009; Harko 2011).

On a sufficiently large scale, atomic condensates22 are accurately represented by
a fluid model, similar to that used for superfluid Helium (described below). Consider
as an example a uniform Bose gas, in a volume V , with an effective (long-range)
interaction energy U0. The relevant interaction arises in the Born approximation, and
is related to the s-wave scattering length a through

U0 = 4π�
2a

m
, (13.1)

22 For simplicity, we focus on the case of bosonic condensates here, but it should be noted that fermionic
condensates can also be realized in the laboratory, see for example Regal et al. (2004).
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where m is the atomic mass. This effectively means that the model is appropriate only
for dilute gases, where short-range corrections to the interaction can be ignored. In
essence, we are focussing on the long-wavelength behaviour. Given the interaction,
the energy of a state with N bosons (recalling that we need to multiply by the number
of ways that these can be arranged in pairs) is

E = N (N − 1)

2

U0

V
≈ N 2

2

U0

V
= 1

2
n2V U0, (13.2)

where we have defined the number density n = N/V . From this we see that the
chemical potential is

μ = d E

d N
= N

V
U0 = nU0. (13.3)

Alternatively, we may work with the energy density

ε = E

V
�⇒ μ = dε

dn
, (13.4)

as in Sect. 2. From the usual thermodynamical relation we see that the pressure of the
system follows from

dp = ndμ. (13.5)

The main theoretical tool for studying the dynamics of atomic Bose–Einstein con-
densates is the Gross–Pitaevskii equation. This equation, which takes the form

− �
2

2m
∇2Ψ + VextΨ + U0|Ψ |2Ψ = i�∂tΨ , (13.6)

encodes the dependence of the order parameter Ψ (note that this is not the many-
body quantum wave-function) on the interaction U0 and an external potential Vext.
In laboratory systems the external potential usually represents an optical trap. In an
astrophysical setting it can be taken as a proxy for the coupling to the gravitational
field.

At low temperatures (such that we can ignore thermal excitations) the order param-
eter is normalized in such a way that the density of the condensate equals the density
of the gas

|Ψ |2 = n. (13.7)

With this identification, we may consider the simplest problem; the stationary solution
to (13.6), representing the ground state of the system. Letting the time dependence be
of form Ψ = Ψ0 exp(−iμt/�) we see that a uniform, stationary solution corresponds
to

μ = nU0 + Vext. (13.8)

Moving on to the time-dependent dynamics, we note that (13.6) describes a
complex-valued function Ψ . In effect, there are two degrees of freedom to consider.
Given the connection to n it is useful to consider the magnitude of Ψ . Multiplying
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(13.6) with Ψ ∗ (where the asterisk represents complex conjugation) and subtracting
the result from its own complex conjugate, we readily arrive at

∂t |Ψ |2 + �

2mi
∇i

(

Ψ ∗∇ iΨ − Ψ∇ iΨ ∗) = 0. (13.9)

Comparing this result with the continuity equation, we see that the two take the same
form provided that we identify (in analogy with the momentum operator in quantum
mechanics) the velocity

vi = pi

mi
= �

2mi

1

|Ψ |2
(

Ψ ∗∇ iΨ − Ψ∇ iΨ ∗) . (13.10)

In other words, we have
∂t n + ∇i

(

nvi
)

= 0. (13.11)

Having already made use of the magnitude, it makes sense to let the second degree
of freedom in the problem be represented by the phase ofΨ . LettingΨ = √

n exp(i S)
we can write the real part of (13.6) as

− �∂t S = μ+ Vext + mv2

2
− �

2

2m

1√
n
∇2√n. (13.12)

Here we have identified the chemical potential as before. We have also used

�
2

2m
(∇i S)(∇ i S) = mv2

2
, (13.13)

which follows from (13.10). Finally, we take the gradient of (13.12) to get

m∂tvi + ∇i

[

μ+ Vext + mv2

2
− �

2

2m

1√
n
∇2√n

]

= m
(

∂t + v j∇ j

)

vi + ∇i (μ+ Vext)

+ mεi jkv
j
(

εklm∇lvm

)

− ∇i

(
�
2

2m

1√
n
∇2√n

)

= 0. (13.14)

By definition, the flow is potential and hence irrotational (at least as long as we ignore
quantum vortices, which we consider later), so

m
(

∂t + v j∇ j

)

vi + ∇i (μ+ Vext)− ∇i

(
�
2

2m

1√
n
∇2√n

)

= 0. (13.15)

Comparing to the standard fluid result, we see that only the last term differs. Notably, it
is also the only term that (explicitly) retains the quantum origins of themodel (Planck’s
constant!).
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So far, we have not made any simplifications. The two Eqs. (13.11) and (13.15)
contain the same information as the Gross–Pitaevskii equation (13.6). The equations
differ from those for irrotational fluid flow only by the presence of the final term
in (13.15). This term, which represents a “quantum pressure” is, however, irrelevant
as long as we focus on the large-scale dynamics. To see this, assume that the order
parameter varies on some length-scale L . It then follows that

∇μ ∼ nU0

L
and ∇

(
�
2

2m

1√
n
∇2√n

)

∼ �
2

mL3 . (13.16)

In other words, the quantum pressure can be neglected as long as

�
2

mnL2U0
� 1. (13.17)

In order to give this relation a clearer meaning, we introduce the coherence length ξ ,
roughly the length-scale on which the kinetic energy balances the pressure. This leads
to

�
2

2mξ2
≈ nU0, (13.18)

and we can neglect the quantum pressure as long as

(
ξ

L

)2

� 1. (13.19)

As long as this condition is satisfied, a low temperature Bose–Einstein condensate
is faithfully represented by a fluid model. In the atomic condensate literature this
regime is sometimes referred to as the Thomas–Fermi limit. It is worth noting that,
even though the above condition implies that the fluid model is appropriate on larger
scales, it is fundamentally not the same averaging argument that leads to the notion
of a fluid element in the usual discussion. In the case of quantum condensates, the
fluid model may in fact be appropriate at much shorter scales since it tends to be the
case that the coherence length is vastly smaller than the mean-free path of the various
particles that make up a normal “fluid”. This scale enters the quantum problem once
we consider finite temperature excitations, being relevant for the second component
that then comes into play.
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Comment: The example we have considered provides a direct connection
between a quantum system and fluid dynamics. Similar arguments apply for
general systems that exhibit macroscopic quantum behaviour, like superfluids
and superconductors. In particular, the coherence length replaces themean-free
path argument, typically leading to fluid behaviour being expected on much
smaller scales than the usual mean-free path. The discussion also provides a
direct example of the notion that fluid behaviour arises in the long-wavelength
limit of a quantum field theory. This is an important aspect, as it motivates the
use of a derivative expansion (systematically representing shorter wavelength
corrections) to account for dissipative effects, see Sect. 16.

13.2 Helium: the original two-fluidmodel

Phenomenologically, the behaviour of superfluidHelium is “easy” to understand if one
first considers a system at absolute zero temperature. Then the dynamics is entirely due
to the quantum condensate (as in the previous example). There exists a single quantum
wavefunction, and the momentum of the flow follows directly from the gradient of its
phase. This immediately implies that the flow is irrotational. At finite temperatures,
one must also account for thermal excitations (like phonons). A second dynamical
degree of freedom arises since the excitation gas may drift relative to the atoms.
In the standard two-fluid model, one makes a distinction between a “normal” fluid
component23 and a superfluid part. The identification of the associated densities is to
a large extent “statistical” as one cannot physically separate the “normal” component
from the “superfluid” one. It is important to keep this in mind.

We take as our starting point the Newtonian version of the multi-fluid framework.
We consider the simplest conducting system corresponding to a single particle species
exhibiting superfluidity. Such systems typically have two degrees of freedom, c.f. He4

(Putterman 1974; Tilley and Tilley 1990) where the entropy can flow independently
of the superfluid Helium atoms. Superfluid He3 can also be included in the mixture,
in which case there will be a relative flow of the He3 isotope with respect to He4, and
relative flows of each with respect to the entropy (Vollhardt and Wölfle 2002). The
model we advocate here distinguishes the atoms from the massless “entropy”—the
former will be identified by a constituent index n, while the latter is represented by
s. As this description is different (in spirit) from the standard two-fluid model for
Helium, it is relevant to explain how the two descriptions are related.

First of all, we need to allow for a difference in the two three-velocities

w
yx
i = vyi − vxi , y �= x. (13.20)

23 The model obviously assumes that the excitations can be modelled as a “fluid”, e.g., that the mean-free
path of the phonons is sufficiently short. This may not be the case at very low temperatures.
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Letting the square of this difference be given by w2, the equation of state then takes
the form E = E(nn, ns, w

2). Hence, we have

dE = μn dnn + μs dns + α dw2, (13.21)

where

μn = ∂E
∂nn

∣
∣
∣
∣
ns,w2

, μs = ∂E
∂ns

∣
∣
∣
∣
ns,w2

, α = ∂E
∂w2

∣
∣
∣
∣
ns,ns

. (13.22)

The α coefficient reflects the effect of entrainment on the equation of state. Similarly,
entrainment causes the fluid momenta to be modified to

pxi
mx = vi

x + 2
α

ρx
wi
yx. (13.23)

The number density of each fluid obeys a continuity equation:

∂nx

∂t
+ ∇ j (nxv

j
x ) = 0. (13.24)

Each fluid also satisfies an Euler-type equation, which ensures the conservation of
total momentum. This equation can be written

(
∂

∂t
+ v j

x∇ j

)
[

vxi + εxwyx
i

]+ ∇i (Φ + μ̃x)+ εxwyx
j ∇iv

j
x = 0, (13.25)

where

μ̃x = μx

mx , (13.26)

and the entrainment is now included via the coefficients

εx = 2ρxα. (13.27)

For a detailed discussion of these equations, see Prix (2004) andAndersson andComer
(2006).

We have already seen that the entrainment means that each momentum does not
have to be parallel to the associated flux. In the case of a two-component system, with
a single species of particle flowing with nn

i = nvni and a massless entropy with flux
ns

i = svsi (i.e., letting nn = n and ns = s, where n is the particle number density and
s represents the entropy per unit volume), the momentum densities are

πn
i = npni = mnvni − 2αwns

i , (13.28)

and
π s

i = spsi = 2αwns
i . (13.29)
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Comment: At this point it is worth stressing the association between the
entropy entrainment and inertia of heat. The entropy may be massless, but
this does not mean that the corresponding momentum vanishes. This may
seem somewhat novel, as there may (at first) seem to be no reason to consider
“entrainment” between particles and entropy. However, the effect arises nat-
urally in the variational model, and if we consider the entrainment as altering
the effective mass of a constituent, then it would be very natural for this mech-
anism to affect also the entropy. This interpretation is conceptually elegant,
and turns out to be practically useful as well. This will become particularly
apparent when we consider the problem of heat flux in Sect. 15.

In order to understand the physical relevance of the entrainment better, let us com-
pare the two-fluidmodel to the orthodoxmodel used to describe laboratory superfluids.
This also clarifies the dynamical role of the thermal excitations in the system.

Expressed in terms of the momentum densities, the two momentum equations can
be written, cf. (13.25),

∂tπ
n
i + ∇ j

(

v j
nπ

n
i

)

+ n∇i

(

μn − 1

2
mv2n

)

+ πn
j ∇iv

j
n = 0, (13.30)

and
∂tπ

s
i + ∇ j

(

v j
s π

s
i

)

+ s∇i T + π s
j∇iv

j
s = 0, (13.31)

where we have used the fact that the temperature follows from μs = T . Let us
now assume that we are considering a superfluid system. For low temperatures and
velocities the fluid described by (13.30) should be irrotational. In order to impose this
constraint we need to appreciate that it is the momentum that is quantized in a rotating
superfluid, not the velocity. This means that we require

εklm∇l pnm = 0. (13.32)

To see how this affects the equations of motion, we rewrite (13.30) as

n∂t pni + n∇i

[

μn − m

2
v2n + v j

n pnj

]

− nεi jkv
j
n (ε

klm∇l pnm) = 0 (13.33)

Using (13.32) we have

∂t pni + ∇i

[

μn − m

2
v2n + v j

n pnj

]

= 0. (13.34)

Wenowhave all the expressionswe need tomake a direct comparisonwith the standard
two-fluid model for Helium.

It is natural to begin by identifying the drift velocity of the quasiparticle excitations
in the two models. After all, this is the variable that leads to the “two-fluid” dynamics.
Moreover, since it distinguishes the part of the flow that is affected by friction it has
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a natural physical interpretation. In the standard two-fluid model this velocity, vi
N,

is associated with the “normal fluid” component. In the variational framework, the
excitations are directly associated with the entropy of the system, which flows with
vi
s. These two quantities should be the same, and hence we have

vi
N = vi

s. (13.35)

The second fluid component, the “superfluid”, is usually associated with a “veloc-
ity” vi

S. This quantity is directly linked to the gradient of the phase of the superfluid
condensate wave function. This means that it is, in fact, a rescaled momentum. This
means that we should identify

vi
S = π i

n

ρn
= pi

n

m
. (13.36)

These identifications lead to

ρvi
S = ρ

[

(1 − ε) vi
n + εvi

N

]

, (13.37)

where ε = 2α/ρ and ρ is the total mass density. We see that the total mass current is

ρvi
n = ρ

1 − ε v
i
S − ερ

1 − ε v
i
N. (13.38)

If we introduce the superfluid and normal fluid densities,

ρS = ρ

1 − ε , and ρN = − ερ

1 − ε , (13.39)

we arrive at the usual result (Khalatnikov 1965; Putterman 1974)

ρvi
n = ρSvi

S + ρNvi
N. (13.40)

Obviously, it is the case that ρ = ρS + ρN. This completes the translation between
the two formalisms. Comparing the two descriptions, it is clear that the variational
approach has identified the natural physical variables—the average drift velocity of the
excitations and the total momentum flux. Since the system can be “weighed” the total
density ρ also has a clear interpretation. Moreover, the variational derivation identifies
the truly conserved fluxes. In contrast, the standard model uses quantities that only
have a statistical meaning. The density ρN is inferred from the mean drift momentum
of the excitations. That is, there is no “group” of excitations that can be identified
with this density. Since the superfluid density ρS is inferred from ρS = ρ − ρN, it
is a statistical concept, as well. Furthermore, the two velocities, vi

N and vi
S, are not

individually associated with a conservation law. From a practical point of view, this is
not a problem. The various quantities can be calculated from microscopic theory and
the results are known to compare well to experiments. At the end of the day, the two
descriptions are (as far as applications are concerned) identical and the preference of
one over the other is very much a matter of taste (or convention).
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The above results show that the entropy entrainment coefficient follows from the
“normal fluid” density according to

α = −ρN
2

(

1 − ρN

ρ

)−1

. (13.41)

This shows that the entrainment coefficient diverges as the temperature increases
towards the superfluid transition and ρN → ρ. At first sight, this may seem an unpleas-
ant feature of the model. However, it is simply a manifestation of the fact that the two
fluidsmust lock together as one passes through the phase transition. Themodel remains
non-singular as long as vni approaches vsi sufficiently fast as the critical temperature is
approached. More detailed discussions of entrainment and finite temperature superflu-
ids can be found in Andersson et al. (2013), Gusakov and Andersson (2006), Kantor
and Gusakov (2011), Gusakov et al. (2009), Gusakov and Haensel (2005), Leinson
(2018), Dommes et al. (2020) and Rau and Wasserman (2020).

Having related the main variables, let us consider the form of the equations of
motion. We start with the inviscid problem. It is common to work with the total
momentum. Thus, we combine (13.30) and (13.31) to get

∂t
(

πn
i + π s

i

)+ ∇l

(

vl
nπ

n
i + vl

sπ
s
i

)

+ n∇iμn + s∇i T

−n∇i

(
1

2
mv2n

)

+ πn
l ∇iv

l
n + π s

l ∇iv
l
s = 0. (13.42)

Here we have
πn

i + π s
i = ρvni ≡ ji (13.43)

which defines the total momentum density. From the continuity equations (13.24) we
see that

∂tρ + ∇i j i = 0. (13.44)

The pressure Ψ follows from

∇iΨ = n∇iμn + s∇i T − α∇iw
2
ns, (13.45)

and we also need the relation

vl
nπ

n
i + vl

sπ
s
i = vSi j l + vl

N j0i , (13.46)

where we have defined
j0i = ρN(vNi − vSi ) = π s

i , (13.47)

and

πn
l ∇iv

l
n + π s

l ∇iv
l
s = n∇i

(
1

2
mv2n

)

− 2αwns
l ∇iw

l
ns. (13.48)

Putting all the pieces together we have

∂t ji + ∇l

(

vSi j l + vl
N j0i

)

+ ∇iΨ = 0. (13.49)
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The second equation of motion follows directly from (13.34);

∂tv
S
i + ∇i

(

μ̃S + 1

2
v2S

)

= 0, (13.50)

where we have defined

μ̃S = 1

m
μn − 1

2

(

vi
n − vi

S

)2
. (13.51)

The above relations show that our inviscid equations of motion are identical to the
standard ones (Khalatnikov 1965; Putterman 1974). The identified relations between
the different variables also provide a direct way to translate the quantities in the two
descriptions. For example, we can write down a generalized first law, starting from
(13.21). The key point is that we have demonstrated how the “normal fluid density”
corresponds to the entropy entrainment in the variational model. This clarifies the role
of the entropy entrainment; a quantity that arises in a natural waywithin the variational
framework.

13.3 Relativistic models

Neutron star physics provides ample motivation for the need to develop a relativistic
description of superfluid systems. As the typical core temperatures (below 108 K) are
far below the Fermi temperature of the various constituents (of the order of 1012 K for
baryons24) mature neutron stars are extremely cold on the nuclear temperature scale.
This means that—just like ordinary matter at near absolute zero temperature—the
matter in the star will most likely freeze to a solid or become superfluid. While the
outer parts of the star, the so-called crust, form an elastic lattice, the inner parts of the
star are expected to be superfluid. In practice, this means that wemust be able to model
mixtures of superfluid neutrons and superconducting protons. It is also likely that we
need to understand superfluid hyperons and colour superconducting quarks. There are
many hard physics questions that need to be considered if we are to make progress in
this area. In particular, we need to make contact with microphysics calculations that
determine parameters of such multi-fluid systems.

One of the key features of a pure superfluid is that it is irrotational. On a larger
scale, bulk rotation is mimicked by the formation of vortices, slim “tornadoes” rep-
resenting regions where the superfluid degeneracy is broken (Barenghi et al. 2001).
In practice, this means that one would often, e.g., when modelling global neutron star
oscillations, consider a macroscopic model based on “averaging” over a large number
of vortices. The resultingmodel closely resembles the standard fluidmodel. Of course,
it is important to remember that the vortices are present on the microscopic scale and
that they may affect the parameters in the problem. There are also unique effects that
are due to the vortices, e.g., the mutual friction that is thought to be the key agent that
counteracts relative rotation between the neutrons and protons in a superfluid neutron
star core (Mendell 1991b).

24 Readers with a high-energy inclination may want to keep in mind that 1 MeV≈ 1010 K.
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For the present discussion, let us focus on the case of superfluid He4. We then
have two fluids, the superfluid Helium atoms with particle number density nn and the
entropy with particle number density ns, as before. From the derivation in Sect. 9 we
know that the equations of motion can be written

∇ana
x = 0, (13.52)

and
nb
x∇[bμx

a] = 0. (13.53)

To make contact with other discussions of the superfluid problem (Carter and Khalat-
nikov 1992, 1994; Carter and Langlois 1995a, 1998), wewill use the notation sa = na

s
and Θa = μs

a . Then the equations that govern the motion of the entropy become

∇asa = 0 and sb∇[bΘa] = 0. (13.54)

Now, since the superfluid constituent is irrotational we also have

∇[aμn
b] = 0. (13.55)

The particle conservation law for the matter component is, of course, unaffected by
this constraint. This shows how easy it is to restrict the multi-fluid equations to the
case where one (or several) components are irrotational. It is worth emphasizing that
it is the momentum that is quantized, not the velocity. This is an important distinction
in situations where entrainment plays a role.

It is instructive to contrast this description with other models, like the potential
formulation due to Khalatnikov and Lebedev (1982) and Lebedev and Khalatnikov
(1982). We arrive at this alternative formulation in the following way (Carter and
Khalatnikov 1994). First of all, we know that the irrotationality condition implies that
the particle momentum can be written as a gradient of a scalar potential, ϕ (say). That
is, we have

Va = −μ
n
a

m
= −∇aϕ. (13.56)

Here m is the mass of the Helium atom and Va is traditionally (and somewhat con-
fusedly, see the previous section) referred to as the “superfluid velocity”. It really is a
rescaled momentum. Next assume that the momentum of the remaining fluid (in this
case, the entropy) is written

μs
a = Θa = κa + ∇aφ. (13.57)

Here κa is Lie transported along the entropy flow provided that saκa = 0 (assuming
that the equation of motion (13.54) is satisfied). This leads to

sa∇aφ = saΘa . (13.58)
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There is now no loss of generality in introducing further scalar potentials β and γ such
that κa = β∇aγ , where the potentials are constant along the flow-lines as long as

sa∇aβ = sa∇aγ = 0. (13.59)

Given this, we have
Θa = ∇aφ + β∇aγ. (13.60)

Finally, comparing to Khalatnikov’s formulation (Khalatnikov and Lebedev 1982;
Lebedev and Khalatnikov 1982) we defineΘa = −κwa and let φ → κζ and β → κβ.
Then we arrive at the final equation of motion

− Θa

κ
= wa = −∇aζ − β∇aγ. (13.61)

Equations (13.56) and (13.61), together with the standard particle conservation laws,
are the key equations of the potential formulation. The content of this description is
(obviously) identical to that of the variational picture, and we have now seen how the
various quantities can be related.

This example shows how easy it is to specify the equations that we derived earlier
to the case when one (or several) components are irrotational/superfluid.

Another alternative approach, related to the field theory inspired discussion in
Sect. 6.4, is based on the notion of broken symmetries. At a very basic level, a model
with a brokenU (1) symmetry corresponds to the superfluid model described above. In
essence, the superfluid flow introduces a preferred direction which break the assump-
tion that the model is isotropic. At first sight our equations differ from those used in,
for example, Son (2001), Pujol and Davesne (2003) and Zhang (2002), but it is easy
to demonstrate that we can reformulate our equations to get those written down for
a system with a broken U (1) symmetry. The exercise is of interest since it connects
with models that have been used to describe other superfluid systems.

Take as starting point the general two-fluid system. From the discussion in Sect. 9,
we know that the momenta are in general related to the fluxes via

μx
a = Bxnx

a + Axyny
a . (13.62)

Suppose that, instead of using the fluxes as our key variables, we consider a “hybrid”
formulation based on a mixture of fluxes and momenta. In the case of the particle-
entropy system, we may use

nn
a = 1

Bnμ
n
a − Ans

Bn ns
a . (13.63)

Let us impose irrotationality on the fluid by representing themomentum as the gradient
of a scalar potential ϕ. With μn

a = ∇aϕ we get

nn
a = 1

Bn ∇aϕ − Ans

Bn ns
a . (13.64)
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Now take the preferred frame to be that associated with the entropy flow, i.e. introduce
the unit four velocity ua such that na

s = nsua = sua . Then we have

nn
a = nua − V 2∇aϕ (13.65)

where we have defined

n ≡ − sAns

Bn and V 2 = − 1

Bn . (13.66)

With these definitions, the particle conservation law becomes

∇ana
n = ∇a

(

nua − V 2∇aϕ
)

= 0. (13.67)

Meanwhile, the chemical potential in the entropy frame follows from

μ = −uaμn
a = −ua∇aϕ. (13.68)

One can also show that the stress-energy tensor becomes

T a
b = Ψ δa

b + (Ψ + ρ)uaub − V 2∇aϕ∇bϕ, (13.69)

where the generalized pressure is given by Ψ as usual, and we have introduced

Ψ + ρ = Bss2 + Asnsn. (13.70)

The equations of motion can now be obtained from ∇bT b
a = 0. (Keeping in mind

that the equation of motion for x = n is automatically satisfied once we impose irrota-
tionality, as before.) This essentially completes the set of equations written down by,
for example, Son (2001) (see also Gusakov and Andersson 2006; Kantor and Gusakov
2011). The argument in favour of this formulation is that it is close to the microphysics
calculations, which means that the parameters may be relatively straightforward to
obtain. Against the description is the fact that it is a—not very elegant—hybrid where
the inherent symmetry amongst the different constituents is lost, and there is also a
risk of confusion since one is treating a momentum as if it were a velocity.

In the case when the superfluid rotates, the two-fluid equations apply as long as the
rotation is sufficiently fast that one can meaningfully average over the vortex array.
In effect, we assume that we can “ignore” the smaller scales associated with, for
example, the vortex cores. This may not be possible in all situations, and even if it
is, the “effective” parameters on the averaged scale may depend on the more local
physics. For example, averaging may be appropriate to describe rotating superfluid
neutron stars, but it is easy to construct laboratory systems where averaging is not
appropriate. One may also envisage cosmological settings, e.g., involving dark matter
condensates (Harko 2011), where averaging is not possible. In such situations we
have to pay more careful attention to the forces acting on the vortices and the ensuing
motion.
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Comment:An interesting extension of the superfluid formalism relates to the
dynamics of the inner crust of a neutron star. In this case one has to account
for the presence of a superfluid neutron component penetrating the elastic lat-
tice of neutron-rich nuclei. This problem has a number of interesting aspects.
For example, it is not clear to what extent the neutrons that are “confined”
to the crust nuclei are able to move. An intuitive discussion of this problem
introduces the notion of chemical “gauge” (Carter et al. 2006b). The chemical
gauge involves the interpretation of the different quantities (number densities,
etc), while the two-fluid model remains unchanged at the formal level. To
make a distinction from the neutron star core, we refer to the two components
in the crust as “free” neutrons, with density nf , and “confined” baryons, repre-
sented by nc (Carter et al. 2006b; Carter and Samuelsson 2006). We also need
to consider the number density of baryons associated with crust nuclei, nN,
(representing all protons as well as the confined neutrons, making up the ions
in the lattice). This set-up is distinct from one where we count all neutrons,
nn. In essence, the chemical gauge relates to the neutrons that are considered
“free”. This idea is to introduce a new basis such that

na
f = na

n + (1 − aN)n
a
p ,

where aN, which is assumed to be constant, accounts for the fact that some of
the neutrons move with the (crust) protons. We also have

na
N = aNna

p .

Given these relations, it is easy to show that the neutron momentum is inde-
pendent of the chosen chemical gauge (the value of aN) and we also have
μn = μf (Carter et al. 2006b). However, the identified transport velocities and
the entrainment coefficients will differ. Basically, we have to execute some
care when we discuss the entrainment and the dynamics of the neutron star
crust. The discussion of chemical gauge is reflected by different models for
crust dynamics discussed in the literature (Carter et al. 2006a; Carter and
Samuelsson 2006; Pethick et al. 2010; Andersson et al. 2011; Kobyakov and
Pethick 2013; Chamel 2017; Andersson et al. 2019). One of the key recent
developments is the demonstration that the superfluid neutrons in the crust
may not be particularly mobile due to Bragg scattering (Chamel 2005, 2006,
2012; Carter et al. 2005). As a result, the effective neutron mass may be as
much as an order of magnitude larger than the bare mass at some points in the
crust. This result—which continues to be debated (Martin and Urban 2016;
Watanabe and Pethick 2017; Sauls et al. 2020)—would have significant impact
on the dynamics of the system.
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13.4 Vortices andmutual friction

Due to the fundamental quantum nature of superfluid (and for that matter, supercon-
ducting) condensates, the neutron component in a neutron star core will be quantized
into localized vortices that each carry a single quantum of momentum circulation. For
simplicity, we will assume that the vortices are locally arranged in a rectilinear array,
directed along a unit vector κ̂ i , with surface density N . At the hydrodynamics level,
after averaging and in the Newtonian gravity framework, we then have

W i
n = 1

m
εi jk∇ j pnk = Nκ i , (13.71)

where we have used κ i = κκ̂ i with κ = h/2m the quantum of circulation (the factor
of 2 arises from the underlying Cooper pairing, relevant for superfluid neutrons). It is
important to note that the quantized “vorticities” refer to the circulation of the canonical
momentum pi

n rather than the circulation of velocity. It is the canonical momentum
which is related to the gradient of each condensate’s wavefunction phase ϕ, leading
to the Onsager–Feynman quantization condition

∮

pi
ndli = (�/2)

∮

(∇ iϕ)dli = h/2. (13.72)

The variational analysis has already provided us with a two-fluid model that allows
for vorticity (obviously). However, if we want to understand the role of the vortices
it is useful to consider the problem from a more intuitive (albeit less general) point
of view. To do this we generalize an approach that was originally developed in the
context of two-fluid hydrodynamics for superfluid Helium (Hall and Vinen 1956).
This provides a conceptually different derivation of the Euler equations, based on the
kinematics of a conserved number of vortices. It also requires the input of the forces
that determine the motion of a single isolated vortex. Thus, consistency between the
two derivations allows us to identify the total conservative force exerted on a single
vortex, without any need to study the detailed mesoscopic vortex-fluid interaction—at
least as long as the vortices are locally aligned. This will be useful when we consider
the vortex mediated friction later.

Comment: The notion of an aligned array of straight superfluid vortices is
likely somewhat unrealistic. Laboratory experiments suggest that turbulent
behaviour, associated with vortex tangles, is common in superfluid systems
and there is no reason why neutron stars should be different (Packard 1972;
Chevalier 1995; Andersson et al. 2007). If we want to model such behaviour
we have to consider what happens when the vortices bend. The circulation of
a curved vortex then induces a flow that affects the motion of the vortex itself.
This problem has not yet—as far as we are aware—been considered in the
context of relativistic superfluids.
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The starting point of the derivation is the Onsager–Feynman condition (13.71). We
also need to use the fact that the vortex number density is conserved, i.e. N obeys a
continuity equation of the form

∂tN + ∇ j

(

N v j
v

)

= 0, (13.73)

where vi
v is the collective vortex velocity within a typical fluid element—in a sense,

this relation defines this averaged vortex velocity. Taking the time derivative of (13.71)
we have

∂tW i
n = −κ i∇ j (N v j

v )+ N ∂tκ
i . (13.74)

Reshuffling terms and using the identity ∇iW i
n = 0 we obtain

∂tW i
n = ∇ j

(

W j
n v

i
v

)

− ∇ j

(

W i
nv

j
v

)

+ N
(

∂tκ
i + v j

v∇ jκ
i − κ j∇ jv

i
v

)

. (13.75)

The motion of a single vortex can be expressed as the Lie-dragging of the vector κ i

(which designates the local vortex direction) by the vi
v flow, leading to

∂tκ
i + Lvvκ i = 0. (13.76)

Then (13.75) reduces to

∂tW i
n + εi jk∇ j

(

εklmW l
nv

m
v

)

= 0. (13.77)

which states that the canonical vorticityW i
n is locally conserved and advected by the

vi
v flow. Rewriting the result in terms of the momentum, we have

∂t pi
n − εi jkvv j εklm∇l pm

n = ∇ iΨ , (13.78)

where Ψ is a (so far unspecified) scalar potential.
Making use of the relative velocity, wi

nv = vi
n − vi

v, we subsequently write (13.78)
as

nn∂t pi
n − εi jknn

jεklm∇l pm
n − nn∇ iΨn = Nρnεi jkκ jw

nv
k . (13.79)

The left-hand-side of this equation coincides with the vortex-free Euler equations of
motion (13.33) after a suitable identification of the potential Ψ . The right-hand side
appears only in the presence of vortices. We can trace the origin of this contribution
back to the Magnus force exerted on a vortex (per unit length) by the associated fluid
given by

f i
M = −ρnεi jkκ jw

nv
k . (13.80)

Thus, we identify −N f i
M, the right-hand side of (13.79), as the averaged reaction

force exerted on a fluid element by the vortex array. In the absence of balancing
forces, like dissipative scattering off thermal excitations, the equation of motion for
a single vortex leads to f i

M = 0, implying that the vortices must move along with vi
n

flow. In this case, we retain (13.33) as the appropriate equation of motion.
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This situation is, of course, somewhat artificial. In order for the argument to make
sense, somethingmust prevent the vortices frommoving with the bulk flow. Of course,
in order to describe a real superfluid, either at finite temperatures or co-existing with
some other component (as in a neutron star core) we need (at least) two components.
The interaction between the vortices and this second component effects the relative
vortex flow. This interaction tends to be dissipative. The standard example of this is the
so-called mutual friction which assumes that the Magnus force acting on each vortex
is balanced by resistivity with respect to the second component in the system (e.g.,
the thermal excitations in Helium, represented by x = p here). That is we have (Hall
and Vinen 1956; Mendell 1991b; Andersson et al. 2006)

f i
M = −ρnεi jkκ jw

nv
k = −Rwi

vp (13.81)

which leads to—after repeated cross products to isolate the vortex velocity—the force
acting on the superfluid neutrons25;

f ni = ρnNκ
(

B′εi jk κ̂
jwk

np + Bεi jk κ̂
jεklm κ̂lw

np
m

)

(13.82)

with

B′ = RB = R2

1 + R2 . (13.83)

The mutual friction has decisive impact on superfluid dynamics. In particular, it pro-
vides one of themainmechanisms for damping (or even preventing) theCFS instability
in rotating superfluid neutron stars (Lindblom and Mendell 1995).

13.5 The Kalb–Ramond variation

Moving on to the relativistic description of the quantized vortex problem, we have
two options. We could “simply” generalize the steps from the Newtonian case. This
is helpful, as it assists the intuition. However, it may be more instructive to take
an alternative route. Opting for this strategy—with the view that it will allow us to
introduce additional aspects—we now set out to derive the fluid results from a different
perspective. The ultimate aim is to arrive at an alternative description of the (suitably
averaged) dynamics of a collection of quantized vortices.

The new strategy builds on efforts to relate string dynamics to the forces acting
on a superfluid vortex (Lund and Regge 1976; Kalb and Ramond 1974; Davis and
Shellard 1988, 1989). We start by recalling that the superfluid velocity (technically;
the momentum) can be linked the gradient of a scalar potential ϕ. We identify this
velocity as the dual26

H̃a = η∂aϕ = 1

3!εabcd Hbcd , (13.84)

25 Note that we have not included the, somewhat contentious, Iordanskii force here, see Gavassino et al.
(2021) for a recent discussion of this aspect.
26 In this section we use tildes to indicate duals, rather than the � notation. This is simply to avoid cluttering
up expressions that already have both sub- and superscripts.
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where η is a constant, and introduce the so-called Kalb–Ramond field (Kalb and
Ramond 1974), such that

Habc = ∂ [a Bbc]. (13.85)

It is now easy to see that the scalar wave equation

�ϕ = 0, (13.86)

is automatically satisfied, as long as

∇a

(

∇a Bbc + ∇c Bab + ∇b Bca
)

= 0. (13.87)

In effect, we can shift the focus from ϕ to Bab, treating this object as an independent
variable. The relevant dynamical equations are then automatically solvedby expressing
this field in terms of a scalar potential. The two descriptions are complementary, as they
have to be (Davis and Shellard 1988). However, aswewill soon demonstrate, theKalb–
Ramond representationmakes the introduction of topological defects (vortices/strings)
intuitive.

First, let us return to the fluid problem but shift the attention from the matter flux
to the vorticity. Following Carter (1994, 2000) and Carter and Langlois (1995b), we
do this by noting that we can ensure that the conservation law (6.8) is automatically
satisfied by introducing a two-form Bab (the Kalb–Ramond field) such that

nabc = 3∇[a Bbc] (13.88)

That is, we have

na = 1

2
εabcd∇b Bcd (13.89)

and the flux conservation (6.8) follows as an identity—we no longer need to introduce
the three-dimensional matter space.

Second, in order to find an action that reproduces the perfect fluid results, we elevate
the vorticity ωab to an additional variable. A Legendre transformation—designed in
such a way that the stress-energy tensor remains unchanged (Carter and Langlois
1995b)—leads to the Lagrangian

Λ̄ = Λ− 1

4
εabcd Babωcd = Λ− 1

2
ω̃ab Bab, (13.90)

where we have used the dual

ω̃ab = 1

2
εabcdωcd . (13.91)

Assuming that Λ = Λ(n) we get (ignoring the perturbed metric for clarity)

δΛ̄ = − 1

3!μ
abcδnabc − 1

2
Babδω̃

ab − 1

2
ω̃abδBab, (13.92)
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where we note that, cf. Sect. 6,

∂Λ

∂nabc
= − 1

3!μ
abc. (13.93)

However, we now have
δnabc = 3∇[aδBbc], (13.94)

which means that

δΛ̄ = 1

2

(

∇aμ
abc − ω̃bc

)

δBbc − 1

2
Babδω̃

ab − 1

2
∇a

(

μabcδBbc

)

. (13.95)

Ignoring the surface term (as usual), we see that a variationwith respect to Bab requires

ω̃bc = ∇aμ
abc, (13.96)

which leads back to (6.29).However,with a free variationwewould also have Bab = 0.
That is, we need to constrain the variation of ω̃ab (or ratherωab). Fortunately, thematter
space argument comes to the rescue, providing us with the strategy for doing this. The
only difference is that we now make use of a two-dimensional space with coordinates
χ I (here, and in the following I , J , . . . represent two-dimensional coordinates). We
obtain this two-dimensional space either via a map from the original matter space

ψ̂ I
A = ∂χ I

∂X A
, (13.97)

or directly from spacetime, using

ψ̄ I
a = ∂χ I

∂xa
. (13.98)

The two descriptions are consistent since

ψ̄ I
a = ψ̂ I

Aψ
A
a = ∂χ I

∂X A

∂X A

∂xa
= ∂χ I

∂xa
. (13.99)

The different coordinates and the maps are illustrated in Fig. 15.
The third step involves introducing the four velocity ua associated with the motion

of the vortices in spacetime, which may be different from the motion of the “fluid” (in
turn related to na). In order for the vorticity to be a purely spatial object—orthogonal
to the flow—we must have

uaωab = 0. (13.100)

In addition, we want it to be “fixed” in the (new) matter space, in the sense that

Luωab = 0. (13.101)
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ψ̄ I
a = ψ A

a ψ̂ I
A

ψ A
a ψ̂ I

Aua

xa XA χI
̂κA

χ1 χ2

Fig. 15 An illustration of the matter space maps and the coordinates used in the analysis of vortex dynamics
and elasticity

Since ωab is anti-symmetric, this leads to

uc∇[aωbc] = 0, (13.102)

which will be satisfied if
∇[aωbc] = ∂[aωbc] = 0. (13.103)

Adapting the logic that led to the conserved matter flux in Sect. 6, we introduce the
matter space tensor ωI J (associated with two-dimensional space orthogonal to the
vortex world sheet), such that

ωab = ψ A
a ψ

B
b ωAB = ψ̄ I

a ψ̄
J
b ωI J . (13.104)

Noting that (13.103) becomes

∂[aωbc] = ψ̄ I
a ψ̄

J
b ψ̄

K
c ∂[IωJ K ] = 0, (13.105)

it follows that the condition holds as long as ωI J only depends on the χ I coordinates.
It should (by now) be a familiar argument.

Next, we introduce Lagrangian perturbations such that

Δχ I = 0 −→ δχ I = −Lξχ I , (13.106)

and we have
Δωab = 0. (13.107)

Again leaving out the metric variations, we have

δω̃ab = 1

2
εabcdδωcd = −ξ c∇cω̃

ab − εabcdωed∇cξ
e, (13.108)
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and, after a little bit of work, the middle term in (13.95) becomes

− 1

2
Babδω̃

ab = 3

2
ξ cω̃ab∇[c Bab] + ∇c

(

ωab Babξ
c
)

. (13.109)

We have have noted that, (13.96) implies that

∇aω̃
ab = 0. (13.110)

Finally, we see that a variation with respect to ξa leads to

3

2
ω̃ab∇[c Bab] = 1

4
εabdeωdencab = ndωdc = 0, (13.111)

and we recover the usual fluid equations. This completes the initial argument. The
introduction of the Kalb–Ramond field shifts the focus onto the vorticity, which is
associated with a two-dimensional subspace (replacing the usual three-dimensional
matter space). The key point is that we arrive at fluid equations without explicitly
associating the fluid flux na with the four-velocity ua .

13.6 String fluids

In order to form a complete picture—including connections with related problems—
and develop the tools we need to make progress, it is useful to take a slight detour
in the direction of string theory. The key point is that, a one-dimensional string mov-
ing through spacetime traces out a two-dimensional world sheet. This world sheet
is spanned by two vectors, one timelike (here taken to be the four velocity of the
string, ua) and one spacelike (intuitively, the tangent vector to the string, represented
by κ̂a). These vectors are associated with two-dimensional coordinates27 such that
xa = xa(φ I ), leading to the tangent surface element

Sab = ε̄ I J ∂xa

∂φ I

φxb

∂φ J
, (13.112)

with ε̄ I J the (normalized) two-dimensional Levi-Civita tensor (density), representing
the measure tensor for the two-dimensional surface orthogonal to the vortex world
sheet.

Associated with this world sheet we have a bivector (read: an anti-symmetric tensor
of rank 2), to be denoted Σab. This object can be expressed in terms of the linearly
independent vectors that span the surface; as the bivector spans a surface, it is natural
to think of it as a contravariant object. Noting that a simple timelike bivector can be
written as the alternating product of a timelike and a spacelike vector (Stachel 1980)

27 These coordinates are not the same as the χ I from the Kalb–Ramond action. When combined, the two
sets of coordinates provide us with the means to completely represent spacetime.
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(such that its dual will be a simple spacelike bivector) and assuming the normalisation

ΣabΣ
ab = −2, (13.113)

we may use
Σab = ua κ̂b − ubκ̂a, (13.114)

such that
κ̂a = Σabub. (13.115)

The projection into the two-dimensional space spanned by ua and κ̂a is then given by

ΣacΣcb = κ̂a κ̂b − uaub. (13.116)

Introducing the dual

Σ̃ab = 1

2
εabcdΣ

cd = εabcducκ̂d , (13.117)

we also have the orthogonal projection

⊥̃a
b = Σ̃acΣ̃cb = δa

b + uaub − κ̂a κ̂b, (13.118)

and we see that
Σ̃abΣ

bc = 0. (13.119)

In fact, this result follows immediately from the condition that the bivector is simple:

Σ [abΣc]d = 0 ⇔ ΣabΣcdεabce = 0. (13.120)

Finally, the bivector is surface forming, as long as (Stachel 1980)

Σ̃ab∇cΣ
bc = Σ̃ab∂cΣ

bc = 0. (13.121)

With this set up, we may take the bivector to be proportional to the surface element.
Letting

Σab = α−1/2Sab, (13.122)

we have
Σ I J = α−1/2SI J = α−1/2ε̄ I J . (13.123)

Making use of the induced metric (which we also use to raise and lower indices in the
two-dimensional subspace)

γI J = gab
∂xa

∂φ I

∂xb

∂φ J
, (13.124)

we have
γI K γJ L ε̄

I J ε̄K L = −2α, (13.125)
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and hence we identify
α = −γ = −det γ AB . (13.126)

That is, we arrive at

Σab = √−γ ∂xa

∂φ I

∂xb

∂φ J
ε̄ I J . (13.127)

Geometrically, the dual ofΣab is a two-form that represents (when integrated) the flux
carried by vortices (string) across a surface in spacetime. The variable γ is a measure
of this flux.

Let us now assume that the Lagrangian of the system depends on γ (note that γ is
formally treated as a variational quantity even though its value is constrained), with

γ = 1

2
ΣabΣab = 1

2
Σ I JΣI J = −1. (13.128)

Moreover, aswewant to compare to amodel based on averaging over a set of vortices—
treated as a fluid described by a small number of fields (density, velocity, tension
etcetera), an idea that applies to a variety of systems frompolymers to cosmic strings—
it is natural to consider the analogous example of a coarse-grained “string fluid”
(Schubring andVanchurin 2014, 2015; Schubring 2015). In effect, we take

√−gΛ(γ )
to be the matter contribution to the action. Further, if we letΛ = M

√−γ this leads to
the coarse-grained version of the standard Nambu–Goto string action (Letelier 1979;
Vilenkin and Shellard 1994), with M the string tension.

For the stress-energy tensor we now need

δΛ = dΛ

dγ

(
∂γ

∂Σab
δΣab + ∂γ

∂gab
δgab

)

= dΛ

dγ

(

ΣabδΣ
ab +Σ a

c Σ
cbδgab

)

, (13.129)

which leads to

T ab = Λgab + 2
δΛ

δgab
= Λgab + 2

dΛ

dγ
Σ a

c Σ
cb. (13.130)

From this it follows that the equations of motion are

∇aT ab = gab∇aΛ+ 2Σ a
c Σ

cb∇a

(
dΛ

dγ

)

+ 2
dΛ

dγ
∇a

(

Σa
cΣ

cb
)

= 0. (13.131)

However, we have

∇aΛ = dΛ

dγ
∇aγ = 0, (13.132)

and

∇a

(
dΛ

dγ

)

=
(

d2Λ

dγ 2

)

∇aγ = 0, (13.133)
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since γ = −1. This means that we have

∇a

(

Σa
cΣ

cb
)

= Σcb∇aΣ
a
c + 1

2
Σca

(

∇aΣcb + ∇cΣba + ∇bΣca
)

= Σcb∇aΣ
a
c + 3Σca∇[aΣcb] = 0, (13.134)

where we have used (13.113). Following Stachel (1980), we contract withΣdb to get

ΣdbΣ
cb∇aΣ

a
c + 3Σ[acΣb]d∇[aΣcb] = 0, (13.135)

where the second term vanishes since the bivector is simple, cf. (13.120). Noting also
that

ΣdbΣ
cb∇aΣ

a
c = 0 �⇒ Σdc∇aΣ

ac = 0. (13.136)

and considering (13.121), we infer the conservation law (Stachel 1980; Schubring and
Vanchurin 2015)

∇aΣ
ab = 0. (13.137)

Basically, if the contractions of a vector with both the bivector and the dual vanish
then the vector must itself be zero. Returning to the equations of motion, we are left
with

Σa
c∇aΣ

cb = 0, (13.138)

or
⊥c

b

(

κ̂a∇a κ̂
b − ua∇aub

)

= 0. (13.139)

This is the simplest version of the model and it is all we need for now. Still, it is
interesting to note extensions like the dissipative case considered in Schubring and
Vanchurin (2015) and the discussion of charged cosmic strings in Carter (1989b).

Before we move on, let us establish two useful results. First of all, we have

κ̂a = Σabub �⇒ ∇a κ̂
a + uaub∇a κ̂

b = ub∇aΣ
ab = 0, (13.140)

by virtue of (13.137). Similarly

ua = Σabκ̂b �⇒ ∇aua − κ̂a κ̂b∇aub = κ̂b∇aΣ
ab = 0. (13.141)

These will be required later.

13.7 Vortex dynamics

A natural extension to the fluid model allowsΛ to depend on both nabc and ωab from
the outset. Starting from Λ = Λ(nabc, ωab, gab) we immediately have

δΛ = − 1

3!μ
abcδnabc − 1

2
λabδωab + δΛ

δgab
δgab, (13.142)
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where

λab = −2
∂Λ

∂ωab
. (13.143)

From (13.90) it then follows that (ignoring the metric variation and the surface term,
as before)

δΛ̃ = 1

2

(

∇cμ
cab − ω̃ab

)

δBab − 1

2

(

λcd + 1

2
εabcd Bab

)

δωcd , (13.144)

which leads us back to (13.95) and (13.96). However, we now have an additional term
involving δωab. Making use of (13.103), this new term can be written

− 1

2
λcdδωcd = 1

2
λcd (ξa∇aωcd + 2ωad∇cξ

a) = −ξaωad∇cλ
cd . (13.145)

Combining this with the result from the previous section, we see that a variation with
respect to the displacement leads to (see Carter 1994, 2000; Carter and Langlois
1995b)

naωab = ωab∇cλ
ca = −2ωab∇c

(
∂Λ

∂ωca

)

. (13.146)

The explicit dependence on the vorticity has led to amended equations of motion. In
order to interpret the term on the right-hand side of (13.146) we, first of all, note that
we may write (13.146) as

[

na + 2∇c

(
∂Λ

∂ωca

)]

ωab ≡ n̄aωab = 0, (13.147)

with

n̄a = na + 2∇c

(
∂Λ

∂ωca

)

. (13.148)

This makes the result appear more “familiar”, but it does not really help us understand
the contributions to (13.146).

Let us dig deeper. Consider the implications of the two-dimensional matter space
we introduced for the vorticity, see Fig. 15. Intuitively, the idea makes sense for a
collection of (locally) aligned quantized vortices as one can always introduce a two-
dimensional surface orthogonal to the vortex array. Points in this surface are described
by the χ I coordinates. Not surprisingly, we can adapt the logic from the usual matter-
space construction to this new setting—although in doing so we focus on the map
from the original three-dimensional space to the two-dimensional one. As is evident
from (13.105), we also need the map from spacetime to either low-dimensional space.
The original fluid derivation involved

ψ A
b ψ

a
A =⊥a

b, (13.149)
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while the corresponding map to the two-dimensional stage takes the form

ψ̂ I
Bψ̂

A
I = δA

B − κ̂ Aκ̂B, (13.150)

with a suitable spatial unit vector κ̂a , automatically orthogonal to the four velocity ua

since
ua κ̂a = (uaψ A

a )κ̂
A = 0. (13.151)

We will take the new vector κ̂a to be normal to the area spanned by the χ I coordinates
(and identify it with the spacelike coordinate used to describe the string world sheet).
That is, we have

κ̂ Aψ̂ I
A = 0. (13.152)

In essence, κ̂ A is aligned with the quantized vortices. It also follows that

ψ̄ I
a ψ̄

b
I = (ψ A

a ψ̂
I
A)(ψ

b
Bψ̂

B
I ) = ψ A

a ψ
b
B(δ

B
A − κ̂Aκ̂

B)

= δb
a + uaub − κ̂a κ̂

b ≡ ⊥̃b
a . (13.153)

Turning to the vorticity, it is natural to introduce a vector

W A = 1

2
εABCωBC −→ ωAB = εABC W C . (13.154)

In spacetime, we then have the vorticity vector

W a = 1

2
ψa

Aε
ABCωBC = 1

2
ψa

Aψ
b
Bψ

c
Cε

ABCωbc = 1

2
udε

dabcωbc, (13.155)

which is simply related to the dual:

W a = ud ω̃
da . (13.156)

We may also work in the two-dimensional space, where it makes sense to let

ωI J = NκεI J −→ ωAB = NκεAB, (13.157)

where εI J is the surface measure tensor associated with the vortex world sheet (not to
be confused with ε̄ I J from before), with

εI J ε
J K = δK

I , (13.158)

εI J ε
I J = 2, (13.159)

and
εAB = κ̂CεC AB . (13.160)

Letting κ A = κκ̂ A, we now have

ωAB = NκCεC AB, (13.161)
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so
κ AωAB = 0. (13.162)

In fact, we have
W A = Nκ A. (13.163)

The interpretation of this is intuitive—we have a collection of vortices, each associated
with a quantum κ of circulation—with number density (per unit area) N . It is also
worth noting the close resemblance to the various relations for n ABC from Sect. 6. We
also have

W 2 = (Nκ)2 = 1

2
ωI Jω

I J = 1

2
ωABω

AB

= 1

2
ωabω

ab = 1

2
gacgbdωabωcd (13.164)

Finally, the spacetime vorticity takes the (expected) form

ωab = Nucκdεcdab. (13.165)

We also have

Luκa = Lu

(

ψ A
a κA

)

= ψ A
a LuκA = ψ A

a uc∂cκA

= ψ A
a (u

cψ B
c )
∂κA

∂X B
= 0, (13.166)

ub∇bN = (ubψ̃ I
b )
∂N
∂χ I

= 0, (13.167)

as well as

κa∇aN = κaψ̃ I
a
∂N
∂χ I

= ψa
Aκ

Aψ B
a ψ̂

I
B
∂N
∂χ I

= κ AδA
B ψ̂

I
B
∂N
∂χ I

= κ Aψ̂ I
A
∂N
∂χ I

= 0. (13.168)

These results are quite intuitive. It is worth noting that

(uaub − κ̂a κ̂b)∇aN = 0, (13.169)

and we also need to recall (13.140) and (13.141).
Let us now return to the equations of motion (13.146). If we consider an explicit

model where Λ = Λ(n2,N 2), we have

∂Λ

∂ωab
= ∂Λ

∂N 2

∂N 2

∂ωab
= ∂Λ

∂N 2ω
ab = −1

2
λab, (13.170)
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and we arrive at

naωab = − 2

κ2
ωab∇c

(
∂Λ

∂N 2ω
ca
)

= − 1

κ
ωab∇c

(
∂Λ

∂N
1

Nκ ω
ca
)

. (13.171)

Making use of (13.165) we then have

1

κ
ωab∇c

(
∂Λ

∂N
1

Nκ ω
ca
)

= −N ⊥a
b

[

∇a

(
∂Λ

∂N
)

− ∂Λ

∂N
(

κ̂c∇cκ̂a − uc∇cua
)
]

. (13.172)

Here it is worth noting that −∂Λ/∂N is naturally interpreted as the energy per vortex
(assuming that all vortices carry the same circulation and that the averaged energy is
simply proportional to the vortex density. It is straightforward to make a connection
with the “thin vortex” limit considered by Carter (2000) but we will not do so here.

Suppose that we also introduce a four-velocity associated with the matter flux, i.e.
let

na = nua
n, (13.173)

such that (as usual)

ua
n = γ (ua + va), uava = 0, γ = (1 − v2)−1/2, (13.174)

We then have
naωab = nγN vaκdεdab = nγN εbacκ

avc, (13.175)

which represents the Magnus force that acts on a set of vortices moving relative to
a superfluid condensate (represented by na), cf. Eq. (13.81). Also recognizing the
surface tension associated with vortex world sheet, we have the final equations of
motion

nγ εbacκ
avc

︸ ︷︷ ︸

Magnus force

=⊥a
b

⎡

⎢
⎢
⎣

∇a

(
∂Λ

∂N
)

− ∂Λ

∂N κ̂
c∇cκ̂a + ∂Λ

∂N uc∇cua
︸ ︷︷ ︸

surface tension

⎤

⎥
⎥
⎦
. (13.176)

For completeness, we should also work out the stress-energy tensor for this model.
This is fairly straightforward. With Λ = Λ(n2,N 2) = Λ(nabc, ωab, gab) we need

∂Λ

∂N 2 δN 2 = 1

2Nκ2
∂Λ

∂N
(

gcdωcaωdbδg
ab + ωbdδωbd

)

, (13.177)

leading to a contribution (using (13.165))

∂Λ

∂N 2

δN 2

δgab
= 1

2
N ∂Λ

∂N ⊥ab . (13.178)
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Combining this with the previous (fluid) result, we have

Tab = (

Λ− ncμc
)

gab + naμb − N ∂Λ

∂N ⊥ab . (13.179)

A direct calculation verifies that the divergence of this expression leads us back to
(13.176).

We can extend the vortex model—following the steps from the Newtonian case—
to account for mutual friction (Andersson et al. 2016). We may also consider the
implications of the long-range nature of the vortex-vortex interaction, which implies
that the vortex lattice has elastic properties (Baym and Chandler 1983; Chandler and
Baym 1986; Andersson et al. 2020). In principle, this means that the vortex lattice
supports a set of elastic oscillation modes known as Tkachenko modes (Sonin 2014).
These were first proposed in the 1960s (Tkachenko 1966a, b), and have been discussed
for superfluid helium, superfluid atomic condensates (Anglin and Crescimanno 2002;
Fetter 2009) and neutron stars (Ruderman 1970;Noronha and Sedrakian 2008;Haskell
2011). The experimental verification of the idea is, however, quite recent (Coddington
et al. 2003).

14 Perspectives on electromagnetism

Magnetic fields are ubiquitous in the Universe—electricity andmagnetism are of obvi-
ous importance to our every day existence, and electromagnetism also plays a crucial
role in astrophysics. In the context of general relativistic fluid dynamics, we are partic-
ularly interested in situations where strong gravity couples to charged flows. A typical
example of such a problem would be two magnetized neutron stars crashing together
at the end of a slow inspiral driven by the emission of gravitational radiation (Baiotti
and Rezzolla 2017). Another interesting problem concerns ultra-relativistic jets asso-
ciated with active galactic nuclei (and some stellar mass objects, as well), thought
to be generated by the spin of the central object (via the so-called Blandford–Znajek
mechanism; Blandford and Znajek 1977; MacDonald and Thorne 1982). Neutrons
stars come into focus as the strongest known magnetic fields (above 1014 G) are found
in a subclass aptly referred to as magnetars (Thompson and Duncan 1993; Woods and
Thompson 2006), systems that also form the largest (and hottest!) known supercon-
ductors (Page et al. 2011; Shternin et al. 2011). Magnetic fields are equally relevant
on the vastly larger scale of entire galaxies, and are likely to have played a role in the
early Universe as well (Ellis 1973; Ellis and van Elst 1999; Barrow et al. 2007). These
are just a few—fairly obvious—examples that illustrate why we need to develop an
understanding of the interaction between charged fluids (generating and maintaining
the electromagnetic field) and relativistic gravity.

14.1 The Lorentz force

We laid the foundation for the covariant description of electromagnetism in Sect. 4.3
(see also Hobson et al. 2006). Starting from a suitable Lagrangian that couples the
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vector potential Aa (in the form of the Faraday tensor Fab) to the four-current ja , we
established that the electromagnetic field is governed by

∇b Fab = μ0 ja . (14.1)

Moreover, since Fab is anti-symmetric, it will automatically satisfy

∇[c Fab] = 0. (14.2)

However, up to this point we had to take the claim that these equations describe
electromagnetism on faith. In order for the model to make more intuitive sense, we
need tomake contactwith the standard description in terms of the electric andmagnetic
fields and Maxwell’s equations.

This exercise is, in principle, straightforward, but at the same time one must tread
carefully. In order to be consistent, we need to be mindful of the units of the various
quantities involved. Unfortunately, the issue of units is somewhat thorny in electro-
magnetism. The underlying reason for this is that the theory involves two “coupling
constants”, which we will call μ0 and ε0. We have already seen the first of these,
and we know that it represents the strength of the coupling between the field and the
current. As we will soon see, the second of the two coefficients represents the coupling
to the charge density. The two coefficients combine in such a way that μ0ε0 = 1/c2,
defining the speed of light.28 However, splitting this “constraint” involves an element
of choice, which leads to different (perfectly consistent) sets of units. In fact, in his
celebrated textbook Jackson (1975) makes the point that the two constants must be
chosen arbitrarily. In the following, we will opt to work in (what is essentially) SI
units, occasionally providing the “translation” to the Gauss units that are common in
astrophysics.

Another issue that makes the problem non-trivial arises from the fundamental prin-
ciple of electromagnetism; varying electric fields generate magnetic fields and vice
versa. This implies that the decomposition into electric and magnetic fields must be
observer dependent. If two observers move in different ways then they will observe
different charge currents and therefore different fields.

According to an observer moving with four-velocity29 U a , the Faraday tensor takes
the form30

Fab = 2U[a Eb] + εabcdU c Bd . (14.3)

This defines the electric and magnetic fields as

Ea = −U b Fba, (14.4)

28 Note that we generally use geometric units, so c2 = 1.
29 Adapting the convention fromSect. 5 thatUa is associatedwith a general observer, in order to distinguish
between the two specific choices considered later.
30 Our discussion differs from alternatives like Ellis (1973) in a few subtle ways. First of all the sign of
the magnetic field Ba is different, but this is later compensated for by a difference in the definition of εabc .
These differences mean that any comparison with the literature must be carried out with care.
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and

Ba = −U b
(
1

2
εabcd Fcd

)

. (14.5)

The physical fields are both orthogonal to U a , so each has three components, just as
in non-relativistic physics.

In the presence of a medium, we also need an expression for the charge current,
and it is natural to decompose this in a similar way; namely,

ja = σU a + J a, where J aUa = 0. (14.6)

Intuitively, the electromagnetic field couples to the moving fluids through the
Lorentz force. It is easy to see how this notion comes about. The overall stress-energy
tensor for the system combines a “matter” part with the relevant electromagnetic con-
tribution. The overall divergence has to vanish, as usual. This means that we can define
the magnetic force f a

L as

∇bT ba
fluid = −∇bT ba

EM ≡ f a
L . (14.7)

Making use of the explicit stress-tensor for the electromagnetic field from Sect. 4;

T EM
ab = 1

μ0

[

gcd Fac Fbd − 1

4
gab

(

Fcd Fcd
)]

. (14.8)

we find that
f a
L = jb Fab. (14.9)

Alternatively, making use of the decomposition into the electric and magnetic fields,
we have

f a
L = σ Ea + εabcd JbUc Bd + U a

(

Jb Eb
)

. (14.10)

This exercise prompts a fundamental question.What exactly is the current ja? Intu-
itively, we know the answer. A net current results from different charged components
flowing relative to one another. However, the single-fluid picture that we have consid-
ered so far (with a single observer) does not consider this aspect. It only provides the
final result, which is the charge current that is required to source the electromagnetic
field. In order to understand the physics, we need to consider a system of coupled
charged fluids. It is natural to do this by extending the variational approach to account
for charged flows. Fortunately, this is straightforward andwewill do this shortly. How-
ever, before going in this direction, let us convince ourselves that we have (indeed) a
formulation that leads back to Maxwell’s equation.

14.2 Maxwell in the fluid frame

As a step towards making contact with applications, it is useful to consider the form of
Maxwell’s equations in the fluid frame. That is, we introduce a fibration of spacetime
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associated with the fluid four velocity ua (again, as in the discussion of the stress-
energy tensor in Sect. 6). This leads to the formulation that is commonly used to
discuss electromagnetism, especially in cosmology (Ellis 1973; Ellis and van Elst
1999; Barrow et al. 2007).

In order to write down Maxwell’s equation it is useful to introduce the general
decomposition

∇aub = σab +!ab − uau̇b + 1

3
θ ⊥ab, (14.11)

where the co-moving time derivative leads to the four acceleration

u̇a = ub∇bua, (14.12)

(and similarly for other variables in the following). We also have the expansion scalar

θ = ∇aua, (14.13)

the shear
σab = D̄〈aub〉, (14.14)

where the angle brackets indicate symmetrization and trace removal (as in (12.39)),
and

D̄aub =⊥ c
a ⊥ d

b ∇cud , (14.15)

is the fibration equivalent of the totally projected derivative we already introduced for
spacetime foliations. The merit of using this (totally projected) derivative is that the
individual terms in (14.11) are perpendicular to ua . We have also defined the vorticity

!ab = D̄[aub]. (14.16)

Making use of these quantities, we find that (14.1) and (14.6) (withU a → ua) lead
to

⊥ab ∇bea = ∇aea − uaėa = μ0σ + ε̄abc!abbc = μ0σ + 2W aba, (14.17)

where we use ea and ba for the electric and magnetic field in the fluid frame, respec-
tively, in order to avoid confusion later. We have also defined the vector

W a = 1

2
ε̄abc!bc, so that !ab = ε̄abcW c, and ua Wa = 0, (14.18)

where
ε̄abc = udεdabc. (14.19)
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Comment:At this point it is useful to make a few remarks. First of all, we add
bars to the projected derivative D̄a and the ε̄abc in order to avoid confusion
with the corresponding quantities for foliations. As comparisons are onlymade
in this section, we only use this notation here. Note also that we define the
vorticity tensor to have the opposite sign compared to Ellis (1973). This is
obviously just convention, but it is important to keep it in mind if one wants to
compare the various relations. Note also that!ab is distinct from the vorticity
two-form ωab used in the variational fluid model.

Next we get

⊥ab ėb − ε̄abc D̄bbc + μ0 Ja =
(

σab −!ab − 2

3
θ ⊥ab

)

eb + ε̄abcu̇bbc. (14.20)

The second set of equations follow from

∇[a Fbc] = 0, (14.21)

which leads to
⊥ab ∇bba = D̄aba = −2W aea, (14.22)

and

⊥ab ḃb + ε̄abc D̄bec = −ε̄abcu̇bec +
(

σab −!ab − 2

3
θ ⊥ab

)

bb. (14.23)

It is easy to see that, if we consider an inertial observer (simply ignoring all derivatives
of the four velocity), these results reduce to the text-book formofMaxwell’s equations.
The complete expressions givenhere are, however, useful as theyhighlight the coupling
between the electromagnetic field and a given fluid flow (with shear, vorticity and
expansion). This also makes the coupling to spacetime apparent (through the presence
of the covariant derivative).

In the context of astrophysics, most models involve some version of magnetohydro-
dynamics. In effect, this involves assuming that the local electric field vanishes, or at
least that the electric field contribution to (14.20) can be ignored, e.g., via a lowvelocity
argument involving the characteristic length- and time-scales. In the non-relativistic
setting this argument is not particularly controversial, although one may take the view
that magnetohydrodynamics is more an assumption than an approximation (Schnack
2009).

Effectively, we assume ea ≈ 0 which then implies that σ ≈ 0 and (14.20) reduces
to

μ0 Ja ≈ ε̄abc D̄bbc. (14.24)

Once we have a handle on the magnetic field and the fluid flow, we can work out
the charge current. This leads to ideal magnetohydrodynamics. An alternative route
to (basically) the same conclusions would be to start from a resistive model. The
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vanishing of the electric field then follows if the medium is assumed to be a perfect
conductor, i.e. when the resistivity vanishes (or equivalently, the conductivity becomes
infinite). However, this approach requires some version ofOhm’s law, sowewill return
to this later.

14.3 Variational approach for coupled charged fluids

The description of electromagnetism is, of course, not complete until we consider the
coupling to the fluid medium. This is the point where the variational model comes
to the fore. As we will now demonstrate; the advantage of having a well-grounded
action principle for coupled fluids and an identification of the true momenta is that
it is relatively easy to incorporate electromagnetism into the system. To do this, we
extend the standard procedure of introducing a (minimal) gauge coupling between the
matter and the Faraday field, already discussed in Sect. 4.3. The only difference is that
we now consider multiple charge carriers with identifiable fluxes, na

x, and individual
charges, qx. The charge current (density) associated with each flow is

ja
x = qxna

x, (14.25)

and the total current, that sources the electromagnetic field, is simply the sum

ja =
∑

x

ja
x . (14.26)

It is worth noting that the variational derivation in Sect. 4.3 requires that the current
is conserved. This constraint is automatically satisfied if each individual current is
conserved, as assumed in the variational derivation. Hence, we simply change the
electromagnetic Lagrangian to

LEM = − 1

4μ0
Fab Fab + Aa

∑

x

ja
x , (14.27)

and the equations that govern the electromagnetic field remain exactly as before. In
addition, the gauge coupling leads to a modified fluid momentum

μ̄x
a = μx

a + qxAa, (14.28)

which satisfies the equations of motion31

nb
xω̄

x
ba = 0, (14.29)

where
ω̄x

ab = 2∇[aμ̄x
b]. (14.30)

31 As a slight aside, it is worth noting that (14.29) provides a useful starting point for a discussion of
conservation laws (Gourgoulhon et al. 2011; Uryū et al. 2010).
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Finally, the total stress-energy tensor takes the form

T a
b = Ψ δa

b +
∑

x

na
xμ

x
b − 1

μ0

[

Fca Fcb − 1

4
δa

b

(

Fcd Fcd
)]

, (14.31)

simply representing the sum of the fluid and the electromagnetic contributions.

Comment: It is worth pointing out that, for general media one might want
account for the electromagnetic polarisation. Formally, this would involve
replacing (14.27) with something like

LEM = −1

8
χabcd Fab Fcd +

∑

x

ja
x Aa (14.32)

where the tensor χabcd encodes how the material is affected by the presence
of the magnetic field. This change would obviously affect the dynamics of the
system, for example through a change in the momentum from (14.28). The
impact on this for relativistic fluid systems has not yet attracted the attention
that it (perhaps) deserves.

As an alternative, we may consider writing the momentum equation (14.29) as
a force-balance relation. Moving the electromagnetic contribution to the right-hand
side, we get

nb
xω

x
ba = nb

xqxFab = jb
x Fab ≡ f xa . (14.33)

Making contact with the previous section, we have

f a
L =

∑

x

f a
x . (14.34)

It is also worth considering the four-current in more detail. Let us consider the
current and charge density inferred by the fluid observer from above, moving with
four-velocity ua . We can then express the various fluxes as

na
x = nxγx

(

ua + va
x

)

, (14.35)

where

γx =
(

1 − v2x
)−1/2

, and vxaua = 0. (14.36)

It follows that the charge density σ used in the previous section takes the form;

σ =
∑

x

nxqxγx ≈
∑

x

nxqx (14.37)
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in the low-velocity limit. Meanwhile, the spatial components of the current are given
by

j i =
∑

x

j i
x =

∑

x

nxqxγxv
i
x ≈

∑

x

nxqxvi
x = J i . (14.38)

For two-fluid systems, our analysis readily reproduces the results for electron-
positron plasmas (Koide 2008, 2009;Kandus andTsagas 2008).Moreover, the charged
multi-fluid system can be extended to account for “non-ideal” effects like resistivity
and particle reactions (i.e. non-conserved flows). In essence, if we want to account for
resistivity, we need to add a phenomenological “force” term to (14.29). This additional
term should describe the dissipative interaction between the two components, and the
standard intuition (Schnack 2009; Bellan 2006) tells us that it should be linear in
the relative velocity between the two components. We then see from (14.29) that the
required force must be orthogonal to each respective flux (Andersson 2012) (note that
this condition must be relaxed if we want to allow for particle creation/destruction).

Developments in this direction are (particularly) important for realistic neutron-
star modelling. The most advanced step in this direction (Andersson et al. 2017b)
considers a four-component system composed of neutrons (n), protons (p), electrons
(e) and entropy (s). The relative flow of the protons and electrons leads to the charge
current that couples the material motion to electromagnetism. The entropy flow is key
if we want to account for the redistribution of heat, which we need to track if we want
to consider (say) the cooling of a young neutron star. Finally, the neutrons need to be
singled out, not just because they make up the bulk of the star but, as the star matures
they become superfluid and (at least partially) decouple from the other components.
In order to explore the evolution and dynamics of maturing neutron stars, one has to
allow for the relative flows of these four components.

14.4 The foliation equations

We have seen how—once we introduce a fluid observer—the relativistic formulation
for electromagnetism leads back to the, familiar looking, set of Maxwell’s equations.
Let us now connect the description with the foliation approach from Sect. 11, as
required if we want to carry out nonlinear simulations. For clarity, let us assume that
we work with the electric and magnetic fields32 Ea and Ba , now measured by an
Eulerian observer (defined by the spacetime foliation, as usual). We then have

Fab = 2N[a Eb] + εabcd N c Bd = 2N[a Eb] + εabd Bd , (14.39)

where we have introduced33

εabd = εcabd N c. (14.40)

32 Noting that there are good reasons for considering a mixed formulation using, for example, the electric
field and the vector potential Aa (Baumgarte and Shapiro 2003).
33 Note that, in the discussion of the 3+1 results we define εabc to be with respect to the Eulerian observer
moving with Na , not the fluid flow and ua .
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That is, the electric and magnetic fields measured in the Eulerian frame are

Ea = −N b Fba, (14.41)

and

Ba = −N b
(
1

2
εabcd Fcd

)

= 1

2
εacd Fcd . (14.42)

Both fields aremanifestly orthogonal to N a so each has three components, as expected.
It is instructive to relate the fields to those associated with the fluid frame. We then

need to first of all recall that
ua = W (N a + v̂a), (14.43)

(where it is worth noting that we use hats to indicate fluid quantities observed in the
frame associated with N a , as in Sect. 11), with W the relevant Lorentz factor. This
means that we have

ea = −ub Fba = −W (N b + v̂b)Fba

= W
[

Ea + Na(v̂
b Eb)

]

− W v̂bεbad Bd

= W
[

Ea + Na(v̂
b Eb)+ εabcv̂

b Bc
]

, (14.44)

and

ba = −ub
(
1

2
εabcd Fcd

)

= −W (N b + v̂b)

(
1

2
εabcd Fcd

)

= W
[

Ba + Na(v̂
b Bb)− εabcv̂

b Ec
]

. (14.45)

It is evident from this expression that, in general, the electric field inferred by the local
observer has a component parallel to N a

e‖ = −ea Na = W
(

v̂b Eb

)

, (14.46)

as well as an orthogonal piece

e⊥
a = W

(

Ea + εabcv̂
b Bc

)

. (14.47)

This is important. Let us assume that the observer can be chosen in such a way that
the perpendicular component vanishes—the assumption that leads to ideal magneto-
hydrodynamics. That is, let

e⊥
a = 0 �⇒ Ea + εabcv̂

b Bc = 0 (14.48)

It is easy to see that this also means that e‖ = 0, so we actually have ea = 0; the
electric field vanishes according to the “fluid” observer. We need to keep this result in
mind later.
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Turning to thematter equations, rather than working with the divergence of the total
stress-energy tensor for the system we can isolate the electromagnetic contribution.
The right-hand side of the matter equations then have additional terms which follow
from the Lorentz force

f a
L = − ja Fab = N b( Ĵ a Ea)+ (σ̂ Eb + εbac Ĵa Bc), (14.49)

where we have used the charge current

ja = σ̂N a + Ĵ a . (14.50)

From this we see that we need to add, first of all, a term

αγ 1/2( Ĵ i Ei ), (14.51)

to the right-hand side of (11.41), representing the electromagnetic contribution to the
energy flow and including the Joule heating. Secondly, we need a term

αγ 1/2(σ̂ Ei + εi jk Ĵ j Bk), (14.52)

on the right-hand side of (11.45), representing the (spatial) Lorentz force.
Finally, we need to add the foliation version ofMaxwell’s equations to the evolution

system. First of all, Eq. (14.1) leads to

γ ab∇b Ea = μ0σ̂ + εabc (∇a Nb) Bc, (14.53)

or
γ b

a ∇b Ea − μ0σ̂ = −εabc Kab Bc = 0, (14.54)

since Kab is symmetric. That is, using the projected derivative Da from Sect. 11 (not
to be confused with D̄a from above), we have

Di Ei = μ0σ̂ . (14.55)

We also get

γab N c∇c Eb − εabc∇b Bc + μ0 Ĵa

= Eb∇b Na − Ea∇b N b + εabc(N
d∇d N b)Bc

= −Eb Kba + Ea K + εabc(N
d∇d N b)Bc, (14.56)

and we end up with

(

∂t − Lβ
)

Ei − εi jk D j (αBk)+ αμ0 J i = αK Ei . (14.57)

The second pair of Maxwell equations follow from Eq. (14.2), which leads to

γ ab∇b Ba = −εabc Ea∇b Nc, (14.58)
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or
γ b

a ∇b Ba = εabc Ea Kbc = 0, (14.59)

so we have
Di Bi = 0. (14.60)

Finally,

γab N c∇c Bb + εabc∇b Ec

= −εabc(N
d∇d N b)Ec + Bb∇b Na − Ba∇b N b

= −εabc(N
d∇d N b)Ec − Bb Kba + Ba K , (14.61)

leads to
(

∂t − Lβ
)

Bi + εi jk D j (αBk) = αK Bi . (14.62)

The four Maxwell equations can be written in different forms, depending on what
is convenient. For example, in order to formulate a system suitable for numerical
simulations it may be necessary to replace the covariant derivatives with partials,
making the connections coefficients explicit (Dionysopoulou et al. 2013; Andersson
et al. 2017c). However, such a reformulation does not add (much) to our understanding
so we will settle for the equations in the present form.

14.5 Electron dynamics and Ohm’s law

So far we have not explored the multi-fluid aspects of the problem. These inevitably
enter if we try to add features like resistivity. Then we have to consider the “friction”
between the separate flows. From the multi-fluid point of view, we need to keep track
of additional number densities. When these fluxes are conserved, we have

∇ana
x = 0 �⇒ (

∂t − Lβ
) (

γ 1/2n̂x

)

+ Di

[

γ 1/2n̂x

(

αv̂i
x − β i

)]

= 0. (14.63)

It is fairly straightforward (if a bit messy) to write down the complete set of charged
multi-fluid equations, representing a generic plasma setting. However, if we want to
arrive at a set of equations representing “magnetohydrodynamics” we need to reduce
the problem to (effectively) a single fluid degree of freedom. A natural step in this
direction involves assuming that the relative flow between the different components
in the system is modest enough that it can be represented as a linear drift. The idea
is simple. Take the fluid frame (represented by ua) to be associated with the baryons
and let another component flow relative to it (with four velocity ua

x). In general, we
then have

ua
x = γx

(

ua + va
x

)

, uav
a
x = 0, (14.64)

where (as usual)

γx =
(

1 − v2x
)−1/2

. (14.65)

At this level—for each component that exhibits a relative flow (va
x �= 0)—we need

to keep track of the individual Lorentz factor (relative to the chosen observer), γx. To
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avoid this, we assume that the relative drift is slow enough that we can linearize the
relations. In effect, we assume that γx ≈ 1. This is an essential part of the “single
fluid reduction” as we no longer need to keep track of the individual Lorentz factors.
Moreover, it helps make contact with the thermodynamics and the equation of state.

To illustrate this point, note that the fluid observermeasures each chemical potential
as (introducing tildes to avoid confusion with the discussion in Sect. 2)

μ̃x = −uaμx
a . (14.66)

If we ignore entrainment, then
μx

a = μxux
a (14.67)

so we need
μ̃x = −μx(u

aux
a). (14.68)

Within the linear drift model, it is straightforward to show that μ̃x ≈ μx. Similarly, if
we define the measured number density as

ñx = −uxna
x, (14.69)

then we also have ñx ≈ nx. In essence, different fluid observers agree on both number
densities and chemical potentials (Andersson et al. 2017b). This is crucial as it means
that there is no ambiguity in the concept of chemical equilibrium. For the outer core
of neutron star (for example) we need to consider the Urca reactions, so chemical
equilibrium corresponds to

β = μn − μp − μe = −ua (μn
a − μp

a − μe
a

) = 0. (14.70)

As long as this condition is satisfied, we can consistently ignore reactions and assume
that the different particle species are conserved. The situation would be much less
clear if we allowed for a nonlinear drift. Different observers would measure differ-
ent number densities/chemical potentials and determining the frame with which one
should associate the thermodynamics becomes an issue.

Assuming that the linear drift argument holds on the evolution scale (as we have to
in order to arrive at an effective one-fluid description) and translating to the point of
view of an Eulerian observer it makes sense to assume that the difference between the
two (three-) velocities v̂a

x and v̂
a is small, as well. Linearizing in the Eulerian velocity

difference, we then have

Wx = (1 − v̂2x)−1/2 ≈ W
[

1 + W 2v̂a(v̂
a
x − v̂a)

]

. (14.71)

Combining this with

ua
x = Wx

(

N a + v̂a
x

) ≈ W
(

N a + v̂a)+ va
x , (14.72)

we find that
va
x ≈ W

[

δa
b + W 2v̂b(N

a + v̂a)
]

(v̂b
x − v̂b), (14.73)
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This shows that the linearization argument is consistent.
In the present case, where the focus is on charged flows if electrons and protons

(say), we now have

σ̂ = e(n̂p − n̂e) = e(Wpnp − Wene)

= eW
[(

np − ne
)− W 2nev̂a(v̂

a
e − v̂a)

]

, (14.74)

and

Ĵ a = e(n̂pv̂
a − n̂ev̂

a
e ) = eW

[

npv̂
a − nev̂

a
e − W 2nev̂b(v̂

b
e − v̂b)v̂a

e

]

= eW (np − ne)v̂
a − eW ne(v̂

a
e − v̂a)− eW 3nev̂b(v̂

b
e − v̂b)(v̂a

e − v̂a + v̂a)

≈ σ̂ v̂a − eW ne(v̂
a
e − v̂a). (14.75)

That is,

v̂a
e − v̂a ≈ 1

eW ne

[

σ̂ v̂a − Ĵ a
]

, (14.76)

where we have used the fact that the linear drift assumption leads to

n̂e = neWe ≈ neW
[

1 + W 2v̂a
(

v̂a
e − v̂a)

]

≈ neW

[

1 − σ̂

ene

]

. (14.77)

The momentum equation for a general component is34

[

∂t + (αv̂ j
x − β j )D j

]

Sx
i + Sx

j Di

(

αv̂ j
x − β j

)

+Di

[

α
(

μ̂x − v̂ j
x Sx

j

)]

= α

n̂x
Fx

i , (14.78)

where
Fx

i = exn̂x

(

Ei + εi jk v̂
j
x Bk

)

+ γ a
i Rx

a, (14.79)

with the last term representing resistivity (implementing the model outlined by Ander-
sson et al. 2017a).

Noting that (in absence of entrainment) we have

Si
x = μ̂xv

i
x, (14.80)

and recalling (11.31)—that the fluid velocity is V i
x = αv̂i

x − β i—we see that (14.78)
can be concisely written;

(

∂t + LVx

)

Sx
i + Di

(
αμ̂x

W 2
x

)

= α

n̂x
Fx

i , (14.81)

34 From here on we correct a number of typos—basically removing a term involving extrinsic curvature
tracing back to Eqs. (78)–(80) from Andersson et al. (2017c), and which propagate through to Eqn. (129)
in the paper.
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noting that the result relies on the linear drift assumption. In essence, we keep only
linear terms in velocity differences in a framedetermined by the global time coordinate.
This means that

V a
x = V a + α(v̂a

x − v̂a). (14.82)

As a slight aside, we may combine (14.82) with (14.63), making use of the
global time argument and the expression for charge conservation, to show that
the electron fraction xe = ne/n satisfies

(∂t + LV ) xe = 0

In essence, the electron fraction is advected by the fluid flow (Galeazzi et al.
2013). Note that no relativistic effects other than frame dragging enter the
equation.

In the particular case of the electrons we then have

[

∂t + (αv̂ j
e − β j )D j

]

Se
i + Se

j Di

(

αv̂ j
e − β j

)

+Di

[

α
(

μ̂e − v̂ j
e Se

j

)]

= α

n̂e
Fe

i , (14.83)

where

Si
e = μ̂ev̂

i
e = μeWe

[

v̂i + 1

eneW

(

σ̂ v̂i − Ĵ i
)]

. (14.84)

Finally, we need an expression for the resistivity. FromAndersson et al. (2017a, b, c)
we have the general result (neglecting nuclear reactions, as we have assumed that the
fluid remains in chemical equilibrium)

γ a
c Rx

a = γ a
c

∑

y �=x

Rxy
(

δb
a + vb

xua

)

w
yx
b , (14.85)

where the velocities are with respect to the fluid. In the linear drift model, these are
related to the Eulerian velocities through (14.73). Thus, we arrive at

γ a
c Rx

a =
∑

y �=x

RxyW
(

δb
a + W 2v̂bv̂a

) (

v̂
y
b − v̂xb

)

. (14.86)

In the two-component case we are considering, this reduces to the intuitive relation

γ b
a Re

b = RW
(

δb
a + W 2v̂bv̂a

) (

v̂b − v̂eb
) = R

ene
Ĵa (14.87)

It is worth noting that there are no σ̂ terms in the final expression.
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Resistivity is usually implemented at the level of some version of Ohm’s law,
typically viewed as a closure condition added to the magnetohydrodynamics rela-
tion (14.48). In the multi-fluid model, the required relation follows from the electron
momentum equation (Andersson et al. 2017c). As a first step, let us assume that we
can ignore the electron inertia. Then it follows from (14.81) that

Fe
i ≈ −eneWe

(

Ei + εi jk v̂
j
e Bk

)

+ R
ene

Ĵa ≈ neWe

α
Di

(
αμe

We

)

(14.88)

That is, we have

Ei + εi jk v̂
j
e Bk + 1

α
Di

(
αμe

We

)

= R
en2

eWe
Ĵi ≈ R

en2
eW

Ĵi ≡ η Ĵi (14.89)

which defines the scalar resistivity coefficient η. It is reassuring to note that (14.89)
is consistent with the text-book result for non-relativistic two-fluid systems, e.g.,
Eq. (2.75) in Bellan (2006) or Mestel (1999), once we set α = We = W → 1 at
the same time as we assume that σ̂ → 0.

Ignoring the chemical gradient term, we have

Ei + εi jk v̂
j Bk + 1

eneW
εi jk

(

σ̂ v̂ j − Ĵ j
)

Bk = η Ĵi . (14.90)

Also neglecting (without particular justification at this point) the Hall term, we are left
with

Ei + εi jk v̂
j Bk = η Ĵi . (14.91)

Through a hierarchy of approximations and simplifications we have moved from a
model that retains the properties of a charged two-component plasma to a simple
expression for Ohm’s law.

The sequence of arguments leading to (14.91) provides insight into the applicability
of “ideal” magnetohydrodynamics, which corresponds to the assumption that the local
electric field vanishes

ea ≈ 0 �⇒ Ei + εi jk v̂
j Bk = 0. (14.92)

The usual argument for this is that the medium is a perfect conductor, i.e. R → 0
(η → 0). However, this limit only affects the resistive term in (14.89). We still have
to argue that the remaining terms are unimportant. This is less straightforward.

It is instructive to compare the final result to the standard argument from the litera-
ture (Bekenstein and Oron 1978; Watanabe and Yokoyama 2006; Palenzuela et al.
2009; Takamoto and Inoue 2011), which starts from magnetohydrodynamics and
arrives at Ohm’s law by taking the current to be proportional to the Lorentz force
acting on a particle in the fluid frame. Assuming

⊥b
a jb = η̄Fabub, (14.93)
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and recalling that
ua = W (N a + v̂a), (14.94)

we have

ja = σ̂Na + Ĵa = η̄W (N b + v̂b)
(

Na Eb − Nb Ea + εabc Bc)

= η̄W
[

Na(v̂
b Eb)+ Ea + εabcv̂

b Bc
]

. (14.95)

Project along N a to get

σ̂ + W 2(v̂i Ĵ i − σ̂ ) = η̄W (v̂i Ei ), (14.96)

while the orthogonal projection leads to

Ĵa − W 2v̂a(σ̂ − v̂i Ĵ i ) = η̄W
(

Ea + εabcv̂
b Bc

)

. (14.97)

It follows that
v̂i Ĵi − W 2v̂2(σ̂ − v̂i Ĵ i ) = η̄W (v̂i Ei ), (14.98)

and we finally arrive at

Ei + εi jk v̂
j Bk = 1

η̄W

[

Ĵi − W 2(σ̂ − v̂l Ĵ l)v̂i

]

. (14.99)

This versionofOhm’s law—notably identical to (14.91) oncewe identifyη = 1/η̄W—
has been implemented in recent numerical simulations, see for example Eq. (22) in
Palenzuela et al. (2009). The comparison provides a nice “sanity check” of the logic,
but the multi-fluid derivation clearly provides a better understanding of the physics.
Moreover, it allows us to extend the model to account for additional aspects (should
we want to do so). In fact, if we were to retain the time variation of the charge current
we would add in most of the relevant plasma features (the only restriction being that
we assumed a linear drift fairly early on in the developments).

14.6 Tetrad formulation

The general formalism we have outlined is fully nonlinear and includes the coupling
to the dynamical spacetime. In essence, it is geared towards numerical simulations of
violent phenomena in full General Relativity. However, there are relevant problems
where the dynamical role of spacetime is less crucial (or, perhaps, not at all relevant).
A typical such problem would be the slow evolution of the magnetic field in a neutron
star interior (Viganò et al. 2013). Assuming that we may take the spacetime as fixed, it
can be useful to make the curved spacetime problem look “as close to flat” as possible.
This typically involves using tetrads. As relevant parts of the literature draw on this
strategy, it is useful to introduce the main ideas and steps here. We do this by adapting
our magnetic field results to a fixed, slowly rotating spacetime. That is, we make
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contact with the Hartle-Thorne slow-rotation expansion (Hartle and Thorne 1968),
keeping only first order terms in the rotation, for simplicity. The metric is then given
by

ds2 = −e2νdt2 − 2ωr2 sin2 θdφdt + e2λdr2 + r2dθ2 + r2 sin2 θdφ2, (14.100)

where the rotational frame-dragging ω is a solution to

1

r3
d

dr

[

r4e−(ν+λ) dω̄
dr

]

+ 4
d

dr

[

e−(ν+λ)] ω̄ = 0, (14.101)

with
ω̄ = Ω − ω. (14.102)

The solution external to a uniformly rotating body is

ω̄ext = Ω − 2J

r3
, (14.103)

where Ω is the rotation frequency of the star (as viewed by an asymptotic observer)
and J is the angular momentum.

Comparing the slow-rotation line element to the 3+1 form from Eq. (11.5) we
identify the lapse

α = eν, (14.104)

the shift vector
β i = −ωδi

φ, (14.105)

and the spatial metric

γi j =
⎛

⎝

e2λ 0 0
0 r2 0
0 0 r2 sin2 θ

⎞

⎠ . (14.106)

The fact that γi j is diagonal simplifies much of the following discussion. We also see
that

γ 1/2 = eλr2 sin θ. (14.107)

Next, it is worth noting that

αK = −∂t ln γ
1/2 + Diβ

i = 0, (14.108)

since the spacetime is stationary and axisymmetric. We also have

Lβγ 1/2 = ∂i

(

γ 1/2β i
)

= 0, (14.109)

since the spacetime is axisymmetric. This means that

(

∂t − Lβ
)

γ 1/2 = 0, (14.110)
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a result which will be used in the following.
Up to this point, we have expressed all tensor relations in terms of components in a

given coordinate basis. However, when the focus is on measurements carried out by a
given observer it may be helpful to work in a local inertial frame, using an orthonormal
basis associated with a local tetrad (this is the ZAMO frame introduced by Bardeen
et al. 1972; see also Thorne and MacDonald 1982). This means that we (first of all)
translate the equations into an orthonormal tetrad—changing the basis in such a way
that the metric appears flat. A simple way to do this is to rewrite the line element in
terms of a new basis in such a way that (using hats to denote quantities in the new
orthonormal basis)

ds2 = ηâb̂dxâdxb̂ = ηâb̂ω
â
cω

b̂
ddxcdxd , (14.111)

where ηâb̂ = diag(−1, 1, 1, 1). Comparing to the slow-rotation metric, we see that
we have

ω0̂
a = eν(1, 0, 0, 0), (14.112)

ω1̂
a = eλ(0, 1, 0, 0), (14.113)

ω2̂
a = r(0, 0, 1, 0), (14.114)

ω3̂
a = r sin θ(−ω, 0, 0, 1). (14.115)

If we define the inverse through
ea

ĉω
ĉ
b = δa

b , (14.116)

it also follows that

ea
0̂

= e−ν(1, 0, 0, ω), (14.117)

ea
1̂

= e−λ(0, 1, 0, 0), (14.118)

ea
2̂

= 1

r
(0, 0, 1, 0), (14.119)

ea
3̂

= 1

r sin θ
(0, 0, 0, 1). (14.120)

The eb
â are usually referred to as the tetrad components.

We now have the tools we need to transform quantities from the coordinate basis
to the orthonormal one. For instance;

Bâ = eb
â Bb, (14.121)

and
Bâ = ωâ

b Bb. (14.122)

An advantage of working in the orthonormal tetrad is that we can exhange co- and
contravariant quantities without “penalty” (as the associated three-metric is flat). A
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disadvantage is that we have to be careful with derivatives. Before we consider this
issue, let us provide an example of why it is natural to work with the tetrad components
of the various spatial objects. Let us take the Faraday tensor as example. First of all,
according to an observer rotating with ω we have the coordinate basis result (see, for
instance, Rezzolla et al. 2001)

Fab =

⎛

⎜
⎜
⎝

0 −eνEr − ωeλr2 sin θBθ −eνEθ + ωeλr2 sin θBr −eνEφ
eνEr + ωeλr2 sin θBθ 0 eλr2 sin θBφ −eλr2 sin θBθ

eνEθ − ωeλr2 sin θBr −eλr2 sin θBφ 0 eλr2 sin θBr

eνEφ eλr2 sin θBθ −eλr2 sin θBr 0

⎞

⎟
⎟
⎠
.

(14.123)
If we simply replace the field components with the corresponding quantities for the
tetrad and project the tensor into the tetrad we get

Fĉd̂ = ea
ĉ eb

d̂
Fab =

⎛

⎜
⎜
⎜
⎝

0 −Er̂ −E θ̂ −E φ̂

Er̂ 0 Bφ̂ −B θ̂

E θ̂ −Bφ̂ 0 Br̂

E φ̂ B θ̂ −Br̂ 0

⎞

⎟
⎟
⎟
⎠
. (14.124)

We recognize this as the usual flat-space form of the Faraday tensor, emphasizing that
this is the natural description for a local observer.

As we move on to explore dynamics, we have to consider derivatives. For scalar
quantities, this is relatively straightforward. For example, from (14.121) we see that

e0̂ = ∂τ = ea
0̂
ea = e−ν (et + ωeφ

) = e−ν (∂t + ω∂φ
)

, (14.125)

allows us to introduce a natural time-derivative associated with the rotating frame. In
fact, for a scalar n, we have

(∂t − Lβ)(γ 1/2n) = γ 1/2(∂t − Lβ)n
= γ 1/2(∂t − β j∇ j )n = γ 1/2(∂t − β j∂ j )n

=γ 1/2(∂t +ω∂φ)n =γ 1/2eν∂τn =γ 1/2∂τ
(

eνn
)

. (14.126)

However, this is more of an aside because, for vector quantities this is not the appro-
priate time derivative. In order to understand the distinction, we need to reinstate the
basis vectors (and forms). Using bold vectors (adding tildes for basis one forms) we
have the three-vector

B = Bbeb = ea
ĉω

ĉ
b Bbea = Bĉeĉ. (14.127)

If we want to make a connection with (more or less) text-book vector calculus, we
need to understand derivatives of vectors in the ZAMO frame. First of all, we note that
the (spatial) metric γi j is diagonal (in fact, in 3D we can always find coordinates that
lead to a diagonal metric) with scale factors ha given by (we are not summing over
repeated indices for the rest of this section!);

eâ = 1

ha

∂

∂xa
= 1

ha
ea = ea

âea �⇒ ea
â = 1

ha
. (14.128)
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Comparing (for later convenience) to the three-metric we see that

γac = h2
cδac. (14.129)

Let us now define
∇ =

∑

a

ẽa Da, (14.130)

such that the directional derivative is given by

Da = ea · ∇, (14.131)

and we have

∇ω =
∑

a

ẽa Daω =
∑

a

ẽa∂aω =
∑

a,b,c

ea
ĉω

ĉ
bẽ

b∂aω

=
∑

a,c

ẽĉ (ea
ĉ ∂aω

) =
∑

a

ẽâ
(

1

ha
∂aω

)

. (14.132)

We see that we can express the components of the gradient in either frame, but in the
orthonormal case we need to keep track of the scale factors. We obviously knew this
already, but we can now make the connection explicit.

Turning to vectors, we have (the usual covariant derivative)

∇A =
∑

a,b

ẽa Da(A
beb) =

∑

a,b

[

(∂a Ab)ẽaeb + Abẽa Daeb

]

=
∑

a,b,c

[

(∂a Ab)ẽaeb + AbẽaΓ c
baec

]

≡
∑

a,b

(Da Ab)ẽaeb, (14.133)

where Γ c
ba is the connection associated with γi j . We also have

∇A =
∑

a,b

ẽa Da(A
b̂eb̂) =

∑

a,b

[

∂a

(

Ab̂

hb

)

ẽaeb + Ab̂

hb
ẽa Daeb

]

=
∑

a,b

Da

(

Ab̂

hb

)

ẽaeb =
∑

a,b

hb

ha
Da

(

Ab̂

hb

)

ẽâeb̂, (14.134)

and it follows that

Dâ Aĉ = hc

ha
Da

(

Aĉ

hc

)

=
∑

b

hc

ha

[

∂a

(

Aĉ

hc

)

+ Γ c
ba

(

Ab̂

hb

)]

. (14.135)
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Now, as γi j is diagonal in the particular case we are considering (and likely in any
problem one may be interested in), we have

Γ c
ab =

∑

d

γ cd [(hd∂bhd)δad + (hd∂ahd)δbd − (hb∂d hb)δab]

= 1

h2
c

[

(hc∂bhc)δ
c
a + (hc∂ahc)δ

c
b −

∑

d

(hb∂d hb)δ
cdδab

]

. (14.136)

Using this in (14.135) we arrive at

Dâ Aĉ = hc

ha

∂

∂xa

(

Aĉ

hc

)

+
∑

b,d

1

hahc

[

(hc∂bhc)δ
c
a + (hc∂ahc)δ

c
b − (hb∂d hb)δ

cdδab

] Ab̂

hb

= 1

ha
∂a Aĉ −

∑

d

δcd 1

hahc
(∂d ha)A

â +
∑

b

1

hahb
(∂bhc)δ

c
a Ab̂.

(14.137)

For the divergence we then need

∇ · B ≡
∑

a

Da Ba =
∑

a

Dâ Bâ

=
∑

a

1

ha
∂a Bâ −

∑

a

1

h2
a
∂aha Bâ +

∑

a,b

1

hahb
∂bha Bb̂

=
∑

a

1

ha
∂a Bâ − 1

h2
1

∂1h1B 1̂ − 1

h2
2

∂2h2B 2̂ − 1

h2
3

∂3h3B 3̂

+
∑

a

[
1

hah1
∂1ha B 1̂ + 1

hah2
∂2ha B 2̂ + 1

hah3
∂3ha B 3̂

]

= 1

h1h2h3

[
∂

∂x1
(h2h3B 1̂)+ ∂

∂x2
(h1h3B 2̂)+ ∂

∂x3
(h1h2B 3̂)

]

,

(14.138)

which is the textbook result.
Similarly, it is straightforward to use (14.135) to show that we have the standard

result for the curl:

∇ × B =
∑

a,b,c

eâ(ε
âb̂ĉ∇b̂ Bĉ)

=
∑

a,b,c

eâω
â
b(ε

bcd∂c Bd) = 1

h1h2h3

∣
∣
∣
∣
∣
∣

h1e1̂ h2e2̂ h3e3̂
∂r ∂θ ∂φ

h1B1̂ h2B2̂ h3B3̂

∣
∣
∣
∣
∣
∣

. (14.139)
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Finally, we need time derivatives

∑

a

ea∂t Ba = ∂t B, (14.140)

and

∑

a

ea(LβBa) =
∑

a,b

ea

(

βb∂b Ba − Bb∂bβ
a
)

= ea

(

βb Db Ba − Bb Dbβ
a
)

= (β · ∇)B − (B · ∇)β,
(14.141)

where
β = −ω

∑

a

δa
φea = −ω

∑

a

δâ
φeâ = −ωnφ. (14.142)

Thus, we see that

∑

a

ea(∂t Ba − LβBa) = ∂t B − (β · ∇)B + (B · ∇)β (14.143)

This is all we need if we want to write various coordinate basis Maxwell equations
in terms of three-vectors. As a start, consider (14.60). It is easy to see that, the scale
factors associated with the spherical coordinates are h1 = eλ, h2 = r and h3 = r sin θ ,
and it follows immediately that

∇ · B = 0. (14.144)

Continuing in the spirit of making the equation look as close to the flat-space case
as possible, we introduce the charge density as σ̂ = J t̂ . Then (14.55) is

∇ · E = 4πσ̂ . (14.145)

The time-dependent equations are a little bit messier, partly because the redshift
factor eν needs to be accounted for (see Thorne and MacDonald 1982 for discussion).
Thus, we can write (14.62) as

∂t B − (β · ∇)B + (B · ∇)β + ∇ × (eνE) = 0. (14.146)

Similarly, once we define
J =

∑

a

J âeâ, (14.147)

Equation (14.57) becomes

∂t E − (β · ∇)E + (E · ∇)β − ∇ × (

eνB
) = −4πeν J . (14.148)

The different relations agree (as they have to) with Eqs. (20)–(23) from Khanna and
Camenzind (1996).
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14.7 A brief status report of magnetic field models

Problems in astrophysics and cosmology involving magnetic fields are of obvious
interest due to the (essentially) direct link to observation. Most objects of interest for
astronomy tend to be endowed with magnetic fields and the large scale fields may have
an impact on cosmology, as well. Quite naturally, this means that the literature on the
subject is vast and varied. We will not be able to give the different issues the attention
they deserve, but it nevertheless makes sense to list some of the main issues that
(may) require fully relativistic description of non-ideal magnetohydrodynamics. Of
most obvious relevance are problems involving not only electromagnetism but the live
spacetime of General Relativity. Key gravitational-wave sources immediately come
to mind, like core-collapse supernovae (Takiwaki and Kotake 2011) and compact
binary mergers (Chawla et al. 2010; Rezzolla et al. 2011; Ruiz et al. 2016, 2019,
2020).Both cases involve stronggravity, a significant thermal component andmagnetic
fields. Going beyond ideal magnetohydrodynamics in these simulations is, however,
challenging both from a technical point of view and in view of the computational cost.
This obviously does not mean that we should set our aim high—indeed, there have
been several efforts in this direction (Watanabe and Yokoyama 2006; Palenzuela et al.
2009; Takamoto and Inoue 2011; Dionysopoulou et al. 2013)—but it is probably fair
to say that this is work in progress. The step to a full plasma description and actual
multi-fluid simulations (Zenitani et al. 2009) is also unlikely to be taken any time soon.

The seemingly more innocuous problem of isolated compact stars also comes with
unresolved issues. These range from the dynamics of the star’s magnetosphere and
the pulsar emission mechanism to the formation and evolution of the star’s interior
magnetic field. In the case of themagnetosphere, themain focus has been on force-free
models (see Pétri 2019 for a connection to the recent literature), but recent arguments
(Li et al. 2012) point to the need to account for resistivity. In the case of the formation
and evolution of a compact star’s global magnetic field, we need a better understanding
of dynamo effects that may come into operation (see Thompson and Duncan 1993 and
also Brandenburg and Subramanian 2005 for a recent review) and we also need to
understand the coupled evolution of the star’s spin, temperature and magnetic field
(Viganò et al. 2013). There are difficult issues to resolve, especially since it is becoming
clear that the typical stationary and axisymmetric magnetic field models one would
intuitively use as a starting point for the discussion tend to be unstable (Lander and
Jones 2012).

In fact, it is clear that we need to develop the theory further. Typical issues that need
to be addressed involve (i) the dynamics of the model, e.g., causality and stability of
wave propagation and relation to issues like pulsar emission or the launch of outflows
and jets, (ii) transitions between spatial regions where different simplifying assump-
tions are valid, such as a region in the magnetosphere where the fluid model applies
and a low density region where the description breaks down and one would have to
fall back on a kinetic theory description (Marklund et al. 2003; Meier 2004; Gedalin
1996), the transition from the magnetosphere to the interior field at the star’s surface
or, indeed, accreting systems where an ion-electron plasma describes the inflowing
matter while regions in the magnetosphere may still be appropriately modelled as
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a pair-plasma, (iii) the role of more complex physics, like the superconductor that is
expected to be present in the star’s core (Glampedakis et al. 2011) or regions where the
assumption that the medium is electromagnetically “passive” does not apply, possibly
in the pasta region near the crust-core transition (Pons et al. 2013).

Another problem of key astrophysical interest concerns the launch of large-scale jet
emission—either associated with core collapse or neutron star mergers—required to
explain observed gamma-ray bursts (Rezzolla et al. 2011). The difficulties here remain
technical and conceptual, with one of the main issues being the need to resolve the
dynamics of the central engine (e.g., associated with the magnetorotational instability;
Balbus and Hawley 1991; Hawley and Balbus 1991; Kiuchi et al. 2018) while at the
same time representing the large scale behaviour of the jet emission. One of the
key challenges involves marrying the nonlinear dynamics of the strong-gravity central
regionwith the evolution in the distant weak field region (where onemay get awaywith
treating spacetime as a fixed background, the typical assumption for jet simulations;
Uzdensky and MacFadyen 2007; Krolik and Hawley 2010; Xie et al. 2018).

15 The problemwith heat

The fact that relativistic fluid dynamics is a mature field of study does not mean
that there are no unresolved issues. In fact, there are quite a few. Some continue to
be in focus and others are swept under the rug (perhaps to be rediscovered, cause
confusion and then duly ignored again...) One of the main issues that continue to
cause concern arises as soon as we consider dissipative systems. It is clear from
the outset that we are facing a difficult problem. For example, the familiar Fourier
theory for heat conduction—which requires the introduction of thermal conductivity
associated with the mobility of entropy carriers—leads to instantaneous propagation
of thermal signals (the heat equation is parabolic). The fact that this non-causality is
built into the description is unattractive already in the context of the classic Navier–
Stokes equations. Intuitively, one would expect heat to propagate at roughly the mean
molecular speed in the system. For a relativistic description non-causal behaviorwould
be totally unacceptable. Any acceptable formulation of the problem must circumvent
this. In principle, we know what we have to do. There is a deep connection between
causality, stability, and hyperbolicity of a dissipative model (Hiscock and Lindblom
1983), sowe need tomake sure that we develop a fully hyperbolic formalism. The issue
has been a main motivating factor behind the development of extended irreversible
thermodynamics (Jou et al. 1993;Müller andRuggeri 1993), amodelwhich introduces
additional dynamical fields in order to retain hyperbolicity and causality.

From a formal point of view the debate has (at least to some extent) been settled
since the late 1970s. The key contribution was the work of Israel and Stewart, who
developed a model analogous to Grad’s 14-moment theory, taking as its starting point
relativistic kinetic theory (Stewart 1977; Israel and Stewart 1979a, b). This so-called
“second order” theory, extends the pioneering “first order” work of Eckart (1940) and
Landau and Lifshitz (1959), has been used in a number of different settings, including
the highly relativistic plasmas generated in colliders like RHIC at Brookhaven and
the LHC at CERN (Elze et al. 2001; Muronga 2004). However, despite the obvious
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successes of the second-order model, there are still dissenting views in the literature,
see for example García-Colín and Sandoval-Villalbazo (2006), García-Perciante et al.
(2009b). Particular objections concern the complexity of the formulation and themany
additional “dissipation coefficients” required to complete it. This is, however, a feature
that is shared by all models within the extended thermodynamics framework (Jou et al.
1993).

The simplest relevant problem involves heat flow, a problemwith several interesting
aspects and which also connects with fundamental physics questions, in particular
in the context of nonlinear phenomena,see for example Morro and Ruggeri (1987),
Ruggeri et al. (1996), Jou et al. (2004), Lebon et al. (2008) and Llebot et al. (1983).
Non-linearities are relevant for the development of both shocks and turbulence in
real physical systems. However, at this point we aim to establish the viability of the
multi-fluids approach to the heat problem. For this purpose, a linear analysis should
be adequate. If we dig deeper we uncover a range of issues, including foundational
problems like the nature of time (read: the role of the second law of thermodynamics)
and the formation of structures at nonlinear deviations from thermal equilibrium.Much
recent work has been motivated by the modelling of complex systems is astrophysics
and cosmology (Maartens 1996). The problemmay date back to the origins of relativity
theory (Landsberg 1967)—is a moving body hot or cold?—but it remains an active
challenge.

15.1 The“standard” approach

In order to illustrate the main principles, let us return to a situation we have considered
several times already. Adding a thermal component to a single matter component, we
envisage two distinct flows. The matter is represented by a flux na which satisfies

∇ana = 0, where na = nua . (15.1)

In the following (in order to be specific) we will work in the frame associated with
the matter flow, ua . Next we add the heat flux qa (which is spatial in the sense that
uaqa = 0) to the perfect fluid stress-energy tensor:

T ab = εuaub + p ⊥ab +2q(aub). (15.2)

Finally, we need to incorporate the second law of thermodynamics. The requirement
that the total entropy must not decrease leads to the entropy flux sa having to be such
that35

∇asa = Γs ≥ 0. (15.3)

35 Here and in the following we assume that the system is closed in the sense that no additional mechanism
leads to energy loss from a fluid element (e.g. radiation), see Carter and Chamel (2005b) for remarks on
this assumption, and that the second law applies locally (on a per fluid element basis).
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Assuming that the entropyflux is a combination of the available fluxes,we have (Eckart
1940) (we will connect this relation with the variational derivation later)

sa = sua + βqa, (15.4)

where β is yet to be specified. It is easy to work out the divergence of this, and we
find (after introducing xs = s/n, as before, and using (15.1))

nua∇a xs + β∇aqa + qa∇aβ = Γs (15.5)

Next, we combine this result with

ua∇bT ab = 0, (15.6)

and the thermodynamical relation36 for an equation of state ε = ε(n, s)

∇aε = μ∇an + T ∇as = p + ε − sT

n
∇an + T ∇as, (15.7)

to show that
TΓs = (βT − 1)∇aqa + qa

(

T ∇aβ − ub∇bua

)

. (15.8)

We want to ensure that the right-hand side of this equation is positive definite (or
indefinite). An easy way to achieve this is to make the identification

β = 1/T , (15.9)

and at the same time insist that the heat flux is such that

qa = −κT ⊥ab
(
1

T
∇bT + uc∇cub

)

, (15.10)

with κ ≥ 0 being the heat conductivity coefficient. This means that

Γs = qaqa

κT
≥ 0, (15.11)

by construction, and the second law of thermodynamics is satisfied.
The energy equation now takes the form

nT
dxs
dτ

+ ∇aqa + qau̇a = 0 (15.12)

where u̇a = ub∇bua is the four acceleration, as before. We also have the momentum
equation

⊥c
b ∇aT ab = 0

36 Note that this assumes thermodynamical equilibrium!
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�⇒ (p + ε)u̇a+ ⊥ab (∇b p + q̇b)+ qb∇bua + qa∇bub = 0. (15.13)

This model seems quite generic. Unfortunately, it has some major problems. While
it is built to pass the key test set by the second law of thermodynamics, it fails at
the next hurdle. A detailed analysis of perturbations away from an equilibrium state
(Hiscock and Lindblom 1985) shows that small perturbations tend to be dominated
by rapidly growing instabilities (we will demonstrate this later), suggesting that the
formulation may be practically useless. From the mathematical point of view it is also
not acceptable since, being non-hyperbolic, it does not admit a well-posed initial-value
problem. We will discuss how we can fix these problems shortly. First we will take a
slight detour towards an application.

15.2 Case study: neutron star cooling

One situation where the model we have derived finds practical use is in the description
of the thermal evolution of a maturing neutron star. This is (obviously) an interesting
problem in itself, and from the present perspective it isworth clarifying the assumptions
that lead to the equations commonly used in cooling simulations. The typical starting
points tends to be the assumption that the configuration can be taken to be static,
essentially meaning that we ignore the impact of the thermal pressure on the matter
and the spacetime. Taking the spacetime to be spherically symmetric and static, we
have the usual line element

ds2 = −e2νdt2 + e2λdr2 + r2dθ2 + r2 sin2 θdϕ2, (15.14)

where ν and λ are functions of r , while the matter four velocity is take to be

ua = [

e−ν, 0, 0, 0
]

. (15.15)

It is important to understand that this does not mean that u̇a = 0. We still get a
contribution from the spacetime curvature. Ignoring the heat flux terms in (15.13) we
have (with primes denoting radial derivatives)

(p + ε)u̇a+ ⊥ab ∇b p = 0 �⇒ p′ = −(p + ε)ν′ (15.16)

It is worth taking a closer look at this (well-known) equation. Consider the case of a
single fluid, for which we have (see Sect. 5.2, noting that we assume the impact of the
thermal pressure on the matter configuration can be neglected)

p + ε = nμ, and ∇a p = n∇aμ (15.17)

and it follows that (15.16) simply represents the fact energies are affected by the
gravitational redshift:

d

dr

(

μeν
) = 0. (15.18)
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In the situations where qa �= 0, we are obviously ignoring the impact of the heat
flux on the overall energy and the spacetime curvature. This is likely to be a good
approximation in most situations of interest.

Moving on to the equations that govern the thermal component, we first of all find
that the radial component of (15.10) becomes

qr = −κe−2λ (T ′ + T ν′) = −κe−2λ−ν∂r
(

T eν
) = −κe−2λ−ν∂r

(

T ∞) (15.19)

where we have defined the temperature measured by an observer at infinity, T ∞.
Finally, we need (15.12). As we want to work with the temperature rather than the
entropy, we use

dε = μdn + T ds =
(
∂ε

∂n

)

T
dn +

(
∂ε

∂T

)

n
dT . (15.20)

We also note that, for a static configuration ∇aua = 0 so (15.1) means that

dn

dτ
= 0, (15.21)

and we have
ds

dτ
= 1

T

(
∂ε

∂T

)

n

dT

dτ
. (15.22)

That is, we can write (15.12) as

(
∂ε

∂T

)

n

dT

dτ
+ ∇aqa + qbu̇b = 0, (15.23)

which (if we assume that the heat flux is radial) becomes

(
∂ε

∂T

)

n
e−ν∂t T + 1

r2
e−(2λ+ν)∂r

[

r2e(λ+ν)qr
]

+ ν′qr = 0. (15.24)

In principle we now have the equations we need. We only need to massage them into
a more intuitive form. The first step involves introducing the flux through a spherical
surface with radius r :

L

4πr2
= eλqr = qr̂ , (15.25)

(based on using a tetrad description, see Sect. 14.6). This means that (15.19) becomes

L

4πκr2
= −e−(λ+ν)∂r

(

T eν
)

, (15.26)

while (15.24) can be written

Cve
−ν∂t T + 1

4πr2
e−λ−2ν∂r

(

e2νL
)

= 0, (15.27)
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where we have identified the heat capacity at fixed volume

Cv =
(
∂ε

∂T

)

n
. (15.28)

Once we introduce the energy loss due to (say) the emission of neutrinos, we arrive at
the equations discussed in the classic review by Yakovlev and Pethick (2004), which
in turn originate from the classic work of Thorne (1977).

15.3 Themulti-fluid view

Let us now consider thermal dynamics from a multi-fluid perspective, with the view
of comparing to the standard derivation. In order to do this we assume that the entropy
component can be treated as a “fluid” (analogous to the thermal excitations of a
superfluid system, see Sect. 13). In essence, this implies that the mean free path of
the phonons is taken to be small compared to the model scale. We then consider two
fluxes, one corresponding to the matter flow and one associated with the entropy. The
latter is treated asmassless (zero rest-mass). The dynamics then follows from the usual
two-fluid Lagrangian, which also depends on the relative flow of the two fluxes. As
we will see, the entropy entrainment turns out to be a crucial feature of the model
(Andersson and Comer 2010; Lopez-Monsalvo and Andersson 2011).

As in the case of a general two-fluid system, the starting point is the definition of
a relativistic invariant Lagrangian Λ. Assuming that the system is isotropic, we take
Λ to be a function of the different scalars that can be formed by the two fluxes. From
the matter current na and the entropy flux sa we can form three scalars (tweaking the
multifluid notation to stay close to the previous derivation);

n2 = −nana, s2 = −sasa, j2 = −nasa . (15.29)

An unconstrained variation of Λ then leads to

δΛ = ∂Λ

∂n
δn + ∂Λ

∂s
δs + ∂Λ

∂ j
δ j . (15.30)

Replacing the passive density variations with dynamical variations of the worldlines
(as in Sect. 6) we find that

δΛ =
[

−2
∂Λ

∂n2 na − ∂Λ

∂ j2
sa

]

δna +
[

−2
∂Λ

∂s2
sa − ∂Λ

∂ j2
na

]

δsa

+
[

− ∂Λ
∂n2 nanb − ∂Λ

∂s2
sasb − ∂Λ

∂ j2
nasb

]

δgab. (15.31)

From this we can read off the conjugate momentum associated with each of the fluxes;

μa = ∂Λ

∂na
= gab(Bnnb + Anss

b), θa = ∂Λ

∂sa
= gab(Bssb + Ansn

b), (15.32)
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where

Bn ≡ −2
∂Λ

∂n2 , Bs ≡ −2
∂Λ

∂s2
, Ans ≡ − ∂Λ

∂ j2
. (15.33)

As usual, the stress-energy tensor is obtained by noting that the displacements of
the conserved currents induce a variation in the spacetime metric. In this case, we
arrive at

T b
a = μanb + θasb + Ψ δ b

a , (15.34)

where we have defined the generalized pressure, Ψ , as

Ψ = Λ− μana − θasa . (15.35)

These results are completely analogous to the two-fluid model from Sect. 9.
As the divergence of the stress-energy tensor (15.34) vanishes, we can express the

equations of motion as a force balance

∇bT b
a = f na + f sa = 0, (15.36)

where the individual force densities are

f na = 2nb∇[bμa] + μa∇bnb, (15.37)

f sa = 2sb∇[bθa] + θa∇bsb. (15.38)

Note that, in order to obtain the stress-energy tensor (15.34), as in Sect. 4, we needed
to impose the conservation of the fluxes as constraints on the variation. However, the
equations of motion, (15.37) and (15.38), still allow for non-vanishing production
terms. If we, for simplicity, consider a single particle species, the matter current is
conserved (there can be no particle reactions) and we have ∇ana = 0. This removes
the second term from the right-hand side of (15.37). In contrast, the entropy flux is
generally not conserved, but in accordance with the second law we must have

∇asa = Γs ≥ 0. (15.39)

So far, the model is fairly general. To progress, we need to connect with thermo-
dynamics. In doing this it makes sense to consider a specific choice of frame. In the
context of a single (conserved) species of matter, we see that the force f na is orthogonal
to the matter flux, na , and therefore it has only three degrees of freedom. Furthermore,
because of the force balance (15.36), we also have na f sa = 0. This suggests that it is
natural to focus on observers associated with the matter frame. We therefore introduce
the four-velocity ua such that na = nua , where uaua = −1 and n is the number
density measured in this frame. This is, of course, the same frame as in Sect. 6.

Having chosen to work in the matter frame, we can decompose the entropy current
and its conjugate momentum into parallel and orthogonal components. The entropy
flux is then expressed as

sa = s∗(ua + wa), (15.40)
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wherewa is the relative velocity between the two fluid frames, and uawa = 0. Letting
sa = sua

s where ua
s is the four-velocity associated with the entropy flux, we see that

s∗ = sγ where γ is the redshift associatedwith the relativemotion of the two frames.37

Similarly, we can write the thermal momentum as

θa = (Bss∗ + Ansn
)

ua + Bss∗wa . (15.41)

This leads to a measure of the temperature measured in the matter frame:

− uaθa = θ∗ = Bss∗ + Ansn. (15.42)

In essence, this quantity represents the effective mass of the entropy component.
Returning to the stress-energy tensor, and making use of the projection orthogonal to
the matter flux, we find that the heat flux (energy flow relative to the matter) is given
by

qa = − ⊥ab ucT bc = s∗θ∗wa . (15.43)

Defining the newvariablesσ a = s∗wa and pa = Bss∗wa , the energydensitymeasured
in the matter frame can be obtained by a Legendre transform on the Lagrangian. We
have

ε∗ = uaubT ab = −Λ+ paσ
a . (15.44)

The relevance of the new variables becomes apparent if we consider the fact that
the dynamical temperature in (15.42) agrees with the thermodynamical temperature
that an observer moving with the matter would measure. In other words, we have

θ∗ = ∂ε∗

∂s∗

∣
∣
∣
∣
n,p
, (15.45)

where ε∗ = ε∗(n, s∗, p). This is the standard definition of temperature as the energy
per degree of freedom of the system. Formally, the temperature is obtained from the
variation of the energy with respect to the entropy in the observer’s frame (keeping
the other thermodynamic variables fixed).

This result is not trivial. The requirement that the two temperature measures agree
determines the additional state parameter, p, to be held constant in the variation of ε∗.
The importance of the chosen state variables is emphasized further if we note that,
when the system is out of equilibrium, the energy depends on the heat flux (encoded
in σ a and pa). This leads to an extended Gibbs relation (similar to that postulated in
many approaches to extended thermodynamics; Jou et al. 1993);

dε∗ = μdn + θ∗ds∗ + σdp. (15.46)

This result arises naturally from the variational analysis. It is derived rather than
assumed.

37 In the following, we will use an asterisk to denote matter frame quantities.
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Traditionally, thermodynamic properties like pressure and temperature are uniquely
defined only in equilibrium. Intuitively this makes sense since—in order to carry out
a measurement—the measuring device must have time to reach “equilibrium” with
the system. A measurement is only meaningful as long as the timescale required to
obtain a result is shorter than the evolution time for the system. However, this does not
prevent a generalization of the various thermodynamic concepts (as described above).
The procedure may not be “unique”, but one must at least require the generalized
concepts to be internally consistent.

The variational model encodes the finite propagation speed for heat, as required
by causality. To demonstrate this, we may use the orthogonality of the entropy force
density f a

s with the matter flux, solve for the entropy production rate Γs and then
impose the second law of thermodynamics. It is natural to express the result in terms
of the heat flux qa , now given by

sa = s∗ua + 1

θ∗ qa . (15.47)

Meanwhile, the conjugate momentum takes the form

θa = θ∗ua + βqa, (15.48)

where

β = 1

s∗ − Ansn

s∗θ∗ . (15.49)

With these definitions, we impose the second law of thermodynamics by demanding
that the entropy production is a quadratic in the sources, i.e.,

Γs = q2

κθ2∗
≥ 0, (15.50)

where κ > 0 is the thermal conductivity. This means that the heat flux is governed by

τ
(

q̇a + qc∇auc)+ qa = −κ̃ ⊥ab (∇bθ
∗ + θ∗u̇b

)

, (15.51)

where q̇a = ub∇bqa and u̇a is the four-acceleration (as before) and we have also
introduced

κ̃ ≡ κ

1 + κβ̇ , (15.52)

while the thermal relaxation time is given by

τ = κβ

1 + κβ̇ . (15.53)

The final result (15.51) is the relativistic version of the so-called Cattaneo equation
(Cattaneo 1948; Andersson and Comer 2010; Lopez-Monsalvo and Andersson 2011).
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It resolves the issue of the instantaneous propagation of heat, see Jou and Casas-
Vazquez (1988) for a brief discussion. We also learn that the entropy entrainment,
encoded in Ans, plays a key role in determining the thermal relaxation time τ . This
agrees with the implications of extended thermodynamics, as well as related results in
the context of Newtonian gravity (Andersson and Comer 2010). Finally, as described
by Jou et al. (1993), the Cattaneo equation inspired the development of the more
general extended irreversible thermodynamics framework.

The heat problem (obviously) has two dynamical degrees of freedom, leading to
the presence of a second sound in solids, an effect that has been observed in laboratory
experiments on dielectric crystals (Ruggeri et al. 1996). So far, we focussed on the
heat. In addition, we have a momentum equation for the matter component. From
(15.37) it follows that this equation can be written

μu̇a+ ⊥b
a ∇bμ+ αq̇a + α̇qa + αqb∇aub = 1

n
f na . (15.54)

Here we have represented the matter momentum by

μa = μua + αqa, (15.55)

where μ is the chemical potential (in the matter frame) and

α = Ans

θ∗ . (15.56)

That is, we have

α = 1 − βs∗

n
. (15.57)

Given these definitions, we have

− f na = f sa = − 1

κ̃

(

s∗ − βq2

θ2∗

)

qa . (15.58)

It is useful to note that this implies that the force has a term that is linear in qa . We
will explore this fact in the following.

Aiming to develop a simple model for heat conduction, Carter (1988) sug-
gested an “off the peg” model , similar to the model we have described, but
with the entrainment between particles and entropy set to zero. However,
as Olson and Hiscock (1990) have shown, this has disastrous consequences.
The model violates causality in two simple model settings. As discussed by
Priou (1991) and Carter and Khalatnikov (1992), this emphasizes the impor-
tance of the entrainment for this problem. The problem is that, ignoring the
entropy entrainment leaves us with no freedom to adjust the thermal relaxation
timescale. Retaining this flexibility is important.
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The two-fluid results can be directly compared to the “phonon hydrodynamics”
model developed by Guyer and Krumhansl (1966) (see Llebot et al. 1983; Cimmelli
2007 for alternatives). This may be the most celebrated attempt to account for non-
local heat conduction effects, accounting for the interaction of phononswith each other
and the conducting lattice. The usefulness of this result is due to the fact that it can be
used both in the collision dominated and the ballistic phonon regime. In the former,
the resistivity dominates, the nonlocal terms can be neglected and heat propagates as
waves. In the opposite regime, the momentum conserving interactions are dominant
and we can neglect the thermal relaxation. In this regime, heat propagates by diffusion.
The transition between these two extremes has recently been discussed by Vázquez
and Márkus (2009).

Interestingly, the non-local heat conduction model may also be useful for nano-size
systems. If a system has characteristic size smaller than the relevant mean-free path
then one would not necessarily expect a fluid model to apply. Nevertheless, Alvarez
et al. (2009) have argued that the expected behaviour of the thermal conductivity as the
size of the system decreases (as discussed byAlvarez and Jou 2007) can be reproduced
provided that an appropriate slip condition for qa is applied at the boundaries. This is
an interesting problem that deserves further study.

Finally, it is worth commenting on dissenting perspectives. The main issue appears
to stem from the presence of the term involving the four-acceleration on the right-
hand side of (15.51). We have already seen that this term encodes the impact of the
gravitational redshift on the temperature, which obviously has no counterpart in the
Newtonian problem. Dynamically, the effect results from the fact that the infinitesi-
mal 3-spaces orthogonal to the matter world lines are not parallel, but “tipped over”
because of the curvature of the world line. This leads to the interpretation of the
four-acceleration contribution in terms of the effective inertia of heat (Ehlers 1973).
This seems quite intuitive, but it has nevertheless been suggested (García-Colín and
Sandoval-Villalbazo 2006;García-Perciante et al. 2009b; Tsumura andKunihiro 2008;
Sandoval-Villalbazo et al. 2009) that this term causes instabilites and it should not be
included. As this seems somewhat inconsistent, we will not analyse this suggestion in
detail.

15.4 A linear model and the second sound

Thevariationalmodel contains terms that enter as secondorder deviations from thermal
equilibrium, e.g., pieces that are second order in the heat flux, qa . In fact, it is clear
that key effects (like the entropy entrainment) arise from the presence of such terms in
the Lagrangian. Having said that, once we have written down the general model, we
can opt to truncate the results at first order. Crucially, this does not take us back to the
original first-order model. The thermal relaxation remains, reflecting the simple fact
that you need to know the energy of a system to quadratic order in order to develop
the complete linear equations of motion. Noting this, it is interesting to consider the
features of this new first-order model. After all, this, much simpler, description may
be adequate in many relevant situations.
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We want to restrict our analysis to first order deviations from equilibrium. Thermal
equilibrium corresponds to qa = 0, no heat flux, and u̇a = 0, nomatter acceleration (in
essence, we are analyzing the problem at the local level, ignoring gravity). Moreover,
in the simplest cases there should be no shear, divergence or vorticity associated with
the flow, i.e., we have ∇aua = 0 and ∇bua = 0 as well. Treating all these quantities
as first order, and noting that

ubq̇b = −qbu̇b, (15.59)

also contributes at second order, we arrive at two momentum equations; from (15.54)
we have

μu̇a+ ⊥b
a ∇bμ+ αq̇a +

(

α̇ − s

nκ̃

)

qa = 0, (15.60)

while (15.51) leads to

τ q̇a + qa + κ̃
(

⊥b
a ∇bT + T u̇a

)

= 0. (15.61)

We also have the two conservation laws

∇ana = 0, (15.62)

∇asa = 0, (15.63)

noting that Γs is second order (by construction). In these equations we have used the
fact that s∗ and θ∗ differ from the equilibrium values s and T only at second order. To
first order, the pressure p is obtained from the standard equilibrium Gibbs relation

∇a p = n∇aμ+ s∇aT . (15.64)

Finally, we have the fundamental relation

ε + p = μn + sT . (15.65)

By comparing (15.60) and (15.61) to the Eckart frame results it becomes apparent to
what extent the first-order model relies on its higher order origins. Specifically, α and
(therefore) τ depend on Ans and the entropy entrainment, c.f., (15.56). These effects
rely on quadratic terms in the Lagrangian, and hence would not be present in a model
that includes only first order terms from the start.

In order to analyze the dynamics of the heat problem, we consider perturbations
(represented by δ) away from a uniform equilibrium state. First of all, recall that we
have qa = u̇a = 0 for a system in equilibrium. We can also ignore α̇ and β̇, since the
equilibrium configuration is uniform, which means that we can replace κ̃ by κ . This
means that we are left with two equations;

μδu̇a+ ⊥b
a ∇bδμ+ αδq̇a − s

nκ
δqa = 0, (15.66)

and
τδq̇a + δqa + κ ⊥b

a ∇bδT + κT δu̇a = 0, (15.67)
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We can combine these to get

(p + ε) δu̇a+ ⊥b
a ∇bδ p + δq̇a = 0. (15.68)

The last two equations [(15.67) and (15.68)] are, not surprisingly, identical to the first-
order reduction of the Israel-Stewart model (see Sect. 16), so the problem is relatively
well explored. In particular, the conditions required for stability and causality were
derived by Hiscock and Lindblom (1983, 1987), see also Olson and Hiscock (1990).

Working in the frame associated with the background flow, we note that (15.66)
and (15.67) only have spatial components. That is, we may erect a local Cartesian
coordinate system associated with the matter frame and simply replace a → i where
i = 1, 2, 3. Then taking the curl (ε jki∇k) of the equations in the usual way, we arrive
at

m�U̇
i − 1

τ
Q̇i = 0, (15.69)

and
m� Q̇i + (p + ε)Qi = 0, (15.70)

where we have defined

Ui = εi jk∇ jδuk, and Qi = εi jk∇ jδqk, (15.71)

and

m� = n

(

μ− ακT

τ

)

= p + ε − κT

τ
. (15.72)

Assuming that the perturbations depend on time as eiωt , where t is the time-
coordinate associated with the matter frame, we arrive at the dispersion relation for
transverse perturbations;

iω [(p + ε)(1 + iωτ)− iωκT ] = 0. (15.73)

Obviously ω = 0 is a solution. The second root is

ω = i(p + ε)
m�τ

. (15.74)

This result shows that the thermal relaxation time τ is essential in order for the system
to be stable. We need m� > 0, i.e., the relaxation time must be such that

τ >
κT

p + ε . (15.75)

The analysis demonstrateswhy the Eckartmodel (forwhich τ = 0) is inherently unsta-
ble. Moreover, the constraint on the relaxation time agrees with one of the conditions
obtained by Olson and Hiscock (1990) (cf. their Eq. (41)), representing the inviscid
limit of the exhaustive analysis of the Israel–Stewart model of Hiscock and Lindblom
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(1983). We also note that the condition given in Eq. (43) of Olson and Hiscock (1990)
simply leads to the weaker requirement τ ≥ 0.

The problem of transverse oscillations is fairly simple since there are no corre-
sponding restoring forces in a pure fluid problem (these requires rotation, elasticity,
the presence of amagnetic field etcetera). The physical origin of the instability becomes
clear once we note that m∗ plays the role of an “effective” inertial mass (density). The
importance of this quantity has been discussed in work by Herrera et al. (1997, 2002)
and Herrera and Santos (1997), especially in the context of gravitational collapse.
Basically, the instability of the Eckart formulation is due to the inertial mass of the
fluid becoming negative. Once this happens the pressure gradient no longer provides
a restoring force, rather it tends to push the system further away from equilibrium.
This is a run-away process, associated with exponential growth of perturbations. Ulti-
mately, the instability is due to the inertia of heat; an unavoidable consequence of
the equivalence principle (heat carries energy, which means that it can be associated
with an effective mass; Tolman 1987). The condition (15.75) may seem rather extreme
(Hiscock and Lindblom 1987 quote a timescale of 10−35 s for water at 300K), but
it sets a sharp lower limit for the thermal relaxation in physical systems. A system
with faster thermal relaxation can not settle down to equilibrium. However, it may still
be reasonable to ask if a system may evolve in such a way that it enters the unstable
regime (in the way discussed by Herrera et al. 1997; Herrera and Santos 1997).

When we turn to the longitudinal case the situation changes. In a perfect fluid
longitudinal perturbations propagate as sound waves, and when we add complexity
to the model the dispersion relation soon gets complicated. The problem has been
discussed in detail byLopez-Monsalvo andAndersson (2011), sowewillmove straight
to the results. The dispersion relation for the phase velocity, σ = ω/k, is

m�τσ
4 − i(p + ε)

k
σ(σ 2 − C2

s )−
[

(p + ε)
(
κ

ncv
+ C2

s τ

)

− 2κTαs

]

σ 2

+ κ
[

p + ε
n

C2
s

cv
− Tα2s

]

= 0, (15.76)

where have introduced (i) the sound speed

C2
s =

(
∂ p

∂ε

)

s̄
= n

p + ε
(
∂ p

∂n

)

s̄
, (15.77)

(ii) the specific heat at fixed volume

cv = Cv
n

= T

(
∂ s̄

∂T

)

n
= 1

n

(
∂ε

∂T

)

n
, (15.78)

and (iii)

αs = n

T

(
∂T

∂n

)

s̄
= T

n

(
∂ p

∂ s̄

)

n
= T

(
∂ p

∂s

)

n
. (15.79)
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For future reference, it is also useful to note the identity [cf. Eq. (96) in Hiscock and
Lindblom (1983)]

1

cv
− 1

cp
= n3

T (p + ε)C2
s

(
∂T

∂n

)2

s̄
= nT

(p + ε)C2
s
α2s , (15.80)

where cp is the specific heat at fixed pressure.
The dispersion relation (15.76) is too complicated for us to be able to make definite

statements about the solutions, but we can simplify the analysis by considering the
long- and short-wavelength limits. The results we obtain in these limits illustrate the
key features. At the same time, we should keep in mind that both cases are somewhat
“artificial”. First of all, fluid dynamics is, fundamentally, an effective long-wavelength
theory in the sense that it arises from an averaging over a large number of individual
particles (constituting each fluid element). In effect, themodel only applies to phenom-
ena on scales much larger than (say) the interparticle distance. However, the infinite
wavelength limit represents a uniform system, which is artificial since real physical
systems tend to be finite.Moreover, as wewill not account explicitly for gravity we can
only consider scales on which spacetime can be considered flat. While the plane-wave
analysis holds on arbitrary scales in special relativity, a curved spacetime introduces a
cut-off lengthscale beyond which the analysis is not valid (roughly, the size of a local
inertial frame).

Let us first consider the long wavelength, k → 0, problem. This represents the true
hydrodynamic limit, and it easy to see that there are two sound-wave solutions and
two modes that are predominantly diffusive. The sound-wave solutions take the form

σ ≈ ±Cs

[

1 ± i
κT

2(p + ε)C3
s
(C2

s − αs)
2k

]

. (15.81)

These solutions are clearly stable, since Im σ > 0. Using the Maxwell relations listed
by Hiscock and Lindblom (1983), we can show that this results agrees with Eq. (40)
from Hiscock and Lindblom (1987). Moreover, our result simplifies to [using (15.80)]

Im σ ≈ κ

2n

(
1

cv
− 1

cp

)

, (15.82)

in the limit where |αs | � C2
s , which is relevant since C2

s ∼ p/ρ becomes small in
the non-relativistic limit. Indeed, we find that (15.82) agrees with the standard result
for sound absorption in a heat-conducting medium (Mountain 1966).

In addition to the sound waves, we have a slowly damped solution

σ ≈ iκ

[
1

ncv
− Tα2s
(p + ε)C2

s

]

= iκ

ncp
. (15.83)
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This is the classic result for thermal diffusion. Finally, the system has a fast decaying
solution;

σ ≈ i(p + ε)
m�kτ

. (15.84)

Under most circumstances, this root decays too fast to be observable, so the model
reproduces that standard “Rayleigh–Brillouin spectrum” with two sound peaks sym-
metrically placed with respect to the broad diffusion peak at zero frequency (Mountain
1966; Garcia-Perciante et al. 2009a)

The short wavelength limit probes different aspects of the problem. Letting k → ∞
we see that (15.76) reduces to a quadratic for σ 2. We have

Aσ 4 − Bσ 2 + C = 0, (15.85)

with
A = m�τ > 0, (15.86)

(as required for stability)

B = (p + ε)
(
κ

ncv
+ C2

s τ

)

− 2κTαs, (15.87)

and

C = κ
(

p + ε
n

C2
s

cv
− Tα2s

)

= κ p + ε
n

C2
s

cp
> 0. (15.88)

This allows us to write down the solutions in closed form and it is relatively straight-
forward to establish the conditions required for the stability of the system in this limit.
The analysis is a bit messy but at the same time instructive as it demonstrates how
the physics impacts on the mathematics. Moreover, the discussion allows us to make
direct contact with many previous efforts to understand the problem.

In essence, we arrive at two conditions. First of all, σ 2 is real and positive as long
as B2 − 4AC > 0, which leads to

(

C2
s τ − κ

ncv
− 2κTαs

p + ε
)2

+ 4κTα2s
p + ε

(

τ − κT

p + ε
)

+ 4κ2T

(p + ε)ncv

(

C2
s − 2αs

)

> 0. (15.89)

The first two terms are positive, as long as (15.75) is satisfied. Hence, the condition is
guaranteed to be satisfied as long as C2

s > 2αs . In situations where this condition is
not satisfied, (15.89) provides a (complicated) constraint on the relaxation time. We
must also have B > 0, which leads to

τ >
κ

C2
s

[
2T

p + εαs − 1

ncv

]

. (15.90)
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This condition is identical to that given in Eq. (146) of Hiscock and Lindblom (1983)
(obtained in the limit where αi → 0 and 1/β0 and 1/β2 both also vanish, cf. Herrera
2006; Maartens 1996).

Let us move on to finite wavelengths. Letting σ = σ± + σ1/k, where σ± solve
(15.85), and linearising in 1/k, we find that

σ1 = i(p + ε)
2

(

σ 2± − C2
s

2Aσ 2± − B

)

. (15.91)

Since all quantities in this expression are already constrained to be real, we need
Im σ1 ≥ 0 (for real k) in order for the system to be stable. From (15.85) we then have
that

2Aσ 2± − B = ±
∣
∣
∣B2 − 4AC

∣
∣
∣

1/2
, (15.92)

which leads to the condition
σ 2− ≤ C2

s ≤ σ 2+. (15.93)

This is notably consistent with the notion that “mode-mergers” signal the onset of
instability, see Sect. 7.4.

As the waves in the system must remain causal, we must also insist that σ 2 < 1.
To ensure that this is the case, we adapt the strategy used by Hiscock and Lindblom
(1983). As (15.85) is a quadratic for σ 2 we can ensure that the roots are confined to the
interval 0 < σ 2 < 1 (noting first of all that the roots are real since (15.89) is satisfied).
Given that B and C are both positive, the roots must be such that σ 2 > 0. Meanwhile,
we can constrain the roots to σ 2 < 1 by insisting that

A − B + C > 0, (15.94)

and
A − 2B > 0. (15.95)

Combining these inequalities with the positive discriminant, we can show that A >
B/2 > C . The first of the two conditions can be written

(1 − C2
s )

[

τ − κ

ncv

]

>
κT (1 − αs)

2

p + ε > 0. (15.96)

Next, when combined with causality the condition (15.93) requires thatC2
s ≤ σ 2+ < 1.

In other words, we must have C2
s < 1, which means that (15.96) implies that

τ >
κ

ncv
. (15.97)

Comparing to the results of Hiscock and Lindblom (1983), we recognize (15.96) as
their Ω3 > 0 condition (it is also Eq. (4) of Herrera and Santos 1997), while (15.97)
corresponds to Ω6 > 0.
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Meanwhile, the condition (15.95) can be written

(2 − C2
s )τ >

κ

ncv
+ 2κT

p + ε (1 − αs), (15.98)

corresponding to eq. (148) of Hiscock and Lindblom. Finally, A > C leads to

τ >
κT

p + ε + κC2
s

ncp
. (15.99)

This corresponds to Eq. (3) inHerrera and Santos (1997), which derives fromEq. (147)
of Hiscock and Lindblom (1983). This completes the analysis of the stability and
causality of the system.We have arrived at a set of conditions on the thermal relaxation
time (and related them to the relevant literature). As long as these conditions are
satisfied, the solutions to the problem should be well behaved.

To complete the analysis, let us briefly consider the nature of the solutions. Since
the phase velocity σ is obtained from a quartic, we know that the problem has two
(wave) degrees of freedom. This accords with the experience from superfluid systems
and experimental evidence for heat propagating as waves in low temperature solids.
One of the solutions should be associated with the usual “acoustic” sound while the
second degree of freedom will lead to a “second sound” for heat. It is instructive to
demonstrate how these features emerge within our model.

In order to explore the issue, it is natural to consider the large relaxation time limit.
Taking the relaxation time τ to be long, the solutions to (15.85) take the form (up to,
and including, order 1/τ terms)

σ 2+ ≈ C2
s

[

1 + κT

(p + ε)τ
(

1 + α2s

C4
s

)]

, (15.100)

which could be rewritten using (15.80), and

σ 2− ≈ κ

nτcp
. (15.101)

The first of these solutions clearly represents the usual sound, while the other solution
provides the second sound. In the latter case, the deduced speed is exactly what one
would expect (Jou et al. 1993). It is easy to see that the first root will satisfy (15.93),
and the associated roots will be unstable in the long relaxation time limit. Moreover,
the second solution leads to stable roots as long as

τ ≥ κ

ncpC2
s
. (15.102)

Basically, thefinitewavelength condition implies that the second soundmust propagate
slower than the first sound. This is, indeed, what is measured in physical systems (like
superfluid Helium). Moreover, it is easy to see that this condition must be satisfied in
order for the long relaxation time approximation to be valid. The general behaviour
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Fig. 16 An illustration of the qualitative nature of the behaviour of heat conducting degenerate matter, based
on the first-order relativistic model. The parameters have been chosen in such a way that the speed of sound
is 10% of the speed of light, while the second sound (at short wavelengths, large k) propagate at 1/

√
3 of

this. The phase velocity of the waves is σ = Re ω/k (left panel).The thermal relaxation time τ has been
chosen such that the critical wavenumber at which the second sound emerges is k = 10. At lengthscales
larger than this, the corresponding roots are diffusive (have purely imaginary frequency), and in the very
long wavelength limit (k → 0) we retain the expected thermal diffusion. The damping time follows from
1/Im ω (right panel).We also indicate the noncausal region (grey area). The illustrated example is clearly
both stable and causal. Image reproduced with permission from Andersson and Lopez-Monsalvo (2011),
copyright by IOP

is illustrated in Fig. 16, which relates to degenerate matter. We see that the ordinary
sound exists at all wavelengths. Meanwhile, at short long wavelengths (small k) the
remaining two roots are exponentially damped, i.e. diffusive in character. One root
has a relatively slow decay, corresponding to the expected thermal diffusion, while the
other root decays so rapidly that it is unlikely to be observable by experiment. Below
a critical lengthscale (corresponding to k = 10 in Fig. 16) the second sound emerges
as a result of the finite thermal relaxation time τ . For very short lengthscales, heat
signals will propagate as waves. However, as is evident, these solutions are always
damped. In order to “propagate”, the real part of the wave frequency must exceed the
imaginary part (so that several cycles are executed before the motion is damped out).
This conclusion is interesting if we consider systems that become superfluid. Suppose
we consider a system which starts out in the diffusive regime (e.g., helium above
the superfluid transition temperature). When the system is cooled down through the
relevant transition temperature, (non-momentum conserving) particle collisions are
suppressed. In effect, the critical value of k decreases and the system may enter the
regime where the second sound can propagate on macroscopic scales. The second
sound emerges in a natural way.

16 Modelling dissipation

Although the inviscid model provides a natural starting point for any investigation
of the dynamics of a fluid system, the effects of dissipation are often essential for
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the construction of a realistic model. Consider, for example, the case of neutron star
oscillations and possible instabilities. While it is interesting from the conceptual point
of view to establish that an instability (such as the gravitational-wave driven instability
of the fundamental f-mode or the inertial r-mode discussed in Sect. 7.4) may be present
in an ideal fluid, it is crucial to establish that the instability is able to grow on a
reasonably short timescale. To establish this, one must consider the most important
damping mechanisms and work out whether or not they will suppress the instability.
A discussion of these issues in the context of the r-mode instability can be found in
Andersson (2003) and chapter 15 of Andersson (2019).

As we have already seen for the particular case of heat flow, dissipation in a rela-
tivistic system raises difficult issues. According to the established consensus view, one
must account for second-order deviations from thermal equilibrium in order to guar-
antee causality and stability. This is certainly the lesson from the celebrated work of
Israel and Stewart (1979a, b), see Denicol et al. (2010) and Betz et al. (2011, 2009) for
more recent work on the problem. We have already introduced the main points in the
context of heat conduction, taking a multi-fluid prescription based on the variational
formulation as our starting point. This approach has the flexibility required to account
for the physics that we need to consider. A particularly appealing feature of the vari-
ational approach is that, once an “equation of state” for matter is provided, the theory
provides the relation between the various currents and their conjugate momenta. As
we have seen, this leads to a model which has the key elements required for causality
and stability, and clarifies the role of the inertia of heat (e.g., the effective mass asso-
ciated with phonons). Moreover, as demonstrated by Priou (1991) some time ago, the
variational model is formally equivalent to the Israel–Stewart construction. At the end
of the day, the theoretical framework becomes rather intuitive and the physics involved
seems natural.

Does this mean that no issues remain in this problem area? Not really. First of all,
it is clear that the need to introduce additional parameters (e.g., the relevant relax-
ation times) and keep track of higher order terms (fluxes of fluxes and so on) make
applications complex. Secondly, we are not much closer to considering systems that
deviate significantly from equilibrium, for which there is no natural “small” parameter
to expand in. The variational model sheds some light on this regime by clarifying the
role of the temperature in systems out of equilibrium, but there is some way to go
before we understand issues associated with, for example, any “principle of extremal
entropy production” and instabilities that lead to structure formation. Finally, despite
the successes of the extended thermodynamics framework (Jou et al. 1993), there
is no universal agreement concerning the validity (and usefulness) of the results. To
some extent this is natural given the interdisciplinary nature of the problem. To make
progress we need to account for both thermodynamical principles and fundamental
General Relativity. This leads to questions concerning, in particular, the meaning of
the variables involved in the different models (e.g., the entropy). The ultimate theory
(if we imagine such a thing) should provide a clear link to statistical physics and even
information theory. Our efforts are not yet at that level.

In the following we will summarize the current thinking by describing the main
models from the literature. We first consider the classic work of Eckart (1940) and
Landau andLifshitz (1959), which follow as a seemingly natural extension of the invis-
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cid equations. However, a detailed analysis of Hiscock and Lindblom (1985, 1987)
has demonstrated that these descriptions have serious flaws and must be considered
unsuitable for practical use. Still, it is relatively “easy” to extend them in the way
proposed by Israel (1976), Stewart (1977) and Israel and Stewart (1979a, b). Their
description, the derivation of which was inspired by early work of Grad (1949) and
Müller (1967) and which results from relativistic kinetic theory, provides a framework
that is generally accepted as meeting the criteria for a relativistic model (Hiscock and
Lindblom 1983). Next, we describe Carter’s more complete approach to the prob-
lem, which makes elegant use of the variational argument. The construction is also
more general than that of, for example, Israel and Stewart. In particular, it shows how
one would account for several dynamically independent interpenetrating fluid species.
This extension is important for, for example, the consideration of relativistic super-
fluid systems. Finally, we connect with efforts motivated by string theory and consider
recent progress on the development of an action principle for dissipative system, an
approach that makes explicit use of the relevant matter space quantities.

16.1 Eckart versus Landau–Lifshitz

As in the heat problem (see Sect. 15) we consider a single particle system, with a
conserved matter flux na . However, we now allow for the possibility that we are not
working in the matter frame. That is, we introduce a vector νa representing particle
diffusion

na = nua + νa, (16.1)

and assume that the diffusion satisfies the constraint uaν
a = 0 (there is no particle

production so ∇ana = 0). This simply means that it is purely spatial according to
an observer moving with the particles in the inviscid limit, exactly what one would
expect from a diffusive process. Next we introduce the heat flux qa (as before) and
the viscous stress tensor, decomposed into a trace-part τ (not to be confused with the
proper time) and a trace-free piece τ ab, such that

T ab = (p + τ) ⊥ab +εuaub + 2q(aub) + τ ab, (16.2)

subject to the constraints

uaqa = τ a
a = 0, (16.3)

ubτba = 0, (16.4)

τab − τba = 0. (16.5)

That is, both the heat flux and the trace-free part of the viscous stress tensor are spatial
in the matter frame, and τ ab is symmetric. So far, the description is quite general
(cf. the general decomposition of the stress-energy tensor discussed in Sect. 5). The
constraints have simply been imposed to ensure that the problem has the anticipated
number of degrees of freedom.

The next step is to deduce the form for the additional fields from the second law of
thermodynamics. Assuming that the entropy flux is a combination of all the available
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vectors, we have
sa = sua + βqa − λνa, (16.6)

where β and λ are yet to be specified (although we know already what β will end
up being from our previous discussion). It is easy to work out the divergence of
sa . Then using the component of Eq. (6.35) along ua , and the usual (equilibrium)
thermodynamic relation for an equation of state ε(n, s) (as in Sect. 2), we find that

∇asa = qa
(

∇aβ − 1

T
ub∇bua

)

+
(

β − 1

T

)

∇aqa

−
(

xs + λ− p + ε
nT

)

∇aν
a − νa∇aλ− τ

T
∇aua − τ ab

T
∇aub. (16.7)

We want to ensure that the right-hand side of this equation is positive definite (or
indefinite). An easy way to achieve this is to make the following identifications:

β = 1/T , (16.8)

and

λ = 1

nT
(p + ε − sT ) = μ

T
(16.9)

We also identify
νa = −σT 2 ⊥ab ∇bλ, (16.10)

where the “diffusion coefficient” σ ≥ 0, and the projection is needed in order for the
constraint uaν

a = 0 to be satisfied. Furthermore, we find that the heat flux is given by
the same expression as before (with β = 1/T ) and we can use

τ = −ζ∇aua, (16.11)

where ζ ≥ 0 is the coefficient of bulk viscosity. To complete the description, we need
to rewrite the final term in Eq. (16.7). To do this it is useful to note that the gradient
of the four-velocity can generally be written (recall the discussion from Sect. 5)

∇aub = σab + 1

3
⊥ab θ +!ab − abua, (16.12)

with the usual four-acceleration, ab = ua∇aub, the expansion θ = ∇aua , and the
shear

σab = 1

2

(⊥c
b ∇cua+ ⊥c

a ∇cub
)− 1

3
⊥ab θ. (16.13)
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Finally, the “twist” follows from38

!ab = 1

2

(⊥c
b ∇cua− ⊥c

a ∇cub
)

. (16.14)

Since we want τ ab to be symmetric, trace-free, and purely spatial according to an
observer moving along ua , it is useful to introduce the notation

〈Aab〉 = 1

2
⊥c

a⊥d
b

(

Acd + Adc − 2

3
⊥cd⊥e f Ae f

)

(16.15)

for any Aab. In the case of the gradient of the four-velocity, it is easy to show that this
leads to

〈∇aub〉 = σab (16.16)

and therefore it is natural to use

τ ab = −ησ ab, (16.17)

where η ≥ 0 is the shear viscosity coefficient. Given these relations, we have

T ∇asa = qaqa

κT
+ τ

ζ
+ νaνa

σT 2 + τ abτab

2η
≥ 0. (16.18)

By construction, the second law of thermodynamics is satisfied.
The model we have written down is quite general, especially since we did not yet

specify the four-velocity ua . By doing this we can obtain both the formulation due to
Eckart (1940) and that of Landau andLifshitz (1959), see Sect. 5. To arrive at theEckart
description, we associate ua with the flow of particles (as we did in the discussion
of the heat problem). Thus we take νa = 0 (or equivalently σ = 0). This choice has
the advantage of being easy to implement. The Landau and Lifshitz model follows if
we instead choose the four-velocity to be a timelike eigenvector of the stress-energy
tensor. From Eq. (16.2) it is easy to see that, by setting qa = 0, we get

ubT ba = −εua . (16.19)

This is equivalent to setting κ = 0. Unfortunately, these models, which have been
used in many applications to date, are not that useful. While they pass the test set
by the second law of thermodynamics, they fail other requirements of a relativistic
description. In fact, a detailed analysis of perturbations away from an equilibrium
state (Hiscock and Lindblom 1985) demonstrates serious pathologies. The dynamics
of small perturbations tends to be dominated by rapidly growing instabilities. This

38 It is important to note the difference between the vorticity formed from the momentum and the corre-
sponding quantity in terms of the four velocity. They differ because of the entrainment, and one can show
that while the former is conserved along the flow, the latter is not. To avoid confusion we refer to !ab as
the “twist” here. This makes some sense because when we use it in Eq. (16.12) we have not yet associated
the four-velocity with the fluid flow.
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suggests that these formulations may be practically useless. At the very least, they
must be used with caution.

It has recently been argued that stability at linear order in a dissipative derivative
expansion can be ensured by a judicious choice of frame (Kovtun 2019; Bemfica et al.
2019). The argument is based on a general expansion, followed by a stability analysis
to demonstrate that there exist constraints on the expansion parameters such that these
models meet the stability and causality requirements. Intuitively, this argument seems
somewhat at odds with the covariant nature of Einsteins theory—the stability of a
system should not depend on the chosen observer. Gavassino et al. (2020) adds to
the discussion by showing that the instability of the Landau–Lifshitz/Eckart models
is due to a failure to ensure maximum entropy at equilibrium. Meanwhile, the frame
stabilized first-order models allow for violations of the second law. As neither of these
represent the anticipated physics, the issue of stability at linear order remains open.

16.2 The Israel–Stewart approach

From the above discussion we learn that the most obvious strategy for extending
relativistic hydrodynamics to include dissipation leads to unsatisfactory results. Let
us now explain how this problem can be solved.

The original strategy was based on describing the entropy current sa as a linear
combination of the fluxes in the system, the four-velocity ua , the heat-flux qa and the
particle diffusion νa . In a series of now classic papers, Israel (1976), Stewart (1977)
and Israel and Stewart (1979a, b) contrasted this “first-order” theory with relativistic
kinetic theory. Following early work by Müller (1967) and connecting with Grad’s
14-moment kinetic theory description (Grad 1949), they concluded that a satisfactory
model should be “second order” in the various fields. If we, for simplicity, work in the
Eckart frame (cf. Hiscock and Lindblom 1983) this means that we would use

sa = sua + 1

T
qa − 1

2T

(

β0τ
2 + β1qbqb + β2τbcτ

bc
)

ua

+α0τqa

T
+ α1τ

a
bqb

T
. (16.20)

This expression is arrived at by asking what the most general form of a vector con-
structed from all the various fields in the problem may be. Of course, we now have
a number of new (so far unknown) parameters. The three coefficients β0, β1, and β2
have a thermodynamical origin, while the two coefficients α0 and α1 represent the
coupling between viscosity and heat flow. From the above expression, we see that in
the frame moving with ua the effective entropy density is given by

− uasa = s − 1

2T

(

β0τ
2 + β1qaqa + β2τabτ

ab
)

. (16.21)

Since we want the entropy to be maximized in equilibrium, when the extra fields
vanish, we must have [β0, β1, β2] ≥ 0. We also see that the entropy flux
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⊥a
b sb = 1

T

[

(1 + α0τ)qa + α1τ abqb

]

(16.22)

is affected only by the parameters α0 and α1.
Having made the assumption (16.20), the rest of the calculation proceeds as in

Sect. 15. Working out the divergence of the entropy current, and making use of the
equations of motion, we arrive at

∇asa = − 1

T
τ

[

∇aua + β0ua∇aτ − α0∇aqa − γ0T qa∇a

(α0

T

)

+ τT

2
∇a

(
β0ua

T

)]

− 1

T
qa
[
1

T
∇a T + ub∇bua + β1ub∇bqa − α0∇aτ − α1∇bτ

b
a

+ T

2
qa∇b

(
β1ub

T

)

− (1 − γ0)τT ∇a

(α0

T

)

− (1 − γ1)T τ b
a∇b

(α1

T

)]

− 1

T
τ ab

[

∇aub + β2uc∇cτab − α1∇aqb + T

2
τab∇c

(
β2uc

T

)

− γ1T qa∇b

(α1

T

)]

.

(16.23)

In this expression we have introduced (following Lindblom and Hiscock) two further
parameters, γ0 and γ1. They are needed because, without additional assumptions, it is
not clear how the “mixed” quadratic term should be distributed. A natural way to fix
these parameters is to appeal to the Onsager symmetry principle (Israel and Stewart
1979b), which leads to the mixed terms being distributed “equally” so γ0 = γ1 = 1/2.

Denoting the comoving time derivative by a dot, i.e., using ua∇aτ = τ̇ (as before)
we see that the second law of thermodynamics is satisfied if we choose

τ = −ζ
[

∇aua + β0τ̇ − α0∇aqa

−γ0T qa∇a

(α0

T

)

+ τT

2
∇a

(
β0ua

T

)]

, (16.24)

qa = −κT ⊥ab
[
1

T
∇bT + u̇b + β1q̇b − α0∇bτ − α1∇cτ

c
b + T

2
qb∇c

(
β1uc

T

)

−(1 − γ0)τT ∇b

(α0

T

)

− (1 − γ1)T τ c
b∇c

(α1

T

)

+ γ2∇[buc]qc
]

, (16.25)

τab = −2η

[

β2τ̇ab + T

2
τab∇c

(
β2uc

T

)

+
〈

∇aub − α1∇aqb − γ1T qa∇b

(α1

T

)

+ γ3∇[auc]τbc
〉 ]

, (16.26)

where the angular brackets denote symmetrization as before. In these expressions we
have added yet another two terms, representing the coupling to ∇[aub]. These bring
two further “free” parameters, γ2 and γ3. We are allowed to add these terms since they
do not affect the entropy production. In fact, a large number of similar terms may, in
principle, be considered (see note added in proof in Hiscock and Lindblom 1983). The
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presence of coupling terms of the particular form that we have introduced is suggested
by kinetic theory (Israel and Stewart 1979b).

What is clear from these (very complicated) expressions is that we now have evolu-
tion equations for the dissipative fields. Introducing characteristic “relaxation” times

t0 = ζβ0, t1 = κβ1, t2 = 2ηβ2, (16.27)

the above equations can be written

t0τ̇ + τ = −ζ [. . . ], (16.28)

t1 ⊥a
b q̇b + qa = −κT ⊥a

b [. . . ], (16.29)

t2τ̇ab + τab = −2η[. . . ]. (16.30)

A detailed stability analysis by Hiscock and Lindblom (1983) shows that the theory
is causal for stable fluids. Then the characteristic velocities are subluminal and the
equations form a hyperbolic system. An interesting aspect of the analysis concerns the
stabilizing role of the extra parameters (β0, . . . , α0, . . . ). Relevant discussions of the
implications for the nuclear equation of state and the maximum mass of neutron stars
have been provided by Olson and Hiscock (1989b) and Olson (2001). A more detailed
mathematical stability analysis can be found in the work of Kreiss et al. (1997).

Although the Israel–Stewart model resolves the problems of the first-order descrip-
tions for near equilibrium situations, issues remain to be understood for nonlinear
problems. This is highlighted in work by Hiscock and Lindblom (1988) and Olson and
Hiscock (1989a). They consider nonlinear heat conduction and show that the Israel–
Stewart formulation becomes non-causal and unstable for sufficiently large deviations
from equilibrium. The problem appears to bemore severe in the Eckart frame (Hiscock
and Lindblom 1988) than in the frame advocated by Olson and Hiscock (1989a). The
fact that the formulation breaks down in a nonlinear setting is not too surprising. After
all, the basic foundation is a “Taylor expansion” in the various fields. However, it raises
important questions as there are obvious physical situations where a reliable nonlinear
model may be crucial, e.g., heavy-ion collisions and supernova core collapse.

16.3 Application: heavy-ion collisions

Relativistic fluid dynamics has regularly been used as a tool to model heavy ion colli-
sions. The idea of usinghydrodynamics to study the process ofmultiparticle production
in high-energy hadron collisions can be traced back to work by, in particular, Landau
in the early 1950s (see Belenkij and Landau 1955). In the early days these phenomena
were observed in cosmic rays. The idea to use hydrodynamics was resurrected as col-
lider data became available (Carruthers 1974) and early simulations were carried out
at Los Alamos (Amsden et al. 1975, 1977). More recently, modelling has primarily
been focussed on reproducing data from RHIC at Brookhaven and the LHC at CERN.
Useful reviews of this active area of research can be found in Clare and Strottman
(1986), Romatschke (2010a), Busza et al. (2018) and Romatschke and Romatschke
(2019).
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From the hydrodynamics perspective, a high-energy collision may be viewed in the
following way: In the centre-of-mass frame two Lorentz contracted nuclei collide—at
the typical energy of a nucleus-nucleus collision at RHIC (order 100GeVper nucleon),
each incoming nucleus is contracted by factor of about 100,making them thin colliding
pancakes. After a complex microscopic process, a hot dense plasma is formed. In the
simplest description this matter is assumed to be in local thermal equilibrium. The
initial thermalization phase is out of reach for hydrodynamics. In themodel, the state of
matter is simply specified by the initial conditions, e.g., in terms of distributions of fluid
velocities and thermodynamical quantities. Then follows a hydrodynamical expansion,
which is described by the standard conservation equations for energy, momentum,
baryon number, and other conserved quantities, such as strangeness, isotope spin, etc.
(see Elze et al. 1999 for a variational principle derivation of these equations). As the
expansion proceeds, the fluid cools and becomes increasingly rarefied. This stage may
require a kinetic theory description. This eventually leads to the decoupling of the
constituent particles, which then do not interact until they reach the detector.

Fluid dynamics provides a well defined framework for studying the stages during
which matter becomes highly excited and compressed and, later, expands and cools
down. In the final stage—when the nuclear matter is so dilute that collisions are
infrequent—hydrodynamics ceases to be valid. At this point additional assumptions
are necessary to predict the number of particles, and their energies, which may be
formed (to be compared to data obtained from the detector). These are often referred
to as the “freeze-out” conditions. The problem is complicated by the fact that the
“freeze-out” typically occurs at a different time for each fluid cell.

Even though the application of hydrodynamics in this area has led to useful results,
the theoretical foundation for this description is not a trivial matter. Basically, the
criteria required for the equations of hydrodynamics to be valid are:

1. many degrees of freedom in the system,
2. a short mean free path,
3. a short mean stopping length,
4. a sufficient reaction time for thermal equilibration, and
5. a short de Broglie wavelength (so that quantum mechanics can be ignored).

An interesting aspect of the hydrodynamical description is that itmakes use of concepts
largely outside traditional nuclear physics, e.g., thermodynamics, statistical mechan-
ics, fluid dynamics, and of course elementary particle physics. This is natural since
the very hot, highly excited matter has a large number of degrees of freedom. But it is
also a reflection of the basic lack of knowledge. As the key dynamics is uncertain, it
is comforting to resort to familiar principles like the conservation of momentum and
energy.

Another key reason why hydrodynamic models are favoured is the simplicity of
the input. Apart from initial conditions that specify masses and velocities, one needs
only an equation of state and an Ansatz for the thermal degrees of freedom. If one
includes dissipation one must also specify the form and magnitude of the viscosity
and heat conduction. The fundamental conservation laws are incorporated into the
Euler equations. In return for this relatively modest amount of input, one obtains the
differential cross sections of all the final particles, the composition of clusters, etc.

123



3 Page 206 of 251 N. Andersson, G. L. Comer

Of course, before one can confront the experimental data, one must make additional
assumptions about the freeze-out, chemistry, and so on. A clear disadvantage of the
hydrodynamics model is that much of the microscopic dynamics is lost.

Let us discuss some specific aspects of the hydrodynamics that has been used in
this area. As we will recognize, the issues that need to be addressed for heavy-ion
collisions are very similar to those faced in studies of relativistic dissipation theory
and multi-fluid modelling. The one key difference is that the problem only requires
Special Relativity, so there is no need to worry about the spacetime geometry. Of
course, it is still convenient to use a fully covariant description since one is then not
tied down to the use of a particular set of coordinates.

In many studies of heavy ions a particular frame of reference is chosen. As we
have already seen, this is an issue that must be approached with some care. In the
context of heavy-ion collisions it is common to choose ua as the velocity of either
energy transport (the Landau–Lifshitz frame) or particle transport (the Eckart frame).
We have encountered both choices before. It is recognized that the Eckart formulation
is somewhat easier to use and that one can let ua be either the velocity of nucleon or
baryon number transport. On the other hand, there are caseswhere the Landau–Lifshitz
picture has been viewed as more appropriate. For instance, when ultra-relativistic
nuclei collide they virtually pass through one another leaving the vacuum between
them in a highly excited state causing the creation of numerous particle-antiparticle
pairs. Since the net baryon number in this region vanishes, the Eckart definition of
the four-velocity cannot be easily employed. This discussion is a reminder of the
situation for viscosity in relativity, and the resolution is likely the same. A true frame-
independent description will need to include several distinct fluid components.

Multi-fluid models have, in fact, been considered for heavy-ion collisions. One
can, for example, treat the target and projectile nuclei as separate fluids to admit
interpenetration, thus arriving at a two-fluid model. One could also use a relativistic
multi-fluidmodel to allow for different species, e.g., nucleons, deltas, hyperons, pions,
kaons, etc. Such a model could account for the varying dynamics of the different
species, aswell as theirmutual diffusion and chemical reactions. The derivation of such
a model would follow closely our discussion in Sect. 9. In the heavy-ion community, it
has been common to confuse the issue somewhat by insisting on choosing a particular
local rest frame at each space-time point. This is, of course, complicated since the
different fluids move at different speeds relative to any given frame. For the purpose
of studying heavy-ion collisions in baryon-rich regions of space, the standard option
seems to be to define the “baryonic Lorentz frame”. This is the local Lorentz frame in
which the motion of the center-of-baryon number (analogous to the center-of-mass)
vanishes.

The main problemwith the single-fluid hydrodynamics model is the requirement of
thermal equilibrium. In the fluid equations of motion it is implicitly assumed that local
thermal equilibrium is “imposed” via the equation of state. In effect, the relaxation
timescale and the mean-free path must be much smaller than both the hydrodynamical
timescale and the spatial size of the system. It seems reasonable to wonder if these
conditions can be met for hadron/nuclear collisions. On the other hand, from the
kinematical point of view (apart from the use of the equation of state), the equations of
hydrodynamics are nothing but conservation laws of energy and momentum, together
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with other conserved quantities such as charge. In this sense, for any process where
the dynamics of the flow is an important factor, a hydrodynamical framework is a
natural first step. The effects of a finite relaxation time and mean-free path might be
implemented later by using an effective equation of state, incorporating viscosity and
heat conductivity, or some simplified transport equations. This does, of course, lead us
back to the challenging problemof designing a causal relativistic theory for dissipation.
Adiscussion of numerical efforts can be found inRomatschke (2010a). It is notable that
very few calculations have been performed using a fully three-dimensional, relativistic
theorywith dissipation. Considering the obvious importance of entropy, this may seem
surprising (although see Kapusta 1981 for an exception). An interesting comparison
of different dissipative formulations is also provided in Muronga (2002, 2004).

16.4 The fluid-gravity correspondence

The continued effort to explore the complex marriage between gravity and quantum
theory has also led to (perhaps unexpected) developments in the modelling and under-
standing of relativistic fluids. The context for these developments is the AdS/CFT
correspondence (Maldacena 1998), relating the dynamics of a four-dimensional con-
formal field theory to (quantum) gravity in ten dimensions. The most commonly
considered case—in essence the “harmonic oscillator” of the problem—relates to the
duality between SU(N) N = 4 Super Yang-Mills theory and Type IIB string theory
on AdS5×S5. In general, these are both complicated theories, but the phenomenology
simplifies in certain limits. The idea is attractive because it links a strongly coupled
theory, for which perturbative calculations are not an option, to a weakly coupled sys-
tem, for which one may be able to make progress. This is the reason why AdS-CFT is
referred to as a duality—the two descriptions are valid in opposite regimes. However,
this makes the duality difficult to check. In one regime we can calculate, but not in the
other.

It is attractive to apply the idea to the state ofmatter explored in colliders—thequark-
gluon plasma. At the energies reached in experiments, the plasma is far from a weakly
coupled gas of quarks and gluons. The system is well inside the non-perturbative
regime of QCD, where reliable tools are lacking. The AdS-CFT approach offers an
avenue towards progress by reformulating the strongly coupled quantum systems as a
dynamical problem in classical gravity. Perhaps the most important insight from this
concerns the apparent universality of transport coefficients in gravity duals and the
so-called entropy bound—the notion that for all thermal field theories (in the regime
described by gravity duals) the ratio of shear viscosity to entropy density is bounded
by (Son and Starinets 2007)

η

s
≥ 1

4π
. (16.31)

If correct, this implies that a fluid with a given volume density of entropy cannot be
arbitrarily close to being a perfect fluid (which would have zero viscosity).

The AdS-CFT correspondence is holographic in the sense that the two dual
theories live in a different number of dimensions. Effectively, the gauge theory
lives “on the boundary” of AdS. The formalism provides a “dictionary” that trans-
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lates dynamical gauge theory questions into the geometrical language associated
with higher-dimensional General Relativity, providing intriguing links between the
two—traditionally separate—areas of research. Moreover, one can show that long-
wavelength solutions to the Einstein equations with a negative cosmological constant
(AdS) are dual to solutions of the four-dimensional fluid equations with a conformal
symmetry. This has led to what is known as the fluid-gravity correspondence (Ranga-
mani 2009). The idea ties in with the fact that hydrodynamics may be viewed as an
effective theory that governs the macroscopic behaviour of a system, on scales larger
than some characteristic “averaging” scale (like the mean-free path).

In practice, the fluid-gravity correspondence links a fluid system to the near-horizon
dynamics of a higher dimensional black hole. This connection follows from the AdS-
CFT correspondence, but at the same time it is somewhat separate from it. In fact,
the connection between black holes and fluids/thermodynamics is not new at all—it
dates back to the 1970s. Early work by, in particular, Bekenstein (1973) and Hawking
(1975), led to the appreciation that stationary black hole horizons have thermodynamic
properties like temperature and entropy and the formulation of a generalized second
law of thermodynamics that treats black-hole entropy on a par with the usual matter
entropy (Bardeen et al. 1973). This was followed by studies of analogue models
of black holes (Unruh 1981), illustrating that fluids can admit sonic horizons and
even a version of the Hawking temperature. Finally, through the membrane paradigm
(Damour 1978; Thorne et al. 1986) it was demonstrated that (for external observers)
black holes behave like a fluid membrane, endowed with physical properties such
as viscosity and electrical conductivity (see Gourgoulhon 2005 for a more recent
discussion of this “horizon fluid”).

The fluid-gravity correspondence takes the discussion to a different level, beyond
the identification of holographic duals for given equilibrium field theory configura-
tions, to a discussion of dynamics and dissipation. As it is instructive to understand
how this comes about, let us consider a relatively simple example (Hubeny 2011).
Starting from an equilibrium black-hole solution we can generate a four-parameter
family of solutions by scaling the radial coordinate r and introducing a boost asso-
ciated with a four-velocity ua . Also introducing ingoing Eddington–Finkelstein type
coordinates we ensure that the metric is regular on the horizon. This leads to the planar
Schwarzschild-AdS5 black hole taking the form (Hubeny 2011)

ds2 = −2uadxadr + r2
(

ηab + π4T 4

r4
uaub

)

dxadxb, (16.32)

notably expressed in terms of the temperature T and ua . The boundary stress tensor
induced by this (bulk) metric is (in suitable units)

T ab = π4T 4(ηab + 4uaub). (16.33)

Effectively, we have a perfect fluid with energy ε = 3π4T 4 and pressure p = ε/3,
moving with velocity ua on the flat four- dimensional background, ηab. The stress
tensor is traceless, as expected for a conformal fluid. Also, there is no dissipation in the
system. This is natural since we still have an equilibrium solution. Let us now change
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this by perturbing the spacetime. This obviously leads to deviations from equilibrium,
butwemayexecute the right tomove theperturbed aspects of themetric to the other side
of the equation and “interpret” them as contributions to the stress-energy tensor.39 This
leads to a time-dependent non-equilibrium fluid system, relaxing towards equilibrium
as it evolves. The relaxation/thermalization can be understood through an expansion in
“boundary derivatives”, leading to distinct dissipation channels (like shear viscosity).
The relevant transport coefficients may be extracted in this linearized regime, and one
finds that they can be associated with the quasinormal modes40 of the (planar AdS)
black hole (Horowitz and Hubeny 2000; Son and Starinets 2007). This is conceptually
interesting as it relates a problem in classical gravity to fluid behaviour.

Let us consider the implications of this argument. The holographic dictionary asso-
ciates low-energy phenomena to the near horizon dynamics. We arrive at the usual
argument describing fluid dynamics as an effective field theory for long wavelengths,
albeit from an unusual angle. Still, the logic is intuitive. For a value to be assigned
to the temperature T at a given point, a fluid must have reached a local equilibrium.
Basically, in order to insert a thermometer into the system to measure the temperature,
the device must be able to reach some kind of equilibrium with the system. In order
for this to work, we do not need a global equilibrium, but we must insist that any
variations take place on a scale larger than that associated with the thermometer and
the measurement. This naturally leads us to consider a long-wavelength expansion of
the dynamics and a systematic expansion in derivatives (organized order by order to
represent shorter scales), representing dissipative phenomena. Logically, this is close
to writing down an effective field theory for a quantum system, at any given order
taking into account all possible terms (derivatives) that may appear in the effective
Lagrangian, consistent with the underlying symmetry.

AdS-CFT and the fluid-gravity correspondence have led to progress in several inter-
esting directions. In addition to efforts to explore issues relating to the entropy bound
(16.31), work has been done to construct the bulk duals of non-conformal fluids (Kan-
itscheider and Skenderis 2009), charged fluids (Erdmenger et al. 2009; Banerjee et al.
2011), superfluids (Sonner and Withers 2010; Bhattacharya et al. 2014; Herzog et al.
2011) and anomalous fluids (Banerjee et al. 2014). The latter relate to the observa-
tion that some AdS black holes exhibit an instability that leads to the spontaneous
formation of a scalar condensate below a critical temperature Tc, in analogy with
the phase-transition seen in many low-temperature laboratory systems. Not surpris-
ingly, the more complicated the fluid system is, the more involved the gravity problem
becomes. A typical example is the dissipative superfluid system considered by Bhat-
tacharya et al. (2011), which involves amap from locally hairy black brane solutions to
the long wavelength solutions of higher-dimensional Einstein–Maxwell gravity and
a phase where the global U(1) symmetry is spontaneously broken (as required to
facilitate superfluid flow). Similarly, a gravitational dual to a (type II) superconductor

39 This strategy is not too different from that used to defined the stress-energy tensor for gravitational
waves.
40 The relevant quasinormal modes are different from those of (say) a Schwarzschild black hole in that
they satisfy a vanishing Dirichlet condition at the AdS boundary, r = ∞. This is also different from the
boundary condition one uses to find the retarded propagators in AdS/CFT, so the relation of the quasinormal
modes to AdS/CFT correspondence is not immediate.
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can be obtained by coupling AdS gravity to a Maxwell field and a charged scalar
(Gubser 2008; Hartnoll et al. 2008a, b). These developments are interesting given
that condensed matter physics involves a variety of strongly coupled systems—often
with unusual properties—that can be engineered and explored in detail in laboratories
(Hartnoll 2009).

16.5 Completing the derivative expansion

Taken at face value, the field theory approach to fluid dynamics prompts us to focus on
the underlying symmetries (see Sect. 6.4) and this has implications for a systematic
derivative expansion aimed at representing dissipative effects. In practice, it means
that—rather than introducing second order terms in order to fix the causality/stability
issues of the first-order description—it is natural to ask what form second order terms
may take, what the most general such model may be and how it is constrained by
symmetries (e.g., of the dissipative stress-energy tensor) (Romatschke 2010b, a).Given
the connection to AdS-CFT most efforts in this direction have focussed on conformal
fluids, which (obviously) leaves out compressional degrees of freedom associated
with bulk viscosity. Nevertheless, it is clear that the general dissipative second-order
system must include a large set of parameters (Romatschke 2010b). It is interesting
to note that, at second order the formal argument brings in coupling to the spacetime
curvature. At first order, there can be no such terms since we require ∇agbc = 0,
but second derivatives of the metric do not vanish so they could (perhaps should)
be considered. In particular, we may have terms proportional to the Ricci scalar, R,
and the contraction of the Ricci tensor with the fluid four-velocity, uaub Rab (Baier
et al. 2008). The presence of such terms may come as a surprise, but they have been
motivated by holographic arguments. At the same time, the situation seems a little bit
confusing. By adding terms involving the Ricci tensor to the dissipative stress-energy
tensor we introduce aspects that could equally well belong on the left-hand side of the
Einstein equations. That is, we are modifying gravity into the general f (R) class of
theories (see for example Baier et al. 2019). This logic is supported by the observation
that the specific terms are non-dissipative (Romatschke 2010b). This argument does
not suggest that we should not account for these kinds of terms in a formal description,
simply that we need to make more effort to understand why they should be present
and what their role may be. In fact, this conclusion holds in a wider sense. General
dissipative models include so many parameters—most of which we do not have any
way of calculating from first principles—that they are difficult to use in applications.
Developments in this direction are important but it would perhaps make sense to
shift the focus from generality to specific questions concerning the manifestation of
particular dissipation channels in settings of practical interest.
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An important step in “completing” the fluid model involves mapping the for-
malism and the phenomenology onto the reality we want to describe. This
inevitably brings in issues that can never be fully described at the averaged
level; we need to consider the microphysics. There are many different ways
to make this connection. In the case of neutron stars, the elusive matter equa-
tion of state has, for example, been modelled from first principle quantum
calculations (often non-relativistic; Akmal et al. 1998) and within chiral effec-
tive field theory (Hebeler and Schwenk 2010; Krüger et al. 2013; Tews et al.
2018). The latter provides an attractive strategy as it—at least in principle—
provides “error bars” on the different parameters. These models allow us
to model matter in equilibrium and study (using nonlinear simulations) the
dynamics of dramatic events like neutron star mergers. However, the mod-
els do not provide us with much insight into non-equilibrium processes. This
requires a more detailed understanding of transport properties. At the quan-
tum level we need to account for stochastic fluctuations. Interesting progress
in this direction—connecting with the variational strategy—aims to work out
hydrodynamical correlation functions from an effective action. This can be
achieved by considering a classical effective action with the characteristics
of an effective field theory suitable for an open system, formally build-
ing on the Keldysh–Schwinger closed-time-path formalism (Kamenev and
Levchenko 2009; Jensen et al. 2018a, b; Glorioso and Liu 2018; Harder et al.
2015; Grozdanov and Polonyi 2015). This approach is designed to describe
non-equilibrium processes at finite temperatures, at least for specific model
problems. Real world applications require further developments.

16.6 Carter’s canonical framework

Carter (1991) made a more formal attempt to construct a relativistic formalism for dis-
sipative fluids—taking the variational argument as its starting point. His construction
is quite general, which inevitably makes it more complex. Of course, the generality
could prove useful in more complicated cases, e.g., for investigations of multi-fluid
dynamics and/or elastic media. Given the potential this formalism has for future con-
siderations, it is worth working through the details.

The overall aim is to extend the variational formulation in such a way that viscous
“stresses” are accounted for. Because the variational foundations are the same, the
number currents na

x play a central role. In addition, we introduce a number of viscosity
tensors τ ab

Σ , which we assume to be symmetric (even though it is clear that such an
assumption is not generally correct, it is only the total stress-energy tensor that is
required to be symmetric; Andersson and Comer 2006). The index Σ is “analogous”
to the constituent index, although a bit more abstract as it represents different viscosity
contributions. It is introduced in recognition of the fact that it may be advantageous
to consider different kinds of viscosity, e.g., bulk and shear viscosity, separately. As
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in the case of the constituent index, a repeated index Σ does not imply summation in
the following.

The key quantity in the variational framework remains the Lagrangian, Λ. As it
is a function of all the available fields, we now have Λ(na

x, τ
ab
Σ , gab), and a formal

variation leads to

δΛ =
∑

x

μx
a δn

a
x + 1

2

∑

Σ

πΣab δτ
ab
Σ + ∂Λ

∂gab
δgab. (16.34)

Since the metric piece is treated in the same way as in the non-dissipative problem we
will leave it out from now on. In the above expression we recognize the momenta μx

a
that are conjugate to the fluxes. We also have a new set of “strain” variables (cf. the
discussion of elasticity in Sect. 12) defined by

πΣab = πΣ(ab) = 2
∂Λ

∂τ ab
Σ

∣
∣
∣
∣
∣
na
x ,g

ab

. (16.35)

As in the non-dissipative case, the variational framework suggests that the equations
of motion can be written as a force-balance equation,

∇bT b
a =

∑

x

f xa +
∑

Σ

f Σa = 0, (16.36)

where the generalized forces work out to be

f xa = μx
a∇bnb

x + nb
x∇[bμx

a], (16.37)

(as before), and

f Σa = πΣab∇cτ
cb
Σ + τ cb

Σ

(

∇cπ
Σ
ab − 1

2
∇aπ

Σ
cb

)

. (16.38)

Finally, the stress-energy tensor becomes

T a
b = Ψ δa

b +
∑

x

μx
bna

x +
∑

Σ

τ ac
Σ π

Σ
cb, (16.39)

with the generalized pressure now given by

Ψ = Λ−
∑

x

μx
ana

x − 1

2

∑

Σ

τ ab
Σ π

Σ
ab. (16.40)

For reasons that will become clear shortly—basically, we want to be able to ensure
that the different contributions to the entropy change are non-negative—it is useful to
introduce a set of “convection vectors”. In the case of the currents, these are naturally

123



Relativistic fluid dynamics: physics for many different… Page 213 of 251 3

taken as proportional to the fluxes (as usual). This means that we introduce βa
x such

that
hxβ

a
x = na

x, μx
aβ

a
x = −1 �⇒ hx = −μx

ana
x, (16.41)

and we see that, if we ignore entrainment then hx is simply the chemical potential μx
measured by an observer riding along with the flow of the x component. With this
definition we can introduce a projection operator

⊥ab
x = gab + μa

xβ
b
x �⇒ ⊥a

xb β
b
x =⊥ab

x μx
b = 0. (16.42)

From the definition of the force density f a
x we can then show that

∇ana
x = −βa

x f xa , (16.43)

and
hxLxμ

x
a =⊥x

ab f b
x , (16.44)

whereLx = Lβa
x
represents the Lie-derivative along βa

x . We see that the component of
the force parallel to the convection vector βa

x is associated with particle conservation.
Meanwhile, the orthogonal component represents the change in momentum along βa

x .
Next, we facilitate a similar decomposition for the viscous stresses by taking the

conduction vector to be a unit null eigenvector (cf. (5.49)) associated with πab
Σ . That

is, we introduce βb
Σ such that

πΣabβ
b
Σ = 0, (16.45)

together with
uΣa = gabβ

b
Σ and uΣa β

a
Σ = −1. (16.46)

Introducing the projection associated with this conduction vector,

⊥Σab= gab + uΣa uΣb , (16.47)

we (naturally) have
⊥Σab β

b
Σ = 0. (16.48)

Once we have introduced βa
Σ , we can use it to reduce the degrees of freedom of the

viscosity tensors. So far, we have only required them to be symmetric. However, in the
standard case one would expect a viscous tensor to have only six degrees of freedom.
To ensure that this is the case we introduce the degeneracy condition

uΣb τ
ba
Σ = 0. (16.49)

That is, we require the viscous tensor τ ab
Σ to be purely spatial according to an observer

moving along ua
Σ . With these definitions one can show that

βa
ΣLΣπΣab = 0, (16.50)
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where LΣ = Lβa
Σ
is the Lie-derivative along βa

Σ , and

τ ab
Σ LΣπΣab = −2βa

Σ f Σa . (16.51)

Finally, let us suppose that we choose to work in a given observer frame, moving
with four-velocity ua (associated with the usual projection ⊥a

b). Then we can use the
decompositions:

βa
x = βx

(

ua + va
x

)

and βa
Σ = βΣ

(

ua + va
Σ

)

. (16.52)

As expected,μx = 1/βx represents a chemical type potential for species x with respect
to the chosen frame. At the same time, we see that μΣ = 1/βΣ is a Lorentz factor.
Using the norm of βa

Σ we have

βa
Σβ

Σ
a = −β2Σ

(

1 − v2Σ
)

= −1, (16.53)

where v2Σ = va
Σv

Σ
a . Thus

μΣ = 1/βΣ =
√

1 − v2Σ, (16.54)

is analogous to the standard Lorentz factor.
So far the construction is quite formal. Let us now try to make it more intuitive

by making contact with the physics. First, we note that the above results allow us to
demonstrate that

ub∇aT a
b = −

∑

x

(

μx∇ana
x + va

x f xa
)

−
∑

Σ

(

va
Σ f Σa − 1

2
μΣτ ba

Σ LΣπΣba

)

= 0. (16.55)

Recall that similar resultswere central to expressing the second lawof thermodynamics
in Sect. 15. To see how things work out in the present case, and make contact with
the previous discussion, let us single out the entropy fluid (with index s) by defining
sa = na

s and T = μs. To simplify the final expressions it is also useful to assume that
the remaining species are governed by conservation laws of the form

∇ana
x = Γx, (16.56)

subject to the constraint of total baryon number conservation; i.e.,

∇ana = ∇a

∑

x �=s

na
x =

∑

x �=s

Γx = 0. (16.57)
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Given this, and the fact that the divergence of the stress-energy tensor must vanish,
we have

T ∇asa = −
∑

x �=s

μxΓx −
∑

x

va
x f xa −

∑

Σ

(

va
Σ f Σa + 1

2
μΣτ ab

Σ LΣπΣab

)

. (16.58)

Here we can bring the remaining two force contributions together by introducing the
linear combination ∑

x

ζ xΣv
a
x = va

Σ, with
∑

x

ζ xΣ = 1. (16.59)

Then defining
f̃ xa = f xa +

∑

Σ

ζ xΣ f Σa , (16.60)

we have

T ∇asa = −
∑

x �=s

μxΓx −
∑

x

va
x f̃ xa − 1

2

∑

Σ

μΣτ ab
Σ LΣπΣab ≥ 0. (16.61)

The three terms in this expression represent, respectively, the entropy increase due to
(i) chemical reactions, (ii) conductivity, and (iii) viscosity. The simplest way to ensure
that the second law of thermodynamics is satisfied is to make each term positive
definite.

At this point, the formalism must be completed by some (suitably simple) model
for the various terms. A reasonable starting point would be to assume that each term
represents a linear deviation from equilibrium. For the chemical reactions this would
mean that we expand each Γx according to

Γx = −
∑

y �=s

Cxyμy, (16.62)

where Cxy is a positive definite (or indefinite) matrix composed of the various reaction
rates. Similarly, for the conductivity term it is natural to consider “standard” resistivity
such that

f̃ xa = −
∑

y

Rxy
abv

b
y . (16.63)

Finally, for the viscosity we can postulate a law of form

τ ab
Σ = −ηabcd

Σ LΣπΣcd , (16.64)

where we would have, for an isotropic model,

ηabcd
Σ = η ⊥a(c

Σ ⊥d)b
Σ +1

3
(η − ζ ) ⊥ab

Σ ⊥cd
Σ , (16.65)
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and the coefficients η and ζ are identified as representing shear and bulk viscosity,
respectively.

A detailed comparison between Carter’s formalism and the Israel–Stewart frame-
work has been carried out by Priou (1991). He concludes that the two models, which
are both members of a larger family of dissipative models, have essentially the same
degree of generality and that they are equivalent in the limit of linear perturbations
away from a thermal equilibrium state. Providing explicit relations between the main
parameters in the two descriptions, he also emphasizes the key point that analogous
parameters may not have the same physical interpretation.

16.7 Add a bit of chemistry...

With the formal model development (at least at some level) in hand, it is natural to turn
to the issue of the different dissipation coefficients. This effort has several different
aspects. We may, for example, dig deeper and try to calculate the coefficients from
some more fundamental—presumably microscopic—theory. At the same time, we
may ask (still in the somehwat phenomenological vein) if we can make progress by
considering the nature of the involved coefficient. Such questions inevitably takes us
in the direction of chemistry, where the mechanics of mixtures and solvents tends to be
explored in detail. The chemistry lab may seem a strange place to look for answers to
astrophysics questions, but the problemswe are interested in are truly interdisciplinary
so it is perhaps not surprising that this is where we end up.

Central to any discussion of this kind is the Onsager symmetry principle (Onsager
1931), see Andersson and Comer (2006) and Haskell et al. (2012) for relevant dis-
cussions. Focussing on the general idea—which is natural since the details depend on
the application under consideration—we start by noting that, for any system perturba-
tions of the entropy density s away from equilibriummust be represented by quadratic
deviations. This allows us to write

s ≈ seq − Δt

2T

∑

a,b

Xa Lab Xb, (16.66)

or, making use of the entropy creation rate Γs:

TΓs = −1

2

∑

a,b

Xa Lab Xb =
N
∑

a=1

J a Xa, (16.67)

where the Xa are known as “thermodynamic forces”. They represent a measure of the
departure of the system from equilibrium, while the “thermodynamic fluxes”

J a = −1

2

∑

b

Lab Xb, (16.68)

represent the response of the system. The Onsager symmetry principle simply states
that microscopic reversibility implies that we should have Lab = Lba . Comparing

123



Relativistic fluid dynamics: physics for many different… Page 217 of 251 3

Eq. (16.67) to results like Eq. (16.61) we can, by constructing the most general form
for the tensor Lab in terms of the thermodynamical forces in the model, obtain the
most general description of the dissipative terms in the equations of motion.

A key part of this construction is the observation that—because we are assuming an
expansion away from equilibrium—we need the forces to vanish as thermodynamic
equilibrium is reached. Hence, we should not work with the chemical potentials, as in
(16.62), because they obviously do not vanish in equilibrium. This point comes to the
fore when we consider problems with reactions, as in the case of bulk viscosity. We
need to replace the chemical potential with a more suitable “force”. This leads us to
introduce the affinity (Kondepudi and Prigogine 2005). In the context of neutron stars,
this point has been made in Carter and Chamel (2005b) and Haskell et al. (2012).

Suppose there are N total reactions among M various constituents x of our multi-
fluid system, to be characterized in the usual way as stoichiometric relations between
the particle number densities41 νx = nx/

(∑

x nx
)

; i.e.

M
∑

x

RI
x ν

x →
M
∑

x

PI
x ν

x, I = 1, . . . , N , (16.69)

where RI
x and P

I
x are, respectively, the reactant and product stoichiometric coefficients.

The affinity AI of the I th reaction is then defined as

AI ≡
M
∑

x

(

RI
x − PI

x

)

μx. (16.70)

At thermodynamic equilibrium the affinities vanish, which is why they make appro-
priate thermodynamic forces.

It is intuitively clear that the affinities provide a natural description of the problem,
but this does not mean that the formulation is complete at this point. In particular,
it is worth noting that the chemical potentials μx become somewhat ambiguous in
a multi-fluid context. Each chemical potential should be defined as the energy per
particle in the reference frame where the chemical (or nuclear) reactions occur, but a
multi-fluid mixture is characterized by the presence of distinct velocity fields, neither
of which represents the required frame. The relevant frame may, in fact, not be known
a priori as the formulation we consider assumes an expansion away from “equilib-
rium”, which ultimately involves both dynamical and chemical considerations. The
equilibrium frame may well depend on the dynamical evolution of the whole system.
This complicates the issue, at least from the formal point of view (see Celora et al.
2021 for a detailed analysis).

According to Hess’s Law, for each chemical reaction there is only one thermo-
dynamic variable to track in order to determine the changes; namely, the “degree of
advancement” ξI for the various reactants. For each of the I = 1 . . . N reactions, a

41 Technically speaking one should consider mole numbers in these relations. However, for the kind of
reactions that we consider in neutron star cores there is no difference.
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variation ΔξI corresponds to a variation ΔνxI of the participating fluids:

ΔνrI

RI
r

= · · · = ΔνsI

RI
s

= −Δν
u
I

PI
u

= · · · = −Δν
v
I

PI
v

= ΔξI , (16.71)

where r, . . . , s and u, . . . , v represent the x-components for which the RI
x and PI

x are
non-zero. The (irreversible) change Δs in the entropy due to these reactions is given
by

Δs = 1

T

N
∑

I=1

AIΔξI . (16.72)

By comparing with Eq. (16.66), we see that the ΔξI represent the appropriate ther-
modynamic “fluxes”.

The variations Δνx of the individual number densities, in some time interval Δt ,
can also be determined by

Δνx = ΓxΔt, (16.73)

where Γx is the particle number creation rate.
Each of the N reactions then has a corresponding change νxI that contributes to

Δνx, with the net result (as Δt → 0)

dνx

dt
=
∑

I

(

RI
x − PI

x

) dξI

dt
. (16.74)

Hence,

Γx =
∑

I

(

RI
x − PI

x

) dξI

dt
. (16.75)

If we take the reaction “velocity” V I ≡ dξI
dt to be the thermodynamical flux, then

the change in entropy due to the reactions is

Δs =
∑

x �=s

μxΓx =
∑

x �=s

μx

[
∑

I

(

RI
x − PI

x

) dξI

dt

]

=
∑

I

AI VI . (16.76)

In the general framework the corresponding thermodynamic force will then be AI

while the flux is−VI . Given this, we can construct the fluxes out of the forces, limiting
ourselves to quadratic terms. An explicit example of such a construction can be found
in Haskell et al. (2012).

16.8 Towards a dissipative action principle

Conventional wisdom suggests that an action principle—expressed as an integral of a
Lagrangian,whose local extrema satisfy the equations ofmotion, subject towell-posed
boundary constraints, see Sect. 4—cannot exist for a dissipative system. However,
this may be too dismissive. There have been a number of (more or less successful)
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attempts to make progress on building dissipative variational models. A common
approach has been to combine a variational model for the non-dissipative aspects
with an argument that constrains the entropy production, often involving Lagrange
multipliers (see Ichiyanagi 1994 for a review and Djukic and Vujanovic 1975; Djukic
and Strauss 1980; Mobbs 1982; Kobe et al. 1986; Vujanovic et al. 1986; Honein et al.
1991; Chien et al. 1996; Nordbrock and Kienzler 2007; Fukagawa and Fujitani 2012
for samples of the literature). The model we will consider is conceptually different.
The conservative constraints on the system are built into the variation itself and the
model does not involve (at least not in the first instance) an expansion away from
equilibrium (in contrast to, for example, the model of Israel and Stewart or, indeed,
any model that takes a derivative expansion as its starting point). Formally, the new
description remains valid also for systems far away from equilibrium, and hence it
provides a promising framework for the exploration of nonlinear thermodynamical
evolution and associated irreversible phenomena—a problem area where a number
of challenging issues remain to be resolved, involving for example maximum versus
minimum entropy production for non-equilibrium systems (Jaynes 1980; Dewar 2003;
Martyushev and Seleznev 2006; di Vita 2010).

Why should we expect a variational argument for non-equilibrium systems to exist?
The question is multi-faceted, but recall that one of the most topical problems in gravi-
tational physics involves two stars (or black holes) in a binary system, that lose orbital
energy through the emission of gravitational waves. Gravitational-wave emission is
a dissipative mechanism, yet the underlying theory is obtained from an action (see
Sect. 4.4). This tells us that you can, indeed, use a variational strategy for dissipative
problems (a similar argument was made by Galley 2013; Galley et al. 2014). The key
insight is that all the energy in the system must be accounted for. In many ways this is
trivial. If you account for all the energy in a given system, including the “heat bath”,
then there is no dissipation as such. Rather, one tries to model the redistribution of
energy within the larger (now closed) system. This may be a natural logical argument,
but the question is if we can turn it into a practical proposition.

The first step in this direction involves designing a variational argument that leads
to the functional form of the dissipative fluid equations, adopting the attitude from
classical mechanics where the equations of motion for a system can be written down
without actual reference to a particular form for the energy. The completion of the
model—fully specifying the various coefficients involved, which must draw on some
level of microphysics understanding—is, of course, important but the problem is suf-
ficiently complex that it is sensible to progress in manageable steps.

The idea behind the new approach is, conceptually, quite simple (Andersson and
Comer 2015). Recalling that the individual matter spaces (associated with the various
fluid components) play a central role in the variational construction for a conservative
system, let us consider the “physics” of a dissipative system, e.g., with resistivity,
shear or bulk viscosity. On the micro-scale dissipation arises due to particle interac-
tions/reactions. On the fluid scale this naturally translates into an interaction between
the matter spaces. This interaction can be accounted for by letting each matter space
be endowed with a volume form which depends on:

1. the coordinates of all the matter spaces, and
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2. the independent mappings of the spacetime metric into these spaces.

For example, if each nx
ABC is no longer just a function of its own X A

x , the closure of
nx

abc will be broken. As the fluxes are no longer conserved, the formalism incorporates
dissipation. Simple!

To see how this works, let us revisit the conservative problem from Sect. 9. Recall
that the scalar fields X A

x label the (fluid) particles. If these are conserved, then the X A
x

must be constant along the relevant worldlines. That this is, indeed, the case is easy to
demonstrate. Letting τx be the proper time of each worldline, we have

d X A
x

dτx
= ua

x
∂X A

x

∂xa
= 1

nx
nx

BC Dε
abcd ∂X A

x

∂xa

∂X B
x

∂xb

∂XC
x

∂xc

∂X D
x

∂xd
= 0. (16.77)

Since a fluid element’s matter space coordinates X A
x are constant along its worldline,

it must also be the case that
dnx

ABC

dτx
= 0. (16.78)

In other words, the volume form nx
ABC is fixed in the associated matter space. These

steps demonstrate that the key to non-conservation is to allow nx
ABC to be a function

of more than the X A
x . This is quite intuitive. The worldlines of the various fluids will

in general cut across each other, leading to interactions/reactions. A more general
functional form for the matter space volume forms nx

ABC may then be used to reflect
this aspect of the physics. A schematic illustration of how this works is provided in
Fig. 17.

The seemingly simple step of enlarging the functional dependence of nx
ABC allows

us to build a variational model that incorporates a number of dissipative terms. How-
ever, in doing this we have to tread carefully. In particular, wemust pay closer attention
to the various matter space objects. We are now dealing with geometric objects that
actually live in the higher-dimensional combination of all the matter spaces, e.g., we
are dealing with an object of the form

nx
ABC

(

X D
x , X E

y

)

d X A
x ∧ d X B

x ∧ d XC
x , y �= x. (16.79)

That is, a volume form in the x-matter space parameterized by points in the y-matter
spaces. We can still pretend that the individual matter spaces (related to spacetime via
the same maps as in the conserved case) remain somehow “distinct”, but in reality this
is not the case.

When we allow nx
ABC to be more complex we (inevitably) break some of the

attractive features of the conservative model. Obviously, nx
ABC is no longer a fixed

matter space object. This has a number of repercussions, but we can still construct the
action from matter space objects. To do this we need the map of the spacetime metric
into the relevant matter space (as in the case of elasticity, see Sect. 12)

g AxBx = ∂X A
x

∂xa

∂X B
x

∂xb
gab = gBx Ax . (16.80)
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X A
b,1

X A
b,3t=0 X A

r,0

X A
b,2

1

2

3

0

Fig. 17 An illustration of the notion that a coupling between matter spaces may lead to dissipation. We
consider the case of two fluids, labelled r and b (red and blue). The individual X A

x do not vary along their
own worldlines, even when the system is dissipative. By adding X A

y (y �= x) we get “evolution” since

the worldlines cut across each other. Let us choose a particular worldline of the r-fluid, say X A
r,0, meaning

that X A
r will take the same value at each spacetime point xaalong the worldline. At an intersection with a

worldline of a fluid element of the b-fluid (the point labelled 1 in the figure, say) the other fluid’s worldline
will have its own label (in this case X A

b,1), which is the same at every point on that worldline. At the next

intersection (point 2), the worldline we are following has the same value for X A
r , but it is intersected by a

different worldline from the other fluid (X A
b,2), meaning that X A

b at each intersection is different. Hence,

X A
b , when considered as a field in spacetime, must vary along the r-fluid worldlines, and vice versa. This is

how the closure of the individual volume three-forms is broken and ultimately why the model is dissipative

Note that g AxBx is not likely to be a tensor on matter space. In order for that to be the
case, the corresponding spacetime tensor must satisfy two conditions: First, it must
be flowline orthogonal (on each index). This is true here since the operator which
generates projections orthogonal to x-fluid worldlines is

⊥ab
x = gab + ua

xub
x, (16.81)

and because of Eq. (16.77) we have

g AxBx = ∂X A
x

∂xa

∂X B
x

∂xb
gab = ∂X A

x

∂xa

∂X B
x

∂xb
⊥ab

x . (16.82)

The second condition that ⊥ab
x must satisfy so that g AxBx is a matter space tensor is

(Beig and Schmidt 2003a)
Lux ⊥ab

x = 0. (16.83)

This is not the case here. Indeed, this condition is too severe for most relevant appli-
cations.
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Anyway, it is easy to show that a scalar constructed from the contraction involving
gab and some tensor txa... is identical to the analogous contraction of the correspond-
ing matter space objects (Karlovini and Samuelsson 2003). In particular, the number
density follows from (as before)

n2
x = −gabna

xnb
x = 1

3!gad gbegcf nx
abcnx

de f

= 1

3!g AD
x gB E

x gC F
x nx

ABC nx
DE F , (16.84)

while the chemical potential
μx = −ua

xμ
x
a (16.85)

(according to an observer at rest in the respective fluid’s frame) can be obtained from

nxμ
x = −na

xμ
x
a = 1

3!μ
abc
x nx

abc = 1

3!μ
ABC
x nx

ABC . (16.86)

Here we have (as in Sect. 10) introduced the dual to the momentum μx
a :

μabc
x = εdabcμx

d , μx
a = 1

3!εbcdaμ
bcd
x , (16.87)

and its matter space image;

μABC
x = ∂X A

x

∂x [a
∂X B

x

∂xb

∂XC
x

∂xc] μ
abc
x . (16.88)

The key take-home message is that we can think of the matter action as being
constructed entirely from matter space quantities. In the simplest case of a single
component one would have (see Sect. 6)

Λ(nx) = Λ
(

nx
abc, gab

)

⇔ Λ
(

nx
ABC , g AB

x

)

. (16.89)

16.9 A reactive/resistive example

Let us try tomake the ideamore concrete byworking through the steps of the variational
analysis, while allowing for general variations of the matter space density. Since the
matter space coordinates still vary according to (6.14) (this is essentially just the
definition of the Lagrangian displacement) we easily arrive at the generic variation

δnx
abc = −Lξxnx

abc + ∂X A
x

∂x [a
∂X B

x

∂xb

∂XC
x

∂xc] Δxnx
ABC . (16.90)

To make contact with (6.21) we need

μx
aδn

a
x = 1

3!μ
x
aδ
(

εbcdanx
bcd

)

= − 1

3!μ
bcd
x δnx

bcd + 1

3!μ
x
anx

bcdδε
bcda, (16.91)
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where we recall (6.20). Hence, we arrive at

μx
aδn

a
x = 1

3!μ
abc
x Lξxnx

abc − 1

2
μx

ana
xgbcδgbc − 1

3!μ
ABC
x Δxnx

ABC , (16.92)

and the “final” expression:

μx
aδn

a
x = μx

a

(

nb
x∇bξ

a
x − ξb

x∇bna
x − na

x∇bξ
b
x − 1

2
na
xgbcδgbc

)

− 1

3!μ
ABC
x Δxnx

ABC . (16.93)

The terms in the bracket are the same as in the conservative case, cf. (6.21). The last
term is new.

The functional dependence of the volume form for a given fluid’s matter space
is now the main input. Obviously, nx

ABC must depend on X A
x , the coordinates of the

correspondingmatter space, in order for us to retain the conservative dynamics.Adding
to this, let us include the coordinates X A

y from the other, y �= x, matter spaces. This
breaks the closure of nx

abc and the model is no longer conservative.
The required variation of nx

ABC becomes [in view of (6.13)]

Δxnx
ABC =

∑

y �=x

∂nx
ABC

∂X D
y
ΔxX D

y =
∑

y �=x

∂nx
ABC

∂X D
y

(

ξa
x − ξa

y

)

∂a X D
y . (16.94)

Comparing to (16.92), we see that it is natural to define

Rxy
a ≡ 1

3!μ
ABC
x

∂nx
ABC

∂X D
y
∂a X D

y . (16.95)

We then have

μx
aδn

a
x = μx

a

(

nb
x∇bξ

a
x − ξb

x∇bna
x − na

x∇bξ
b
x − 1

2
na
xgbcδgbc

)

+
∑

y �=x

Rxy
a

(

ξa
y − ξa

x

)

. (16.96)

The final step involves writing down the variation of the matter Lagrangian, Λ.
Starting from (6.1), we arrive at

δ
(√−gΛ

)

= −√−g

{
∑

x

(

f xa + μx
aΓx − Rx

a

)

ξa
x − 1

2

(

Ψ gab +
∑

x

na
xμ

b
x

)

δgab

}

+∇a

(

1

2

√−g
∑

x

μabc
x nx

bcdξ
d
x

)

, (16.97)
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where we have used ∑

x

∑

y �=x

Rxy
a ξ

a
y =

∑

x

∑

y �=x

Ryx
a ξ

a
x . (16.98)

We have also defined
Rx

a =
∑

y �=x

(

Ryx
a − Rxy

a
)

, (16.99)

and
Γx = ∇ana

x . (16.100)

Hence, the individual components are governed by the equations of motion

f xa + Γxμx
a = nb

xω
x
ba + Γxμx

a = Rx
a . (16.101)

Since the force term f xa on the left-hand side is orthogonal to na
x (by the anti-symmetry

of ωx
ab) it is easy to see that this result implies that the particle creation/destruction

rates are given by

Γx = − 1

μx ua
x Rx

a . (16.102)

Finally, an orthogonal projection of (16.101) leads to

2na
x∇[aμx

b] + Γx ⊥a
xb μ

x
a =⊥a

xb Rx
a, (16.103)

which provides the dissipative equations of motion for the system.
The bottomline is that, with Eq. (16.97) we have a true action principle—in the

sense that the field equations are extrema of the action—for a system of fluids that
includes dissipation. It is also worth noting that the stress-energy tensor is still given
by

T a
b = Ψ δa

b +
∑

x

na
xμ

x
b, (16.104)

and we have
∇bT b

a =
∑

x

(

f xa + μx
aΓx

) = 0, (16.105)

since ∑

x

Rx
a = 0. (16.106)

The requirement that the divergence of the stress-energy tensor vanish is automatically
guaranteed by the dissipative fluid equations, in keeping with the diffeomorphism
invariance of the theory.

As an immediate application of these relations, connecting with the discussion in
Sect. 15, let us consider the simplest relevant setting. Assume that we consider a
system with two components; matter (labelled n) and heat, represented by the entropy
(labelled s). In principle, we need to provide an equation of state (that satisfies relevant
physics constraints) in order to complete the model. Once this is provided we can
calculate the resistivity coefficients from (16.95) and then model the system using the
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momentum equations (16.101). However, let us consider the problem at the level of
phenomenology. We assume that the matter component is conserved, but the entropy
does not need to be.

First of all, given that we only have two components we must have

Rn
a = Rsn

a − Rns
a = −Rs

a . (16.107)

Secondly, the conservation of the material component implies that

Γn = − 1

μn ua
n Rn

a = 1

μn ua
n Rns

a = 0 �⇒ ua
n Rns

a = 0. (16.108)

The upshot is that Rns
a must be orthogonal to both ua

n and ua
s . Meanwhile, the entropy

change is constrained by the second law. That is, we have

Γs = − 1

T
ua
s Rs

a = 1

T
ua
s Rsn

a ≥ 0, (16.109)

where we have introduced the temperature T = μs. Note that the constraints affect
the two, likely independent, contributions to Rn

a . We cannot infer a link between Rns
a

and Rsn
a at this point.

So far we have not introduced a privileged observer. In order to facilitate a com-
parison with the discussion in Sect. 15, let us focus on an observer moving along with
the matter flow. Then we have ua = ua

n and the relative flow required to express the
entropy flux is defined such that

ua
s = γ (ua + wa) , (16.110)

where

uawa = 0, and γ =
(

1 − w2
)−1/2

. (16.111)

The relative velocity wa is aligned with the heat flux vector (see, for example,
Eq. (15.40)).

Given (16.108) and (16.109) it makes sense to introduce the decompositions

Rns
a = εabcdφ

b
nucwd , (16.112)

and
Rsn

a = Rwwa + εabcdφ
b
s ucwd , (16.113)

where φa
n and φa

s are unspecified vector fields. We then see that (16.109) leads to

TΓs = γ Rww
2 ≥ 0 −→ Rw > 0. (16.114)

Meanwhile, the two components φa
n and φa

s are not constrained by the thermody-
namics. This leaves a degree of arbitrariness in the model. Should we be surprised
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by this? Probably not. A similar issue was discussed by Lopez-Monsalvo and Ander-
sson (2011) where it was demonstrated that the variational derivation leads to the
presence of a number of terms in the heat equation that cannot be constrained by the
second law. It was also pointed out that the difference between the model advocated
by Lopez-Monsalvo and Andersson (2011) and the second-order model of Israel and
Stewart appeared at this level (Priou 1991). It has not been established whether there
are situations where these terms have a notable effect on the dynamics. This may be
an interesting question.

16.10 Adding dissipative stresses

The previous example demonstrates how dissipation can be included in the variational
multi-fluid formalism. This is a positive step towards a better understanding of non-
equilibrium systems in General Relativity. Dissipative contributions that tend to be
postulated can now be derived from first principles. Moreover, as the comparison
with the problem of heat flow demonstrates, the model introduces new aspects of the
problem. However, the example we provided only accounts for two particular non-
equilibrium phenomena, particle non-conservation and resistivity. In order to argue
that the model represents a credible alternative to established strategies, we need to
demonstrate that the action principle generates terms of the tensorial form expected
for more general processes. Thus, we consider the issue of dissipative stresses.

The obvious starting point for an extension of the strategy is to ask what other
quantities the matter space volume form, nx

ABC , may depend on. The natural object to
consider is the mapping of the spacetimemetric, gab, into the respective matter spaces.
As we will now demonstrate, this leads to a description that accounts for dissipative
shear stresses.

The mapping of the metric into the matter spaces introduces three independent
possibilities. The most intuitive option involves allowing nx

ABC to depend on g AxBx ,
as defined in (16.80). Noting that Eq. (16.77) implies that the X A

x will still be conserved
along the associated flow, the variation of nx

ABC is then such that

Δxnx
ABC = ∂nx

ABC

∂gDxEx
ΔxgDxEx +

∑

y �=x

∂nx
ABC

∂X D
y
ΔxX D

y . (16.115)

The first term in this expression is new, the second term is the same as in (16.94) . The
new term is easily worked out, following the steps from the simpler model. We find
that

Δxg AxBx = ∂X A
x

∂xa

∂X B
x

∂xb
Δxgab = ∂X A

x

∂xa

∂X B
x

∂xb

[

δgab − 2∇(aξb)
x

]

, (16.116)

where we have used
Δxgab = δgab − 2∇(aξb)

x , (16.117)

(and round brackets indicate symmetrization, as usual.)
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As in the previous example, the variation of the matter Lagrangian involves
μABC
x Δxnx

ABC . The new contribution then takes the form

1

3!μ
ABC
x

∂nx
ABC

∂gDxEx
ΔxgDxEx

= 1

3!μ
ABC
x

∂nx
ABC

∂gDxEx

∂X D
x

∂xa

∂X E
x

∂xb

[

δgab − 2∇(aξb)
x

]

= −1

2
Sx

ab

[

gacgbdδgcd + 2∇(aξb)
x

]

= −1

2
Sab
x δgab − Sx

ab∇bξa
x ,(16.118)

where we have defined

Sx
ab = 1

3
μABC
x

∂nx
ABC

∂gDxEx

∂X D
x

∂xa

∂X E
x

∂xb
= Sx

ba, (16.119)

such that
ua
xSx

ba = 0. (16.120)

Combining the results, we arrive at

μx
aδn

a
x = μx

a

(

nb
x∇bξ

a
x − ξb

x∇bna
x − na

x∇bξ
b
x

)

+ Sx
ab∇bξa

x

+
∑

y �=x

Rxy
a

(

ξa
y − ξa

x

)

+ 1

2

[

μx
cnc

xgab + Sab
x

]

δgab. (16.121)

Introducing the total dissipative stresses, in this case trivially setting

Dx
ab = Sx

ab, (16.122)

we see that Eq. (16.97) becomes

δ
(√−gΛ

) = −√−g

{
∑

x

(

f xa + Γxμx
a + ∇b Dx

ba − Rx
a

)

ξa
x

−1

2

[

Ψ gab +
∑

x

(

na
xμ

b
x + Dx

ab

)
]

δgab

}

+∇a

[

√−g
∑

x

(
1

2
μabc
x nx

bcd + gac Dx
cd

)

ξd
x

]

, (16.123)

where we have used (16.98) and (16.99) for the resistivity currents.
The equations of motion now take the form

f xa + Γxμx
a + ∇b Dx

ab = Rx
a , (16.124)
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and the stress-energy tensor is

T ab = Ψ gab +
∑

x

(

na
xμ

b
x + Dab

x

)

, (16.125)

where the generalized pressure, Ψ , remains unchanged, cf. (9.17). As in the previous
problem, it is easy to show that

∇bT b
a =

∑

x

(

f xa + Γxμx
a + ∇b Dx

ab

)

= 0, (16.126)

since (16.106) still holds.
Finally, we can extract the various creation/destruction rates. We first contract

Eq. (16.124) with ua
x, noting that ua

x f xa = 0 and ua
x∇b Dx

ab = −Dx
ab∇bua

x, to find

μxΓx = −Rx
aua

x − Dx
ab∇bua

x . (16.127)

When x = s this gives the entropy creation rate which should be constrained by the
second law.

Armed with the more general constraint (16.127) for the dissipative terms, let us
revisit the two-component model problem. In particular, let us ask what we can learn
from the constraints that follow from the derivation. As in the previous discussion of
this problem we will use an observer moving along with the matter flow, such that
ua = ua

n and w
a represents the relative flow.

Let us first consider the matter component. Since we know that Rns should be
orthogonal to ua

s we introduce the decomposition

Rns
a = Ru

(

w2ua + wa

)

+ εabcdφ
b
nucwd . (16.128)

Then (16.127) implies that

Dn
ab∇bua = −Rns

a ua = Ruw
2. (16.129)

Now, there are two possible cases to consider. In the general case, with a distinct
heat flow, we have w2 > 0 which if we take Ru > 0 implies that the left-hand side
of (16.129) must be positive. To ensure that this is the case, we use the standard
decomposition (with the same conventions as before, see (14.11))

∇aux
b = σ xab +! x

ab − ux
au̇x

b + 1

3
θx ⊥x

ab, (16.130)

where
σ xab = D〈aux

b〉, with Daux
b =⊥x

ac⊥x
bd ∇cud

x , (16.131)

where the angular brackets indicate symmetrization and trace removal (as in (12.39)),

! x
ab = D[aux

b], (16.132)
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θx = ∇aua
x, (16.133)

and
u̇x

a = ub
x∇bux

a . (16.134)

With these definitions, each term in (16.130) is orthogonal to ub
x. From the fact that

Sx
ab is symmetric and orthogonal to ua

x it is easy to see that the condition inferred from
(16.129) is satisfied provided that we have

Dn
ab = ηnσ nab + ζ nθn ⊥n

ab, (16.135)

with ηn > 0 and ζ n > 0. We recognise this as the dissipative (shear- and bulk
viscosity) stresses expected in the Navier-Stokes equations. Interestingly, the second
law of thermodynamics was not engaged in the derivation of this result.

Finally, let us consider the entropy condition. Making use of the results from the
simpler heat example, noting thatwe can still use (16.113) for Rsn

a , we see that (16.127)
leads to

TΓs = γ Rww
2 − Ds

ab∇bua
s ≥ 0, (16.136)

as required by the second law. This suggests that, in addition to Rw > 0 from before,
we should have

Ds
ab = −ηsσ sab − ζ sθ s ⊥s

ab, (16.137)

with ηs > 0 and ζ s > 0.
This example provides an indicative illustration, but it is (by no means) the most

general model one may envisage, see Andersson et al. (2017a).

16.11 A few comments

The development of practical models—suitable for applications—for dissipative rel-
ativistic fluids remains very much a “work in progress”. Having said that, there have
been a number of recent potentially promising developments. We have covered the
main ideas here, starting from phenomenological models constructed to incorporate
dissipative effects. Themost “obvious” strategies—the “text-book” approach of Eckart
(1940) and Landau and Lifshitz (1959)—fail completely, as they do not respect causal-
ity and have stability issues. Going further, we described how the problems can be
fixed by introducing additional dynamical fields. We considered the formulations of
Stewart (1977), Israel and Stewart (1979a, b) and Carter (1991) in detail. From our
discussion it should be clear that these models are examples of an extremely large
family of possible theories for dissipative relativistic fluids. Given this wealth of pos-
sibilities, can we hope to find the “correct” model? To some extent, the answer to this
question relies on the extra parameters one has introduced in the theory. Can they be
constrained by observations? This question has been discussed by Geroch (1995) and
Lindblom (1996). The answer seems to be no, we should not expect to be able to use
observations to single out a preferred theoretical description. The reason for this is
that the different models relax to the Navier–Stokes form on very short timescales.
Hence, one will likely only be able to constrain the standard shear and bulk viscosity
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coefficients, etc. Related questions concern the practicality of the different proposed
schemes. To a certain extent, this is probably amatter of taste. Of course, it maywell be
that the additional parameters required in a particular model are easier to extract from
microphysics arguments. With this in mind, we introduced a fairly recent develop-
ment aimed at extending the variational approach to dissipative systems (Andersson
and Comer 2015). This is conceptually interesting as it draws more directly of the
matter space, but it is not yet clear how far this alternative strategy can be pushed. At
the end of the day, it may well be that different circumstances require different logic.
This would make the “best” formulation a matter of taste. Clearly, there is scope for
more thinking...

17 Concluding remarks

In writing (years ago) and updating (over several years) this review, we have tried to
develop a coherent description of the diverse building blocks required for fully rela-
tivistic fluid models. Although there are alternatives, we opted to base our discussion
of the fluid equations of motion on the variational approach pioneered by Taub (1954)
and developed further by Carter (1983, 1989a, 1992). This is an appealing strategy
because it leads to a natural formulation for multi-fluid problems and there have been a
number of extensions to cover (more or less) the full range of physics onemay be inter-
ested in. This is reflected in the material that was added as the review was updated. We
now go deeper into variational principles in relativity and consider applications rang-
ing from superfluids with quantized vortices to elastic matter and electromagnetism.
We also make contact with modern applications by discussing numerical implemen-
tations. Finally, the discussion of dissipative systems has been revised to reflect the
ongoing discussion of this important, but still challenging problem. These changes are
significant, but one could consider going further still. After all, fluids describe physics
at many different scales and there is a lot of physics to discuss. The only thing that
is certain is that, whatever happens next, we expect to continue to enjoy the learning
process!
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The volume tensor in n-dimensions

In this appendix we provide a number of general identities for the completely antisym-
metric volume tensor in n-dimensions. The most useful identities are those involving
the tensor product (including, as needed, contractions over indices), of the volume
tensor with itself (Wald 1984):

εa1...anεb1...bn = (−1)s n! δ[a1b1 · · · δan ]
bn
, (A.1)

εa1...a j a j+1...anεa1...a j b j+1...bn = (−1)s (n − j)! j ! δ[a j+1
b j+1 · · · δan ]

bn
, (A.2)

εa1...anεa1...an = (−1)s n!, (A.3)

where s is the number of minus signs in the metric (e.g., s = 1 for spacetime). We
have used the variation of the volume tensor with respect to the metric in the actions
principle presented in Sects. 6, 8.1, and 9. We will derive this variation here using the
identities above as applied to four-dimensional spacetime (s = 1 and n = 4).

Start by writing Eq. (A.1) as

ga1c1ga2c2ga3c3ga4c4εc1c2c3c4εb1b2b3b4 = (−1)s n! δ[a1b1 · · · δan ]
bn
, (A.4)

vary it with respect to the metric, and then contract the result with εa1a2a3a4 to find

δεb1b2b3b4 = 1

4!εb1b2b3b4

(

εa1a2a3a4δεa1a2a3a4 + 4! gcdδgcd

)

, (A.5)

where we have used

0 = δ (δa
b
) = δ (gacgcb

) ⇒ δgab = −gacgbdδgcd . (A.6)

If we now contract with εb1b2b3b4 we find

εa1a2a3a4δεa1a2a3a4 = −4!
2

gbcδgbc (A.7)

and thus

δεa1a2a3a4 = 1

2
εa1a2a3a4gbcδgbc. (A.8)

The last thing we need is the variation of the determinant of the metric, since it
enters directly in the integrals of the actions. Treating the metric as a 4×4 matrix, and
“normalizing” the ε by dividing by its one independent component, the determinant
is given by

g = 1

4! (ε0123)2
εa1a2a3a4εb1b2b3b4ga1b1ga2b2ga3b3ga4b4 . (A.9)

The right-hand-side is proportional to the left-hand-side of Eq. (A.3) and thus

ε0123 = √−g, ε0123 = 1√−g
. (A.10)
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It is not difficult to show

δ
√−g = 1

2

√−ggabδgab. (A.11)

Thematter space Levi-Civita symbol

The pull-back formalism used in the variational approach builds on the three-form
densities nx

ABC . The associatedmatter-space analysis draws on basic facts fromLinear
Algebra (Strang 1980), e.g., for constructing determinants andmatrix inverses to build
the different nx

ABC required for fluids and solids. As it is helpful to understand the
details, we summarize some of the key arguments here.

The first step is to introduce an arbitrary 3× 3 matrix M AB (A, B,C . . . = 1, 2, 3)
and assume it has an inverse MAB , meaning

M AC MBC = MC B MC A = δA
B . (B.1)

The first equality is the simple statement that left- and right-inverses must be equal
for square matrices.

The next step is to introduce the determinants of M AB and MAB — det[M]
and det[M−1], respectively. In the same sense that

√−g is used to normalize εabcd

(cf. Eq. (A.10) above), det[M] and det[M−1] will serve as the normalizations in their
respective Levi-Civita symbols εM

ABC and εABC
M−1 .

In an index form, where the Einstein summation convention is going to be used,
determinants of 3× 3 matrices require completely antisymmetric three index objects,
which only take the values {±1, 0}. These can be written in terms of standard matrix
determinants with Kronecker-delta symbols δA

B = {1, 0} as the matrix entries:

[A B C]U =
∣
∣
∣
∣
∣
∣

δA
1 δ

A
2 δ

A
3

δB
1 δ

B
2 δ

B
3

δC
1 δ

C
2 δ

C
3

∣
∣
∣
∣
∣
∣

= 3!δ[A
1 δ

B
2 δ

C]
3 = {±1, 0} (B.2)

and

[D E F]D =
∣
∣
∣
∣
∣
∣

δ1D δ
1
E δ

1
F

δ2D δ
2
E δ

2
F

δ3D δ
3
E δ

3
F

∣
∣
∣
∣
∣
∣

= 3!δ1[Dδ
2
Eδ

3
F] = {±1, 0}. (B.3)

When an Einstein summation on B is performed for δA
Bδ

B
D it leads to the expression

δA
Bδ

B
D = δA

1 δ
1
D + δA

2 δ
2
D + δA

3 δ
3
D. (B.4)

By working backwards on the indices with explicit A = 1, B = 2, etc., values, we
can use the expression just above to show that

[A B C]U [D E F]D = 3!δ[A
D δ

B
E δ

C]
F . (B.5)

This is the three-dimensional version of Eq. (A.1) (n = 3 and s = 0).
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The advantage of the [A B C]D symbols is that index notation can be used for the
determinant of the matrix M AB ; namely,

det[M] ≡
∣
∣
∣
∣
∣
∣

M11 M12 M13

M21 M22 M23

M31 M32 M33

∣
∣
∣
∣
∣
∣

= 1

3! [A B C]D [D E F]D M AD M B E MC F . (B.6)

Likewise, the determinant of the inverse matrix MAB is

det[M−1] ≡
∣
∣
∣
∣
∣
∣

M11 M21 M31
M12 M22 M32
M13 M23 M33

∣
∣
∣
∣
∣
∣

= 1

3! [A B C]U [D E F]U MAD MB E MC F . (B.7)

Now, we define the Levi-Civita symbols for M AB and MAB to be

εM
ABC = 1√

det[M] [A B C]D , (B.8)

εABC
M−1 = 1

√

det[M−1] [A B C]U , (B.9)

and Eq. (B.5) takes the form

εABC
M−1 ε

M
DE F = 3!δ[A

D δ
B
E δ

C]
F . (B.10)

where we have used

det[M−1] = 1

det[M] . (B.11)

This follows simply from the determinant properties det[M−1M] = 1 and
det[M−1M] = det[M−1] det[M].

We end by noting that the determinants normalize the [A B C]U and [D E F]D
symbols in the sense that Eqs. (B.6) and (B.7) become

εM
ABCε

M
DE F M AD M B E MC F = εABC

M−1 ε
DE F
M−1 MAD MB E MC F = 3!. (B.12)

Also, we can rewrite Cramer’s Rule for obtaining the matrix inverse MAB in and index
form:

MAB = 1

2
εM

AC Eε
M
B DF MC D M E F . (B.13)
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