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Abstract
Equal-arm detectors of gravitational radiation allow phase measurements many

orders of magnitude below the intrinsic phase stability of the laser injecting light

into their arms. This is because the noise in the laser light is common to both arms,

experiencing exactly the same delay, and thus cancels when it is differenced at the

photo detector. In this situation, much lower level secondary noises then set the

overall performance. If, however, the two arms have different lengths (as will

necessarily be the case with space-borne interferometers), the laser noise experi-

ences different delays in the two arms and will hence not directly cancel at the photo

detector. To solve this problem, a technique involving heterodyne interferometry

with unequal arm lengths and independent phase-difference readouts has been

proposed. It relies on properly time-shifting and linearly combining independent

Doppler measurements, and for this reason it has been called time-delay interfer-

ometry (TDI). This article provides an overview of the theory, mathematical

foundations, and experimental aspects associated with the implementation of TDI.

Although emphasis on the application of TDI to the Laser Interferometer Space

Antenna mission appears throughout this article, TDI can be incorporated into the

design of any future space-based mission aiming to search for gravitational waves

via interferometric measurements. We have purposely left out all theoretical aspects

that data analysts will need to account for when analyzing the TDI data

combinations.
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1 Introduction

Breakthroughs in modern technology have made possible the construction of

extremely large gravitational wave (GW) interferometer detectors both on the

ground and in space. The past six decades’ heroic experimental efforts undertaken

by physicists all over the world have finally culminated with the first direct

observation of a GW signal announced by the Laser Interferometer Gravitational

Wave Observatory (LIGO) project (Aasi et al. 2015; Abbott et al. 2016). On

September 14, 2015, the two LIGO interferometers at Hanford (Washington) and

Livingston (Louisiana), simultaneously measured and recorded strain data that

indicated the presence of a GW signal emitted by a coalescing binary system

containing two black-holes of masses M1 ¼ 36þ5
�4 M� and M2 ¼ 29þ4

�4 M� out to a

luminosity distance of 410þ160
�180 Mpc corresponding to a red-shift z ¼ 0:09þ0:03

�0:04 (the

above uncertainties being at the 90 percent confidence level). Since the
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announcement of the first GW observation, more detections have been made by both

LIGO and the VIRGO project, and it is expected that soon the KAGRA

interferometer in Japan (Aso et al. 2013) will join its two western sisters in making

astronomical observations.

Like Galileo Galilei (Favaro and Barbera 1966) in the year 1610 was looking for

the first time at the marvels of the sky with one of the first-made optical telescopes,

we are now just starting to explore the observational capabilities offered by GWs,

which promise to unveil secrets of the Universe inaccessible by any other means

(Thorne 1987).

Ground-based interferometers cover a frequency band ranging from a few tens of

Hz to a few kHz, with the lower frequency cut-off determined by the Earth’s large

seismic and gravity-gradient noises (Aasi et al. 2015; Accadia et al. 2012; Aso et al.

2013). To access lower regions of the GW spectrum, the European Space Agency

(ESA) and the National Aeronautics and Space Administration (NASA) have been

planning, since the late nineties, to jointly fly the Laser Interferometer Space

Antenna (LISA). LISA, which is now expected to be launched in the year 2034

(Amaro-Seoane et al. 2017), is a space-based interferometer with three interplan-

etary spacecraft flying in an almost equilateral configuration and exchanging

coherent laser beams along its three arms of 2.5 million km. It is designed to cover a

bandwidth from 10�4 to 1 Hz, unveiling a broad variety of GW sources

unobservable by ground-based interferometers (Amaro-Seoane et al. 2017).

Ground- and space-based detectors will complement each other in the observation

of GWs in an essential way, analogous to the way optical, radio, X-ray, c-ray, and

other frequency-band observations have been doing for the electromagnetic

spectrum.

The astrophysical sources observable in the mHz band include galactic binaries,

extra-galactic super-massive black-hole binaries and coalescences, and stochastic

GW background from the early Universe. Coalescing binaries are one of the

important sources in this frequency region, as they include galactic and extra

galactic stellar mass binaries, and massive and super-massive black-hole binaries. In

addition, following the recent detections made by ground detectors, it has been

estimated that a large population of small-mass (10–100M�) binary black-holes

could also be observable by space-based interferometers. By taking advantage of the

frequency evolution of the signals emitted by these systems, both ground- and

space-based interferometers could observe the same signals in their observations

frequency bands, thereby complementing their scientific inferences about these

signals’ sources (Sesana 2016; Tinto and de Araujo 2016). Stellar mass binaries

have also been shown by population synthesis studies to be present in large number

in the frequency range below 2–3 mHz (Bender and Hils 1997; Nelemans et al.

2001). In the lower frequency range (� 1 mHz) there is a large number of such

unresolvable sources in each of the frequency bins. These sources effectively form a

stochastic GW background referred to as binary confusion noise.

Massive black-hole binaries are interesting sources both from the astrophysical

and theoretical points of view. Coalescences of massive black holes from different

galaxies after their merger during growth of the present galaxies would provide new
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and unique information on galaxy formation. Coalescence of binaries involving

intermediate mass black holes could help to understand the formation and growth of

massive black holes. The super-massive black-hole binaries are strong emitters of

GWs and these spectacular events can be observable beyond red-shift of z ¼ 10.

These systems would help to determine the cosmological parameters independently.

And, just as the cosmic microwave background is left over from the big bang, so too

should there be a background of gravitational waves. Unlike electromagnetic waves,

gravitational waves do not interact with matter after a few Planck times since the big

bang, so they do not thermalize. Their spectrum today, therefore, is simply a red-

shifted version of the spectrum they formed with, which would throw light on the

physical conditions at the epoch of the early Universe.

Interferometric non-resonant detectors of gravitational radiation with frequency

content fl\f\fu (fl; fu being respectively the lower and upper frequency cut-offs

characterizing the detector’s operational bandwidth) use a coherent train of

electromagnetic waves (of nominal frequency m0 � fu) folded into several beams,

and at one or more points where these intersect, monitor relative fluctuations of

frequency or phase (homodyne detection). The observed low-frequency fluctuations

are due to several causes:

1. frequency variations of the source of the electromagnetic signal about its

nominal frequency m0,

2. relative motions of the electromagnetic source and the mirrors (or amplifying

transponders) that do the folding,

3. temporal variations of the index of refraction along the beams, and, according to

general relativity,

4. to any time-variable gravitational fields present, such as the transverse-traceless

metric curvature of a passing plane gravitational-wave train.

To observe gravitational waves in this way, it is thus necessary to control, or

monitor, the other sources of relative frequency fluctuations, and, in the data

analysis, to use optimal algorithms based on the different characteristic interfer-

ometer responses to gravitational waves (the signal) and to the other sources (the

noise) (Tinto and Estabrook 1995). By comparing phases of electromagnetic beams

referenced to the same frequency generator and propagated along non-parallel

equal-length arms, frequency fluctuations of the frequency reference can be

removed, and gravitational-wave signals at levels many orders of magnitude lower

can be detected.

In the present single-spacecraft Doppler tracking observations, for instance,

many of the noise sources can be either reduced or calibrated by implementing

appropriate microwave frequency links and by using specialized electronics

(Armstrong 2006; Tinto 2002), so the fundamental limitation is imposed by the

frequency (time-keeping) fluctuations inherent to the reference clock that controls

the microwave system. Hydrogen maser clocks, currently used in Doppler tracking

experiments, achieve their best performance at about 1000 sec. integration time,

with a fractional frequency stability of a few parts in 10�16. This is the reason why

these one-arm interferometers in space—which have one Doppler readout and a ‘‘3-
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pulse’’ response to gravitational waves (Estabrook and Wahlquist 1975)—are most

sensitive to mHz gravitational waves. This integration time is also comparable to the

microwave propagation (or ‘‘storage’’) time 2L/c (c being the speed-of-light in

vacuum) to spacecraft en route to the outer solar system (for example L ’
5 -- 8 AU for the Cassini spacecraft) (Armstrong 2006; Tinto 2002).

Low-frequency interferometric gravitational-wave detectors, such as the LISA

mission and the Chinese TaiJi and TianQin projects (Amaro-Seoane et al. 2017; Hu

and Wu 2017; Luo et al. 2016), have been proposed to achieve greater sensitivity to

mHz gravitational waves. However, since the arm lengths of these space-based

interferometers can differ by a few percent because of the effects of gravity on their

three spacecraft, the direct recombination of the two beams at a photo detector will

not effectively remove the laser frequency noise. This is because the frequency

fluctuations of the laser will be delayed by different amounts within the two arms of

unequal length. To cancel the laser frequency noise, the time-varying Doppler data

must be recorded and post-processed to allow for arm-length differences (Tinto and

Armstrong 1999). The data streams will have temporal structure, which can be

described as due to many-pulse responses to d-function excitations, depending on

time-of-flight delays in the response functions of the instrumental Doppler noises

and in the response to incident plane-parallel, transverse, and traceless gravitational

waves.

Although the theory of TDI can be used by any future space-based interferometer

aiming to detect gravitational radiation, this article will focus on its implementation

by the LISA mission (Amaro-Seoane et al. 2017).

The LISA design envisions a constellation of three spacecraft orbiting the Sun.

Each spacecraft is to be equipped with two lasers sending beams to the other two

(� 0:017 AU away) while simultaneously measuring the beat frequencies between

the local laser and the laser beams received from the other two spacecraft. The

theory of TDI presented in this article will assume a successful prior removal of any

first-order Doppler beat-notes due to spacecraft relative motions (Hellings 2001;

Tinto et al. 2002b; Heinzel et al. 2011; Otto et al. 2012; Tinto and Hartwig 2018;

Tinto and Yu 2015), giving six residual Doppler time series as the raw data of a time

delay space interferometer. In one of the sections covering the experimental

implementation of TDI we will return to the issue of the microwave beat frequency

measurements and describe the two existing schemes for removing the clock noise

from the one-way heterodyne phase measurements.

Following Tinto (1998), Armstrong et al. (1999) and Dhurandhar et al. (2002),

we will regard LISA not as constituting one or more conventional Michelson

interferometers, but rather, in a symmetrical way, a closed array of six one-arm

delay lines between the test masses. In this way, during the course of the article, we

will show that it is possible to synthesize new data combinations that cancel laser

frequency noises, and estimate achievable sensitivities of these combinations in

terms of the separate and relatively simple single arm responses both to

gravitational wave and instrumental noise (cf. Tinto 1998; Armstrong et al. 1999;

Dhurandhar et al. 2002).

In contrast to Earth-based interferometers, which operate in the long-wavelength

limit (LWL) (arm lengths � gravitational wavelength � c=f0, where f0 is a
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characteristic frequency of the GW), LISA does not operate in the LWL over much

of its frequency band. When the physical scale of a free mass optical interferometer

intended to detect gravitational waves is comparable to or larger than the GW

wavelength, time delays in the response of the instrument to the waves, and travel

times along beams in the instrument, cannot be ignored and must be allowed for in

computing the detector response used for data interpretation. It is convenient to

formulate the instrumental responses in terms of observed differential frequency

shifts—for short, Doppler shifts—rather than in terms of phase shifts usually used in

interferometry, although of course these data, as functions of time, are inter-

convertible through time-differentiation.

This third revision of our article on TDI is organized as follows. In Sect. 2 we

provide an overview of the physical and historical motivations of TDI. In Sect. 3 we

summarize the one-arm Doppler transfer functions of an optical beam between two

carefully shielded test masses inside each spacecraft resulting from (i) frequency

fluctuations of the lasers used in transmission and reception, (ii) fluctuations due to

non-inertial motions of the spacecraft, and (iii) beam-pointing fluctuations and shot

noise (Estabrook et al. 2000). Among these, the dominant noise is from the

frequency fluctuations of the lasers and is several orders of magnitude (perhaps 7 or

8) above the other noises. This noise must be very precisely removed from the data

in order to achieve the GW sensitivity at the level set by the remaining Doppler

noise sources, which are at a much lower level and constitute the noise floor after

the laser frequency noise is suppressed. We show that this can be accomplished by

shifting and linearly combining the eighteen one-way Doppler data measured by

LISA. The actual procedure can easily be understood in terms of properly defined

time-delay operators that act on the one-way Doppler measurements. In Sect. 4 we

develop a formalism involving the algebra of the time-delay operators which is

based on the theory of rings and modules and computational commutative algebra.

We show that the space of all possible interferometric combinations canceling the

laser frequency noise is a module over the polynomial ring in which the time-delay

operators play the role of the indeterminates (Dhurandhar et al. 2002). In the

literature, this module is called the first module of syzygies (Becker and

Weispfenning 1993; Kreuzer and Robbiano 2000). We show that the module can

be generated from four generators(Armstrong et al. 1999; Dhurandhar et al. 2002),

so that any data combination canceling the laser frequency noise is simply a linear

combination formed from these generators. We would like to emphasize that this is

the mathematical structure underlying TDI.

Also in Sect. 4 specific interferometric combinations are derived, and their

physical interpretations are discussed. The expressions for the Sagnac interfero-

metric combinations ða; b; c; fÞ are first obtained; in particular, the symmetric

Sagnac combination f, for which each raw data set needs to be delayed by only a

single arm transit time, distinguishes itself against all the other TDI combinations by

having a higher order response to gravitational radiation in the LWL when the

spacecraft separations are equal. We then express the unequal-arm Michelson

combinations (X, Y, Z) in terms of the a, b, c, and f combinations with further

transit time delays. One of these interferometric data combinations would still be

available if the links between one pair of spacecraft were lost. Other TDI
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combinations, which rely on only four of the possible six inter-spacecraft Doppler

measurements (denoted P, E, and U) are also presented. They would of course be

quite useful in case of potential loss of any two inter-spacecraft Doppler

measurements.

TDI so formulated presumes the spacecraft-to-spacecraft light-travel-times to be

constant in time, and independent from being up- or down-links. Reduction of data

from moving interferometric laser arrays in solar orbit will in fact encounter non-

symmetric up- and down-link light time differences that are significant, and need to

be accounted for in order to exactly cancel the laser frequency fluctuations

(Shaddock 2004; Cornish and Hellings 2003; Shaddock et al. 2003; Tinto et al.

2004; Rajesh Nayak and Vinet 2005; Dhurandhar 2009). In Sect. 5 we show that, by

introducing a set of non-commuting time-delay operators, there exists a quite

general procedure for deriving generalized TDI combinations that account for the

effects of time-dependence of the arms. Using this approach it is possible to derive

‘‘flex-free’’ expression for the unequal-arm Michelson combinations X1, and obtain

the generalized expressions for all the TDI combinations (Tinto et al. 2004).

Alternatively, a rigorous mathematical formulation can be given in terms of rings

and modules. But because of the non-commutativity of operators the polynomial

ring is non-commutative. Thus the algebraic problem becomes extremely complex

and a general solution seems difficult to obtain (Dhurandhar 2009). But we show

that for the special case when one arm of LISA is dysfunctional a plethora of

solutions can be found (Vallisneri et al. 2008; Dhurandhar et al. 2010). Such a

possibility must be envisaged because of potential technical failures.

In Sect. 6 we address the question of maximization of the LISA signal-to-noise-

ratio (SNR) to any gravitational-wave signal present in its data. This is done by

treating the SNR as a functional over the space of all possible TDI combinations. As

a simple application of the general formula we have derived, we apply our results to

the case of signals randomly polarized and randomly distributed on the celestial

sphere. We find that the standard LISA sensitivity figure derived for a single

Michelson interferometer (Estabrook et al. 2000; Prince et al. 2002; Rajesh Nayak

et al. 2003b) can be improved by a factor of
ffiffiffi

2
p

in the low-part of the frequency

band, and by more than
ffiffiffi

3
p

in the remaining part of the accessible band. Further, we

also show that if the location of the GW source is known, as the source appears to

move in the LISA reference frame, it is possible then to optimally track the source

by appropriately changing the data combinations during the course of its trajectory

(Prince et al. 2002; Rajesh Nayak et al. 2003a). As an example of such type of

source, we consider known binaries within our own galaxy.

In Sect. 7, we finally address aspects of TDI of more practical and experimental

nature, and provide a list of references where more details about these topics can be

found. It is worth mentioning that, as of today, TDI has already gone through

several successful experimental tests (de Vine et al. 2010; Miller 2010; Spero et al.

2011; Mitryk et al. 2012; Grüning et al. 2015) and it has been endorsed by the LISA

project as its baseline technique for achieving its required sensitivity to gravitational

radiation (Amaro-Seoane et al. 2017).
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We emphasize that, although this article will use LISA as baseline mission

reference, the results here presented can easily be extended to other space mission

concepts.

2 Physical and historical motivations of TDI

Equal-arm interferometer detectors of gravitational waves can observe gravitational

radiation by canceling the laser frequency fluctuations affecting the light injected

into their arms. This is done by comparing phases of split beams propagated along

the equal (but non-parallel) arms of the detector. The laser frequency fluctuations

affecting the two beams experience the same delay within the two equal-length arms

and cancel out at the photodetector where relative phases are measured. This way

gravitational-wave signals of dimensionless amplitude less than 10�20 can be

observed when using lasers whose frequency stability can be as large as roughly a

few parts in 10�13.

If the arms of the interferometer have different lengths, however, the exact

cancellation of the laser frequency fluctuations, say C(t), will no longer take place at

the photodetector. In fact, the larger the difference between the two arms, the larger

will be the magnitude of the laser frequency fluctuations affecting the detector

response. If L1 and L2 are the lengths of the two arms, it is easy to see that the

amount of laser relative frequency fluctuations remaining in the response is equal to

(units in which the speed of light c ¼ 1)

DCðtÞ ¼ Cðt � 2L1Þ � Cðt � 2L2Þ: ð1Þ

In the case of a space-based interferometer such as LISA, whose lasers are expected

to display relative frequency fluctuations equal to about 10�13=
ffiffiffiffiffiffi

Hz
p

in the mHz

band, and whose arms will differ by a few percent (Amaro-Seoane et al. 2017),

Equation (1) implies the following expression for the amplitude of the Fourier

components of the uncanceled laser frequency fluctuations (an over-imposed tilde

denotes the operation of Fourier transform):

j fDCðf Þj ’ 4pf jðL1 � L2Þj j eCðf Þj: ð2Þ

At f ¼ 10�3 Hz, for instance, and assuming jL1 � L2j ’ 0:1 s, the uncanceled

fluctuations from the laser are equal to 	 1:3 
 10�16=
ffiffiffiffiffiffi

Hz
p

. Since the LISA sen-

sitivity goal is about 10�20=
ffiffiffiffiffiffi

Hz
p

in this part of the frequency band, it is clear that an

alternative experimental approach for canceling the laser frequency fluctuations is

needed.

A first attempt to solve this problem was presented by Faller and Bender (1984)

and Faller et al. (1985, 1989), and the scheme proposed there can be understood

through Fig. 1. In this idealized model the two beams exiting the two arms are not

made to interfere at a common photodetector. Rather, each is made to interfere with

the incoming light from the laser at a photodetector, decoupling in this way the

phase fluctuations experienced by the two beams in the two arms. Now two Doppler

measurements are available in digital form, and the problem now becomes one of
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identifying an algorithm for digitally canceling the laser frequency fluctuations from

a resulting new data combination.

The algorithm they first proposed, and refined subsequently in Giampieri et al.

(1996), required processing the two Doppler measurements, say y1ðtÞ and y2ðtÞ, in

the Fourier domain. If we denote with h1ðtÞ, h2ðtÞ the gravitational-wave signals

entering into the Doppler data y1, y2, respectively, and with n1, n2 any other

remaining noise affecting y1 and y2, respectively, then the expressions for the

Doppler observables y1, y2 can be written in the following form:

y1ðtÞ ¼ Cðt � 2L1Þ � CðtÞ þ h1ðtÞ þ n1ðtÞ; ð3Þ

y2ðtÞ ¼ Cðt � 2L2Þ � CðtÞ þ h2ðtÞ þ n2ðtÞ: ð4Þ

From Eqs. (3) and (4) it is important to note the characteristic time signature of the

random process C(t) in the Doppler responses y1, y2. The time signature of the noise

C(t) in y1ðtÞ, for instance, can be understood by observing that the frequency of the

signal received at time t contains laser frequency fluctuations transmitted 2L1 s

earlier. By subtracting from the frequency of the received signal the frequency of

the signal transmitted at time t, we also subtract the frequency fluctuations C(t) with

the net result shown in Eq. (3).

The algorithm for canceling the laser noise in the Fourier domain suggested in

Faller and Bender (1984) works as follows. If we take an infinitely long Fourier

transform of the data y1, the resulting expression of y1 in the Fourier domain

becomes [see Eq. (3)]

Fig. 1 Light from a laser is split into two beams, each injected into an arm formed by pairs of free-falling
mirrors. Since the length of the two arms, L1 and L2, are different, now the light beams from the two arms
are not recombined at one photo detector. Instead each is separately made to interfere with the light that is
injected into the arms. Two distinct photo detectors are now used, and phase (or frequency) fluctuations
are then monitored and recorded there
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ey1ðf Þ ¼ eCðf Þ e4pifL1 � 1
� �

þ eh1ðf Þ þ en1ðf Þ: ð5Þ

If the arm length L1 is known exactly, we can use the ey1 data to estimate the laser

frequency fluctuations eCðf Þ. This can be done by dividing ey1 by the transfer

function of the laser noise C into the observable y1 itself. By then further multi-

plying ey1=½e4pifL1 � 1� by the transfer function of the laser noise into the other

observable ey2, i.e., ½e4pifL2 � 1�, and then subtract the resulting expression from ey2

one accomplishes the cancellation of the laser frequency fluctuations.

The problem with this procedure is the underlying assumption of being able to

take an infinitely long Fourier transform of the data. Even if one neglects the

variation in time of the LISA arms, by taking a finite-length Fourier transform of,

say, y1ðtÞ over a time interval 2T, the resulting transfer function of the laser noise C

into y1 no longer will be equal to ½e4pifL1 � 1�. This can be seen by writing the

expression of the finite length (2T) Fourier transform of y1 in the following way:

eyT1 �
Z þT

�T

y1ðtÞ e2pift dt ¼
Z þ1

�1
y1ðtÞHðtÞ e2pift dt; ð6Þ

where we have denoted with H(t) the function that is equal to 1 in the interval

½�T ;þT�, and zero everywhere else. Equation (6) implies that the finite-length

Fourier transform, eyT1 , of y1ðtÞ is equal to the convolution in the Fourier domain of

the infinitely long Fourier transform of y1ðtÞ, ey1, with the Fourier transform of H(t)
(Jenkins and Watts 1969) (i.e., the ‘‘Sinc Function’’ of width 1/T). The key point

here is that we can no longer use the transfer function ½e4pifLi � 1�, i ¼ 1; 2, for

estimating the laser noise fluctuations from one of the measured Doppler data,

without retaining residual laser noise into the combination of the two Doppler data

y1, y2 valid in the case of infinite integration time. The amount of residual laser

noise remaining in the Fourier-based combination described above, as a function of

the integration time 2T and type of ‘‘window function’’ used, was derived in the

appendix of Tinto and Armstrong (1999). There it was shown that, in order to

suppress the residual laser noise below the LISA sensitivity level identified by

secondary noises (such as proof-mass and optical-path noises) with the use of the

Fourier-based algorithm an integration time of about six months was needed.

A solution to this problem was suggested in Tinto and Armstrong (1999), which

works entirely in the time-domain. From Eqs. (3) and (4) we may notice that, by

taking the difference of the two Doppler data y1ðtÞ, y2ðtÞ, the frequency fluctuations

of the laser now enter into this new data set in the following way:

y1ðtÞ � y2ðtÞ ¼ Cðt � 2L1Þ � Cðt � 2L2Þ þ h1ðtÞ � h2ðtÞ þ n1ðtÞ � n2ðtÞ: ð7Þ

If we now compare how the laser frequency fluctuations enter into Eq. (7) against

how they appear in Eqs. (3) and (4), we can further make the following observation.

If we time-shift the data y1ðtÞ by the round trip light time in arm 2, y1ðt � 2L2Þ, and

subtract from it the data y2ðtÞ after it has been time-shifted by the round trip light

time in arm 1, y2ðt � 2L1Þ, we obtain the following data set:
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y1ðt � 2L2Þ � y2ðt � 2L1Þ ¼ Cðt � 2L1Þ � Cðt � 2L2Þ þ h1ðt � 2L2Þ � h2ðt � 2L1Þ
þ n1ðt � 2L2Þ � n2ðt � 2L1Þ:

ð8Þ

In other words, the laser frequency fluctuations enter into y1ðtÞ � y2ðtÞ and y1ðt �
2L2Þ � y2ðt � 2L1Þ with the same time structure. This implies that, by subtracting

Eq. (8) from Eq. (7) we can generate a new data set that does not contain the laser

frequency fluctuations C(t),

X � ½y1ðtÞ � y2ðtÞ� � ½y1ðt � 2L2Þ � y2ðt � 2L1Þ�: ð9Þ

The expression above of the X combination shows that it is possible to cancel the

laser frequency noise in the time domain by properly time-shifting and linearly

combining Doppler measurements recorded by different Doppler readouts. This in

essence is what TDI amounts to.

To gain a better physical understanding of how TDI works, let’s rewrite the

above X combination in the following form

X ¼ ½y1ðtÞ þ y2ðt � 2L1Þ� � ½y2ðtÞ þ y1ðt � 2L2Þ�; ð10Þ

where we have simply rearranged the terms in Eq. (9) (Shaddock et al. 2003).

Fig. 2 Schematic diagram for X, showing that it is a synthesized zero-area Sagnac interferometer. The
optical path begins at an ‘‘x’’ and the measurement is made at an ‘‘o’’
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Equation (10) shows that X is the difference of two sums of relative frequency

changes, each corresponding to a specific light path (the continuous and dashed

lines in Fig. 2). The continuous line, corresponding to the first square-bracket term

in Eq. (10), represents a light-beam transmitted from spacecraft 1 and made to

bounce once at spacecraft 3 and 2 respectively. Since the other beam (dashed line)

experiences the same overall delay as the first beam (although by bouncing off

spacecraft 2 first and then spacecraft 3) when they are recombined they will cancel

the laser phase fluctuations exactly, having both experienced the same total delays

(assuming stationary spacecraft). For this reason the combination X can be regarded

as a synthesized (via TDI) zero-area Sagnac interferometer, with each beam

experiencing a delay equal to ð2L1 þ 2L2Þ. In reality, there are only two beams in

each arm (one in each direction) and the lines in Fig. 2 represent the paths of

relative frequency changes rather than paths of distinct light beams.

In the following sections we will further elaborate and generalize TDI to the

realistic LISA configuration.

3 Time-delay interferometry

The description of TDI for LISA is greatly simplified if we adopt the notation shown

in Fig. 3, where the overall geometry of the LISA detector is defined. There are

three spacecraft, six optical benches, six lasers, six proof masses, and eighteen

photodetectors.1 There are also six phase difference data going clock-wise and

counter-clockwise around the LISA triangle. For the moment we will make the

simplifying assumption that the array is stationary, i.e., the back and forth optical

paths between pairs of spacecraft are simply equal to their relative distances

(Shaddock 2004; Cornish and Hellings 2003; Shaddock et al. 2003; Tinto et al.

2004).

Several notations have been used in this context. The double index notation

recently employed in Shaddock et al. (2003), where six quantities are involved, is

self-evident. However, when algebraic manipulations are involved the following

notation seems more convenient to use. The spacecraft are labeled 1, 2, 3 and their

separating distances are denoted L1, L2, L3, with Li being opposite spacecraft i. We

orient the vertices 1, 2, 3 clockwise in Fig. 3. Unit vectors between spacecraft are n̂i,
oriented as indicated in Fig. 3. We index the phase difference data to be analyzed as

follows: The beam arriving at spacecraft i has subscript i and is primed or unprimed

depending on whether the beam is traveling clockwise or counter-clockwise (the

sense defined here with reference to Fig. 3) around the LISA triangle, respectively.

Thus, as seen from the figure, s1 is the phase difference time series measured at

reception at spacecraft 1 with transmission from spacecraft 2 (along L3).

Similarly, s10 is the phase difference series derived from reception at spacecraft 1

with transmission from spacecraft 3 (along L2). The other four one-way phase

difference time series from signals exchanged between the spacecraft are obtained

1 In this revised version of our article we have adopted the split-interferometry optical bench design to be

implemented by the LISA project. Differently from the previous LISA design, here internal metrology is

implemented for measuring the relative displacement between an optical bench and its hosted proof mass.

123

1 Page 12 of 73 M. Tinto, S. V. Dhurandhar



by cyclic permutation of the indices: 1 ! 2 ! 3 ! 1. We also adopt a notation for

delayed data streams, which will be convenient later for algebraic manipulations

(Dhurandhar et al. 2002). We define the three time-delay operators Di, i ¼ 1; 2; 3,

where for any data stream x(t)

DixðtÞ � xðt � LiÞ; ð11Þ

where Li, i ¼ 1; 2; 3, are the light travel times along the three arms of the LISA

triangle (the speed of light c is assumed to be unity in this article). Thus, for

example, D2s1ðtÞ ¼ s1ðt � L2Þ, D2D3s1ðtÞ ¼ s1ðt � L2 � L3Þ ¼ D3D2s1ðtÞ, and so

on. Note that here the operators commute. This is because the arm lengths have been

assumed to be constant in time. If the Li are functions of time then the operators no

longer commute (Cornish and Hellings 2003; Tinto et al. 2004), as will be described

in Sect. 4. The operator notation is very appropriate, because the delays can be

written as products of the operators Di and sums of those products and then we have

to deal with polynomials in Di. These polynomials are subject to the usual rules of

polynomial algebra. In case of time dependent arm lengths, the operators do not

commute and due care must be taken in their manipulation respecting their order in

products (Dhurandhar 2009; Dhurandhar et al. 2010).

In addition to the six inter-spacecraft one-way Doppler measurements, six phase

difference series result from laser beams exchanged between adjacent optical

benches within each spacecraft, and six more from measuring the displacements of

the optical benches relative to the proof masses. These additional data sets are

similarly indexed si, si0 , and ei, ei0 , i ¼ 1; 2; 3 respectively.

The proof-mass-plus-optical-bench assemblies for LISA spacecraft number 1 are

shown schematically in Fig. 4. The photo receivers that generate the data s1, s10 , s1, s10 , e1

L1

L1L

L

L

L

’

’

’ ^

^

^

1

2

3

3

2

3

2

n

n

n1

3

2

Fig. 3 Schematic LISA configuration. The spacecraft are labeled 1, 2, and 3. The optical paths are
denoted by Li, L

0
i where the index i corresponds to the opposite spacecraft. The unit vectors n̂i point

between pairs of spacecraft, with the orientation indicated
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and e10 at spacecraft 1 are shown. The phase fluctuations from the six lasers, which need to

be canceled, can be represented by six random processes pi,pi0 , where pi,pi0 are the phases

of the lasers in spacecraft i on the left and right optical benches, respectively, as shown in

the figure. Note that this notation is in the same spirit as in Tinto et al. (2004) and Shaddock

et al. (2003) in which moving spacecraft arrays have been analyzed.

We extend the cyclic terminology so that at vertex i, i ¼ 1; 2; 3, the random

displacement vectors of the two proof masses are respectively denoted by diðtÞ,
di0 ðtÞ, and the random displacements (perhaps several orders of magnitude greater)

of their optical benches are correspondingly denoted by DiðtÞ, Di0 ðtÞ where the

primed and unprimed indices correspond to the right and left optical benches,

respectively. As pointed out in Estabrook et al. (2000), the analysis does not assume

that pairs of optical benches are rigidly connected, i.e., Di 6¼ Di0 , in general. The

present LISA design shows optical fibers transmitting signals both ways between

adjacent benches. We ignore time-delay effects for these signals and will simply

denote by liðtÞ the phase fluctuations upon transmission through the fibers of the

laser beams with frequencies mi, and mi0 . The liðtÞ phase shifts within a given

spacecraft might not be the same for large frequency differences mi � mi0 . For the

envisioned frequency differences (a few hundred MHz), however, the remaining

fluctuations due to the optical fiber can be neglected (Estabrook et al. 2000). It is

also assumed that the phase noise added by the fibers is independent of the direction

of light propagation through them. For ease of presentation, in what follows we will

to s/c 2 to s/c 3

Fig. 4 Simplified schematic diagram of the proof-mass and optical-bench assemblies for LISA spacecraft
# 1. The random displacements of the two proof masses and two optical benches are indicated as lower
case di; di0 and upper case Di;Di0 respectively. The left bench reads out a phase signal s1 from optical
bench 20 on board spacecraft # 2. The phase difference is measured by using the laser, the photo-detector
on the left optical bench, and the phasemeter (not shown) where the base-band and digitization of the one-
way measurements is performed. The motion of the optical bench relative to the proof mass is measured
through internal metrology and results in the time series e1. The relative phase fluctuations between the
laser on the optical bench 1 and the laser on the optical bench 10 are instead captured by the measurements
s1 and s10 respectively
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assume the center frequencies of the lasers to be the same, and denote this frequency

by m0.

The laser phase noise in s30 is therefore equal to D10p2ðtÞ � p30 ðtÞ. Similarly,

since s2 is the phase shift measured on arrival at spacecraft 2 along arm 1 of a signal

transmitted from spacecraft 3, the laser phase noises enter into it with the following

time signature: D1p30 ðtÞ � p2ðtÞ. Figure 4 endeavors to make the detailed light paths

for these observations clear. An outgoing light beam transmitted to a distant

spacecraft is routed from the laser on the local optical bench using mirrors and beam

splitters. Note that inter-spacecraft light beams do not interact with the proof

masses. As a beam is received it is routed to the photo receiver where it is mixed

with light from the laser on that same optical bench. The inter-spacecraft phase data

are denoted s1 and s10 in Fig. 4.

The expressions for the si, si0 , ei, ei0 , and si, si0 phase measurements can now be

developed from Figs. 3 and 4, and they are for the particular LISA configuration in

which all the lasers have the same nominal frequency m0, and the spacecraft are

stationary with respect to each other. Consider for instance the s10 ðtÞ process [Eq. (12)

below]. The photo receiver on the right bench of spacecraft 1, which (in the

spacecraft reference frame) experiences a time-varying displacement D10 , measures

the phase difference s10 by first mixing the beam from the distant optical bench 3 in

direction n̂2, and laser phase noise p3 and optical bench motion D3 that have been

delayed by L02 seconds, with the local laser light (with phase noise p10). Since for this

simplified configuration no frequency offsets are present, there is of course no need

for any heterodyne conversion (Tinto et al. 2002b). Similar considerations can be

made for deriving the expressions for the e- and s-measurements, and they are equal

to (here units are such that 2pm0 ¼ 1) (Otto et al. 2012):

s10 ¼ H10 þD20p3 � p10 � n2 � ðD20D3 � D10 Þ þ N10 ; ð12Þ

e10 ¼ p1 � p10 þ 2 n2 � ðd10 � D10 Þ þ l1 þ Ne
10 ; ð13Þ

s10 ¼ p1 � p10 þ l1 þ Ns
10 ; ð14Þ

while those from optical bench 1 are equal to

s1 ¼ H1 þD3p20 � p1 þ n3 � ðD3D20 � D1Þ þ N1; ð15Þ

e1 ¼ p10 � p1 � 2 n3 � ðd1 � D1Þ þ l1 þ Ne
1; ð16Þ

s1 ¼ p10 � p1 þ l1 þ Ns
1: ð17Þ

In Eqs. (12–17) the H-terms are the contributions to the measured phase fluctuations

due to a possibly present transverse-traceless gravitational wave signal; the p-terms

represent the lasers’ phase noises; the N-terms are shot-noise phase fluctuations at

the photo-detectors; the n-terms are unit vectors along the directions of propagation

of the laser beams; the D-terms and d-terms are vector random processes associated

with the mechanical vibrations of the optical benches and proof masses with respect

to the local inertial reference frame respectively; the l-terms are phase fluctuations
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due to the optical fibers linking the two optical benches and they can been assumed

to be independent of the direction of propagation of the optical beams within them

(see Otto et al. 2012 for a clear discussion about this point); finally the Di, Dj0 are

delay operators. Twelve other relations, for the readouts at vertices 2 and 3, are

given by cyclic permutation of the indices in Eqs. (12, 13, 14, 15, 16, 17). The

gravitational-wave phase signal components Hi;Hi0 i ¼ 1; 2; 3, in Eqs. (12) and (15)

are given by integrating with respect to time the Eqs. (1) and (2) of Armstrong et al.

(1999), which relate metric perturbations to optical frequency shifts. The optical

path phase noise contributions Ni0 , Ni, which include shot noise from the low SNR in

the links between the distant spacecraft, can be derived from the corresponding

terms given in Estabrook et al. (2000). The ei, ei0 , si, si0 measurements will be made

with high signal-to-noise ratios so that for them the shot noise is negligible.

4 Algebraic approach for canceling laser and optical bench noises

The arms of ground-based detectors are chosen to be of equal length so that the laser

light experiences identical delay in each arm of the interferometer. This

arrangement precisely cancels the laser phase (or frequency) noise at the

photodetector. The required sensitivity of the instrument can thus only be achieved

by near exact cancellation of the laser frequency noise. However, in LISA it is

impossible to achieve equal distances between spacecraft, and the laser noise cannot

be canceled in this way. It is, however, possible to combine the recorded data

linearly with suitable time-delays corresponding to the three arm lengths of the giant

triangular interferometer so that the laser phase noise is canceled. Here we present a

systematic method based on modules over polynomial rings which guarantees all the

data combinations to cancel both the laser phase and the optical bench motion

noises.

We first consider the simpler case of a stationary LISA, neglect the optical-bench

motion noise and focus only on the laser phase noise. We do this because the

algebra is somewhat simpler and the method is easier to explain. The simplification

amounts to physically considering each spacecraft rigidly carrying the assembly of

lasers, beam-splitters, and photodetectors. The two lasers on each spacecraft could

be considered to be locked, so effectively there would be only one laser on each

spacecraft. This mathematically amounts to setting Di ¼ Di0 ¼ 0 and pi ¼ pi0 . The

scheme we describe here for laser phase noise can be extended in a straight-forward

way to include optical bench motion noise, which we address in the last part of this

section.

The data combinations, when only the laser phase noise is considered, consist of

the six suitably delayed data streams (inter-spacecraft), the delays being integer

multiples of the light travel times between spacecraft, which can be conveniently

expressed in terms of polynomials in the three delay operators D1, D2, D3. The

laser noise cancellation condition puts three constraints on the six polynomials of

the delay operators corresponding to the six data streams. The problem, therefore,

consists of finding six-tuples of polynomials which satisfy the laser noise
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cancellation constraints. These polynomial tuples form a module.2 called the first
module of syzygies. There exist standard methods for obtaining the module, by

which we mean methods for obtaining the generators of the module so that the

linear combinations of the generators generate the entire module. The procedure

first consists of obtaining a Gröbner basis for the ideal generated by the coefficients

appearing in the constraints. This ideal is in the polynomial ring in the variables D1,

D2, D3 over the domain of rational numbers (or integers if one gets rid of the

denominators). To obtain the Gröbner basis for the ideal, one may use the

Buchberger algorithm or use an application such as Mathematica (Wolfram 2014).

From the Gröbner basis there is a standard way to obtain a generating set for the

required module. This procedure has been described in the literature (Becker and

Weispfenning 1993; Kreuzer and Robbiano 2000). We thus obtain seven generators

for the module. However, the method does not guarantee a minimal set and we find

that a generating set of 4 polynomial six-tuples suffice to generate the required

module. Alternatively, we can obtain generating sets by using the software

Macaulay 2 (Grayson and Stillman 2019).

The importance of obtaining more data combinations is evident: they provide the

necessary redundancy—different data combinations produce different transfer

functions for GWs and the system noises so specific data combinations could be

optimal for given astrophysical source parameters in the context of maximizing

SNR, detection probability, improving parameter estimates, and so on and so forth.

In addition, as we will show later on, there exist TDI combinations that require a

reduced number of inter-spacecraft measurements, covering for the eventuality of

subsystems failures.

4.1 Cancellation of laser phase noise

We now only have six data streams si and si0 , where i ¼ 1; 2; 3. These can be

regarded as 3 component vectors s and s0, respectively. The six data streams with

terms containing only the laser frequency noise are

s1 ¼ D3p2 � p1;

s10 ¼ D2p3 � p1

ð18Þ

and their cyclic permutations. Note that we have intentionally excluded from the

data additional phase fluctuations due to the GW signal and the measurement noises.

Since our immediate goal is to cancel the laser frequency noise we have only kept

the relevant terms. Combining the streams for canceling the laser noise will

introduce transfer functions for the other noises and the GW signal. This is

important and will be discussed subsequently in the article.

The goal of the analysis is to add suitably delayed beams together so that the laser

frequency noise terms add up to zero.

2 A module is an Abelian group over a ring as contrasted with a vector space which is an Abelian group

over a field. The scalars form a ring and just like in a vector space, scalar multiplication is defined.

However, in a ring the multiplicative inverses do not exist in general for the elements, which makes all

the difference!
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This amounts to seeking data combinations that cancel the laser frequency noise.

In the notation/formalism that we have invoked, the delay is obtained by applying

the operators Dk to the beams si and si0 . A delay of k1L1 þ k2L2 þ k3L3 is

represented by the operator Dk1

1 D
k2

2 D
k3

3 acting on the data, where k1, k2, and k3 are

integers. In general, a polynomial in Dk, which is a polynomial in three variables,

applied to, say, s1 combines the same data stream s1ðtÞ with different time-delays of

the form k1L1 þ k2L2 þ k3L3. This notation conveniently rephrases the problem.

One must find six polynomials say qiðD1;D2;D3Þ, qi0 ðD1;D2;D3Þ, i ¼ 1; 2; 3, such

that

X

3

i¼1

qisi þ qi0si0 ¼ 0: ð19Þ

The zero on the right-hand side of the above equation signifies zero laser phase

noise.

It is useful to express Eq. (18) in matrix form. This allows us to obtain a matrix

operator equation whose solutions are q and q0, where qi and qi0 are written as

column vectors. We can similarly express si, si0 , pi as column vectors s, s0, p,

respectively. In matrix form Eq. (18) becomes

s ¼ DT � p; s0 ¼ D � p; ð20Þ

where D is a 3 
 3 matrix given by

D ¼
�1 0 D2

D3 � 1 0

0 D1 � 1

0

B

@

1

C

A

: ð21Þ

The exponent ’T’ represents the transpose of the matrix. Equation (19) becomes

qT � sþ q0T � s0 ¼ ðqT � DT þ q0T � DÞ � p ¼ 0; ð22Þ

where we have taken care to put p on the right-hand side of the operators. Since the

above equation must be satisfied for an arbitrary vector p, we obtain a matrix

equation for the polynomials ðq; q0Þ:

qT � DT þ q0 � D ¼ 0: ð23Þ

Note that since the Dk commute, the order in writing these operators is unimportant.

In mathematical terms, the polynomials form a commutative ring.

4.2 Cancellation of laser phase noise in the unequal-arm interferometer

The use of commutative algebra is very conveniently illustrated with the help of the

simpler example of the unequal-arm interferometer. Here there are only two arms

instead of three as we have for LISA, and the mathematics is much simpler and so it

is easy to see both physically and mathematically how commutative algebra can be

applied to this problem of laser phase noise cancellation. The procedure is well
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known for the unequal-arm interferometer, but here we will describe the same

method in terms of the delay operators that we have introduced.

Let /ðtÞ denote the laser phase noise entering the arms as shown in Fig. 5.

Consider the laser noise /ðtÞ making a round trip around arm 1 whose length we

take to be L1. If we interfere this returning light with the one entering into the arm

we get the following two-way phase difference, /1ðtÞ

/1ðtÞ ¼ /ðt � 2L1Þ � /ðtÞ � ðD2
1 � 1Þ/ðtÞ: ð24Þ

The second expression we have written in terms of the delay operators. This makes

the procedure transparent as we shall see. We can do the same for the arm 2 to get

the other two-way phase difference, /2ðtÞ

/2ðtÞ ¼ /ðt � 2L2Þ � /ðtÞ � ðD2
2 � 1Þ/ðtÞ: ð25Þ

Clearly, if L1 6¼ L2, then the difference in phase /2ðtÞ � /1ðtÞ is not zero and the

laser phase noise does not cancel out. However, if one further delays the phases

/1ðtÞ and /2ðtÞ and constructs the following combination,

XðtÞ ¼ ½/2ðt � 2L1Þ � /2ðtÞ� � ½/1ðt � 2L2Þ � /1ðtÞ�; ð26Þ

then the laser phase noise does cancel out. We have already encountered this

combination at the end of Sect. 2. It was first proposed by Tinto and Armstrong

(1999).

The cancellation of laser frequency noise becomes obvious from the operator

algebra in the following way. In the operator notation,

2

Beam splitter

Beam

M

M1

L1

L 2

φ  t ( )

Fig. 5 Schematic diagram of the
unequal-arm Michelson
interferometer. The beam shown

corresponds to the term ðD2
2 �

1ÞðD2
1 � 1Þ/ðtÞ in X(t) which is

first sent around arm 1 followed
by arm 2. The second beam (not
shown) is first sent around arm 2
and then through arm 1. The
difference in these two beams
constitutes X(t)
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XðtÞ ¼ ðD2
1 � 1Þ/2ðtÞ � ðD2

2 � 1Þ/1ðtÞ
¼ ½ðD2

1 � 1ÞðD2
2 � 1Þ � ðD2

2 � 1ÞðD2
1 � 1Þ�/ðtÞ

¼ 0:

ð27Þ

From this expression one immediately sees that just the commutativity of the

operators has been used to cancel the laser phase noise. The basic idea was to

compute the lowest common multiple (L.C.M.) of the polynomials D2
1 � 1 and

D2
2 � 1 (in this case the L.C.M. is just the product, because the polynomials are

relatively prime) and use this fact to construct X(t) in which the laser phase noise is

canceled. The operation is shown physically in Fig. 5.

The notions of commutativity of polynomials, L.C.M., and related operations

belong to the field of commutative algebra. In fact we will be using the notion of a

Gröbner basis, which is in a sense the generalization of the notion of the greatest

common divisor (GCD). Since LISA has three spacecraft and six inter-spacecraft

beams, the problem of the unequal-arm interferometer only gets technically more

complex; in principle the problem is the same as in this simpler case. Thus, the

simple operations that were performed here to obtain a laser noise free combination

X(t) are not sufficient and more sophisticated methods need to be adopted from the

field of commutative algebra. We address this problem in the forthcoming text.

4.3 The module of syzygies

Equation (23) has non-trivial solutions. Several solutions have been exhibited in

Armstrong et al. (1999) and Estabrook et al. (2000). We merely mention these

solutions here; in the forthcoming text we will discuss them in detail. The solution f
is given by �qT ¼ q0T ¼ ðD1;D2;D3Þ. The solution a is described by qT ¼
�ð1;D3;D1D3Þ and q0T ¼ ð1;D1D2;D2Þ. The solutions b and c are obtained from

a by cyclically permuting the indices of Dk, q, and q0. These solutions are

important, because they consist of polynomials with lowest possible degrees and

thus are simple. Other solutions containing higher degree polynomials can be

generated conveniently from these solutions. Since the system of equations is linear,

linear combinations of these solutions are also solutions to Eq. (23).

However, it is important to realize that we do not have a vector space here. Three

independent constraints on a six-tuple do not produce a space which is necessarily

generated by three basis elements. This conclusion would follow if the solutions

formed a vector space but they do not. The polynomial six-tuple q, q0 can be

multiplied by polynomials in D1, D2, D3 (scalars) which do not form a field—they

form a ring. The multiplicative inverse in general does not exist in a ring. We have

in fact a ring of polynomials in the operators D1;D2;D3. We, therefore, have a

module over this ring of polynomials and not a vector space. It is called the first
module of syzygies. First we present the general methodology for obtaining the

solutions to Eq. (23) and then apply it to Eq. (23).

There are three linear constraints on the polynomials given by Eq. (23). Since the

equations are linear, the solutions space is a submodule of the module of six-tuples

of polynomials. The module of six-tuples is a free module, i.e., it has six basis
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elements that not only generate the module but are linearly independent. A natural

choice of the basis is fm ¼ ð0; . . .; 1; . . .; 0Þ with 1 in the m-th place and 0

everywhere else; m runs from 1 to 6. The definitions of generation (spanning) and

linear independence are the same as that for vector spaces. A free module is

essentially like a vector space. But our interest lies in its submodule which need not

be free and need not have just three generators as it would seem if we were dealing

with vector spaces.

The problem at hand is of finding the generators of this submodule, i.e., any

element of the submodule should be expressible as a linear combination of the

generating set. In this way the generators are capable of spanning the full submodule

or generating the submodule. In order to achieve our goal, we rewrite Eq. (23)

explicitly component-wise:

q1 þ q10 �D3q20 �D2q3 ¼ 0;

q2 þ q20 �D1q30 �D3q1 ¼ 0;

q3 þ q30 �D2q10 �D1q2 ¼ 0:

ð28Þ

The first step is to use Gaussian elimination to obtain q1 and q2 in terms of

q3; q10 ; q20 ; q30 ,

q1 ¼ �q10 þD3q20 þD2q3;

q2 ¼ �q20 þD1q30 þD3q1;

¼ �D3q10 � ð1 �D2
3Þq20 þD1q30 þD2D3q3;

ð29Þ

and then substitute these values in the third equation to obtain a linear implicit

relation between q3, q10 , q20 , q30 . We then have:

ð1 �D1D2D3Þq3 þ ðD1D3 �D2Þq10 þD1ð1 �D2
3Þq20 þ ð1 �D2

1Þq30 ¼ 0: ð30Þ

Obtaining solutions to Eq. (30) amounts to solving the problem since the remaining

polynomials q1, q2 have been expressed in terms of q3, q10 , q20 , q30 in Eq. (29). Note

that we cannot carry on the Gaussian elimination process any further, because none

of the polynomial coefficients appearing in Eq. (30) have an inverse in the ring.

We will assume that the polynomials have rational coefficients, i.e., the

coefficients belong to Q, the field of the rational numbers. The set of polynomials

form a ring—the polynomial ring in three variables, which we denote by

K ¼ Q½D1;D2;D3�. The polynomial vector ðq3; q10 ; q20 ; q30 Þ 2 K4. The set of

solutions to Eq. (30) is just the kernel of the homomorphism u defined by,

u : K4 �!K

ðq3; q10 ; q20 ; q30 Þ �!ð1 �D1D2D3Þq3 þ ðD1D3 �D2Þq10 þD1ð1 �D2
3Þq20

þ ð1 �D2
1Þq30 � WðD1;D2;D3Þ:

ð31Þ

The polynomial WðD1;D2;D3Þ 2 K. If we set W � 0 we obtain the kernel of the

homomorphism u denoted by keru which is all those 4-tuples ðq3; q10 ; q20 ; q30 Þ
which map to zero. Thus, the solution space is keru and is also a submodule of K4.
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It is called the first module of syzygies. The physical significance of the kernel of a

homomorphism is that the laser phase noise is mapped to zero. There are also

second, third, …etc. modules of syzygies, but we will discuss them later in

Sect. 4.6.

The generators of the first module of syzygies can be obtained from standard

methods available in the literature. We briefly outline the method given in the books

by Becker and Weispfenning (1993) and Kreuzer and Robbiano (2000) below.

4.4 Gröbner basis

The first step is to obtain the Gröbner basis for the ideal U generated by the

coefficients in Eq. (30):

u1 ¼ 1 �D1D2D3; u2 ¼ D1D3 �D2; u3 ¼ D1ð1 �D2
3Þ; u4 ¼ 1 �D2

1:

ð32Þ

The ideal U consists of linear combinations of the form
P

viui where vi, i ¼ 1; . . .; 4
are polynomials in the ring K. There can be several sets of generators for U.

A Gröbner basis is a set of generators which is ‘small’ in a specific sense.

There are several ways to look at the theory of Gröbner basis. One way is the

following: Suppose we are given polynomials g1; g2; . . .; gm in one variable over say

Q and we would like to know whether another polynomial f belongs to the ideal

generated by the g’s. A good way to decide the issue would be to first compute the

GCD g of g1, g2, …, gm and check whether f is a multiple of g. One can achieve this

by doing the long division of f by g and checking whether the remainder is zero. All

this is possible because Q½x� is a Euclidean domain and also a principle ideal domain

(PID) wherein any ideal is generated by a single element. Therefore we have

essentially just one polynomial—the GCD—which generates the ideal generated by

g1; g2; . . .; gm. The ring of integers or the ring of polynomials in one variable over

any field are examples of PIDs whose ideals are generated by single elements.

However, when we consider more general rings (not PIDs) like the one we are

dealing with here, we do not have a single GCD but a set of several polynomials that

generate an ideal in general. A Gröbner basis of an ideal can be thought of as a

generalization of the GCD. In the univariate case, the Gröbner basis reduces to the

GCD.

Gröbner basis theory generalizes these ideas to multivariate polynomials which

are neither Euclidean rings nor PIDs. Since there is in general not a single generator

for an ideal, Gröbner basis theory comes up with the idea of dividing a polynomial

with a set of polynomials, the set of generators of the ideal, so that by successive

divisions by the polynomials in this generating set of the given polynomial, the

remainder becomes zero. Clearly, every generating set of polynomials need not

possess this property. Those special generating sets that do possess this property

(and they exist!) are called Gröbner bases. For a division to be carried out in a

sensible manner, an order must be put on the ring of polynomials, so that the final

remainder after every division is strictly smaller than each of the divisors in the

generating set. A natural order exists on the ring of integers or on the polynomial
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ring QðxÞ; the degree of the polynomial decides the order in QðxÞ. However, even

for polynomials in two variables there is no natural order a priori (is x2 þ y greater

or smaller than xþ y2?). But one can, by hand as it were, put an order on such a ring

by saying x � y, where � is an order, called the lexicographical order. We follow

this type of order, D1 � D2 � D3 and ordering polynomials by considering their

highest degree terms. It is possible to put different orderings on a given ring which

then produce different Gröbner bases. Clearly, a Gröbner basis must have ‘small’

elements so that division is possible and every element of the ideal when divided by

the Gröbner basis elements leaves zero remainder, i.e., every element modulo the

Gröbner basis reduces to zero.

In the literature, there exists a well-known algorithm called the Buchberger

algorithm, which may be used to obtain the Gröbner basis for a given set of

polynomials in the ring. So a Gröbner basis of U can be obtained from the

generators ui given in Eq. (32) using this algorithm. The algorithm computes S-

polynomials of polynomials in U pairwise, by canceling out the head terms and thus

obtaining another polynomial which is ‘smaller’—we will explicitly demonstrate

this procedure in Sect. 4.5 for a specific case. By repeating this procedure we obtain

smaller polynomials until we reach the Gröbner basis. It is essentially again a

generalization of the usual long division that we perform on univariate polynomials.

More conveniently, we can use the well known application Mathematica (Wolfram

2014). The function GroebnerBasis in Mathematica yields a 3-element Gröbner

basis G for U:

G ¼ fD2
3 � 1;D2

2 � 1;D1 �D2D3g: ð33Þ

One can easily check that all the ui of Eq. (32) are linear combinations of the

polynomials in G and hence G generates U. One also observes that the elements

look ‘small’ in the order mentioned above. However, one can satisfy oneself that G
is a Gröbner basis by using the standard methods available in the literature. One

method consists of computing the S-polynomials for all the pairs of the Gröbner

basis elements and checking whether these reduce to zero modulo G.

This Gröbner basis of the ideal U is then used to obtain the generators for the first

module of syzygies. Note that although the Gröbner basis depends on the order we

choose among the Dk, the module itself is independent of the order (Becker and

Weispfenning 1993).

4.5 Generating set for the first module of syzygies

A generating set for the module is obtained by further following the procedure in the

literature (Becker and Weispfenning 1993; Kreuzer and Robbiano 2000). As we will

show, we obtain seven generators for the module. These generators do not form a

minimal set and there are relations among them; in fact this method does not

guarantee a minimum set of generators. These generators can be expressed as linear

combinations of a, b, c, f and also in terms of Xð1Þ, Xð2Þ, Xð3Þ, Xð4Þ given below in

Eq. (51). The importance in obtaining the seven generators is that the standard

theorems guarantee that these seven generators do in fact generate the required
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module. Therefore, from this proven set of generators we can check whether a

particular set is in fact a generating set. We present two important generating sets

below.

We now follow the procedure and notation of Becker and Weispfenning (1993).

We require the 4-tuple solutions ðq3; q10 ; q20 ; q30 Þ to the equation:

ð1 � xyzÞ q3 þ ðxz� yÞ q10 þ xð1 � z2Þ q20 þ ð1 � x2Þ q30 ¼ 0; ð34Þ

where for convenience we have substituted x � D1, y � D2, z � D3. q3, q10 , q20 , q30

are polynomials in x, y, z with integer coefficients, i.e., in Z[x, y, z]. Consider the

ideal in Z[x, y, z] (or Q½x; y; z� where Q denotes the field of rational numbers),

formed by taking linear combinations of the coefficients in Eq. (34),

F ¼ ff1 ¼ 1 � xyz; f2 ¼ xz� y; f3 ¼ xð1 � z2Þ; f4 ¼ 1 � x2g: ð35Þ

A Gröbner basis for this ideal is

G ¼ fg1 ¼ z2 � 1; g2 ¼ y2 � 1; g3 ¼ x� yzg: ð36Þ

One can check that both the fi, i ¼ 1; 2; 3; 4, and gj, j ¼ 1; 2; 3, generate the same

ideal because we can express one generating set in terms of the other and vice-versa:

fi ¼ dijgj; gj ¼ cjifi; ð37Þ

where d and c are 4 
 3 and 3 
 4 polynomial matrices, respectively, and are given

by

d ¼

�1 � z2 � yz

y 0 z

�x 0 0

�1 � z2 � ðxþ yzÞ

0

B

B

B

@

1

C

C

C

A

; c ¼
0 0 � x z2 � 1

�1 � y 0 0

0 z 1 0

0

B

@

1

C

A

: ð38Þ

We now forge ahead to obtain the generators for the module. This is accomplished

in two steps. First we obtain one set of generators which we denote by A. Then we

obtain another set which we denote by B
. The full set of generators of the module is

given by the set A
S

B
.
The matrices appearing in Eq. (38), or the relations in Eq. (37), can be used to

obtain one set of generators, namely, A. We write:

fi ¼ dijgj ¼ dijcjkfk � dikfk; ð39Þ

where, dik is the Kronecker delta or the unit matrix I. The last equality in the above

Eq. (39) gives:

ðdik � dijcjkÞfk ¼ 0: ð40Þ

Thus we have found solutions to Eq. (34), namely, aik ¼ dik � dijcjk for each i. In

matrix form, A is the set of row vectors of the matrix I � d � c where the dot denotes

the matrix product and I is the identity matrix which is 4 
 4 in our case. We have:
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I � d � c ¼

1 � z2 0 � xþ yz z2 � 1

0 1 � z2 xy� z yð1 � z2Þ
0 0 1 � x2 xðz2 � 1Þ

�z2 xz yz z2

0

B

B

B

@

1

C

C

C

A

: ð41Þ

We list the 4 generators in the set A as the row vectors of the above matrix below:

a1 ¼ 1 � z2; 0;�xþ yz; z2 � 1
� �

;

a2 ¼ 0; 1 � z2; xy� z; y 1 � z2
� �� �

;

a3 ¼ 0; 0; 1 � x2; x z2 � 1
� �� �

;

a4 ¼ �z2; xz; yz; z2
� �

:

ð42Þ

Now we go on to compute B
.
The additional generators ð2 B
Þ are obtained by first computing the S-

polynomials of the Gröbner basis G. The S-polynomial of two polynomials g1; g2 is

obtained by multiplying g1 and g2 by suitable terms and then adding, so that the

highest terms cancel. For example in our case g1 ¼ z2 � 1 and g2 ¼ y2 � 1, and the

highest terms are z2 for g1 and y2 for g2. Multiply g1 by y2 and g2 by z2 and subtract.

Thus, the S-polynomial p12 of g1 and g2 is

p12 ¼ y2g1 � z2g2 ¼ z2 � y2 � g1 � g2: ð43Þ

For the Gröbner basis of 3 elements we get 3 S-polynomials p12, p13, p23. In general,

the pij must now be re-expressed in terms of the Gröbner basis G. We thus have the

equations:

pij ¼ sijgi � sjigj

pij ¼ qijkgk:
ð44Þ

Subtracting the second equation from the first we get:

ðsij � qijiÞgi � ðsji þ qijjÞgj �
X

k 6¼i;j

qijkgk ¼ 0: ð45Þ

For the S-polynomial p12, we have i ¼ 1; j ¼ 2 and thus s12 ¼ y2; s21 ¼ z2 from the

first equation and q121 ¼ �q122 ¼ 1 and q123 ¼ 0 from the second equation.

We now write Eq. (45) more compactly. We define:

rijk ¼
sij � qiji k ¼ i

�ðsji þ qijjÞ k ¼ j

�qijk otherwise;

8

>

<

>

:

ð46Þ

and write Eq. (45) as,

rijkgk ¼ 0: ð47Þ
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For each pair fijg we have a row vector—a generator for the module of syzygies,

say SG for the Gröbner basis elements. Taking the order p12; p13; p23 for the rows we

get a matrix b which is given by:

b ¼
y2 � 1 1 � z2 0

x� yz 0 1 � z2

0 x� yz 1 � y2

0

B

@

1

C

A

: ð48Þ

Writing gk ¼ ckmfm gives us the required generators for the set F because,

rijkckmfm ¼ 0: ð49Þ

We have thus found more solutions to Eq. (34). This is conveniently achieved by

multiplying b by the matrix c to obtain b
 ¼ b � c. The row vectors b
i , i ¼ 1; 2; 3, of

b
 form the set B
:

b
1 ¼ z2 � 1; y z2 � 1
� �

; x 1 � y2
� �

; y2 � 1
� �

z2 � 1
� �� �

;

b
2 ¼ 0; z 1 � z2
� �

; 1 � z2 � x x� yzð Þ; x� yzð Þ z2 � 1
� �� �

;

b
3 ¼ �xþ yz; z� xy; 1 � y2; 0
� �

:

ð50Þ

This is the set B
 and the full set of generators is seven in number and is given by

A
S

B
.

Alternatively, we may use a software package called Macaulay 2 (Grayson and

Stillman 2019) that directly calculates the generators given the Eq. (28). Using

Macaulay 2, we obtain six generators. Again, Macaulay’s algorithm does not yield

a minimal set; we can express the last two generators in terms of the first four.

Below we list this smaller set of four generators in the order

X ¼ ðq1; q2; q3; q10 ; q20 ; q30 Þ:

Xð1Þ ¼ y� xz; 0; 1 � z2; 0; yz� x; z2 � 1
� �

;

Xð2Þ ¼ �x;�y;�z; x; y; zð Þ;
Xð3Þ ¼ �1;�z;�xz; 1; xy; yð Þ;
Xð4Þ ¼ �xy;�1;�x; z; 1; yzð Þ:

ð51Þ

Another set of generators are just a, b, c, and f. This can be checked using Ma-
caulay 2 (Grayson and Stillman 2019), or one can relate a, b, c, and f to the

generators XðAÞ, A ¼ 1; 2; 3; 4, by polynomial matrices. We list them below for

ready reference:

a ¼ ð�1;�z;�xz; 1; xy; yÞ;
b ¼ ð�xy;�1;�x; z; 1; yzÞ;
c ¼ ð�y;�yz;�1; xz; x; 1Þ;
f ¼ ð�x;�y;�z; x; y; zÞ:

ð52Þ
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In the generating set given in Eq. (51), the last three generators are just Xð2Þ ¼ f,

Xð3Þ ¼ a, Xð4Þ ¼ b. An extra generator Xð1Þ is needed to generate all the solutions. In

Appendix A, we express the seven generators we obtained following the literature,

in terms of a, b, c, and f. Also we express a, b, c, and f in terms of XðAÞ. This proves

that all these sets generate the required module of syzygies.

The question now arises as to which set of generators we should choose that

facilitates further analysis. The analysis is simplified if we choose a smaller number

of generators. Also we would prefer low degree polynomials to appear in the

generators so as to avoid cancellation of leading terms in the polynomials. By these

two criteria we may choose XðAÞ or a, b, c, f. However, a, b, c, f possess the

additional property that this set is left invariant under a cyclic permutation of indices

1, 2, 3. It is found that this set is more convenient to use because of this symmetry

(Armstrong et al. 1999).

We would like to emphasise that the theorems we have used guarantee that all the

TDIs are generated by taking the linear combinations of the generators—in

particular the generating set a; b; c and f generates all the TDI.

We remark that, the method described above, of Gröbner basis and the module of

syzygies has been applied to a possible future space mission concept which involves

six spacecraft arranged in the configuration of an octohedron (Wang et al. 2013).

This constellation has 24 links and it is shown that these provide enough redundancy

in the data to cancel not only the laser frequency noise but also the acceleration

noise. The case of time-independent and equal arm-lengths has been treated and for

this 7 generators have been found for the relevant module of syzygies. The seven

generators generate the full set of noise cancelling data combinations, which is

again guaranteed by the theorems, and this is achieved by taking their linear

combinations.

An alternative and a totally different approach has been adopted in (Romano and

Woan 2006) from the point of view of Bayesian statistical inference. The covariance

matrix of the six elementary data streams sampled at integer multiples of the time-

delay is first formed. Then a principal component analysis (PCA) of the covariance

matrix is done and the space of TDIs is identified with the subspace formed by those

eigenvectors belonging to small eigenvalues only; the large eigenvalues and the

corresponding eigenvectors correspond to the laser frequency noise. As an example,

they also obtain the TDI observable a with their analysis. This analysis has been

performed for the case of the LISA model with constant (time-independent) arm-

lengths which fits into the discussion in this subsection as it deals with constant arm-

lengths.

4.6 Relation to Hilbert’s syzygy theorem

In mathematics, the Hilbert’s syzygy theorem is one of the three fundamental

theorems about polynomial rings over fields which lies at the roots of modern

algebraic geometry. (The other two theorems are Hilbert’s basis theorem and

Hilbert’s nullstellensatz—but they do not concern us here). Hilbert’s syzygy

theorem is about the relations or syzygies (according to Hilbert) between generators
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of an ideal or more generally a module (an ideal is trivially a module). These

syzygies form a module as we have seen before—the first module of syzygies. Now

this module has generators, which we have explicitly calculated in the previous

subsection. But there could be non-trivial relations between these generators, unless

the generators are linearly independent. If it so happens that the generators are

linearly independent, then the module has a basis and the module is said to be free.

However, if there are non-trivial relations between the generators—the generators

are not linearly independent, these relations again form a non-zero module—it is

called the second module of syzygies. We may continue this process and obtain the

kth module of syzygies. Hilbert’s syzygy theorem states that if M is a finitely

generated module over a polynomial ring F½x1; x2; . . .; xn� in n variables over a field

F then the kth module of syzygies is free where k� n. The original ideal (or

module) U is then said to be resolved after k steps. Hilbert’s theorem asserts that the

module can be resolved in at most n steps, that is, k� n. Further, the number k does

not depend on the choice of generating sets.

How does this concern us here? Let us go ahead and obtain the second module of

syzygies—call it S. We choose the generating set a; b; c; f for the first module of

syzygies. We then write the equation:

p1aþ p2bþ p3cþ p4f ¼ 0; ð53Þ

where pj 2 K; j ¼ 1; 2; 3; 4, that is, each pj is a polynomial in the variables x, y, z.

We now look for the 4-tuple solutions ðp1; p2; p3; p4Þ 2 K4 satisfying Eq. (53). We

find that the solutions are just multiples of the polynomial vector:

e ¼ ðx� yz; y� xz; z� xy; xyz� 1Þ 2 K4; ð54Þ

and the module S is given by

S ¼ f pðx; y; zÞ e j pðx; y; zÞ 2 Kg; ð55Þ

where p(x, y, z) is a polynomial in K. S is in fact a free module of rank 1 because e
generates S and is linearly independent. We find that the original module has

resolved in only two steps which is less than three, thus respecting Hilbert’s the-

orem. So roughly speaking the original module is less ‘entangled’ because it did not

require the maximum number of steps, namely, three in this case, to resolve. Also

since the second module of syzygies essentially consists of just one non-trivial

relation—it has only one generator—a; b; c and f have essentially one non-trivial

relation between them, they are close to being linearly independent.

We can also write the above modules and their homomorphisms as an exact

sequence:

0 �! K�!v K4�!w K4�!u U �! 0:

The exact sequence implies that the kernel of a given homomorphism in the

sequence is the image of the homomorphism on its left. This means the following in

our case: Im ðwÞ ¼ ker ðuÞ and Im ðvÞ ¼ ker ðwÞ. Further, the left most module is

the zero module since ker ðvÞ ¼ 0 or v is an isomorphism which maps the
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polynomial ring K to S � K4. Similarly, the right most zero in the sequence

implies that u is onto.

We now define the homomorphism. There are three homomorphisms v;w;u
here. Starting from the right, we have the homomorphism u which has already been

defined earlier in Eq. (31). We now define the homomorphism w. Let fe1; e2; e3; e4g
be the canonical basis of K4, that is, e1 ¼ ð1; 0; 0; 0Þ etc. ej has 1 in the jth place and

zeros everywhere else. Then w maps the e1; e2; e3; e4 to the generators a; b; c; f of the

first module of syzygies M respectively. The homomorphism is then extended to

whole of K4 by linearity and its image is M � K4. The homomorphism v just

takes a polynomial pðx; y; zÞ 2 K and maps it to pðx; y; zÞe 2 K4. As p(x, y, z)
ranges over K, the free module S is generated.

Writing the homomorphisms as an exact sequence expresses the concepts

graphically and in a unified manner. Also that the original module is resolved in

only two steps instead of three, and that the second module of syzygies is of rank

one, may have important physical implications.

4.7 Canceling optical bench motion noise

There are eighteen Doppler data streams that have to be combined in an appropriate

manner to cancel the noise from the laser as well as from the motion of the optical

benches. From Eqs. (12–17) and the other twelve data streams on spacecraft 2 and 3

obtained by cyclic permutations of them, we can now derive the expressions

canceling the lasers and optical benches noises. We first note that the differences

e� s from each optical bench provide twice the displacement of the optical bench

relative to the proof mass. Second, the laser phase-fluctuations with primed indices,

pi0 , can be expressed in terms of those with unprimed indices, pi, by taking

suitable linear combinations of the si; si0 ; ei � si; si; si0 . So, let us first define the

following linear combination

z1 � s1 � s10

2
¼ p10 � p1; ð56Þ

which only contains the two laser noises p1, p10 .
3 By then defining the following

variables n1, n10

n10 �s10 þ
ðe10 � s10 Þ

2
þD20

ðe3 � s3Þ
2

; ð57Þ

n1 �s1 þ
ðe1 � s1Þ

2
þD3

ðe20 � s20 Þ
2

; ð58Þ

it is easy to see that they depend only on the laser noises pi and pi0 , and the proof-

mass noises di; di0 , as the optical bench noises have been removed. By then intro-

ducing the two observables, g1 and g10 , defined as follows

3 Note the z1 combination estimates the phase fluctuations of one laser relative to the other and is

independent of the noise from the optical fiber linking the two benches.
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g10 �n10 þ z1 ¼ D20p3 � p1; ð59Þ

g1 �n1 �D3z2 ¼ D3p2 � p1; ð60Þ

we have just reduced the problem of canceling the six laser noises and six optical

bench noises to that of canceling the three laser noises pi. In other words, by

synthesizing the six linear combinations gi, gi0 in terms of the eighteen measure-

ments made by LISA we have reduce the problem to that for the simpler configu-

ration with only three lasers, analyzed in the previous Sects. 4.1–4.4.

4.8 Physical interpretation of the TDI combinations

It is important to notice that the four interferometric combinations ða; b; c; fÞ, which

can be used as a basis for generating the entire TDI space, are actually synthesized

Sagnac interferometers. This can be seen by rewriting the expression for a, for

instance, in the following form,

a ¼ ½g10 þD20g30 þD20D10g20 � � ½g1 þD3g2 þD3D1g3�; ð61Þ

and noticing that the first square bracket on the right-hand side of Eq. (61) contains

a combination of one-way measurements describing a light beam propagating

clockwise around the array, while the other terms in the second square-bracket give

the equivalent of another beam propagating counter-clockwise around the

constellation.

Contrary to (a, b, c), f can not be visualized as the difference (or interference) of

two synthesized beams. However, it should still be regarded as a Sagnac

combination since there exists a time-delay relationship between it and a, b, and

c (Armstrong et al. 1999):

ðI �D1D2D3Þf ¼ ðD1 �D2D3Þaþ ðD2 �D3D1Þbþ ðD3 �D1D2Þc: ð62Þ

As a consequence of the time-structure of this relationship, f has been called the

symmetrized Sagnac combination.

By using the four generators, it is possible to construct several other

interferometric combinations, such as the unequal-arm Michelson (X, Y, Z), the

Beacons (P, Q, R), the Monitors (E, F, G), and the Relays (U, V, W). Contrary to

the Sagnac combinations, these only use four of the six data combinations gi, gi0 . For

this reason they have obvious utility in the event of selected subsystem failures

(Estabrook et al. 2000).

These observables can be written in terms of the Sagnac observables ða; b; c; fÞ in

the following way,

D1X ¼ D2D3a�D2b� D3cþ f;

P ¼ f�D1a;

E ¼ a�D1f;

U ¼ D1c� b;

ð63Þ
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as it is easy to verify by substituting the expressions for the Sagnac combinations

into the above equations. Their physical interpretations are schematically shown in

Fig. 6 by representing with arrows the one-way links they rely on.

In the case of the combination X, in particular, by writing it in the following form

(Armstrong et al. 1999),

X ¼ ðg10 þD2g3Þ þD2D2ðg1 þD3g2Þ½ � � ðg1 þD3g20 Þ þD3D3ðg10 þD2g3Þ½ �;
ð64Þ

one can notice (as pointed out in Summers 2003; Shaddock et al. 2003) that this

combination can be visualized as the difference of two sums of phase measure-

ments, each corresponding to a specific light path from a laser on board spacecraft 1

having phase noise p1. The first square-bracket term in Eq. (64) represents a syn-

thesized light-beam transmitted from spacecraft 1 and made to bounce once at

spacecraft 2 and 3, respectively. The second square-bracket term instead corre-

sponds to another beam also originating from the same laser, experiencing the same

overall delay as the first beam, but bouncing off spacecraft 3 first and then space-

craft 2. When they are recombined they will cancel the laser phase fluctuations

exactly, having both experienced the same total delay (assuming stationary space-

craft). The X combinations should therefore be regarded as the response of a zero-

area Sagnac interferometer.

5 Time-delay interferometry with moving spacecraft

The rotational motion of the LISA array results in a difference of the light travel

times in the two directions around a Sagnac circuit (Shaddock 2004; Cornish and

Hellings 2003). Two time delays along each arm must be used, say L0i and Li, for

clockwise and counter-clockwise propagations respectively as they enter in any of

the TDI combinations. Furthermore, since Li and L0i not only differ from one another

but can be time dependent (they ‘‘flex’’), it was shown that the ‘‘first generation’’

TDI combinations as derived so far do not suppress the laser phase noise (at least

2

2

 P,Q,R (          )
Beacon

 E,F,G (          )
Monitor

2

2

3

3

1

1 1

1

3

3

 X,Y,Z (         )
Unequal−arm Michelson

Relay
 U,V,W (           )

Fig. 6 Schematic diagrams of the unequal-arm Michelson, Monitor, Beacon, and Relay combinations.
These TDI combinations rely only on four of the six one-way Doppler measurements, as illustrated here
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with present laser stability requirements) below a level determined by the secondary

noises. For LISA, and assuming _Li ’ 10 m=s (Amaro-Seoane et al. 2017), the

estimated magnitude of the remaining frequency fluctuations from the laser can be

about 30 times larger than the level set by the secondary noise sources in the center

of the frequency band. To solve this potential problem, it has been shown that there

exist new TDI combinations that are immune to first order shearing (flexing, or

constant rate of change of delay times). These combinations can be derived by using

the time-delay operators formalism introduced in the previous Sect. 4, although one

has to keep in mind that now these operators no longer commute (Tinto et al. 2004).

To derive the new, ‘‘flex-free’’ TDI combinations we will start by taking specific

combinations of the one-way data entering in each of the expressions derived in the

previous Sect. 4. In what follows we focus only on the laser noises, and note that the

expressions for the g-measurements now assume the following form as a result of

the motion of the spacecraft

g1 ¼ D3p2 � p1; g10 ¼ D20p3 � p1; ð65Þ

g2 ¼ D1p3 � p2; g20 ¼ D30p1 � p2; ð66Þ

g3 ¼ D2p1 � p3; g30 ¼ D10p2 � p3: ð67Þ

The combinations of the one-way measurements are chosen in such a way to retain

only one of the three laser noises, if possible. In this way we can then implement an

iterative procedure based on the use of these basic combinations and of time-delay

operators, to cancel the laser noises after dropping terms that are quadratic in _L=c or

linear in the accelerations. This iterative time-delay method, to first order in the

velocity, is illustrated abstractly as follows. Given a function of time WðtÞ, time

delay by Li is now denoted either with the standard comma notation (Armstrong

et al. 1999) or by applying the delay operator Di introduced in the previous Sect. 4,

DiW � W;i � Wðt � LiðtÞÞ: ð68Þ

We then impose a second time delay LjðtÞ:

DjDiW � W;ij ¼ Wðt � LjðtÞ � Liðt � LjðtÞÞÞ
’Wðt � LjðtÞ � LiðtÞ þ _LiðtÞLjÞ
’W;ij þ _W;ij

_LiLj:

ð69Þ

A third time delay LkðtÞ gives

DkDjDiW ¼ W;ijk ¼ Wðt � LkðtÞ � Ljðt � LkðtÞÞ � Liðt � LkðtÞ � Ljðt � LkðtÞÞÞÞ
’W;ijk þ _W;ijk

_LiðLj þ LkÞ þ _LjLk
� �

;

ð70Þ

and so on, recursively; each delay generates a first-order correction proportional to

its rate of change times the sum of all delays coming after it in the subscripts.

Commas have now been replaced with semicolons (Shaddock et al. 2003), to
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remind us that we consider moving arrays. When the sum of these corrections to the

terms of a data combination vanishes, the combination is called flex-free.

Also, note that each delay operator Di has a unique inverse D�1
i , whose

expression can be derived by requiring that D�1
i Di ¼ I, and neglecting quadratic

and higher order velocity terms. Its action on a time series WðtÞ is

D�1
i WðtÞ � Wðt þ Liðt þ LiÞÞ: ð71Þ

Note that this is not like an advance operator one might expect, since it advances not

by LiðtÞ but rather Liðt þ LiÞ.

5.1 The unequal-arm Michelson

The unequal-arm Michelson combination relies on the four measurements g1, g10 ,

g20 , and g3. Note that the two combinations g1 þ g20;3, g10 þ g3;20 represent the two

synthesized two-way data measured on board spacecraft 1, and can be written in the

following form [see Eqs. (65, 66, 67) for deriving the following synthesized two-

way measurements]

g1 þ g20;3 ¼ D3D30 � Ið Þp1; ð72Þ

g10 þ g3;20 ¼ D20D2 � Ið Þp1; ð73Þ

where I is the identity operator. Since in the stationary case any pairs of these

operators commute, i.e., DiDj0 �Dj0Di ¼ 0, from Eqs. (72, 73) it is easy to derive

the following expression for the unequal-arm interferometric combination X which

eliminates p1:

X ¼ D20D2 � I½ �ðg1 þ g20;3Þ � D3D30 � I½ �ðg10 þ g3;20 Þ: ð74Þ

If, on the other hand, the time-delays depend on time, the expression of the unequal-

arm Michelson combination above no longer cancels p1. To derive the new

expression for the unequal-arm interferometer that accounts for ‘‘flexing’’, let us

first consider the following two combinations of the one-way measurements

entering into the X observable given in Eq. (74):

ðg10 þ g3;20 Þ þ ðg1 þ g20;3Þ;220

h i

¼ D20D2D3D30 � I½ �p1; ð75Þ

ðg1 þ g20;3Þ þ ðg10 þ g3;20 Þ;303
h i

¼ D3D30D20D2 � I½ �p1: ð76Þ

Using Eqs. (75, 76), we can use the ‘‘delay technique’’ again to finally derive the

following expression for the new unequal-arm Michelson combination X1 that

accounts for the flexing effect:

X1 ¼ D20D2D3D30 � I½ � ðg1 þ g20;3Þ þ ðg10 þ g3;20 Þ;303
h i

� D3D30D20D2 � I½ � ðg10 þ g3;20 Þ þ ðg1 þ g20;3Þ;220

h i

:
ð77Þ
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As usual, X2 and X3 are obtained by cyclic permutation of the spacecraft indices.

This expression is readily shown to be laser-noise-free to first order of spacecraft

separation velocities _Li: it is ‘‘flex-free’’.

5.2 The Sagnac combinations

In the above Sect. 5.1, we have used the same symbol X for the unequal-arm

Michelson combination for both the rotating (i.e., constant delay times) and

stationary cases. This emphasizes that, for this TDI combination (and, as we will see

below, also for all the combinations including only four links) the forms of the

equations do not change going from systems at rest to the rotating case. One needs

only distinguish between the time-of-flight variations in the clockwise and counter-

clockwise senses (primed and unprimed delays).

In the case of the Sagnac variables ða; b; c; fÞ, however, this is not the case as it is

easy to understand on simple physical grounds. In the case of a for instance, light

originating from spacecraft 1 is simultaneously sent around the array on clockwise

and counter-clockwise loops, and the two returning beams are then recombined.

Even if the array is only rigidly rotating, the two beams experience a different delay

(the Sagnac effect), preventing the noise p1 from canceling in the a combination.

To find the solution to this problem let us first rewrite a in such a way to

explicitly emphasize what it does: attempts to remove the same fluctuations

affecting two beams that have been made to propagated clockwise and counter-

clockwise around the array:

a ¼ ½g10 þD20g30 þD20D10g20 � � ½g1 þD3g2 þD3D1g3�; ð78Þ

where we have accounted for clockwise and counter-clockwise light delays. It is

straight-forward to verify that this combination no longer cancels the laser noise. If,

however, we expand the two terms inside the square-brackets on the right-hand side

of Eq. (78) we find that they are equal to

½g10 þD20g30 þD20D10g20 � ¼ ½D20D10D30 � I� p1; ð79Þ

½g1 þD3g2 þD3D1g3� ¼ ½D3D1D2 � I� p1: ð80Þ

If we now apply our iterative scheme to the combinations given in Eq. (80) we

finally get the expression for the Sagnac combination a1 that is unaffected by laser

noise in presence of rotation,

a1 ¼ ½D3D1D2 � I� ½g10 þD20g30 þD20D10g20 �
� ½D20D10D30 � I� ½g1 þD3g2 þD3D1g3�:

ð81Þ

If the delay-times are also time-dependent, we find that the residual laser noise

remaining into the combination a1 is actually equal to

_p1;123102030
_L1 þ _L2 þ _L3

� �

L01 þ L02 þ L03
� �

� _L01 þ _L02 þ _L03
� �

L1 þ L2 þ L3ð Þ
� �

: ð82Þ

Fortunately, although first order in the relative velocities, the residual is small, as it
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involves the difference of the clockwise and counter-clockwise rates of change of

the propagation delays on the same circuit. For LISA, the remaining laser phase

noises in ai, i ¼ 1; 2; 3, are several orders of magnitude below the secondary noises.

In the case of f, however, the rotation of the array breaks the symmetry and

therefore its uniqueness. However, for a rigidly rotating array, there still exist three

generalized TDI laser-noise-free data combinations that have properties very similar

to f, and which can be used for the same scientific purposes (Tinto et al. 2001).

These combinations, which we call ðf1; f2; f3Þ, can be derived by applying again our

time-delay operator approach.

Let us consider the following combination of the gi, gi0 measurements, each being

delayed only once (Armstrong et al. 1999):

g3;3 � g30;3 þ g1;10 ¼ D3D2 � D10½ �p1; ð83Þ

g10;1 � g2;20 þ g20;20 ¼ D30D20 � D1½ �p1; ð84Þ

where we have used the commutativity property of the delay operators in order to

cancel the p2 and p3 terms as the array is rigidly rotating. Since both sides of the two

equations above contain only the p1 noise, f1 is found by the following expression:

f1 ¼ D30D20 � D1½ � g3;3 � g30;3 þ g1;10
� �

� D3D2 � D10½ � g10;1 � g2;20 þ g20;20
� �

:

ð85Þ

If the light-times in the arms are equal in the clockwise and counter-clockwise

senses (e.g., no rotation) there is no distinction between primed and unprimed delay

times. In this case, f1 is related to our original symmetric Sagnac f by

f1 ¼ f;23 � f;1. Thus, for the LISA case (arm length difference \1%), the SNR of

f1 will be the same as the SNR of f.

If the delay-times also change with time, the perfect cancellation of the laser

noises is no longer achieved in the ðf1; f2; f3Þ combinations. However, it has been

shown in Tinto et al. (2004) that the magnitude of the residual laser noises in these

combinations are significantly smaller than the LISA secondary system noises,

making their effects negligible.

The expressions for the Monitor, Beacon, and Relay combinations, accounting

for the rotation and flexing of the LISA array, have been derived in the literature

(Tinto et al. 2004) by applying the time-delay iterative procedure highlighted in this

section. The interested reader is referred to that paper for details.

Second-generation TDI (or TDI-2) adequately suppress the laser noise below the

levels identified by the secondary noises in LISA as well as in other missions

currently under development (Luo et al. 2016; Hu and Wu 2017). The reader,

however, might wonder whether TDI could successfully be implemented with

arrays whose inter-spacecraft velocities are such as to make laser-noise terms

quadratic in the inter-spacecraft velocities and the accelerations no longer

negligible. Assuming such hypothetical missions could still perform heterodyne

one-way Doppler measurements in the presence of extremely large laser beat-notes,

one way to address this problem might be to further extend to higher orders the
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iterative procedure presented in this section. This approach would result in ‘‘TDI-

3’’, or in general, a ‘‘TDI-n’’ formulation of TDI.

Alternatively, two interesting techniques (Muratore et al. 2020; Vallisneri et al.

2020) have recently been proposed to address this problem. Both are numerically

based and can in principle identify TDI combinations capable of canceling the laser

noises in the presence of arbitrarily large inter-spacecraft velocities. The one

proposed in Vallisneri et al. (2020) in particular follows from a Bayesian

formulation of TDI (Romano and Woan 2006) in which the laser noises are

characterized by having variances much larger than those associated with all other

noises. The method relies on using the entire temporal duration of the one-way

Doppler measurements and by relating them to the laser noises through an identified

linear relationship. In so doing it is stated that data-gaps can be treated

automatically within the method, and any gravitational wave filtering can be

applied directly to the one-way Doppler data.The method has been termed as TDI-

1. However, here a proof of principle analysis has been described for two data

streams, which in the case of LISA needs to be extended to six and this situation

could technically be more complex. It would be desirable to perform a rigorous and

extensive analysis of this method for future missions. The method looks promising

and we are looking forward to see the future outcomes of this approach.

5.3 Algebraic approach to second-generation TDI

In this subsection we present a mathematical formulation of the ‘‘second-

generation’’ TDI, which generalizes the one presented in Sect. 4 for stationary

LISA. Although a full solution as in the case of stationary LISA seems difficult to

obtain, significant progress can be made.

In the case of rigidly rotating array, in which only the Sagnac effect is considered

(Cornish and Hellings 2003; Shaddock 2004), the up-down links are unequal and the

delay-times remain constant. The mathematical formulation of Sect. 4 can be

extended in a straight-forward way where now the six time-delays Di and Di0 must

be taken into account. The polynomial ring still remains commutative but it is now

in six variables. The corresponding module of syzygies can be constructed over this

larger polynomial ring (Rajesh Nayak and Vinet 2005).

When the arms are allowed to flex, that is, the operators themselves are functions

of time, the operators no longer commute. One must then resort to non-commutative

algebra. We outline the procedure below. Since lot of the discussion has been

covered in the previous subsections we just describe the algebraic formulation.

Equation (28) generalizes in two ways: (1) now we need to consider six operators Di

and Di0 , and (2) we need to take into account the non-commutativity of the

operators—the order of the operators is important. Accordingly Eq. (28) generalizes

to,

q1 þ q10 � q20D30 � q3D2 ¼ 0;

q2 þ q20 � q30D10 � q1D3 ¼ 0;

q3 þ q30 � q10D20 � q2D1 ¼ 0:

ð86Þ
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Since Eq. (86) are linear equations, they define a homomorphism of modules as

follows: Eliminating q1 and q2 from the three Eqs. (86) while respecting the order of

the variables we get,

q3ð1 �D2D3D1Þ þ q10 ðD20 �D3D1Þ þ q20 ðD30D3 � 1ÞD1 þ q30 ðD10D1 � 1Þ
� wðD1;D2;D3;D10 ;D20 ;D30 Þ ¼ 0:

ð87Þ

Consider the polynomial ring QðD1;D2;D3;D10 ;D20 ;D30 Þ � K0, in general non-

commutative, of polynomials in the six variables D1;D2;D3;D10 ;D20 ;D30 and

coefficients in the rational field Q. The operators D1;D2;D3;D10 ;D20 ;D30 play the

role of indeterminates. Equation (87) defines a homomorphism u : K04 �! K0

where any polynomial vector ðq3; q10 ; q20 ; q30 Þ 2 K04 is mapped to the polynomial

wðD1;D2;D3;D10 ;D20 ;D30 Þ 2 K0. The set of noise free TDI combinations is just

the kernel of this homomorphism, namely, u�1ð0Þ � K04 which is a submodule of

K04. This is again a first module of syzygies over the polynomial ring K0. This

homomorphism can be extended to K06 via the elimination equations for q1 and q2.

Thus one obtains a module of noise-free TDI observables M � K06 which is iso-

morphic to u�1ð0Þ. The polynomial vectors ðqi; q0iÞ satisfying the above equations

form a left module over K0. A left module means that one can multiply a solution

ðqi; q0iÞ from the left by any polynomial in K0, then it is also a solution to the

Eqs. (86) and, therefore, in the module—the module of noise-free TDI observables.

For details see Dhurandhar (2009).

When the operators do not commute, the algebraic problem is far more complex.

If we follow on the lines of the commutative case, the first step would be to find a

Gröbner basis for the ideal generated by the coefficients appearing in Eq. (87),

namely, the set of polynomials:

f1 �D2D3D1;D20 �D3D1; ðD30D3 � 1ÞD1;D10D1 � 1g:

Although we may be able to apply non-commutative Gröbner basis methods, the

general solution seems quite difficult. However, simplifications are possible because

of the inherent approximate symmetries in the problem and so the ring K0, now

non-commutative, can be quotiented by a certain ideal, simplifying the algebraic

problem. One then needs to deal with a ‘smaller’ ring, which may be easier to deal

with. We describe below how this can achieved with the help of certain

commutators.

The level of non-commutativity can be found by computing commutators which

occur in several of the well known TDI observables like the Michelson, Sagnac etc.

We find that given our model of LISA, we require to go only up to the first order in
_L. The reason is as follows. In Nayak et al. (2006) an optimal model of LISA was

given which minimizes the flexing of the arms of LISA. The computations were

done for the older model of LISA which had arm length of 5 
 106 km. Since for the

current design of LISA, the arm length has been reduced by a factor of 2, we apply

scaling arguments to the results obtained therein. In Nayak et al. (2006) it was
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shown that the flexing of the arms of LISA can be derived from the geodesic

deviation equation where one considers the Sun’s field in the Newtonian

approximation. One must however, go to the second order in the separation vector

in the geodesic deviation equation—the third derivative of the Newtonian potential

of the Sun, expansion up-to the octupole term—in order to obtain the flexing. Since

the separation vector comes in at the second order in the geodesic deviation

equation, the _L and €L terms are scaled down by a factor of 4. We find that for the

current design of LISA, €L� 3 
 10�7 m=s
2

and _L
2
=c2 � 10�16. Since our aim is to

cancel the laser frequency noise to better than 1 part in 108 a difference in path

length of less than a few meters is sufficient to keep the level of the residual laser

frequency noise below acceptable levels. Clearly, the _L
2

terms can be dropped,

because their contribution is much smaller than 1 part in 108. In the case of the €L,

even if one considers say 12 successive optical paths, that is, about Dt� 100 s of

light travel time, Dt2 €L� 3 
 10�3 m. This is well below few meters and thus can be

neglected in the residual laser noise computation. The calculations that follow

neglect these terms.

Applying the operators twice in succession and dropping higher order terms as

explained above,

k2k1/ ¼ /ðt � Lk1
ðt � Lk2

Þ � Lk2
Þ;

	/ðt � Lk1
� Lk2

Þ þ Lk2
_Lk1

_/ðt � Lk1
� Lk2

Þ;
ð88Þ

where k1; k2 are any of the operators Di;Di0 . The above formula can be easily

generalized by induction to n operators. In several of the TDI observables, com-

mutators play a major role. In general, a commutator of two operators x, y is defined

as the operator ½x; y� � xy� yx. In our situation x and y are strings of operators built

up of the operators D1;D2;D3;D10 ;D20 ;D30 . For example, in the Sagnac combination

the following commutator (Dhurandhar et al. 2008) occurs:

½D1D2D3;D10D20D30 � � D1D2D3D10D20D30 � D10D20D30D1D2D3: ð89Þ

Here x ¼ D1D2D3 and y ¼ D10D20D30 . This commutator leads to the residual noise

term given in Eq. (82) and which happens to be small. For the Sagnac combination,

we obtain,

½D1D2D3;D10D20D30 � ¼ ðL1 þ L2 þ L3Þð _L
0
1 þ _L

0
2 þ _L

0
3Þ

� ðL01 þ L02 þ L03Þð _L1 þ _L2 þ _L3Þ;
ð90Þ

where it is understood that the LHS acts on / while the RHS multiplies _/ at an

appropriately delayed time. Note that the term in / cancels out on the RHS. The

near vanishing of the above commutators implies that a vast simplification in the

algebra is possible.

The result for the Sagnac combination can be generalized. To simplify notation

we write xk or ym for the time-delay operators, where k;m ¼ 1; 2; . . .; n and n� 2,

that is, xk or ym are any of the operators D1;D2;D3;D10 ;D20 ;D30 . Then a commutator

is:
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½x1x2. . .xn; y1y2. . .yn� ¼ x1x2. . .xny1y2. . .yn � y1y2. . .ynx1x2. . .xn: ð91Þ

Up to the order of approximation we are working in, we compute the effect of the

commutator on the phase /ðtÞ:

½x1x2. . .xn; y1y2. . .yn�/ðtÞ

¼
X

n

k¼1

Lxk
X

n

m¼1

_Lym �
X

n

m¼1

Lym
X

n

k¼1

_Lxk

 !

_/ t �
X

n

k¼1

Lxk �
X

n

m¼1

Lym

 !

:
ð92Þ

Note that the LHS acts on /ðtÞ, while the right-hand side multiplies _/ at an

appropriately delayed time. Also the notation on the RHS is obvious: if for some k,

we have, xk ¼ D20 say, then Lxk ¼ L02 and so on; the same holds for ym for a given m.

From this equation it immediately follows that if the operators y1; y2; . . .; yn are a

permutation of the operators x1; x2; . . .; xn, then the commutator,

½x1x2. . .xn; y1y2. . .yn� ¼ 0; ð93Þ

up to the order we are working in. We can understand this by the following argu-

ment. If y1. . .yn is a permutation of x1. . .xn then both polynomials trace the same
links, except that the nodes (spacecraft) of the links are taken in different orders. If

the arm lengths were constant, the pathlengths would be identical and the com-

mutator would be zero. But here, by neglecting €L terms and those of higher orders,

we have effectively assumed that _Ls are constant, so the increments also cancel out,

resulting in a vanishing commutator.

These vanishing commutators (in the approximation we are working in) can be

used to simplify the algebra. We first construct the ideal U generated by the

commutators such as those given by Eq. (93). Then we quotient the ring K0 by U,

thereby constructing a smaller ring K0=U � �K. This ring is smaller because it has

fewer distinct terms in a polynomial. Although, this reduces the complexity of the

problem, a full solution to the TDI problem is still lacking.

In the following Sect. 5.4, we will consider the case where we have only two

arms of LISA in operation, that is one arm is nonfunctional. The algebraic problem

simplifies considerably and it turns out to be tractable.

5.4 Solutions with one arm nonfunctional

We must envisage the possibility that not all optical links of LISA can be operating

at all times for various reasons like technical failure for instance or even the

operating costs. An analysis covering the scientific capabilities achievable by LISA

in the eventuality of loosing one and two links has been discussed in Vallisneri et al.

(2008). Here we obtain the TDI combinations when one entire arm becomes

dysfunctional. See Dhurandhar et al. (2010) for a full discussion. The results of this

section are directly usable by the TaiJi (Hu and Wu 2017) and TianQin (Luo et al.

2016) missions.

We arbitrarily choose the non-functional arm to be the one connecting S/C 2 and

S/C 3. This means from our labeling that the polynomials are now restricted to only
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the four operators D2;D20 ;D3;D30 and we can set the polynomials q2 ¼ q30 ¼ 0.

This simplifies the Eq. (86) considerably because the last two equations reduce to

q20 ¼ q1D3 and q3 ¼ q10D20 . Substituting these in the first equation gives just one

equation:

q1ð1 �D3D30 Þ þ q10 ð1 �D20D2Þ ¼ 0; ð94Þ

If we can solve this equation for q1; q10 then the full polynomial vector can be

obtained because q20 ¼ q1D3 and q3 ¼ q10D20 . It is clear that solutions are of the

Michelson type. Also notice that the coefficients of this equation has the operators

a ¼ D3D30 and b ¼ D20D2 occurring in them. So the solutions q1; q10 too will be in

terms of a and b only. Physically, the operators a and b correspond to round trips.

One solution has already been given in the literature (Armstrong 2006; Vallisneri

2005). This solution in terms of a, b is:

q1 ¼ 1 � b� baþ ab2;

q10 ¼ �ð1 � a� abþ ba2Þ:
ð95Þ

Writing,

D ¼ q1ð1 � aÞ þ q10 ð1 � bÞ; ð96Þ

we get for Eq. (95), D ¼ ½ba; ab�, which is a commutator that vanishes since ab is a

permutation of ba. Thus, it is an element of U and Eq. (95) is a solution (over the

quotient ring).

What we would like to emphasize is that there are more solutions of this type—in
fact there are infinite number of such solutions. The solutions are based on

vanishing of commutators. In Dhurandhar et al. (2010), such commutators are

enumerated and for each such commutator there is a corresponding solution. Further

an algorithm is given to construct such solutions. We briefly mention some results

given in Dhurandhar et al. (2010). We start with the solutions q1; q10 of Eq. (95).

Note that these are of degree 3 in a and b. The commutator corresponding to this

solution is D ¼ ½ba; ab� ¼ ba2b� ab2a and is of degree 4. There is only one such

commutator at degree 4 and therefore one solution. The next higher degree solutions

are found when the commutators have degree 8. The solutions q1; q10 are of degree

7. There are three such commutators at degree 8. We demonstrate a systematic way

to enumerate and list such solutions.

To obtain solutions with higher degree, we proceed as follows: We write,

r1 ¼ q1 � ba2b;

r01 ¼ q10 þ ab2a;
ð97Þ

and check whether we get a commutator. We find,

D0 � r1ð1 � aÞ þ r01ð1 � bÞ ¼ ba2ba� ab2ab: ð98Þ
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The lower degree terms cancel out to yield D0 as above. However, it does not

vanish—it is also not a commutator—and hence we conclude that r1; r
0
1 is not a

solution. The prime on D denotes the first iteration. Continuing further we write,

s1 ¼ r1 þ ab2ab;

s01 ¼ r01 � ba2ba;
ð99Þ

and similarly compute D00 � s1ð1 � aÞ þ s01ð1 � bÞ ¼ ba2bab� ab2aba which also

does not vanish, and again not a commutator. The double prime denotes the second

iteration.

This process can be continued in a way so that the lower degree terms cancel out

until we get a vanishing commutator, albeit, of higher degree. The next commutator

is obtained by adding two more terms of successively higher degree in a similar

way. The result is:

q1 ¼ 1 � b� baþ ab2 � ba2bþ ab2abþ ab2aba� ba2bab2;

q10 ¼ �ð1 � a� abþ ba2 � ab2aþ ba2baþ ba2bab� ab2aba2Þ:
ð100Þ

This results in the following commutator:

D ¼ ½ab2a; ba2b�; ð101Þ

and hence (100) is a solution.

Another and the second solution is:

q1 ¼ 1 þ a� b2 � b2a� b2a2 � b2a3 þ a2b4 þ a2b4a

¼ ð1 � b2 � b2a2 þ a2b4Þð1 þ aÞ;
q10 ¼ �ð1 þ b� a2 � a2b� a2b2 � a2b3 þ b2a4 þ b2a4bÞ

¼ �ð1 � a2 � a2b2 þ b2a4Þð1 þ bÞ;

ð102Þ

whose commutator is D ¼ ½b2a2; a2b2�.
The third solution corresponds to the commutator [baba, abab]. This solution is

given by:

q1 ¼ 1 � bþ ab� bab� babaþ abab2 � baba2bþ abab2ab;

q10 ¼ �ð1 � aþ ba� aba� ababþ baba2 � abab2aþ baba2baÞ:
ð103Þ

Higher degree solutions can be constructed. An iterative algorithm has been

described in Dhurandhar et al. (2010) for this purpose. The degrees of the com-

mutators are in multiples of 4. If we call the degree of the commutators as 4n where

n ¼ 1; 2; . . ., then the solutions q1; q10 are of degree 4n� 1. The cases mentioned

above, correspond to n ¼ 1 and n ¼ 2. The general formula for the number of

commutators of degree 4n is 2n�1Cn�1. So at n ¼ 3 we have 10 commutators and so

as many solutions q1; q10 of degree 11.

These are the degrees of polynomials of q1; q10 in the operators a, b. But for the

full polynomial vector, which has q20 and q3, we need to go over to the operators

123

Time-delay interferometry Page 41 of 73 1



expressed in terms of Di;Di0 . Then the degree of each of the q1; q10 is doubled to

8n� 2, while q20 and q3 are each of degree 8n� 1. Thus, for a general value of n,

the solution contains polynomials of maximum degree 8n� 1 in the time-delay

operators.

From the mathematical point of view there is an infinite family of solutions. Note

that no claim is made on exhaustive listing of solutions. However the family of

solutions is sufficiently rich, because we can form linear combinations of these

solutions and they also are solutions.

From the physical point of view, since terms in €L and _L
2

and higher orders have

been neglected, a limit on the degree of the polynomial solutions arises. That is up

to certain degree of the polynomials, we can safely assume the commutators to

vanish. But as the degree of the polynomials increases it is not possible to neglect

these higher order terms any longer and then such a limit becomes important. The

limit is essentially set by €L. We now investigate this limit and make a very rough

estimate of it. From €L� 3 
 10�3 m/s2, we compute the error in L, namely,

DL� 1
2
Dt2 €L, where Dt is the time the laser light takes to travel a specific path. If we

allow the error DL to be no more than say 3 m, then we find Dt� 4500 s. Since each

time-delay is about 8.3 s for LISA, the number of successive time-delays is about

540. This is the maximum degree of the polynomials. This means one can go up to

n.60. If we set the limit more stringently at DL� 0:3 m, then the highest degree of

the polynomial reduces to about 160, which means one can go up to n ¼ 20. Thus,

there are a large number of TDI observables available to do the physics.

Some remarks are in order:

– A geometric combinatorial approach was adopted in Vallisneri (2005) where

several solutions were presented. Our approach is algebraic where the operations

are algebraic operations on strings of operators. The algebraic approach has the

advantage of easy manipulation of data streams while still displaying a

geometrical interpretation in the derived TDI combinations.

– Another important aspect is the GW response of such TDI observables. The GW

response to a TDI observable may be calculated in the simplest way by assuming

equal arms (the possible differences in lengths would be sensitive to frequencies

outside the LISA bandwidth). This leads in the Fourier domain to polynomials in

the same phase factor from which the signal to noise ratio can be found. A

comprehensive and generic treatment of the responses of second-generation TDI

observables can be found in Królak et al. (2004).

6 Optimal LISA sensitivity

All the above interferometric combinations have been shown to individually have

rather different sensitivities (Estabrook et al. 2000), as a consequence of their

different responses to gravitational radiation and system noises. Since LISA has the

capability of simultaneously observing a gravitational-wave signal with many

different interferometric combinations (all having different antenna patterns and

noises), we should no longer regard LISA as a single detector system but rather as

123

1 Page 42 of 73 M. Tinto, S. V. Dhurandhar



an array of gravitational-wave detectors working in coincidence. This suggests that

the LISA sensitivity could be improved by optimally combining elements of the TDI

space.

Before proceeding with this idea, however, let us consider again the so-called

‘‘second-generation’’ TDI Sagnac observables: ða1; a2; a3Þ. The expressions of the

gravitational-wave signal and the secondary noise sources entering into a1 will in

general be different from those entering into a, the corresponding Sagnac observable

derived under the assumption of a stationary LISA array (Armstrong et al. 1999;

Estabrook et al. 2000). However, the other remaining secondary noises in LISA are

so much smaller, and the rotation and systematic velocities in LISA are so

intrinsically small, that index permutation may still be done for them (Tinto et al.

2004). It is therefore easy to derive the following relationship between the signal

and secondary noises in a1, and those entering into the stationary TDI combination a
(Shaddock et al. 2003; Tinto et al. 2004),

a1ðtÞ ’ aðtÞ � aðt � L1 � L2 � L3Þ; ð104Þ

where Li, i ¼ 1; 2; 3, are the unequal-arm lengths of the stationary LISA array.

Equation (104) implies that any data analysis procedure and algorithm that will be

implemented for the second-generation TDI combinations can actually be derived

by considering the corresponding ‘‘first-generation’’ TDI combinations. For this

reason, from now on we will focus our attention on the gravitational-wave responses

of the first-generation TDI observables ða; b; c; fÞ.
As a consequence of these considerations, we can still regard ða; b; c; fÞ as the

generators of the TDI space, and write the most general expression for an element of

the TDI space, gðf Þ, as a linear combination of the Fourier transforms of the four

generators ðea; eb;ec;efÞ,

gðf Þ � a1ðf ; kÞ eaðf Þ þ a2ðf ; kÞ ebðf Þ þ a3ðf ; kÞecðf Þ þ a4ðf ; kÞefðf Þ; ð105Þ

where the faiðf ; kÞg4
i¼1 are arbitrary complex functions of the Fourier frequency f,

and of a vector k containing parameters characterizing the gravitational-wave signal

(source location in the sky, waveform parameters, etc.) and the noises affecting the

four responses (noise levels, their correlations, etc.). For a given choice of the four

functions faig4
i¼1, g gives an element of the functional space of interferometric

combinations generated by ða; b; c; fÞ. Our goal is therefore to identify, for a given

gravitational-wave signal, the four functions faig4
i¼1 that maximize the signal-to-

noise ratio SNR2
g of the combination g,

SNR2
g ¼

Z fu

fl

a1 eas þ a2
ebs þ a3 ecs þ a4

efs

�

�

�

�

�

�

2

a1 ean þ a2
ebn þ a3 ecn þ a4

efn

�

�

�

�

�

�

2
� 	 df : ð106Þ

In Eq. (106) the subscripts s and n refer to the signal and the noise parts of

ðea; eb;ec;efÞ, respectively, the angle brackets represent noise ensemble averages, and
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the interval of integration ðfl; fuÞ corresponds to the frequency band accessible by

LISA.

Before proceeding with the maximization of the SNR2
g we may notice from

Eq. (62) that the Fourier transform of the totally symmetric Sagnac combination, ef,

multiplied by the transfer function 1 � e2pif ðL1þL2þL3Þ can be written as a linear

combination of the Fourier transforms of the remaining three generators ðea; eb;ecÞ.
Since the signal-to-noise ratio of g and ð1 � e2pif ðL1þL2þL3ÞÞg are equal, we may

conclude that the optimization of the signal-to-noise ratio of g can be performed

only on the three observables a; b; c. This implies the following redefined

expression for SNR2
g:

SNR2
g ¼

Z fu

fl

a1 eas þ a2
ebs þ a3 ecs

�

�

�

�

�

�

2

a1 ean þ a2
ebn þ a3 ecn

�

�

�

�

�

�

2
� 	 df : ð107Þ

The SNR2
g can be regarded as a functional over the space of the three complex

functions faig3
i¼1, and the particular set of complex functions that extremize it can

of course be derived by solving the associated set of Euler–Lagrange equations.

To make the derivation of the optimal SNR easier, let us first denote by xðsÞ and

xðnÞ the two vectors of the signals ðeas; ebs;ecsÞ and the noises ðean; ebn;ecnÞ,
respectively. Let us also define a to be the vector of the three functions faig3

i¼1,

and denote with C the Hermitian, non-singular, correlation matrix of the vector

random process xn,

ðCÞrt � xðnÞr x
ðnÞ

t

D E

: ð108Þ

If we finally define ðAÞij to be the components of the Hermitian matrix x
ðsÞ
i x

ðsÞ

j , we

can rewrite SNR2
g in the following form,

SNR2
g ¼

Z fu

fl

aiAija


j

arCrta
t
df ; ð109Þ

where we have adopted the usual convention of summation over repeated indices.

Since the noise correlation matrix C is non-singular, and the integrand is positive

definite or null, the stationary values of the signal-to-noise ratio will be attained at

the stationary values of the integrand, which are given by solving the following set

of equations (and their complex conjugated expressions):

o

oak

aiAija


j

arCrta
t


 �

¼ 0; k ¼ 1; 2; 3: ð110Þ

After taking the partial derivatives, Eq. (110) can be rewritten in the following

form,
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ðC�1Þir ðAÞrj ða
Þj ¼
apApqa



q

alClma
m


 �

ða
Þi; i ¼ 1; 2; 3; ð111Þ

which tells us that the stationary values of the signal-to-noise ratio of g are equal to

the eigenvalues of the the matrix C�1 � A. The result in Eq. (110) is well known in

the theory of quadratic forms, and it is called Rayleigh’s principle (Noble 1969;

Selby 1964).

Now, to identify the eigenvalues of the matrix C�1 � A, we first notice that the

3 
 3 matrix A has rank 1. This implies that the matrix C�1 � A has also rank 1, as it

is easy to verify. Therefore two of its three eigenvalues are equal to zero, while the

remaining non-zero eigenvalue represents the solution we are looking for.

The analytic expression of the third eigenvalue can be obtained by using the

property that the trace of the 3 
 3 matrix C�1 � A is equal to the sum of its three

eigenvalues, and in our case to the eigenvalue we are looking for. From these

considerations we derive the following expression for the optimized signal-to-noise

ratio SNR2
g opt:

SNR2
g opt ¼

Z fu

fl

x
ðsÞ

i ðC�1Þij x

ðsÞ
j df : ð112Þ

We can summarize the results derived in this section, which are given by Eqs. (107)

and (112), in the following way:

1. Among all possible interferometric combinations LISA will be able to

synthesize with its four generators a, b, c, f, the particular combination giving

maximum signal-to-noise ratio can be obtained by using only three of them,

namely ða; b; cÞ:
2. The expression of the optimal signal-to-noise ratio given by Eq. (112) implies

that LISA should be regarded as a network of three interferometer detectors of

gravitational radiation (of responses ða; b; cÞ) working in coincidence (Finn

2001; Rajesh Nayak et al. 2003b).

6.1 General application

As an application of Eq. (112), here we calculate the sensitivity that LISA can reach

when observing signals (i) from a specific direction and with a given polarization

state as well as (ii) in the case of an ensemble of sources uniformly distributed on

the celestial sphere and of random polarization.

To calculate the optimal signal-to-noise ratio we will also need to use a specific

expression for the noise correlation matrix C. As a simplification, we will assume

the LISA arm lengths to be equal to their nominal value L ¼ 8:33 s, the optical-

path noises to be equal and uncorrelated to each other and entering in the TDI

responses with the same transfer function as the shot-noise, and finally the proof-

mass noises to be also equal, uncorrelated to each other and to the optical-path
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noises Amaro-Seoane et al. (2017).4 Under these assumptions the correlation

matrix becomes real, its three diagonal elements are equal, and all the off-diagonal

terms are equal to each other, as it is easy to verify by direct calculation (Estabrook

et al. 2000). The noise correlation matrix C is therefore uniquely identified by two

real functions Sa and Sab in the following way:

C ¼
Sa Sab Sab

Sab Sa Sab

Sab Sab Sa

0

B

@

1

C

A

: ð113Þ

The expression of the optimal signal-to-noise ratio assumes a rather simple form if

we diagonalize this correlation matrix by properly ‘‘choosing a new basis’’. There

exists an orthogonal transformation of the generators ðea; eb;ecÞ, which will transform

the optimal signal-to-noise ratio into the sum of the signal-to-noise ratios of the

‘‘transformed’’ three interferometric combinations. The expressions of the three

eigenvalues flig3
i¼1 (which are real) of the noise correlation matrix C can easily be

found by using the algebraic manipulator Mathematica (Wolfram 2014), and they

are equal to

l1 ¼ l2 ¼ Sa � Sab; l3 ¼ Sa þ 2Sab: ð114Þ

Note that two of the three real eigenvalues, (l1, l2), are equal. This implies that the

eigenvector associated to l3 is orthogonal to the two-dimensional space generated

by the eigenvalue l1, while any chosen pair of eigenvectors corresponding to l1 will

not necessarily be orthogonal. This inconvenience can be avoided by choosing an

arbitrary set of vectors in this two-dimensional space, and by ortho-normalizing

them. After some simple algebra, we have derived the following three ortho-nor-

malized eigenvectors:

v1 ¼
1
ffiffiffi

2
p ð�1; 0; 1Þ v2 ¼

1
ffiffiffi

6
p ð1;�2; 1Þ v3 ¼

1
ffiffiffi

3
p ð1; 1; 1Þ: ð115Þ

Equation (115) implies the following three linear combinations of the generators

ðea; eb;ecÞ:

A � 1
ffiffiffi

2
p ec � eað Þ; E � 1

ffiffiffi

6
p ea � 2eb þ ec
� 


; T � 1
ffiffiffi

3
p ea þ eb þ ec
� 


;

ð116Þ

where A, E, and T are italicized to indicate that these are ‘‘orthogonal modes’’.

Although the expressions for the modes A and E depend on our particular choice for

4 These assumptions about the statistical properties of the noises might not be true in general. Noise

sources affecting the performance of the proof masses on board a spacecraft, for instance, (such as

gravity-gradient noise, on board and external electric and magnetic fields, temperature-change related

effects, etc.) introduce correlations. Also, some of the noises included in the so called ‘‘optical-path

noise’’ could be correlated to those associated with the proof masses and show correlations over light-

way-times (such as beam-pointing fluctuations, for instance). For more details on these points see the

considerations made in Sylvestre and Tinto (2003).
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the two eigenvectors (v1; v2), it is clear from our earlier considerations that the value

of the optimal signal-to-noise ratio is unaffected by such a choice. From Eq. (116) it

is also easy to verify that the noise correlation matrix of these three combinations is

diagonal, and that its non-zero elements are indeed equal to the eigenvalues given in

Eq. (114).

To calculate the sensitivity corresponding to the expression of the optimal signal-

to-noise ratio averaged over signals randomly distributed on the sky and

polarization states, we have proceeded similarly to what was done in Armstrong

et al. (1999), Estabrook et al. (2000), Tinto et al. (2002a), and described in more

detail in Prince et al. (2002). We assume an equal-arm LISA (L ¼ 8:33 s), and take

the one-sided spectra of proof mass and aggregate optical-path-noises (on a single

link), expressed as fractional frequency fluctuation spectra, to be respectively (see

Amaro-Seoane et al. 2017)

S proof mass
y ðf Þ ¼ 2:5 
 10�48½f=1 Hz��2

1 þ 0:4 mHz

f

� �2
" #


 1 þ f

8 mHz

� �4
" #

Hz�1;

ð117Þ

S optical path
y ðf Þ ¼ 4:4 
 10�38½f=1 Hz�2 1 þ 2 mHz

f

� �4
" #

Hz�1: ð118Þ

We also assume that aggregate optical path noise has the same transfer function as

shot noise. To derive the expression of the LISA’s optimal sensitivity to a signal

from a given direction and with a polarization state, let us rewrite the optimal SNR

in terms of the combinations A, E, and T

SNR2
opt ¼

Z fu

fl

jehðf Þj2 j eRAðh;/;w; e; f ; LÞj2

SAðf ; LÞ
þ j eREðh;/;w; e; f ; LÞj2

SEðf ; LÞ

"

þ j eRTðh;/;w; e; f ; LÞj2

STðf ; LÞ

#

;

ð119Þ

where eRAðh;/;w; e; f ; LÞ, eREðh;/;w; e; f ; LÞ, eRTðh;/;w; e; f ; LÞ, are the transfer

functions of a gravitational wave signal into the combinations A, E, and T. Note we

have made explicit the dependence of both the signal and the noise transfer func-

tions on the array nominal arm length. In Eq. (119) ehðf Þ is the amplitude of the

gravitational wave at the Fourier frequency f, (e;w) describe its polarization state,

(h;/) are the Euler angles associated with the direction of propagation of the

gravitational wave signal with respect to a selected coordinate system,5 and SAðf ; LÞ,
SEðf ; LÞ, STðf ; LÞ are the spectral densities of the noises in the A, E, T combinations

respectively.

5 This could be a coordinate system centered on the LISA array or the Solar System Barycenter. We will

return to this point in the following section
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From Eq. (119) it is easy to derive the following expression for the LISA optimal

sensitivity, Sopth;h;/;w;eðh;/;w; e; f ; LÞ, to a gravitational wave signal characterized by a

specific direction of propagation (h;/) and polarization state (�;w)

Sopth;h;/;w;Cðh;/;w; e; f ; LÞ �
SA SE ST

SE ST j eRAj2 þ SA ST j eREj2 þ SA SEj eRT j2
; ð120Þ

where we have omitted the parameters and Fourier frequency dependence in the

terms appearing on the right-hand-side of Eq. (120). In the case of an ensemble of

sources randomly distributed over the celestial sphere emitting GW signals of

random polarization states, the expression for the optimal sensitivity [Eq. (120)]

assumes the following form

Sopt
h ðf Þ � SAðf ; LÞ SEðf ; LÞ STðf ; LÞ

SEðf ; LÞ STðf ; LÞRAðf ; LÞ þ SA STREðf ; LÞ þ SA SEREðf ; LÞ
; ð121Þ

where we have denoted with RIðf ; LÞ � hj eRAj2ih;/;w;e; I ¼ A;E; T , the average

values, over signal direction and polarization states, of the module-squared transfer

functions of the GW signals in the combinations A, E, and T respectively.

To quantify the sensitivity improvement of the averaged optimal data combi-

nation over that of a single LISA Michelson interferometer, we have analytically-

numerically integrated the average of the module-squared transfer functions of the

GW signals in the combinations A, E, and T, and then used the expression of the

optimal averaged sensitivity derived in Eq. (121). From the expressions of ða; b; cÞ
and A, E, and T [Eqs. (61, 116)] one can then obtain the transfer functions of the

Fourier components of an arbitrary gravitational wave signal and of the noises into

the A, E, and T optimal combinations. The derivation of the averaged transfer

functions was performed by first integrating analytically over the polarization

parameters (e;w) and then numerically over the Euler angles (h;/). To gain

processing speed, the numerical integration algorithm relied on a Gauss–Legendre

routine (Press et al. 2007). The integration was done for 10,000 Fourier frequencies

in the � 10�4 Hz to � 1 Hz LISA band after deriving the analytic expressions of

the Fourier transforms of the gravitational-wave response of ða; b; cÞ from the

formulas in Armstrong et al. (1999), Tinto et al. (2002a). From the Fourier

transforms of the ða; b; cÞ responses at each frequency, we construct the Fourier

transforms of (A, E, T). We then square and average to compute the mean-squared

responses of (A, E, T) at that frequency.

The noise spectra of (A, E, T) are determined from the raw spectra of proof-mass

and optical-path noises, and the transfer functions of these noises to (A, E, T). Using

the transfer functions given in Estabrook et al. (2000), the resulting spectra are

equal to

SAðf Þ ¼ SEðf Þ ¼ 16 sin2ðpfLÞ ½3 þ 2 cosð2pfLÞ þ cosð4pfLÞ� S proof mass
y ðf Þ

þ 8 sin2ðpfLÞ ½2 þ cosð2pfLÞ� S optical path
y ðf Þ;

ð122Þ

STðf Þ ¼ 8 sin2ð3pfLÞ S proof mass
y þ 2½1 þ 2 cosð2pfLÞ�2 S optical path

y ðf Þ: ð123Þ
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In Fig. 7 we show the sensitivity curve for the LISA equal-arm Michelson response

as a function of the Fourier frequency, and the sensitivity curve from the optimum

weighting of the data. Note that at frequencies where the LISA Michelson combi-

nation has best sensitivity, the improvement in signal-to-noise ratio provided by the

optimal observable is slightly larger than
ffiffiffi

2
p

.

In Fig. 8 we plot the ratio between the sensitivity of a single Michelson

interferometer and the optimal sensitivity. For Fourier frequencies smaller than 1/L,

the sensitivity improvement is
ffiffiffi

2
p

. For frequencies greater than or about equal to 1/

L, the sensitivity improvement is larger and varies with the frequency, showing an

average value of about
ffiffiffi

3
p

. In particular, for bands of frequencies centered on

integer multiples of 1/L, the sensitivity of the combination T contributes strongly

and the aggregate sensitivity in these bands can be greater than 2.

To better understand the contribution from the three different combinations to the

optimal combination of the three generators, in Fig. 9 we plot the sensitivities of

(A, E, T) as well as the optimal sensitivity. The sensitivities of the three modes are

plotted versus frequency. For the equal-arm case computed here, the sensitivity of

A and E are equal across the band. In the long wavelength region of the band, modes

A and E have SNRs much greater than mode T, where its contribution to the total
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Fig. 7 The LISA unequal-arm Michelson X sensitivity curve and the sensitivity curve for the optimal
combination of the data, both as a function of Fourier frequency. LISA is assumed to have a nominal arm
length L ¼ 8:33 s
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sensitivity is negligible. At higher frequencies, however, the T combination has

sensitivity greater than or comparable to the other modes and can dominate the

sensitivity improvement at selected frequencies. Some of these results have also

been obtained in Rajesh Nayak et al. (2003b).

6.2 Optimization of SNR for binaries with known direction but with unknown
orientation of the orbital plane

Binaries are important sources for LISA and therefore the analysis of such sources is

of major importance. One such class is of massive or super-massive binaries whose

individual masses could range from 103M� to 108M� and which could be up to a

few Gpc away. Another class of interest are known binaries within our own galaxy

whose individual masses are of the order of a solar mass but are just at a distance of

a few kpc or less. Here the focus will be on this latter class of binaries. It is assumed

that the direction of the source is known, which is so for known binaries in our

galaxy. However, even for such binaries, the inclination angle of the plane of the
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Fig. 8 The ratio qðf Þ between the sensitivity of the unequal-arm Michelson combination X and the
optimal sensitivity, as a function of the Fourier frequency f. The sensitivity gain in the low-frequency

band is equal to
ffiffiffi

2
p

, while it can get larger than 2 at selected frequencies in the high-frequency region of
the accessible band. The proof mass and optical path noise spectra are those defined by the project
(Amaro-Seoane et al. 2017). See the main body of the paper for a quantitative discussion of this point
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orbit of the binary is either poorly estimated or unknown. The optimization problem

is now posed differently: the SNR is optimized after averaging over the orientations

of the orbital planes of the binary systems, so the results obtained are optimal on the

average, that is, the source is tracked with an observable which is optimal on the

average (Rajesh Nayak et al. 2003b). For computing the average, a uniform

distribution for the direction of the orbital angular momentum of the binary is

assumed.

When the binary masses are of the order of a solar mass and the signal typically

has a frequency of a few mHz, the GW frequency of the binary may be taken to be

constant over the period of observation, which is typically taken to be of the order of

an year. A complete calculation of the signal matrix and the optimization procedure

of SNR is given in Rajesh Nayak et al. (2003a). Here we briefly mention the main

points and the final results.

We consider a point source fixed in the Solar System Barycentric reference

frame. But as the LISA constellation moves along its heliocentric orbit, the apparent

direction of the source in the LISA frame changes as a function of time. Since there

are two frames involved, we label the direction angles explicitly with corresponding
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Fig. 9 The sensitivities of the three combinations (A, E, T) and the resulting optimal sensitivity as
functions of the Fourier frequency f. The sensitivities of A and E are equal over the entire frequency band.
The sensitivity of T is significantly smaller than the other two in the low part of the frequency band, while
is comparable to (and at times larger than) the sensitivities of the other two in the high-frequency region.
See text for a complete discussion
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subscripts. The direction angles of the source in barycentric frame are labelled as

ðhB;/BÞ while those in the LISA frame as ðhL:/LÞ. The corresponding LISA

reference frame is denoted by ðxL; yL; zLÞ whose orientation changes with time with

respect to the barycentric frame. The LISA reference frame ðxL; yL; zLÞ has been

defined in Rajesh Nayak et al. (2003a) as follows: The origin lies at the center of the

LISA triangle and the plane of LISA coincides with the ðxL; yLÞ plane with

spacecraft 2 lying on the xL axis. Figure 10 displays this apparent motion for a

source lying in the ecliptic plane, that is with hB ¼ 90� and /B ¼ 0�. The source in

the LISA reference frame describes a figure of 8. Optimizing the SNR amounts to

tracking the source with an optimal observable as the source apparently moves in

the LISA reference frame.

Since an average has been taken over the orientation of the orbital plane of the

binary, the signal matrix is now different from the matrix A obtained in Sect. 6.1.

The mutually orthogonal data combinations A, E, T are convenient in carrying

out the computations because in this case as well, they simultaneously diagonalize

the signal and the noise covariance matrix. For convenience we label them with

index I ¼ 1; 2; 3 respectively. The basic GW wave strains of the binary in the

Fourier domain are given by,

-1
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-1 -0.5  0  0.5  1
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Fig. 10 Apparent position of the source in the sky as seen from LISA frame for ðhB ¼ 90�;/B ¼ 0�Þ. The
track of the source for a period of 1 year is shown on the unit sphere in the LISA reference frame
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hþðXÞ ¼ H
1 þ cos2 e

2
cos 2w� i cos e sin 2w


 �

;

h
ðXÞ ¼ H � 1 þ cos2 e
2

sin 2w� i cos e cos 2w


 �

:

ð124Þ

where H is an overall dimensionless amplitude depending on the masses, the dis-

tance and the GW frequency of the binary system and the angles ðe;wÞ describe the

orientation of the binary orbit (e;w could specify the direction the orbital angular

momentum vector). The GW response for a generator is,

hðIÞðXÞ ¼ F
ðIÞ
þ ðXÞhþðXÞ þ FðIÞ


 ðXÞh
ðXÞ; ð125Þ

where the F
ðIÞ
þ and F

ðIÞ

 are the antenna pattern functions corresponding to the

generator I where I is any of the generators A, E, T. From these GW strains we

define the signal covariance matrix,

h
ðIÞ
ðJÞ ¼ hðIÞh
ðJÞ;

¼ F
ðIÞ
þ hþ þ FðIÞ


 h


� 


FþðJÞhþ þ F
ðJÞh

� �


:
ð126Þ

In general we may not have any knowledge of the orientation of the orbital plane of

the binary source. We therefore average over the direction of the orbital angular

momentum of the binary uniformly distributed over the sphere. The orientation of

the binary (its orbital angular momentum vector) has been described in terms of the

angles e and w in Eq. (124). We carry out the averaging of h
ðIÞ
ðJÞ over ðe;wÞ which

results in an overall factor of 2/5. The averaged matrix we denote by H
ðIÞ
ðJÞ. In the

Fourier domain it is given by,

H
ðIÞ
ðJÞðXÞ ¼ H2 2

5

� �

F
ðIÞ
þ F


þðJÞ þ FðIÞ

 F



ðJÞ

� 


ðXÞ: ð127Þ

The signal matrix so averaged has the following properties:

– H is the sum of outer products of two vectors: F
ðIÞ
þ with its complex conjugate

and F
ðIÞ

 with its complex conjugate. Thus the natural basis for expressing H

consists of the two vectors F
ðIÞ
þ and F

ðIÞ

 .

– H is of rank two, everywhere except on the h ¼ p
2

plane where it is one when

F
ðIÞ

 goes identically to zero. In Sect. 6.1 since optimization is performed first

before averaging, the signal matrix is constituted from a single vector and thus

has rank one.

For a generic data combination with aðIÞ as polynomial coefficients in the delay

operators, the SNR is given by:
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SNR2 ¼
aðIÞaðJÞ
H

ðIÞ
ðJÞ

aðIÞaðJÞ
N
ðIÞ
ðJÞ

; ð128Þ

where N
ðIÞ
ðJÞ is the noise matrix obtained by taking the outer product of the noise

vectors for each I (see Rajesh Nayak et al. 2003b for details). Also since we are

dealing with essentially monochromatic sources, the quantities aðIÞ just reduce to

complex numbers. It is shown in Rajesh Nayak et al. (2003a) that the optimization

problem reduces to an eigenvalue problem with the eigenvalues being the squares of

the SNRs. There are two eigen-vectors which are labeled as vþ;
 belonging to two

non-zero eigenvalues. The two SNRs are labeled as SNRþ and SNR
, corre-

sponding to the two orthogonal (thus statistically independent) eigenvectors vþ;
.

As was done in Sect. 6.1, the two SNRs can be squared and added to yield a

network SNR, which is defined through the equation

SNR2
network ¼ SNR2

þ þ SNR2

: ð129Þ

The corresponding observable is called the network observable. The third eigen-

value is zero and the corresponding eigenvector orthogonal to vþ and v
 gives zero

signal. The eigenvectors and the SNRs are functions of the apparent source direction

parameters ðhL;/LÞ in the LISA reference frame, which in turn are functions of

time. The eigenvectors optimally track the source as it moves in the LISA reference

frame. Assuming an observation period of an year, the SNRs may be integrated over

this period of time.

In the low frequency regime, we can obtain analytical expressions for the optimal

SNRs. A large fraction of the sources for LISA fall into this category, for example,

massive/supermassive blackhole binaries, several galactic and extragalactic binaries

which contribute to the ‘confusion noise’. Here we do not give the detailed

calculations but refer the reader to Rajesh Nayak et al. (2003a).

Integration over a period of T ¼ T� leads to the following results:

SNRþðhB;/BÞ ¼ SNR0 gþðcos hBÞ;
SNR
ðhB;/BÞ ¼ SNR0 g
ðcos hBÞ;

ð130Þ

where,

SNR0 ¼ 3
ffiffiffi

5
p H

nA
ðXLÞ2

ffiffiffiffiffiffi

T�
p

; ð131Þ

and
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g2
þðxÞ ¼

1

T�

Z T�

0

1 þ cos2 hL
2

� �2

dt

¼ 1

4
1 þ x2

4

� �2

þ 3

16
ð1 � x2Þ 1 þ 3

4
x2 þ 9

32
1 � x2
� �

� �

;

g2

ðxÞ ¼

1

T�

Z T�

0

cos2 hLdt

¼ 1

4
x2 þ 3

2
1 � x2
� �


 �

:

ð132Þ

The quantity nA is the PSD of the noise in the data combination A. We take the

integration time T� to be of the order of a year. In order to carry out the integrals

one needs the relation between hL and ðhB;/BÞ. For the sake of completeness, we

give the expressions for both hL and /L in terms of hB and /B:

cos hL ¼ 1

2
cos hB �

ffiffiffi

3
p

2
sin hB sin /B � xtð Þ;

tan/L ¼ wð2Þ

wð1Þ ;

ð133Þ

where,

wð1Þ ¼ cosxt sin hB cosð/B � xtÞ � 1

2
sinxt sin hB sinð/B � xtÞ

�
ffiffiffi

3
p

2
sinxt cos hB;

wð2Þ ¼ sinxt sin hB cosð/B � xtÞ þ 1

2
cosxt sin hB sinð/B � xtÞ

þ
ffiffiffi

3
p

2
cosxt cos hB:

ð134Þ

Here, x ¼ 2p=T� (to simplify the calculation, one could put /B ¼ 0). This relation

is used in the above integrals and a simple calculation leads to the expressions for

gþðxÞ and g
ðxÞ where x ¼ cos hB.

We have purposely not ‘simplified’ the formulae in powers of x2 because in this

form it is easy to see the limits x ¼ �1; 0 corresponding to hB ¼ 0; p; p=2

respectively. In fact, since only x2 occurs in the expressions of gþ;
, there is

symmetry about the ecliptic plane. The network SNR is just the root mean square of

the two SNRs:

SNRnetworkðhB;/BÞ ¼ SNR0 gnetworkðcos hBÞ; ð135Þ

where, g2
networkðxÞ ¼ g2

þðxÞ þ g2

ðxÞ. The factors g are of the order of unity and the

SNR0 gives essentially the integrated SNR of a GW source. The maximum
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integrated SNR is obtained for sources lying in the ecliptic plane ðhB ¼ 90�Þ. This

can be readily explained from Fig. 10 where the trajectory of such a source is

plotted. One observes that a large fraction of the orbit in the LISA frame is away
from the LISA plane ðhL ¼ 90�Þ where most of the contribution to the SNR comes

from.

7 Experimental aspects of TDI

It is clear that the suppression of the laser phase fluctuations by more than seven

orders of magnitude with the use of TDI is a very challenging experimental task. It

requires developing and building subsystems capable of unprecedented accuracy

and precision levels, and test their end-to-end performance in a laboratory

environment that naturally precludes the availability of 2:5 
 106 km delay lines! In

what follows we will address some aspects related to the experimental implemen-

tation of TDI, and derive the performance specifications for the subsystems

involved. We will not describe, however, any of the experimental efforts related to

the verification of TDI in a laboratory environment. For that, we refer the interested

reader to de Vine et al. (2010), Miller (2010), Spero et al. (2011) and Mitryk et al.

(2012).

From simple physical grounds, it is easy to see that a successful implementation

of TDI requires:

1. accurate knowledge of the time shifts, LiðtÞ; L0iðtÞ i ¼ 1; 2; 3, to be applied to the

heterodyne measurements siðtÞ; si0 ðtÞ; eiðtÞ; ei0 ðtÞ; siðtÞ; si0 ðtÞ i ¼ 1; 2; 3;

2. accurate synchronization among the three clocks6 on board the three spacecraft

as these are used for time-stamping the recorded heterodyne phase

measurements;

3. sampling time stability (i.e., clock stability) for successfully suppressing the

laser noise to the desired level;

4. an accurate reconstruction algorithm of the phase measurements corresponding

to the required time delays as these in general will not be equal to integer

multiples of the sampling time;

5. a phase meter capable of a very large dynamic range in order to suppress the

laser noise to the required level while still preserving the phase fluctuations

induced by a gravitational-wave signal in the TDI combinations;

6. a precise interferometric design architecture and an accurate procedure for

calibrating the phase fluctuations of the onboard clocks out of the down-

converted one-way heterodyne Doppler measurements.

In addition, it has recently been pointed out (Bayle et al. 2019) that the low-pass

filters applied to the one-way measurements (to comply with the stringent data rates

limitations faced by LISA) do not commute with the delay operators of time-

changing delays. Although this fact prevents the exact cancellation of the filtered

laser noises in the second-generation TDI combinations, it is still possible to achieve

6 Referred to in the LISA literature as Ultra Stable Oscillators, USOs.
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adequate suppression of the laser noise by applying TDI to the filtered one-way data

(Bayle et al. 2019).

In the following subsections, we will quantitatively address the issues listed

above, and provide the reader with a related list of references where more details

can be found.

7.1 Time-delays accuracies

The TDI combinations described in the previous sections (whether of the first- or

second-generation) rely on the assumption of knowing the time-delays with infinite

accuracy to exactly cancel the laser noise. Since the six delays will in fact be known

only within the accuracies dLi; dL0i i ¼ 1; 2; 3, the cancellation of the laser frequency

fluctuations in, for instance, the combinations (a; b; c; f) will no longer be exact. To

estimate the magnitude of the laser fluctuations remaining in these data sets, let us

define L̂i; L̂0i i ¼ 1; 2; 3 to be the estimated time-delays. They are related to the true
delays Li; L

0
i i ¼ 1; 2; 3, and the accuracies dLi ; dL0i i ¼ 1; 2; 3 through the follow-

ing expressions

L̂i ¼ Li þ dLi; i ¼ 1; 2; 3; ð136Þ

and similarly for the primed delays. In what follows we will limit our derivation of

the time-delays accuracies to only the first-generation TDI combinations and treat

the three common delays Li; i ¼ 1; 2; 3 as constants equal to 8.33 light-seconds. We

will also assume to know with infinite accuracies and precisions all the remaining

physical quantities (listed at the beginning of Sect. 7) that are needed to successfully

synthesize the TDI generators.

If we now substitute Eq. (136) into the expression for the TDI combination a, for

instance, [Eq. (61)] and expand it to first order in dLi, it is easy to derive the

following approximate expression for âðtÞ, which now will show a non-zero

contribution from the laser noises

âðtÞ ’ aðtÞ þ ½ _/2;12 � _/3;13� dL1 þ ½ _/3;2 � _/1;123� dL2 þ ½ _/1;123 � _/2;3� dL3;

ð137Þ

where the symbol _ denotes time derivative. Time-delay interferometry can be

considered effective if the magnitude of the remaining fluctuations from the lasers

are much smaller than the fluctuations due to the secondary (proof mass and optical

path) noises entering aðtÞ. This requirement implies a limit in the accuracies of the

measured delays.

Let us assume the laser phase fluctuations to be uncorrelated to each other, their

one-sided power spectral densities to be equal, the three arm lengths to differ by a

few percent, and the three arm length accuracies also to be equal. By requiring the

magnitude of the remaining laser noises to be smaller than the secondary noise

sources, it is straightforward to derive, from Eq. (137) and the expressions for the

noise spectrum of the a TDI combination given in Estabrook et al. (2000), the

following constraint on the common arm length accuracy jdLaj
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jdLaj � DLaðf Þ

� 1
ffiffiffiffiffi

32
p

pf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½8 sin2ð3pfLÞ þ 16 sin2ðpfLÞ�S proof mass þ S optical path

S/

s

;
ð138Þ

with similar inequalities also holding for b and c. Here S/, S proof mass, S optical path are

the one-sided power spectral densities of the relative frequency fluctuations of a

stabilized laser, a single proof mass, and a single-link optical path respectively. If

we take them to be equal to the following functions of the Fourier frequency f (Tinto

and Armstrong 1999; Amaro-Seoane et al. 2017)

S/ðf Þ ¼ 10�28 f�2=3 þ 6:3 
 10�37 f�3:4 Hz�1; ð139Þ

S proof mass
y ðf Þ ¼ 2:5 
 10�48½f=1 Hz��2

1 þ 0:4 mHz

f

� �2
" #


 1 þ f

8 mHz

� �4
" #

Hz�1;

ð140Þ

S optical path
y ðf Þ ¼ 4:4 
 10�38½f=1 Hz�2 1 þ 2 mHz

f

� �4
" #

Hz�1: ð141Þ

(where f is in Hz), we find that DLaðf Þ [the right-hand side of the inequality given by

Eq. (138)] reaches its minimum of about 62.5 m at the Fourier frequency

fmin ¼ 3:4 
 10�3 Hz, over the assumed ð10�4; 1Þ Hz LISA band. This implies that,

if the arm length knowledge jdLaj can be made much smaller than 62.5 m, the

magnitude of the residual laser noise affecting the a combination can be regarded as

negligible over the entire frequency band. This reflects the fact that DLaðf Þ is a ‘‘U-

shaped’’ function of the Fourier frequency (see Fig. 11 in the following subsection,

where we plot both the delays as well as the clocks timing-synchronization

accuracies).

A perturbation analysis similar to the one described above can be performed for

f, resulting into the following inequality for the required delay accuracy, jdLfj

jdLfj � DLfðf Þ �
1

2pf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 sin2ðpfLÞ S proof mass þ S optical path

S/

s

: ð142Þ

The inequality in Eq. (142) implies a minimum of the function DLfðf Þ equal to

about 155 m at the Fourier frequency fmin ¼ 2:8 
 10�3 Hz. Here again the right-

hand-side of Eq. (142) is a ‘‘U-shaped’’ function of the Fourier frequency.

Arm length accuracies at the centimeters level have already been demonstrated in

the laboratory (Esteban et al. 2011; Sutton et al. 2010; Wang et al. 2014; Heinzel

et al. 2011), making us confident that the required level of time-delays accuracy will

be available.

In relation to the accuracies derived above, it is interesting to calculate the time

scales during which the arm lengths will change by an amount equal to the
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accuracies themselves. This identifies the minimum time required before updating

the arm length values in the TDI combinations.

It has been calculated by Folkner et al. (1997) that the relative longitudinal

speeds between the three pairs of spacecraft, during approximately the first year of

the LISA mission, can be written in the following approximate form

Vi;jðtÞ ¼ V
ð0Þ
i;j sin

2pt
Ti;j

� �

ði; jÞ ¼ ð1; 2Þ ; ð1; 3Þ ; ð2; 3Þ; ð143Þ

where we have denoted with (1, 2), (1, 3), (2, 3) the three possible spacecraft pairs,

V
ð0Þ
i;j is a constant velocity, and Ti;j is the period for the pair (i, j). In Folkner et al.

(1997), it has also been shown that the LISA trajectory can be selected in such a way

that two of the three arms’ rates of change are essentially equal during the first year

of the mission. Following Folkner et al. (1997), but scaling the velocities to values

corresponding to the current LISA configuration of 2:5 
 106 km, we will assume

V
ð0Þ
1;2 ¼ V

ð0Þ
1;3 6¼ V

ð0Þ
2;3 , with V

ð0Þ
1;2 ¼ 0:25 m=s, V

ð0Þ
2;3 ¼ 3:1 m=s, T1;2 ¼ T1;3 	 4 months,

and T2;3 	 1 year. From Eq. (143) it is easy to derive the variation of each arm

length, for example DL3ðtÞ, as a function of time t and the time scale dt during

which it takes place

DL3ðtÞ ¼ V
ð0Þ
1;2 sin

2pt
T1;2

� �

dt: ð144Þ

Equation (144) implies that a variation in arm length DL3 	 10 m can take place

during different time scales, depending on when during the mission this change

takes place. For instance, if t � T1;2 we find that the arm length L3 changes by more

than its accuracy (	 10 m) after a time dt ¼ 9:2 
 103 s. If however t ’ T1;2=4, the

arm length will change by the same amount after only dt ’ 40 s instead. As this

value is comparable to the nominal one-way-light-time (8.33 sec), one might argue

that the measured time-delay might not represent well enough the delay that needs

to be applied in the TDI combinations at that particular time.

One way to address this problem is to treat the delays in the TDI combinations as

parameters to be determined by a non-linear least-squares procedure. This is

because the minimum value of the minimizer is achieved at the correct delays for

which the laser noises exactly cancel in the TDI combinations. Such a technique,

which was named Time-Delay Interferometric Ranging (TDIR) (Tinto et al. 2005),

requires a starting point in the time-delays space in order to implement the

minimization, and it works quite effectively jointly with the ranging data available

onboard. At the time of this writing the LISA project has decided to apply TDIR to

the mission data.

7.2 Clocks synchronization

The effectiveness of the TDI data combinations requires the clocks on board the

three spacecraft to be synchronized. In what follows we will identify the minimum

level of off-synchronization among the clocks that can be tolerated. To proceed with
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our analysis we will treat one of the three clocks (say the clock on board

spacecraft 1) as the master clock defining the ‘‘LISA-time’’, while the other two to

be synchronized to it.

The relativistic (Sagnac) time-delay effect due to the fact that the LISA trajectory

is a combination of two rotations, each with a period of one year, will have to be

accounted for in the synchronization procedure and, as has already been discussed

earlier, will be accounted for within the second-generation formulation of TDI.

Here, for simplicity, we will analyze an idealized non-rotating constellation in

order to get a sense of the required level of clocks synchronization. Let us denote by

dt2, dt3, the time accuracies (time-offsets) for the clocks on board spacecraft 2 and 3

respectively. If t is the time on board spacecraft 1, then what is believed to be time t
on board spacecraft 2 and 3 is actually equal to the following times

t̂2 ¼ t þ dt2; ð145Þ

t̂3 ¼ t þ dt3: ð146Þ

If we now substitute Eqs. (145 and 146) into the TDI combination f, for instance,

and expand it to first order in dti; i ¼ 2; 3, it is easy to derive the following

approximate expression for f̂ðtÞ, which shows the following non-zero contribution

from the laser noises

f̂ðtÞ ’ fðtÞ þ ½ _/1;23 � _/3;12 þ _/2;13 � _/2;13� dt2 þ ½ _/2;13 � _/1;23 þ _/3;12 � _/3;12� dt3:
ð147Þ

By requiring again the magnitude of the remaining fluctuations from the lasers to be

smaller than the fluctuations due to the other (secondary) noise sources affecting

fðtÞ, it is possible to derive an upper limit for the accuracies of the synchronization

of the clocks. If we assume again the three laser phase fluctuations to be uncorre-

lated to each other, their one-sided power spectral densities to be equal, the three

arm lengths to differ by a few percent, and the two time-offset’s magnitudes to be

equal, by requiring the magnitude of the remaining laser noises to be smaller than

the secondary noise sources it is easy to derive the following constraint on the time

synchronization accuracy jdtfj

jdtfj � Dtfðf Þ �
1

2pf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 sin2ðpfLÞ S proof mass þ 3 S optical path

4 S/

s

; ð148Þ

with S/, S proof mass, S optical path again as given in Eqs. (139 – 141).

We find that the function Dtfðf Þ defined in Eq. (148) reaches its minimum of

about 448 nanoseconds at the Fourier frequency fmin ¼ 2:8 
 10�3 Hz. This means

that clocks synchronized at a level of accuracy significantly better than 448

nanoseconds will result into a residual laser noise that is much smaller than the

secondary noise sources entering into the f combination.
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An analysis similar to the one described above can be performed for the

remaining generators (a; b; c). For them we find that the corresponding inequality

for the accuracy in the synchronization of the clocks is now equal to

jdtaj � Dtaðf Þ

� 1

2pf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½4 sin2ð3pfLÞ þ 8 sin2ðpfLÞ�S proof mass þ 3S optical path

4 S/

s

;
ð149Þ

with equal expressions holding also for b and c. The function Dtaðf Þ, given on the

right-hand side of Eq. (149), has a minimum equal to 457 nanoseconds at the

Fourier frequency fmin ¼ 2:9 
 10�3 Hz. As for the arm length accuracies, also the

timing accuracy requirements become less stringent at different frequencies because

of their ‘‘U-shaped’’ dependence on the Fourier frequency.

In Fig. 11 we plot both delays and clocks timing-synchronization functions

DLaðf Þ, DLfðf Þ, Dtaðf Þ, Dtfðf Þ, as defined by the expressions appearing on the right-

hand-sides of Eqs. (138, 142, 148, 149) respectively. The minima of these curves

identify the upper limits for the delays and clocks timing-synchronization accuracies

for which the residual laser noise is smaller than the secondary noises in the TDI

combinations. By requiring, for instance, the residual laser noise to be a factor of 10

smaller than the secondary noises over the entire LISA band, we would need to

achieve levels of accuracies that are a factor of 10 smaller than those quoted above

for the a and f combinations. A required clock synchronization accuracy of about

Fig. 11 The delays and clocks timing-synchronization functions DLaðf Þ, DLfðf Þ, Dtaðf Þ, Dtfðf Þ, as
defined by the expressions appearing on the right-hand-sides of Eqs. (138, 142, 148, 149) respectively.
The minimum values of these ‘‘U-shaped’’ functions correspond to the minimum accuracies required for
the delays and clocks timing-synchronizations so that the laser noises are suppressed to the level
identified by the secondary noises. The accuracies implemented by LISA should naturally be better than
these values to guarantee a residual laser noise that is much smaller than the level identified by the
secondary noises in the TDI combinations
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40 ns, for instance, translates into a ranging accuracy of 12 m, which has been

experimentally shown to be easily achievable (Esteban et al. 2011; Sutton et al.

2010; Wang et al. 2014; Heinzel et al. 2011).

7.3 Clocks timing jitter

The sampling times of all the measurements needed for synthesizing the TDI

combinations will not be constant, due to the intrinsic timing jitters of the onboard

measuring system. Among all the subsystems involved in the data measuring

process, the onboard clock is expected to be the dominant source of time jitter in the

sampled data. Presently existing space qualified clocks can achieve an Allan

standard deviation of about 10�13 for integration times from 1 to 10,000 s. This

timing stability translates into a time jitter of about 10�13 s over a period of 1 s. A

perturbation analysis including the three sampling time jitters due to the three clocks

shows that any laser phase fluctuations remaining in the four TDI generators will

also be proportional to the sampling time jitters. Since the latter are approximately

five orders of magnitude smaller than the arm length and clocks synchronization

accuracies derived earlier, we conclude that the magnitude of laser noise residual

into the TDI combinations due to the sampling time jitters is negligible.

7.4 Sampling reconstruction algorithm

The derivations of the time-delays and clocks synchronization accuracies

highlighted earlier presumed the availability of the phase measurement samples at

the required time-delays. Since this condition will not be true in general, as the time-

delays used by the TDI combinations will not be equal to integer-multiples of the

sampling time, with a sampling rate of, let us say, 10 Hz, the time delays could be

off their correct values by a tenth of a second, way more than the 10 nanoseconds

time-delays and clocks synchronization accuracies estimated above.

Earlier suggestions (Hellings 2001) for addressing this problem envisioned

sampling the data at very-high rates (perhaps of the order of hundreds of MHz), so

reducing the additional error to the estimated time-delays to a few nanoseconds.

Although in principle such a solution would allow us to suppress the residual laser

noise to the required level, it would create an insurmountable problem for

transmitting the science data to the ground due to the limited space-to-ground data

rates.

An alternate scheme for obtaining the phase measurement points needed by TDI

(Tinto et al. 2003) envisioned sampling the phase measurements at the required

delayed times. This scheme naturally requires knowledge of the time-delays and

synchronization of the clocks at the required accuracy levels during data acquisition.

Although such a procedure could be feasible in principle, it would still leave open

the possibility of irreversible corruption of the TDI combinations in the eventuality

of performance degradation in the ranging and clock synchronization procedures.

Given that the data will need to be sampled at a rate of 10 Hz, an alternative

options is to implement an interpolation scheme for reconstructing the required data
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points from the sampled measurements. An analysis (Tinto et al. 2003) based on the

implementation of the truncated (Shannon 1998) formula, however, showed that

several months of data were required in order to reconstruct the phase samples at the

estimated time-delays with a sufficiently high accuracy. This conclusion implied

that several months (at the beginning and end) of the entire data records measured

by LISA would be of no use, resulting into a significant mission science

degradation.

Although the truncated Shannon formula was proved to be impracticable (Tinto

et al. 2003) for reconstructing phase samples at the required time-delays, it was then

recognized that (Shaddock et al. 2004) a more efficient and accurate interpolation

technique (Laakso et al. 1996) could be adopted. In what follows, we provide a brief

account of this data processing technique, which is known as ‘‘fractional-delay

filtering’’ (FDF).

To understand how FDF works, let’s write the truncated Shannon formula for the

delayed sample, yNðn� DÞ, which we want to construct by filtering the sampled

data y(n)

yNðn� DÞ ¼
X

N

j¼�N

yðnþ jÞ sincðD� jÞ; ð150Þ

where, as usual, sincðxÞ � sinðxÞ=x, and N is an integer at which the Shannon

formula has been truncated to. As pointed out in Shaddock et al. (2004), although

the truncated Shannon formula is optimal in the least-squares sense, the sinc-

function that appears in it is far from being ideal in reconstructing the transfer

function e2pifD=fs , where fs is the sampling frequency. In fact, over the LISA

observational band the sinc-function displays significant ringing, which can only be

suppressed by taking N very large (as the error, e, decays slowly as 1/N). It was

estimated that, in order to achieve an e\10�8, an N � 108 is needed.

If, however, we give up on the requirement of minimizing the error in the least-

squares sense and replace it with a mini-max criterion error applied to the absolute

value of the difference between the ideal transfer function (i.e., e2pifD=fs ) and a

modified sinc-function, we will be able to achieve a rapid convergence while

suppressing the ringing effects associated with the sinc-function.

One way to achieve this result is to modify the Shannon formula by multiplying

the sinc-function by a window-function, W(j), in the following way

yNðn� DÞ ¼
X

N

j¼�N

yðnþ jÞ WðjÞ sincðD� jÞ; ð151Þ

where W(j) smoothly decays to zero at j ¼ �N. In Shaddock et al. (2004) several

windows were tested, and the resulting values of N needed to accurately reconstruct

the desired delayed samples were estimated, both on theoretical and numerical

grounds. It was found that, with windows belonging to the family of Lagrange

polynomials (Shaddock et al. 2004) a delayed sample could be reconstructed by

using N ’ 25 samples while achieving a mini-max error e\10�12 between the ideal

transfer function e2pifD=fs , and the kernel of the modified truncated Shannon formula.
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7.5 Data digitization and bit-accuracy requirement

It has been shown (Tinto et al. 2003) that the maximum of the ratio between the

amplitudes of the laser and the secondary phase fluctuations occurs at the lower end

of the LISA bandwidth (i.e., 0.1 mHz) and it is equal to about 1010. This

corresponds to the minimum dynamic range for the phasemeters to correctly

measure the laser fluctuations and the weaker (gravitational-wave) signals

simultaneously. An additional safety factor of 	 10 should be sufficient to avoid

saturation if the noises are well described by Gaussian statistics. In terms of

requirements on the digital signal processing subsystem, this dynamic range implies

that approximately 36 bits are needed when combining the signals in TDI, only to

bridge the gap between laser frequency noise and the other noises and gravitational-

wave signals. More bits might be necessary to provide enough information to

efficiently filter the data when extracting weak gravitational-wave signals embedded

into noise.

The phasemeters will be the onboard instrument that will perform the phase

measurements containing the gravitational signals. They will also need to

simultaneously measure the time-delays to be applied to the TDI combinations

via ranging tones over-imposed on the laser beams exchanged by the spacecraft.

And they will need to have the capability of simultaneously measuring additional

side-band tones that are required for the calibration of the onboard Ultra-

Stable Oscillator used in the down-conversion of heterodyned carrier signal

(Hellings 2001; Tinto et al. 2002b).

Work toward the realization of a phasemeter capable of meeting these very

stringent performance and operational requirements has aggressively been per-

formed both in the United States and in Europe (Shaddock et al. 2006; Gerberding

et al. 2013a, b; Burnett 2010; Wang 2013), and we refer the reader interested in the

technical details associated with the development studies of such device to the

above references and references therein.

7.6 USO noise calibration

The inter-spacecraft heterodyne one-way measurements are made by interfering the

received and outgoing laser light. Since the received and receiving frequencies of

the laser beams can be different by tens to perhaps hundreds of MHz (a consequence

of the Doppler effect from the relative inter-spacecraft velocities and the intrinsic

frequency differences of the lasers), one needs to remove these large beat notes

present in the heterodyne measurements before they are digitized. This is done by

relying on the use of a microwave signal generated by an onboard clock, usually

referred to as an Ultra-Stable Oscillator (USO). The magnitude of the frequency

fluctuations introduced by the USOs into the heterodyne measurements depends

linearly on the USOs’ noises themselves and the heterodyne beat-note frequencies

determined by the inter-spacecraft relative velocities. Space-qualified, state-of-the-

art clocks are oven-stabilized crystals characterized by an Allan standard deviation

(Barnes et al. 1971) of rAðsÞ 	 10�13 for averaging times s 2 ½1 � 10;000� s,
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covering the frequency band of interest to space-based interferometers (Amaro-

Seoane et al. 2017; Hu and Wu 2017; Luo et al. 2016; Tinto et al. 2013). In the case

of the LISA mission, in particular, it has been estimated (Tinto et al. 2002b) that the

magnitude of the power spectral density of the USOs’ relative frequency

fluctuations appearing, for instance, in the first-generation TDI combination

X may be 3 orders of magnitude larger than those due to the residual (optical

path and proof mass) noise sources.

The technique currently baselined by the LISA project for removing the USO

noise from the TDI combinations requires the modulation of the laser beams

exchanged by the spacecraft, and the further measurement of six more inter-

spacecraft relative phases by comparing the side-bands of the received beam against

side-bands of the transmitted beam (Hellings 2001; Tinto et al. 2002b, 2007; Tinto

and Hartwig 2018; Hartwig and Bayle 2020). The physical reason behind the use of

modulated beams for calibrating the USOs’ noises is to exchange the USOs’ phase

fluctuations with the same time delays as those experienced by the lasers among the

three spacecraft by performing side-bands/side-bands measurements. In so doing,

six additional phase measurements are generated that allow one to calibrate out the

USOs’ phase fluctuations from the TDI combinations while preserving the

gravitational wave signal in the resulting USO-calibrated TDI data (see Otto et al.

2012; Heinzel et al. 2011; Tinto and Hartwig 2018; Hartwig and Bayle 2020 for

more details on the USO calibration method).

An alternative technique to the one highlighted above for calibrating the USOs

noises has recently been proposed (Tinto and Yu 2015). It is based on the

observation that, by coherently transferring the laser phase fluctuations to the

microwave signal used in the heterodyne measurements, one would then need to

cancel only the laser noise (the noise due to the microwave signal is now

proportional to it!) by deriving some suitably modified TDI combinations.

Coherently linking optical laser frequencies to microwave frequencies was thought

to be impossible because of the inability to directly count the optical frequency of a

laser. However, with the advent of the self-referenced octave-span optical frequency

comb (OFC) scheme—for which Hall and Hänsch received the 2005 physics Nobel

Prize (Hall 2006; Hänsch 2006)—it is possible to generate a microwave frequency

signal that is coherent to the frequency of the laser at a level significantly better than

the frequency stability required of a USO (Ma et al. 2004). Given the ongoing

progress made towards space-qualified, self-referenced OFCs (Wilken et al. 2013;

Lee et al. 2014; Lezius et al. 2016), it is likely they will become commercially

available within the next few years. Although this might be too late for

incorporating them in the LISA design, the resulting hardware simplification and

improved system reliability should seriously be considered by future space-based

interferometer projects.
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8 Concluding remarks

In this third revision of our article on TDI, we have summarized its ability to cancel

the laser phase noise from heterodyne phase measurements performed by a

constellation of three spacecraft tracking each other along arms of unequal length.

Underlying the TDI technique is the mathematical structure of the theory of Gröbner

basis and the algebra of modules over polynomial rings. These methods have been

motivated and illustrated with the simple example of an unequal-arm interferometer

in order to give a physical insight of TDI. Here, these techniques have been

rigorously applied to the idealized case of a stationary interferometer such as the

LISA mission. This allowed us to derive the generators of the module from which

the entire TDI data set can be obtained. The formulation of TDI presented in this

review article has been base-lined by other mission concepts (Luo et al. 2016; Hu

and Wu 2017) besides the LISA mission (Ni 2016). A straight-forward general-

ization of it has also been extended to configurations with more than three satellites

so as to cancel the spacecraft acceleration noises. Although an octahedron

configuration (Wang et al. 2013) can in principle cancel simultaneously the six laser

noises and the eighteen components of the acceleration noises by applying TDI to

the twenty four one-way measurements made by such an array, the requirements on

the trajectories of the six spacecraft become a major road-block for successfully

flying such an interesting mission concept. The stationary LISA case was used as a

propaedeutical introduction to the physical motivation of TDI, and for further

extending it to the realistic LISA configuration of free-falling spacecraft orbiting

around the Sun. The TDI data combinations canceling laser phase noise in this

general case are referred to as second-generation TDI, and they contain twice as

many terms as their corresponding first-generation combinations valid for the

stationary configuration.

As a data analysis application we have shown that it is possible to identify

specific TDI combinations that will allow LISA to achieve optimal sensitivity to

gravitational radiation (Prince et al. 2002; Rajesh Nayak et al. 2003a, b). The

resulting improvement in sensitivity over that of an unequal-arm Michelson

interferometer, in the case of signals randomly distributed over the celestial sphere

and of random polarization, is non-negligible. We have found this to be equal to a

factor of
ffiffiffi

2
p

in the low-part of the LISA frequency band, and slightly more than
ffiffiffi

3
p

in the high-part of it. The SNR for binaries whose location in the sky is known, but

their polarization is not, can also be optimized, and the degree of improvement

depends on the location of the source in the sky.

We also addressed several experimental aspects of TDI, and emphasized that it

has already been successfully tested experimentally (de Vine et al. 2010; Miller

2010; Spero et al. 2011; Mitryk et al. 2012).

As of the writing of this third edition of our Living Review article, it is very

gratifying to see how much TDI has matured since the publishing of its first version,

and how many scientists have been and are currently contributing to its theory and

experimental implementation by the forthcoming LISA mission. The purpose of this

third edition review of TDI was to provide the basic mathematical tools and
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knowledge of the current experimental results needed for working on future TDI

projects. We hope to have accomplished this goal, and that the next generation of

gravitational-wave physicists working on future space-based GW missions will

further expand this fascinating field of research.
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Appendix A: Conversion between generating sets

We list the three sets of generators and relations among them. We first list below a,

b, c, f:

a ¼ ð�1;�z;�xz; 1; xy; yÞ;
b ¼ ð�xy;�1;�x; z; 1; yzÞ;
c ¼ ð�y;�yz;�1; xz; x; 1Þ;
f ¼ ð�x;�y;�z; x; y; zÞ:

ð152Þ

We now express the ai and b
j in terms of a, b, c, f:

a1 ¼ �cþ zf;

a2 ¼ a� zb;

a3 ¼ �zaþ b� xcþ xzf;

a4 ¼ zf;

b
1 ¼ �yaþ yzbþ c� zf;

b
2 ¼ ð1 � z2Þb� xcþ xzf;

b
3 ¼ b� yf:

ð153Þ
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Further, we also list below a, b, c, f in terms of XðAÞ:

a ¼ Xð3Þ;

b ¼ Xð4Þ;

c ¼ �Xð1Þ þ zXð2Þ;

f ¼ Xð2Þ:

ð154Þ

This proves that since the ai, b


j generate the required module, the a, b, c, f and XðAÞ,

A ¼ 1; 2; 3; 4, also generate the same module.

Appendix B: List of changes since 2014

1. The introduction has been changed to account for the discovery of

gravitational waves!

2. Since our previous version was published, LISA went through some major

design modifications. Not only its arm length has been reduced from 5.0 to

2.5 Mkm but, most profoundly, its onboard instrument architecture has been

significantly changed. This led us to replace Fig. 4 in Sect. 3 with a new

figure that reflects the new onboard interferometry design (the so-called split-

interferometry). As a result, the expressions describing the one-way inter-

spacecraft Doppler measurements as well the internal metrology measure-

ments had to be re-derived.

3. Section 4.3: Emphasis is given to the first module of syzygies (as distinct from

the second, third, …modules of syzygies referred to in Sect. 4.6). Further, the

mathematical discussion has been made more rigorous.

4. Section 4.5: The method of obtaining the generators of the first module of

syzygies has been explicitly described containing all details. In the previous

version only an outline of the procedure was described in the Appendix. So

now the relevant Appendix has been removed.

5. Section 4.6: A new subsection has been introduced on relation to the famous

Hilbert’s syzygy theorem. Implications to TDI have been mentioned.

6. In Sect. 5 we corrected a few typos affecting some equations for the TDI

expressions.

7. Section 5.3: Calculations for the new LISA arm-length (reduced by a factor of

2) have been redone. Numbers have been recalculated. Also few more details

of analytical results have been added.

8. Section 5.4: More details of the method using commutators have been added to

make the discussion more lucid and complete.

9. Section 6 has been modified to account for a different arm length, and Figs. 7,

8 and 9 have been redrawn accordingly. Also, the spectra of the secondary

noises (Eqs. 117, 118) have been changed to reflect the latest expressions

provided by the LISA project. Finally, we corrected a typo in Eq. (123).

10. Section 6.2: Discussion on the low-frequency limit has been added.
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11. Section 7 has been expanded by adding an additional figure (Fig. 11), which

summarizes the minimum accuracy requirements for the delay times and clock

timing-synchronizations. Section 7 has also been expanded by including an

addition subsection (7.6) covering the USO noise calibration procedure.

12. The overall number of references has grown from 65 to 98, and indication that

a significant amount of work has taken place on the subject since our last

revision!

13. Minor changes have been made throughout the article with the aim of

improving the presentation.
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Wilken T, Lezius M, Hänsch TW, Kohfeldt A, Wicht A, Schkolnik V, Krutzik M, Duncker H, Hellmig O,

Windpassinger P, Sengstock K, Peters A, Holzwarth R (2013) A frequency comb and precision

spectroscopy experiment in space. In: CLEO: 2013, Optical Society of America, p AF2H.5. https://

doi.org/10.1364/CLEO_AT.2013.AF2H.5

Wolfram S (2014) Mathematica. http://www.wolfram.com/mathematica/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Affiliations

Massimo Tinto1 • Sanjeev V. Dhurandhar2

& Massimo Tinto

mtinto@ucsd.edu

Sanjeev V. Dhurandhar

sanjeev@iucaa.in

1 Center for Astrophysics and Space Sciences, University of California San Diego, 9500 Gilman

Dr, La Jolla, CA 92093, USA

2 Inter Univesity Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411 007, India

123

Time-delay interferometry Page 73 of 73 1

http://www.hajim.rochester.edu/me/projects/PIG/publications/downloads/
http://www.hajim.rochester.edu/me/projects/PIG/publications/downloads/
https://doi.org/10.1103/PhysRevD.88.104021
https://doi.org/10.1103/PhysRevD.88.104021
https://doi.org/10.1103/PhysRevD.90.064016
https://doi.org/10.1103/PhysRevD.90.064016
http://arxiv.org/abs/1402.6222
https://doi.org/10.1364/CLEO_AT.2013.AF2H.5
https://doi.org/10.1364/CLEO_AT.2013.AF2H.5
http://www.wolfram.com/mathematica/
http://orcid.org/0000-0002-8107-5148

	Time-delay interferometry
	Abstract
	Introduction
	Physical and historical motivations of TDI
	Time-delay interferometry
	Algebraic approach for canceling laser and optical bench noises
	Cancellation of laser phase noise
	Cancellation of laser phase noise in the unequal-arm interferometer
	The module of syzygies
	Gröbner basis
	Generating set for the first module of syzygies
	Relation to Hilbert’s syzygy theorem
	Canceling optical bench motion noise
	Physical interpretation of the TDI combinations

	Time-delay interferometry with moving spacecraft
	The unequal-arm Michelson
	The Sagnac combinations
	Algebraic approach to second-generation TDI
	Solutions with one arm nonfunctional

	Optimal LISA sensitivity
	General application
	Optimization of SNR for binaries with known direction but with unknown orientation of the orbital plane

	Experimental aspects of TDI
	Time-delays accuracies
	Clocks synchronization
	Clocks timing jitter
	Sampling reconstruction algorithm
	Data digitization and bit-accuracy requirement
	USO noise calibration

	Concluding remarks
	Acknowledgements
	Appendix A: Conversion between generating sets
	Appendix B: List of changes since 2014
	References




