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Abstract
The causal set theory (CST) approach to quantum gravity postulates that at the most
fundamental level, spacetime is discrete, with the spacetime continuum replaced by
locally finite posets or “causal sets”. The partial order on a causal set represents a
proto-causality relation while local finiteness encodes an intrinsic discreteness. In the
continuum approximation the former corresponds to the spacetime causality relation
and the latter to a fundamental spacetime atomicity, so that finite volume regions in
the continuum contain only a finite number of causal set elements. CST is deeply
rooted in the Lorentzian character of spacetime, where a primary role is played by the
causal structure poset. Importantly, the assumption of a fundamental discreteness in
CST does not violate local Lorentz invariance in the continuum approximation. On
the other hand, the combination of discreteness and Lorentz invariance gives rise to
a characteristic non-locality which distinguishes CST from most other approaches to
quantum gravity. In this review we give a broad, semi-pedagogical introduction to
CST, highlighting key results as well as some of the key open questions. This review
is intended both for the beginner student in quantum gravity as well as more seasoned
researchers in the field.

Keywords Causal set theory · Quantum gravity · Discreteness · Causality · Poset
theory

Contents

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 A historical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 The causal set hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 The Hauptvermutung or fundamental conjecture of CST . . . . . . . . . . . . . . . . . . . . 17
3.2 Discreteness without Lorentz breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Forks in the road: what makes CST so “different”? . . . . . . . . . . . . . . . . . . . . . . . 21

4 Kinematics or geometric reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B Sumati Surya
ssurya@rri.res.in

1 Raman Research Institute, CV Raman Ave, Sadashivanagar, Bangalore 560080, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41114-019-0023-1&domain=pdf


5 Page 2 of 75 S. Surya

4.1 Spacetime dimension estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Topological invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Geodesic distance: timelike, spacelike and spatial . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 The d’Alembertian for a scalar field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 The Ricci scalar and the Benincasa–Dowker action . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Boundary terms for the causal set action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7 Localisation in a causal set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.8 Kinematical entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.9 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Matter on a continuum-like causal set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1 Causal set Green functions for a free scalar field . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 The Sorkin–Johnston (SJ) vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Entanglement entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Spectral dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1 Classical sequential growth models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Observables as beables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 A route to quantisation: the quantum measure . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 A continuum-inspired dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.1 The 1987 prediction for Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A Notation and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1 Overview

In this review, causal set theory (CST) refers to the specific proposalmade byBombelli,
Lee, Meyer and Sorkin (BLMS) in their 1987 paper (Bombelli et al. 1987). In CST, the
space of Lorentzian geometries is replaced by the set of locally finite posets, or causal
sets. These causal sets encode the twin principles of causality and discreteness. In
the continuum approximation of CST, where elements of the causal set set represent
spacetime events, the order relation on the causal set corresponds to the spacetime
causal order and the cardinality of an “order interval” to the spacetime volume of the
associated causal interval.

This review is intended as a semi-pedagogical introduction to CST. The aim is to
give a broad survey of the main results and open questions and to direct the reader
to some of the many interesting open research problems in CST, some of which are
accessible even to the beginner.

We begin in Sect. 2 with a historical perspective on the ideas behind CST. The twin
principles of discreteness and causality at the heart of CST have both been proposed—
sometimes independently and sometimes together—starting with Riemann (1873) and
Robb (1914, 1936), and somewhat later by Zeeman (1964), Kronheimer and Penrose
(1967), Finkelstein (1969), Hemion (1988) and Myrheim (1978), culminating in the
CST proposal of BLMS (Bombelli et al. 1987). The continuum approximation of CST
is an implementation of a deep result in Lorentzian geometry due to Hawking et al.
(1976) and its generalisation byMalament (1977),which states that the causal structure
determines the conformal geometry of a future and past distinguishing causal space-
time. In following this history, the discussion will be necessarily somewhat technical.
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For those unfamiliar with the terminology of causal structure we point to standard
texts (Hawking and Ellis 1973; Beem et al. 1996; Wald 1984; Penrose 1972).

In Sect. 3, we state the CST proposal and describe its continuum approximation,
in which spacetime causality is equivalent to the order relation and finite spacetime
volumes to cardinality. Not all causal sets have a continuum approximation—in fact
we will see that most do not. Those that do are referred to as manifold-like. Important
to CST is its “Hauptvermutung” or fundamental conjecture, which roughly states that
a manifold-like causal set is equivalent to the continuum spacetime, modulo differ-
ences up to the discreteness scale. Much of the discussion on the Hauptvermutung is
centered on the question of how to estimate the closeness of Lorentzian manifolds or
more generally, causal sets. While there is no full proof of the conjecture, there is a
growing body of evidence in its favour as we will see in Sect. 4. An important outcome
of CST discreteness in the continuum approximation is that it does not violate Lorentz
invariance as shown in an elegant theorem by Bombelli et al. (2009). Because of the
centrality of this result we review this construction in some detail. The combination of
discreteness and Lorentz invariance moreover gives rise to an inherent and character-
istic non-locality, which distinguishes CST from other discrete approaches. Following
Sorkin (1997), we then discuss how the twin principles behind CST force us to take
certain “forks in the road” to quantum gravity.

We present some of the key developments in CST in Sects. 4, 5 and 6.We beginwith
the kinematical structure of theory and the program of “geometric reconstruction” in
Sect. 4. Here, the aim is to reconstruct manifold invariants from order invariants in a
manifold-like causal set. These are functions on the causal set that are independent of
the labelling or ordering of the elements in the causal set. Finding the appropriate order
invariants that correspond tomanifold invariants can be challenging, since there is little
in the mathematics literature which correlates order theory to Lorentzian geometry via
the CST continuum approximation. Extracting such invariants requires new technical
tools and insights, sometimes requiring a rethink of familiar aspects of continuum
Lorentzian geometry. We will describe some of the progress made in this direction
over the years (Myrheim 1978; Brightwell and Gregory 1991; Meyer 1988; Bombelli
and Meyer 1989; Bombelli 1987; Reid 2003; Major et al. 2007; Rideout and Wallden
2009; Sorkin 2007b; Benincasa and Dowker 2010; Benincasa 2013; Benincasa et al.
2011; Glaser and Surya 2013; Roy et al. 2013; Buck et al. 2015; Cunningham 2018a;
Aghili et al. 2019; Eichhorn et al. 2019a). The correlation between order invariants and
manifold invariants in the continuum approximation lends support for the Hauptver-
mutung and simultaneously establishes weaker, observable-dependent versions of the
conjecture.

Somewhere between dynamics and kinematics is the study of quantum fields on
manifold-like causal sets, which we describe in Sect. 5. The simplest system is free
scalar field theory on a causal set approximated by d-dimensional Minkowski space-
time M

d . Because causal sets do not admit a natural Hamiltonian framework, a fully
covariant construction is required to obtain the quantum field theory vacuum. A nat-
ural starting point is the advanced and retarded Green functions for a free scalar field
theory since it is defined using the causal structure of the spacetime. The explicit form
for these Green functions were found for causal sets approximated byM

d for d = 2, 4
(Daughton 1993; Johnston 2008, 2010) as well as de Sitter spacetime (Dowker et al.
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2017). In trying to find a quantisation scheme on the causal set without reference
to the continuum, Johnston (2009) found a novel covariant definition of the discrete
scalar field vacuum, starting from the covariantly defined Peierls’ bracket formulation
of quantum field theory. Subsequently Sorkin (2011a) showed that the construction
is also valid in the continuum, and can be used to give an alternative definition of
the quantum field theory vacuum. This Sorkin–Johnston (SJ) vacuum provides a new
insight into quantum field theory and has stimulated the interest of the algebraic field
theory community (Fewster and Verch 2012; Brum and Fredenhagen 2014; Fewster
2018). The SJ vacuum has also been used to calculate Sorkin’s spacetime entangle-
ment entropy (SSEE) (Bombelli et al. 1986; Sorkin 2014) in a causal set (Saravani
et al. 2014; Sorkin and Yazdi 2018). The calculation in d = 2 is surprising since it
gives rise to a volume law rather than an area law. What this means for causal set
entanglement entropy is still an open question.

In Sect. 6, we describe the CST approach to quantum dynamics, which roughly
follows two directions. The first, is based on “first principles”, where one starts with a
general set of axioms which respect microscopic covariance and causality. An impor-
tant class of such theories is the set of Markovian classical sequential growth (CSG)
models of Rideout and Sorkin (Rideout and Sorkin 2000a, 2001; Martin et al. 2001;
Rideout 2001; Varadarajan and Rideout 2006), which we will describe in some detail.
The dynamical framework finds a natural expression in terms of measure theory, with
the classical covariant observables represented by a covariant event algebra A over
the sample space Ωg of past finite causal sets (Brightwell et al. 2003; Dowker and
Surya 2006). One of the main questions in CST dynamics is whether the overwhelm-
ing entropic presence of the Kleitman–Rothschild (KR) posets in Ωg can be overcome
by the dynamics (Kleitman and Rothschild 1975). These KR posets are highly non-
manifold-like and “static”, with just three “moments of time”. Hence, if the continuum
approximation is to emerge in the classical limit of the theory, then the entropic con-
tribution from the KR posets should be suppressed by the dynamics in this limit.
In the CSG models, the typical causal sets generated are very “tall” with countable
rather than finite moments of time and, though not quite manifold-like, are very unlike
the KR posets or even the subleading entropic contributions from non-manifold-like
causal sets (Dhar 1978, 1980). The CSG models have generated some interest in the
mathematics community, and new mathematical tools are now being used to study
the asymptotic structure of the theory (Brightwell and Georgiou 2010; Brightwell and
Luczak 2011, 2012, 2015).

In CST, the appropriate route to quantisation is via the quantummeasure or decoher-
ence functional defined in the double-path integral formulation (Sorkin 1994, 1995,
2007d). In the quantum versions of the CSG (quantum sequential growth or QSG)
models the transition probabilities of CSG are replaced by the decoherence functional.
While covariance can be easily imposed, a quantum version of microscopic causality
is still missing (Henson 2005). Another indication of the non-triviality of quantisation
comes from a prosaic generalisation of transitive percolation, which is the simplest
of the CSG models. In this “complex percolation” dynamics, however, the quantum
measure does not extend to the full algebra of observables which is an impediment
to the construction of covariant quantum observables (Dowker et al. 2010c). This can
be somewhat alleviated by taking a physically motivated approach to measure theory

123



The causal set approach to quantum gravity Page 5 of 75 5

(Sorkin 2011b), but the search is on to find a quantum dynamics for which the measure
does extend. An important future direction is to construct covariant observables in a
wider class of quantum dynamics and look for a quantum version of coupling constant
renormalisation.

Whatever the ultimate quantum dynamics however, little sense can be made of the
theorywithout a fully developedquantum interpretation for closed systems, essential to
quantum gravity. Sorkin’s co-event interpretation (Sorkin 2007a; Dowker and Ghazi-
Tabatabai 2008) provides a promising avenue based on the quantummeasure approach.
While a discussion of this is outside of the scope of the present work, one can use
the broader “principle of preclusion”, i.e., that sets of zero quantum measure do not
occur (Sorkin 2007a; Dowker and Ghazi-Tabatabai 2008), to make a limited set of
predictions in complex percolation (Sorkin and Surya, work in progress).

The second approach to quantisation is more pragmatic, and uses the continuum
inspired path integral formulation of quantum gravity for causal sets. Here, the path
integral is replaced by a sum over the sample space Ω of causal sets, using the
Benincasa–Dowker (BD) action, which goes over to the Einstein–Hilbert action (Ben-
incasa and Dowker 2010) in the continuum limit. This can be viewed as an effective,
continuum-like dynamics, arising from the more fundamental dynamics described
above. A recent analytic calculation in Loomis and Carlip (2018) showed that a sub-
dominant class of non-manifold-like causal sets, the bilayer posets, are suppressed
in the path integral when using the BD action, under certain dimension dependent
conditions satisfied by the parameter space. This gives hope that such an effective
dynamics might be able to overcome the entropy of the non-manifold-like causal sets.

In Surya (2012), Glaser and Surya (2016), and Glaser et al. (2018), Markov Chain
Monte Carlo (MCMC)methods were used for a dimensionally restricted sample space
Ω2d of 2-orders, which corresponds to topologically trivial d = 2 causal set quantum
gravity. The quantum partition function over causal sets can be rendered into a sta-
tistical partition function via an analytic continuation of a “temperature” parameter,
while retaining the Lorentzian character of the theory. This theory exhibits a first order
phase transition (Surya 2012; Glaser et al. 2018) between a manifold-like phase and
a layered, non-manifold-like one. MCMC methods have also been used to examine
the sample space Ωn of n-element causal sets and to estimate the onset of asymptotia,
characterised by the dominance of the KR posets (Henson et al. 2017). These tech-
niques have recently been extended to topologically non-trivial d = 2 and d = 3 CST
(Cunningham and Surya 2019). While this approach gives us expectation values of
covariant observables which allows for a straightforward interpretation, relating it to
the complex or quantum partition function is non-trivial and an open problem.

In Sect. 7, we describe in brief some of the exciting phenomenology that comes out
of the kinematical structure of causal sets. This includes themomentum space diffusion
coming from CST discreteness (“swerves”) (Dowker et al. 2004) and the effects of
non-locality on quantum field theory (Sorkin 2007b), which includes a recent proposal
for dark matter (Saravani and Afshordi 2017). Of these, the most striking is the 1987
prediction of Sorkin for the value of the cosmological constantΛ (Sorkin 1991, 1997).
While the original argumentwas a kinematic estimate, dynamicalmodels of fluctuating
Λ were subsequently examined (Ahmed et al. 2004; Ahmed and Sorkin 2013; Zwane
et al. 2018) and have been compared with recent observations (Zwane et al. 2018).
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This is an exciting future direction of research in CSTwhich interfaces intimately with
observation. We conclude with a brief outlook for CST in Sect. 8.

Finally, since this is an extensive review, in order to assist the reader we have made
a list of some of the key definitions, as well as the abbreviations in Appendix A.

As is true of all other approaches to quantum gravity, CST is not as yet a complete
theory. Some of the challenges faced are universal to quantum gravity as a whole,
while others are specific to the approach. Although we have developed a reasonably
good grasp of the kinematical structure of CST and some progress has been made in
the construction of effective quantum dynamics, CST still lacks a satisfactory quan-
tum dynamics built from first principles. Progress in this direction is therefore very
important for the future of the program. From a broader perspective, it is the opinion
of this author that a deeper understanding of CST will help provide key insights into
the nature of quantum gravity from a fully Lorentzian, causal perspective, whatever
ultimate shape the final theory takes.

It is not possible for this review to be truly complete. The hope is that the interested
reader will use it as a springboard to the existing literature. Several older reviews
exist with differing emphasis (Sorkin 1991, 2005b; Henson 2006b, 2010; Dowker
2005; Sorkin 2009; Wallden 2013), some of which have an in depth discussion of
the conceptual underpinnings of CST. The focus of the current review is to provide
as cohesive an account of the program as possible, so as to be useful to a starting
researcher in the field. For more technical details, the reader is urged to look at the
original references.

2 A historical perspective

One of the most important conceptual realisations that arose from the special and
general theories of relativity in the early part of the twentieth century, was that space
and time are part of a single construct, that of spacetime. At a fundamental level, one
does not existwithout the other.UnlikeRiemannian spaces, spacetime has aLorentzian
signature (−,+,+,+) which gives rise to local lightcones and an associated global
causal structure (Fig. 1). The causal structure (M,≺) of a causal spacetime1 (M, g) is
a partially ordered set or poset, with≺ denoting the causal ordering on the “event-set”
M .

Causal set theory (CST) as proposed in Bombelli et al. (1987), takes the Lorentzian
character of spacetime and the causal structure poset in particular, as a crucial starting
point to quantisation. It is inspired by a long but sporadic history of investigations into
Lorentzian geometry, in which the connections between (M,≺) and the conformal
geometry were eventually established. This history, while not a part of the standard
narrative of General Relativity, is relevant to the sequence of ideas that led to CST.
In looking for a quantum theory of spacetime, (M,≺) has also been paired with
discreteness, though the earliest ideas on discreteness go back to pre-quantum and
pre-relativistic physics. We now give a broad review of this history.

1 Henceforth, we will assume that spacetime is causal, i.e., without any closed causal curves.
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Fig. 1 The local lightcone of a
Lorentzian spacetime

The first few decades after the formulation of General Relativity were dedicated
to understanding the physical implications of the theory and to finding solutions to
the field equations. The attitude towards Lorentzian geometry was mostly practical:
it was seen as a simple, though odd, generalisation of Riemannian geometry.2 There
were however early attempts to understand this new geometry and to use causality as a
starting point. Weyl and Lorentz (see Bell and Korté 2016) used light rays to attempt a
reconstruction of d dimensional Minkowski spacetime M

d , while Robb (1914, 1936)
suggested an axiomatic framework for spacetime where the causal precedence on the
collection of events was seen to play a critical role. It was only several decades later,
however, that the mathematical structure of Lorentzian geometry began to be explored
more vigorously.

In a seminal paper titled “Causality Implies the Lorentz Group”, Zeeman (1964)
identified the chronological poset (Md ,≺≺) inM

d , where≺≺ denotes the chronological
relation on the event-set M

d . Defining a chronological automorphism3 fa of M
d as

the chronological poset-preserving bijection

fa :Md →M
d , x ≺≺ y ⇔ fa(x) ≺≺ fa(y), ∀ x, y ∈M

d , (1)

Zeeman showed that the group of chronological automorphisms GA is isomorphic to
the group GLor of inhomogeneous Lorentz transformations and dilations on M

d when
d > 2. While it is simple to see that the generators of GLor preserve the chronological
structure so that GLor ⊆ GA, the converse is not obvious. In his proof Zeeman showed
that every fa ∈ GA maps light rays to light rays, such that parallel light rays remain
parallel andmoreover that themap is linear. InMinkowski spacetime every chronolog-
ical automorphism is also a causal automorphism, so a Corollary to Zeeman’s theorem
is that the group of causal automorphisms is isomorphic to GLor . This is a remarkable
result, since it states that the physical invariants associated with M

d follow naturally
from its causal structure poset (Md ,≺) where ≺ denotes the causal relation on the
event-set M

d .
Kronheimer and Penrose (1967) subsequently generalised Zeeman’s ideas to an

arbitrary causal spacetime (M, g) where they identified both (M,≺) and (M,≺≺)

2 Hence the term “pseudo-Riemannian”.
3 Zeeman used the term “causal” instead of “chronological”, but we will follow the more modern usage of
these terms (Hawking and Ellis 1973; Wald 1984).
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with the event-set M , devoid of the differential and topological structures associated
with a spacetime. They defined an abstract causal space axiomatically, using both
(M,≺) and (M,≺≺) along with a mixed transitivity condition between the relations
≺ and ≺≺, which mimics that in a causal spacetime.

Zeeman’s result inM
d was then generalised to a larger class of spacetimes byHawk-

ing et al. (1976) andMalament (1977). A chronological bijection generalises Zeeman’s
chronological automorphism between two spacetimes (M1, g1) and (M2, g2), and is
a chronological order preserving bijection,

fb : M1→ M2, x ≺≺1 y ⇔ fb(x) ≺≺2 fb(y), ∀ x, y ∈ M1, (2)

where ≺≺1,2 refer to the chronology relations on M1,2, respectively. The existence of
a chronological bijection between two strongly causal spacetimes4 was equated by
Hawking et al. (1976) to the existence of a conformal isometry, which is a bijection
f : M1 → M2 such that f , f −1 are smooth (with respect to the manifold topology
and differentiable structure) and f∗g1 = λg2 for a real, smooth, strictly positive
function λ on M2. Malament (1977) then generalised this result to the larger class of
future and past distinguishing spacetimes.5 We refer to these results collectively as
the Hawking–King–McCarthy–Malament theorem or HKMM theorem, summarised
as

Theorem 1 Hawking–King–McCarthy–Malament (HKMM) If a chronological bijec-
tion fb exists between two d-dimensional spacetimes which are both future and past
distinguishing, then these spacetimes are conformally isometric when d > 2.

It was shown by Levichev (1987) that a causal bijection implies a chronological
bijection and hence the above theorem can be generalised by replacing “chronological”
with “causal”. Subsequently Parrikar and Surya (2011) showed that the causal struc-
ture poset (M,≺) of these spacetimes also contains information about the spacetime
dimension.

Thus, the causal structure poset (M,≺)of a future andpast distinguishing spacetime
is equivalent its conformal geometry. This means that (M,≺) is equivalent to the
spacetime, except for the local volume element encoded in the conformal factor λ,
which is a single scalar. As phrased by Finkelstein (1969), the causal structure in
d = 4 is therefore (9/10) th of the metric!

En route to a theory of quantum gravity onemust pause to ask: what “natural” struc-
ture of spacetime should be quantised? Is it themetric or is it the causal structure poset?
The former can be defined for all signatures, but the latter is an exclusive embodiment
of a causalLorentzian spacetime. InFig. 2,we showa3dprojectionof a non-Lorentzian
and non-Riemannian d = 4 “space-time” with signature (−,−,+,+). The fact that a
time-like direction can be continuously transformed into any other while still remain-
ing time-like means that there is no order relation in the space and hence no associated

4 A point p in a spacetime is said to be strongly causal if every neighbourhood of p contains a subneigh-
bourhood such that no causal curve intersects it more than once. All the events in a strongly causal spacetime
are strongly causal.
5 These are spacetimes in which the chronological past and future I±(p) of each event p is unique, i.e.,
I±(p) = I±(q)⇒ p = q.
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Fig. 2 An example of a signature
(−,−,+,+) spacetime with
one spatial dimension
suppressed. It is not possible to
distinguish a past from a future
timelike direction and hence
order events, even locally

causal structure poset. We can thus view the causal structure poset as an essential
embodiment of Lorentzian spacetime.

Perhaps the first explicit statement of intent to quantise the causal structure of space-
time, rather than the spacetime geometry, was byKronheimer and Penrose (1967), who
listed, as one of their motivations for axiomatising the causal structure:

To admit structures which can be very different from a manifold. The possibility
arises, for example, of a locally countable or discrete event-space equipped with
causal relations macroscopically similar to those of a space-time continuum.

This brings to focus another historical thread of ideas important to CST, namely that
of spacetime discreteness. The idea that the continuum is a mathematical construct
which approximates an underlying physical discreteness was already present in the
writings of Riemann as he ruminated on the physicality of the continuum (Riemann
1873):

Now it seems that the empirical notions on which the metric determinations of
Space are based, the concept of a solid body and that of a light ray; lose their
validity in the infinitely small; it is therefore quite definitely conceivable that the
metric relations of Space in the infinitely small do not conform to the hypotheses
of geometry; and in fact one ought to assume this as soon as it permits a simpler
way of explaining phenomena.

Many years later, in their explorations of spacetime and quantum theory, Ein-
stein and Feynman each questioned the physicality of the continuum (Stachel 1986;
Feynman 1944). These ideas were also expressed in Finkelstein’s “spacetime code”
(Finkelstein 1969), and most relevant to CST, in Hemion’s use of local finiteness, to
obtain discreteness in the causal structure poset (Hemion 1988). This last condition is
the requirement there are only a finite number of fundamental spacetime elements in
any finite volume Alexandrov interval A[p, q] ≡ I+(p) ∩ I−(q).

Although these ideas of spacetime discreteness resonate with the appearance of
discreteness in quantum theory, the latter typically manifests itself as a discrete spec-
trum of a continuum observable. The discreteness proposed above is different: one
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is replacing the fundamental degrees of freedom, before quantisation, already at the
kinematical level of the theory.

The most immediate motivation for discreteness however comes from the HKMM
theorem itself. Themissing (1/10) th of the d = 4metric is the volume element. A dis-
crete causal set can supply this volume element by substituting the continuum volume
with cardinality. This ideawas already present inMyrheim’s remarkable (unpublished)
CERN preprint (Myrheim 1978), which contains many of the main ideas of CST. Here
he states:

It seems more natural to regard the metric as a statistical property of discrete
spacetime. Instead wewant to suggest that the concept of absolute time ordering,
or causal ordering of, space-time points, events, might serve as the one and only
fundamental concept of a discrete space-time geometry. In this view space-time
is nothing but the causal ordering of events.

The statistical nature of the poset is a key proposal that survives into CST with
the spacetime continuum emerging via a random Poisson sprinkling. We will see this
explicitly in Sect. 3. Another key concept which plays a role in the dynamics is that the
order relation replaces coordinate time and any evolution of spacetime takes meaning
only in this intrinsic sense (Sorkin 1997).

There are of course many other motivations for spacetime discreteness. One of the
expectations from a theory of quantum gravity is that the Planck scale will introduce
a natural cut-off which cures both the UV divergences of quantum field theory and
regulates black hole entropy. The realisation of this hope lies in the details of a given
discrete theory, and CST provides us a concrete way to study this question, as we will
discuss in Sect. 5.

It has been 31years since the original CST proposal of BLMS (Bombelli et al.
1987). The early work shed considerable light on key aspects of the theory (Bombelli
et al. 1987; Bombelli and Meyer 1989; Brightwell and Gregory 1991) and resulted
in Sorkin’s prediction of the cosmological constant Λ (Sorkin 1991). There was a
seeming hiatus in the 1990s, which ended in the early 2000s with exciting results from
the Rideout–Sorkin classical sequential growth models (Rideout and Sorkin 2000b,
2001; Martin et al. 2001; Rideout 2001). There have been several non-trivial results in
CST in the intervening 19odd years. In the following sections we will make a broad
sketch of the theory and its key results, with this historical perspective in mind.

3 The causal set hypothesis

We begin with the definition of a causal set:

Definition A set C with an order relation ≺ is a causal set if it is

1. Acyclic: x ≺ y and y ≺ x ⇒ x = y, ∀x, y ∈ C
2. Transitive: x ≺ y and y ≺ z⇒ x ≺ z, ∀x, y, z ∈ C
3. Locally finite: ∀x, y ∈ C , |I[x, y]| <∞, where I[x, y] ≡ Fut(x) ∩ Past(y) ,
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Fig. 3 The transitivity condition
x ≺ y, y ≺ z ⇒ x ≺ z is
satisfied by the causality relation
≺ in any Lorentzian spacetime

Fig. 4 TheHasse diagrams of some simple finite cardinality causal sets.Only the nearest neighbour relations
or links are depicted. The remaining relations are deduced from transitivity

where |.| denotes the cardinality of the set, and6

Fut(x) ≡ {w ∈ C |x ≺ w, x 
= w}
Past(x) ≡ {w ∈ C |w ≺ x, x 
= w}. (3)

We refer to I[x, y] as an order interval, in analogy with the Alexandrov interval in the
continuum. The acyclic and transitive conditions together define a partially ordered
set or poset, while the condition of local finiteness encodes discreteness (Figs. 3, 4).

The content of the HKMM theorem can be summarised in the statement:

Causal Structure + Volume Element = Lorentzian Geometry, (4)

6 These are the exclusive future and past sets since they do not include the element itself.
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which lends itself to a discrete rendition, dubbed the “CST slogan”:

Order + Number ∼ Lorentzian Geometry. (5)

One therefore assumes a fundamental correspondence between the number of elements
in a region of the causal set and the continuum volume element that it represents. The
condition of local finiteness means that all order intervals in the causal set are of
finite cardinality and hence correspond in the continuum to finite volume. This CST
slogan captures the essence of the (yet to be specified) continuum approximation of
a manifold-like causal set, which we denote by C ∼ (M, g). While the continuum
causal structure gives the continuum conformal geometry via the HKMM theorem,
the discrete causal structure represented by the underlying causal set is conjectured to
approximate the entire spacetime geometry. Thus, discreteness supplies the missing
conformal factor, or the missing (1/10) th of the metric, in d = 4.

Motivated thus, CST makes the following radical proposal (Bombelli et al. 1987):

1. Quantum gravity is a quantum theory of causal sets.
2. A continuum spacetime (M, g) is an approximation of an underlying causal set

C ∼ (M, g), where

(a) Order ∼ Causal Order
(b) Number ∼ Spacetime Volume

InCST, the kinematical space ofd = 4 continuumspacetimegeometries or histories
is replaced with a sample space Ω of causal sets. Thus, discreteness is viewed not
only as a tool for regulating the continuum, but as a fundamental feature of quantum
spacetime.Ω includes causal sets that have no continuum counterpart, i.e., they cannot
be related via Conditions (2a) and (2b) to any continuum spacetime in any dimension.
These non-manifold-like causal sets are expected to play an important role in the deep
quantum regime. In order to make this precise we need to define what it means for a
causal set to be manifold-like, i.e., to make precise the relation “C ∼ (M, g)”.

Before doing so, it is important to understand the need for a continuum approx-
imation at all. Without it, Condition (1) yields any quantum theory of locally finite
posets: one then has the full freedom of choosing any poset calculus to construct a
quantum dynamics, without need to connect with the continuum. Examples of such
poset approaches to quantum gravity include those by Finkelstein (1969) and Hemion
(1988), and more recently Cortês and Smolin (2014). What distinguishes CST from
these approaches is the critical role played by both causality and discrete covariance
which informs the choice of the dynamics as well the physical observables. In par-
ticular, condition (2) is the requirement that in the continuum approximation these
observables should correspond to appropriate continuum topological and geometric
covariant observables.

What do we mean by the continuum approximation Condition (2)? We begin to
answer this by looking for the underlying causal set of a causal spacetime (M, g). A
useful analogy to keep in mind is that of a macroscopic fluid, for example a glass of
water. Here, there are a multitude of molecular-level configurations corresponding to
the same macroscopic state. Similarly, we expect there to be a multitude of causal sets
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approximated by the same spacetime (M, g). And, just as the set of allowedmicrostates
of the glass of water depends on the molecular size, the causal set microstate depends
on the discreteness scale Vc, which is a fundamental spacetime volume cut-off.7

Since the causal set C approximating (M, g) is locally finite, it represents a proper
subset of the event-set M . An embedding is the injective map

Φ : C ↪→ (M, g), x ≺C y ⇔ Φ(x) ≺M Φ(y), (6)

where≺C and≺M denote the order relations inC and M respectively. Not every causal
set can be embedded into a given spacetime (M, g). Moreover, even if an embedding
exists, this is not sufficient to ensure that C ∼ (M, g) since only Condition (2a) is
satisfied. In addition, to correlate the cardinality of the causal set with the spacetime
volume element, Condition (2b), the embeddings must also be uniform with respect
to the spacetime volume measure of (M, g). A causal set is said to approximate a
spacetime C ∼ (M, g) at density ρc = V−1c if there exists a faithful embedding

Φ : C ↪→ M, Φ(C) is a uniform distribution in (M, g) at density ρc, (7)

where by uniform we mean with respect to the spacetime volume measure of (M, g).
The uniform distribution at density ρc ensures that every finite spacetime volume V

is represented by a finite number of elements n ∼ ρcV in the causal set. It is natural to
make these finite spacetime regions causally convex, so that they can be constructed
from unions of Alexandrov intervals A[p, q] in (M, g). However, we must ensure
covariance, since the goal is to be able to recover the approximate covariant spacetime
geometry. This is why Φ(C) is required to be uniformly distributed in (M, g) with
respect to the spacetime volume measure. It is obvious that a “regular” lattice cannot
do the job since it is not regular in all frames or coordinate systems. Hence it is not
possible to consistently assign n ∼ ρcV to such lattices (see Fig. 5).

The issue of symmetry breaking is of course obvious even in Euclidean space.
Any regular discretisation breaks the rotational and translational symmetry of the
continuum. In the lattice calculations for QCD, these symmetries are restored only in
the continuum limit, but are broken as long as the discreteness persists. In Christ et al.
(1982) it was suggested that symmetry can be restored in a randomly generated lattice
where there lattice points are uniformly distributed via a Poisson process. This has
the advantage of not picking any preferred direction and hence not explicitly breaking
symmetry, at least on average. We will discuss this point in greater detail further on.

Set in the context of spacetime, the Poisson distribution is a natural choice for
Φ(C), with the probability of finding n elements in a spacetime region of volume v

given by

Pv(n) = (ρcv)n

n! exp−ρcv . (8)

7 The most obvious choice for Vc is the Planck volume, but we will not require it at this stage.
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Fig. 5 The lightcone lattice in d = 2. The lattice on the left looks “regular” in a fixed frame but transforms
into the “stretched” lattice on the right under a boost. The n ∼ ρcV correspondence cannot be implemented
as seen from the example of the Alexandrov interval, which contains n = 7 lattice points in the lattice in
the left but is empty after a boost

This means that on the average

〈n〉 = ρcv, (9)

where n is the random variable associated with the random causal set Φ(C). This
distribution then gives us the covariantly defined n ∼ ρcV correspondence we seek.8

In a Poisson sprinkling into a spacetime (M, g) at density ρc one selects points
in (M, g) uniformly at random and imposes a partial ordering on these elements via
the induced spacetime causality relation. Starting from (M, g), we can then obtain
an ensemble of “microstates” or causal sets, which we denote by C(M, ρc), via the
Poisson sprinkling.9 Each causal set thus obtained is a realisation, while any averaging
is done over the whole ensemble.

We say that a causal set C is approximated by a spacetime (M, g) if C can be
obtained from (M, g) via a high probability Poisson sprinkling. Conversely, for every
C ∈ C(M, ρc) there is a natural embedding map

Φ : C ↪→ M , (10)

where Φ(C) is a particular realisation in C(M, ρc). In Fig. 6, we show a causal set
obtained by Poisson sprinkling into d = 2 de Sitter spacetime.

That there is a fundamental discrete randomness even kinematically is not always
easy for a newcomer to CST to come to terms with. Not only does CST posit a
fundamental discreteness, it also requires it to be probabilistic. Thus, even before

8 Since Φ(C) is a random causal set, any function of F : C → R is therefore a random variable.
9 C(M, ρc) explicitly depends on the spacetimemetric g, which we have suppressed for brevity of notation.
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Fig. 6 A Poisson sprinkling into a portion of 2d de Sitter spacetime embedded in M
3. The relations on the

elements are deduced from the causal structure of M
3

coming to quantum probabilities, CST makes us work with a classical, stochastic
discrete geometry.

Let us state some obvious, but important aspects of Eq. (8). Let Φ : C ↪→ (M, g)

be a faithful embedding at density ρc. While the set of all finite volume regions10 v

possess on average 〈n〉 = ρcv elements of C ,11 the Poisson fluctuations are given by
δn = √n. Thus, it is possible that the region contains no elements at all, i.e., there is a
“void”. An important question to ask is how large a void is allowed, since a sufficiently
large voidwould have an obvious effect on ourmacroscopic perception of a continuum.
If spacetime is unbounded, as it is in Minkowski spacetime, the probability for the
existence of a void of any size is one. Can this be compatible at all with the idea of
an emergent continuum in which the classical world can exist, unperturbed by the
vagaries of quantum gravity?

The presence of a macroscopic void means that the continuum approximation is
not realised in this region. A prediction of CST is then that the emergent continuum
regions of spacetime are bounded both spatially and temporally, even if the underlying
causal set is itself “unbounded” or countable. Thus, a continuum universe is not viable

10 We assume that these are always causally convex.
11 Henceforth we will identify Φ(C) with C , whenever Φ is a faithful embedding.
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Fig. 7 A Hasse diagram of a
causal set that faithfully embeds
into a causal diamond in M

2. In
a Hasse diagram only the nearest
neighbour relations or links are
shown. The remaining relations
follow by transitivity
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forever. However, since the current phase of the observable universe does have a con-
tinuum realisation one has to ask whether this is compatible with CST discretisation.
In Dowker et al. (2004) the probability for there to be at least one nuclear size void
∼ 10−60m4 was calculated in a region of Minkowski spacetime which is the size of
our present universe. Using general considerations they found that the probability is
of order 1084× 10168× e−1072 , which is an absurdly small number! Thus, CST poses
no phenomenological inconsistency in this regard.

An example of a manifold-like causal set C which is obtained via a Poisson sprin-
kling into a 2d causal diamond is shown in Fig. 7. A striking feature of the resulting
graph is that there is a high degree of connectivity. In the Hasse diagram of Fig. 7
only the nearest neighbour relations or links are depicted with the remaining relations
following from transitivity. e ≺ e′ ∈ C is said to be a link if � e′′ ∈ C such that
e′′ 
= e, e′ and e ≺ e′′ ≺ e′. In a causal set that is obtained from a Poisson sprinkling,
the valency, i.e., the number of nearest neighbours or links from any given element
is typically very large. This is an important feature of continuum like causal sets and
results from the fact that the elements of C are uniformly distributed in (M, g). For
a given element e ∈ C , the probability of an event x � e to be a link is equal to the
probability that the Alexandrov interval A[e, x] does not contain any elements of C .
Since

PV (0) = e−ρcV , (11)

the probability is significant only when V ∼ Vc. As shown in Fig. 8, in M
d , the set

of events within a proper time ∝ (V )1/d to the future (or past) of a point p lies in
the region between the future light cone and the hyperboloid −t2 +Σi x2i ∝ (V )2/d ,
with t > 0. Up to fluctuations, therefore, most of the future links to e lie within the
hyperboloid with V = Vc ±√Vc. This is a non-compact, infinite volume region and
hence the number of future links to e is (almost surely) infinite. Since linked elements
are the nearest neighbours of e, this means the valency of the graph C is infinite. It
is this feature of manifold-like causal sets which gives rise to a characteristic “non-
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Fig. 8 The valency or number of
nearest neighbours of an element
in a causal set obtained from a
Poisson sprinkling into M

2 is
infinite

locality”, and plays a critical role in the continuum approximation of CST, time and
again.

ThePoisson distribution is not the only choice for a uniformdistribution.Apertinent
question is whether a different choice of distribution is possible, which would lead to
a different manifestation of the continuum approximation. In Saravani and Aslanbeigi
(2014), this question was addressed in some detail. We summarise this discussion. Let
C ∼ (M, g) at densityρc. Consider k non-overlappingAlexandrov intervals of volume
V in (M, g). Since C is uniformly distributed, 〈n〉 = ρcV . The most optimal choice
of distribution, is also one in which the fluctuations δn/〈n〉 = √〈(n − 〈n〉)2〉/〈n〉
are minimised. This ensures that C is as close to the continuum as possible. For the
Poisson distribution δn/〈n〉 = 1/

√〈n〉 = 1/
√

ρcV . Is this as good as it gets? It was
shown by Saravani and Aslanbeigi (2014) that for d > 2, and under certain further
technical assumptions, the Poisson distribution indeed does the best job. Strengthen-
ing these results is important as it can improve our understanding of the continuum
approximation.

3.1 The Hauptvermutung or fundamental conjecture of CST

An important question is the uniqueness of the continuum approximation associated
to a causal set C . Can a given C be faithfully embedded at density ρc into two dif-
ferent spacetimes, (M, g) and (M ′, g′)? We expect that this is the case if (M, g) and
(M ′, g′) differ on scales smaller than ρc, or that they are, in an appropriate sense,
“close” (M, g) ∼ (M ′, g′). Let us assume that a causal set can be identified with two
macroscopically distinct spacetimes at the same density ρc. Should this be interpreted
as a hidden duality between these spacetimes, as is the case for example for isospec-
tral manifolds or mirror manifolds in string theory (Greene and Plesser 1991)? The
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answer is clearly in the negative, since the aim of the CST continuum approximation
is to ensure that C contains all the information in (M, g) at scales above ρ−1c . Macro-
scopic non-uniqueness would therefore mean that the intent of the CST continuum
approximation is not satisfied.

We thus state the fundamental conjecture of CST:

The Hauptvermutung of CST: C can be faithfully embedded at density ρc into two
distinct spacetimes, (M, g) and (M ′, g′) iff they are approximately isometric.

By an approximate isometry , (M, g) ∼ (M ′, g′) at density ρc, wemean that (M, g)

and (M ′, g′) differ only at scales smaller than ρc. Defining such an isometry rigorously
is challenging, but concrete proposals have been made by Bombelli (2000), Noldus
(2002, 2004), Bombelli and Noldus (2004) and Bombelli et al. (2012), en route to a
full proof of the conjecture. Because of the technical nature of these results, we will
discuss it only very briefly in the next section, and instead use the above intuitive and
functional definition of closeness.

Condition (1) tells us that the kinematic space of Lorentzian geometries must be
replaced by a sample space Ω of causal sets. Let Ω be the set of all countable causal
sets andH the set of all possibleLorentzian geometries, in all dimensions. If ∼ denotes
the approximate isometry at a given ρc, as discussed above, the quotient space H/∼
corresponds to the set of all continuum-like causal sets Ωcont ⊂ Ω at that ρc. Thus,
causal sets inΩ correspond to Lorentzian geometries of all dimensions! Couched this
way, we see that CST dynamics has the daunting task of not only obtaining manifold-
like causal sets in the classical limit, but also ones that have dimension d = 4.

As mentioned in the introduction, the sample space of n element causal sets Ωn is
dominated by the KR posets depicted in Fig. 9 and are hence very non-manifold-like
(Kleitman and Rothschild 1975). AKR poset has three “layers” (or abstract “moments
of time”), with roughly n/4 elements in the bottom and top layer and such that each
element in the bottom layer is related to roughly half those in themiddle layer, and sim-
ilarly each element in the top layer is related to roughly half those in the middle layer.

Fig. 9 A Kleitman–Rothschild or KR poset
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Thenumber ofKRposets grows as∼ 2n2/4 andhencemust play a role in thedeepquan-
tum regime. Since they are non-manifold-like they pose a challenge to the dynamics,
whichmust overcome their entropic dominance in the classical limit of the theory. Even
if the entropy from theseKRposets is suppressedby an appropriate choice of dynamics,
however, there is a sub-dominant hierarchy of non-manifold-like posets (also layered)
which also need to be reckoned with (Dhar 1978, 1980; Promel et al. 2001).

Closely tied to the continuum approximation is the notion of “coarse graining”.
Given a spacetime (M, g) the set C(M, ρc) can be obtained for different values of ρc.
Given a causal set C which faithfully embeds into (M, g) at ρc, one can then coarse
grain it to a smaller subcausal set C ′ ⊂ C which faithfully embeds into (M, g) at
ρ′c < ρc. A natural coarse graining would be via a random selection of elements in
C such that for every n elements of C roughly n′ = (ρ′c/ρc)n elements are chosen.
Even if C itself does not faithfully embed into (M, g) at ρc, it is possible that a coarse
graining of C can be faithfully embedded. This would be in keeping with our sense in
CST that the deep quantum regime need not be manifold-like. One can also envisage
manifold-like causal sets with a regular fixed lattice-like structure attached to each
element similar to a “fibration”, in the spirit of Kaluza–Klein theories. Instead of the
coarse graining procedure, it would be more appropriate to take the quotient with
respect to this fibre to obtain the continuum like causal set. Recently, the implications
of coarse graining in CST, both dynamically and kinematically, were considered in
Eichhorn (2018) based on renormalisation techniques.

3.2 Discreteness without Lorentz breaking

It is often assumed that a fundamental discreteness is incompatible with continuous
symmetries. As was pointed out in Christ et al. (1982), in the Euclidean context,
symmetry can be preserved on average in a random lattice. In Bombelli et al. (2009),
it was shown that a causal set in C(Md , ρc) not only preserves Lorentz invariance on
average, but in every realisation, with respect to the Poisson distribution. Thus, in a
very specific sense a manifold-like causal set does not break Lorentz invariance. In
order to see the contrast between the Lorentzian and Euclidean cases we present the
arguments of Bombelli et al. (2009) starting with the easier Euclidean case.

Consider the Euclidean plane P = (R2, δab), and let Φ : C(P, ρc) ↪→ P be the
natural embedding map, where C(P, ρc) denotes the ensemble of Poisson sprinklings
into P at density ρc. A rotation r ∈ SO(2) about a point p ∈ P , induces a map
r∗ : C(P, ρc)→ C(P, ρc), where r∗ = Φ−1 ◦ r ◦ Φ and similarly a translation t in
P induces the map t∗ : C(P, ρc) → C(P, ρc). The action of the Euclidean group is
clearly not transitive on C(P, ρc) but has non-trivial orbits which provide a fibration
of C(P, ρc). Thus the ensemble C(P, ρc) preserves the Euclidean group on average.
This is the sense in which the discussion of Christ et al. (1982) states that the random
discretisation preserves the Euclidean group.

The situation is however different for a given realisation P ∈ C(P, ρc). Fixing
an element e ∈ Φ(P), we define a direction d ∈ S1, the space of unit vectors in P
centred at e. Under a rotation r about e, d → r∗(d) ∈ S1. In general, we want a
rule that assigns a natural direction to every P ∈ C(P, ρc). One simple choice is to
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find the closest element to e in Φ(P), which is well defined in this Euclidean context.
Moreover, this element is almost surely unique, since the probability of two elements
being at the same radius from e is zero in a Poisson distribution. Thus we can define
a “direction map” De : C(P, ρc) → S1 for a fixed e ∈ Φ(P) consistent with the
rotation map, i.e., De commutes with any r ∈ SO(2), or is equivariant.

Associated with C(P, ρc), is a probability distribution μ arising from the Poisson
sprinkling which associates with every measurable set α in C(P, ρc) a probability
μ(α) ∈ [0, 1]. The Poisson distribution being volume preserving (Stoyan et al. 1995),
the measure on C(P, ρc)moreover must be independent of the action of the Euclidean
group on C(P, ρc), i.e.: μ ◦ r = μ.

In analogy with a continuous map, a measurable map is one whose preimage from
a measurable set is itself a measurable set. The natural map D we have defined is a
measurable map, and we can use it to define a measure on S1: μD ≡ μ ◦ D−1. Using
the invariance of μ under rotations and the equivariance of D under rotations

μD = μ ◦ r ◦ D−1 = μ ◦ D−1 ◦ r = μD ◦ r ∀ r ∈ SO(2), (12)

we see that μD is also invariant under rotations. Because S1 is compact, this does
not lead to a contradiction. In analogy with the construction used in Bombelli et al.
(2009) for the Lorentzian case, we choose a measurable set s ≡ (0, 2π/n) ∈ S1. A
rotation by r(2π/n), takes s → s′ which is non-overlapping, so that after n successive
rotations, rn(2π/n)◦ s = s. Since each rotation does not change μD andμD(S1) = 1,
this means that μD(s) = 1/n. Thus, it is possible to assign a consistent direction for
a given realisation P ∈ C(P, ρc) and hence break Euclidean symmetry.

However, this is not the case for the space of sprinklings C(Md , ρc) intoM
d , where

the hyperboloid Hd−1 now denotes the space of future directed unit vectors and is
invariant under the Lorentz group SO(n − 1, 1) about a fixed point p ∈ M

d−1 (see
Fig. 10). To begin with, there is no “natural” direction map. Let C ∈ C(Md , ρc). To
find an element which is closest to some fixed e ∈ Φ(C), one has to take the infimum
over J+(e), or some suitable Lorentz invariant subset of it, which being non-compact,
does not exist. Assume that some measurable direction map D : ΩMd → Hd−1, does
exist. Then the above arguments imply thatμD must be invariant under Lorentz boosts.
The action of successive Lorentz transformations Λ can take a given measurable set

Fig. 10 The space of unit
directions in R

d is Sd−1, while
the space of unit timelike vectors
in M

d is Hd−1
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h ∈ Hd−1 to an infinite number of copies that are non-overlapping, and of the same
measure. SinceHd−1 is non-compact, this is not possible unless each set is of measure
zero, but since this is true for any measurable set h and we require μD(Hd−1) = 1,
this is a contradiction. This proves the following theorem (Bombelli et al. 2009):

Theorem 2 In dimensions n > 1 there exists no equivariant measurable map D :
C(Md , ρc)→ H, i.e.,

D ◦Λ = Λ ◦ D ∀Λ ∈ SO(n − 1, 1). (13)

In otherwords, even for a given sprinklingω ∈ ΩMd it is not possible to consistently
pick a direction inHd−1. Consistency means that under a boost Λ : ω→ Λ ◦w, and
hence D(ω)→ Λ ◦ D(ω) ∈ Hd−1. Crucial to this argument is the use of the Poisson
distribution.12 Thus, an important prediction of CST is local Lorentz invariance. Tests
of Lorentz invariance over the last couple of decades have produced an ever-tightening
bound, which is therefore consistent with CST (Liberati and Mattingly 2016).

3.3 Forks in the road: what makes CST so“different”?

In many ways CST does not fit the standard paradigms adopted by other approaches to
quantum gravity and it is worthwhile trying to understand the source of this difference.
The program is minimalist but also rigidly constrained by its continuum approxima-
tion. The ensuing non-locality means that the apparatus of local physics is not readily
available to CST.

Sorkin (1991) describes the route to quantum gravity and the various forks at which
one has tomake choices.Different routesmay lead to the same destination: for example
(barring interpretational questions), simple quantum systems can be described equally
well by the path integral and the canonical approach.However, this need not be the case
in gravity: a set of consistent choices may lead you down a unique path, unreachable
from another route. Starting from broad principles, Sorkin argued that certain choices
at a fork are preferable to others for a theory quantum gravity. These include the
choice of Lorentzian over Euclidean, the path integral over canonical quantisation and
discreteness over the continuum. This set of choices leads to a CST-like theory, while
choosing the Lorentzian–Hamiltonian-continuum route leads to a canonical approach
like Loop Quantum Gravity.

Starting with CST as the final destination, we can work backward to retrace our
steps to see what forks had to be taken andwhy other routes are impossible to take. The
choice at the discreteness versus continuum fork and the Lorentzian versus Euclidean
fork are obvious from our earlier discussions. As we explain below, the other essential
fork that has to be taken in CST is the histories approach to quantisation.

One of the standard routes to quantisation is via the canonical approach. Starting
with the phase space of a classical system, with or without constraints, quantisation
rules give rise to the familiar apparatus of Hilbert spaces and self adjoint operators. In

12 It is interesting to ask if other choices of uniform distribution satisfy the above theorem. If so, then our
criterion for a uniform distribution could not only include ones that minimise the fluctuations but also those
that respect Lorentz invariance.
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Fig. 11 A “missing link” from e
to e′ which “bypasses” the
inextendible antichain A

quantum gravity, apart from interpretational issues, this route has difficult technical
hurdles, some of which have been partially overcome (Ashtekar and Pullin 2017).
Essential to the canonical formulation is the 3+ 1 split of a spacetime M = Σ × R,
where Σ is a Cauchy hypersurface, on which are defined the canonical phase space
variables which capture the intrinsic and extrinsic geometry of Σ .

The continuum approximation of CST however, does not allow a meaningful defi-
nition of a Cauchy hypersurface, because of the “ graphical non-locality” inherent in
a continuum like causal set, as we will now show. We begin by defining an antichain
to be a set of unrelated elements in C , and an inextendible antichain to be an antichain
A ⊂ C such that every element e ∈ C\A is related to an element of A. The natural
choice for a discrete analog of a Cauchy hypersurface is therefore an inextendible
antichainA, which separates the set C into its future and past, so that we can express
C = Fut(A) � Past(A) � A, with � denoting disjoint union. However, an element
in Past(A) can be related via a link to an element in Fut(A) thus “bypassing” A. An
example of a “missing link” is depicted in Fig. 11. This means that unlike a Cauchy
hypersurface, A is not a summary of its past, and hence a canonical decomposition
using Cauchy hypersurfaces is not viable (Major et al. 2006). On the other hand, each
causal set is a “history”, and since the sample space of causal sets is countable, one
can construct a path integral or path-sum as over causal sets. We will describe the
dynamics of causal sets in more detail in Sect. 6.

Before moving on, we comment on the condition of local finiteness which, as we
have pointed out, provides an intrinsic definition of spacetime discreteness, which
does not need a continuum approximation. An alternative definition would be for the
causal set to be countable, which along with the continuum approximation is sufficient
to ensure the number to volume correspondence. This includes causal sets with order
intervals of infinite cardinality, and allows us to extend causal set discretisation to
more general spacetimes, like anti de Sitter spacetimes, where there exist events p, q
in the spacetime for which vol(A[p, q]) is not finite. However, what is ultimately of
interest is the dynamics, and in particular, the sample space Ω of causal sets. In the
growth models we will encounter in Sects. 6.1, 6.2 and 6.3 the sample space consists
of past finite posets, while in the continuum-inspired dynamics of Sect. 6.4 it consists
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of finite element posets. Thus, while countable posets may be relevant to a broader
framework in which to study the dynamics of causal sets, it suffices for the present to
focus on locally finite posets.

4 Kinematics or geometric reconstruction

In this sectionwediscuss the programof geometric reconstruction inwhich topological
and geometric invariants of a continuum spacetime (M, g) are “reconstructed” from
the underlying ensemble of causal sets. The assumption that such a reconstruction
exists for any covariant observable in (M, g) comes from the Hauptvermutung of
CST discussed in Sect. 3.

In the statement of theHauptvermutung,we used the phrase “approximately isomet-
ric”, with the promise of an explanation in this section. A rigorous definition requires
the notion of closeness of two Lorentzian spacetimes. In Riemannian geometry, one
has the Gromov–Hausdorff distance (Petersen 2006), but there is no simple exten-
sion to Lorentzian geometry, in part because of the indefinite signature. In Bombelli
and Meyer (1989) a measure of closeness of two Lorentzian manifolds was given in
terms of a pseudo distance function, which however is neither symmetric nor satisfies
the triangle inequality. Subsequently, in a series of papers, a true distance function
was defined on the space of Lorentzian geometries, dubbed the Lorentzian Gromov–
Hausdorff distance (Bombelli 2000; Noldus 2002, 2004; Bombelli and Noldus 2004;
Bombelli et al. 2012). While this makes the statement of the Hauptvermutung pre-
cise, there is as yet no complete proof. Recently, a purely order theoretic criterion
has been used to determine the closeness of causal sets and prove a version of the
Hauptvermutung (Sorkin and Zwane, work in progress).

Apart from these more formal constructions, as we will describe below, a large
body of evidence has accumulated in favour of the Hauptvermutung. In the pro-
gram of geometric reconstruction, we look for order invariants in continuum like
causal sets which correspond to manifold (either topological or geometric) invari-
ants of the spacetime. These manifold invariants include dimension, spatial topology,
distance functions between fixed elements in the spacetime, scalar curvature, the dis-
crete Einstein–Hilbert action, the Gibbons–Hawking–York boundary terms, Green
functions for scalar fields, and the d’Alembertian operator for scalar fields. The iden-
tification of the order invariant O with the manifold invariant G then ensures that a
causal set C that faithfully embeds into (M, g) cannot faithfully embed into a space-
time with a different manifold invariant G′.13 Thus, in this sense two manifolds can
be defined to be close with respect to their specific manifold invariants. We can then
state the limited, order-invariant version of the Hauptvermutung:

O-Hauptvermutung: If C faithfully embeds into (M, g) and (M ′, g′) then (M, g)

and (M ′, g′) have the same manifold invariant G associated with O.

The longer our list of correspondences betweenorder invariants andmanifold invari-
ants, the closer we are to proving the full Hauptvermutung.

13 This is in the sense of an ensemble, since the faithful embedding is defined statistically.
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In order to correlate amanifold invariantG with an order invariantO, wemust recast
geometry in purely order theoretic terms. Note that since locally finite posets appear in
awide range of contexts, the poset literature contains several order invariants, but these
are typically not related to the manifold invariants of interest to us. The challenge is
to choose the appropriate invariants that correspond to manifold invariants. Guessing
and verifying this using both analytic and numerical tools is the art of geometric
reconstruction.

A labelling of a causal setC is an injective map:C → N, which is the analogue of a
choice of coordinate system in the continuum. By an order invariant in a finite causal
set C we mean a function O : C → R such that O is independent of the labelling of
C . For a manifold-like causal set14 C ∈ C(M, ρc), associated to every order invariant
O is the random variableO whose expectation value 〈O〉 in the ensemble C(M, ρc) is
either equal to or limits (in the large ρc limit) to a manifold invariant G of (M, g). We
will typically restrict to compact regions of (M, g) in order to deal with finite values
of O.

The first candidates for geometric order invariants were defined for C(A[p, q], ρc)

where A[p, q] is an Alexandrov interval in M
d . Some of these have been later

generalised to Alexandrov intervals (or causal diamonds) in Riemann Normal Neigh-
bourhoods (RNN) in curved spacetime. These manifold invariants are in this sense
“local”. In order to find spatial global invariants, the relevant spacetime region is
a Gaussian Normal Neighbourhood (GNN) of a compact Cauchy hypersurface in a
globally hyperbolic spacetime. As discussed in Sect. 3 compactness is necessary for
manifold-likeness since otherwise there is a finite probability for there to be arbitrarily
large voids which negates the discrete-continuum correspondence.

Before proceeding, we remind the reader that we are restricting ourselves to
manifold-like causal sets in this section only because of the focus on CST kinematics
and the continuum approximation. All the order invariants, however, can be calculated
for any causal set, manifold-like or not. These order invariants give us an important
class of covariant observables, essential to constructing a quantum theory of causal
sets. As we will see in Sect. 6 they play an important role in the quantum dynamics.

The analytic results in this section are typically found in the continuum limit,
ρc →∞. Strictly speaking, this limit is unphysical in CST because of the assumption
of a fundamental discreteness. There are fluctuations at finite ρc which give important
deviations from the continuumwith potential phenomenological consequences. These
are however not always easy to calculate analytically and hence require simulations
to assess the size of fluctuations at finite ρc. As we will see below, CST kinematics
therefore needs a combination of analytical and numerical tools.

4.1 Spacetime dimension estimators

The earliest result in CST is a dimension estimator for Minkowski spacetime due
to Myrheim (1978)15 and predates BLMS (Bombelli et al. 1987). A closely related

14 We remind the reader that the ensemble depends on the spacetime (M, g) butwe suppress the dependence
on g for the sake of brevity.
15 This remarkable preprint also contains the first expression, again without detailed proof, of the volume
of a small causal diamond in an arbitrary spacetime.
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dimension estimator was given by Meyer (1988), which is now collectively known as
the Myrheim–Meyer dimension estimator.

The number of relations R in a finite n element causal setC is the number of ordered
pairs ei , e j ∈ C such that ei ≺ e j . Since the maximum number of possible relations
on n elements is

(n
2

)
, the ordering fraction is defined as

r = 2R

n(n − 1)
. (14)

It was shown by Myrheim (1978) that r depends only on the dimension when C
faithfully embeds into M

d .
We nowdescribe the construction of a closely related dimension estimator byMeyer

(1988). Consider an Alexandrov interval Ad [p, q] ⊂ M
d of volume V >> ρ−1c . We

are interested in calculating the expectation value of the random variableR associated
with R for the ensemble C(Ad , ρc). This is the probability that a pair of elements
e1, e2 ∈ Ad [p, q] are related. Given e1, the probability of there being an e2 in its
future is given by the volume of the region J+(e1)∩ J−(p) in units of the discreteness
scale, while the probability to pick e1 is given by the volume of Ad [p, q]. This joint
probability can be calculated as follows.

Without loss of generality, choose p = (−T /2, 0, . . . , 0) and q = (T /2, 0, . . . , 0),
so that the total volume

V = ζd T d , ζd ≡ Vd−2
2d−1d(d − 1)

(15)

with Vd−2 the volume of the unit d − 2 sphere. For this choice,

〈R〉 = ρ2
c

∫

Ad

dx1

∫

J+(x1)∩J−(q)

dx2 = ρ2
c ζd

∫

Ad

dx1T d
1 , (16)

where T1 is the proper time from x1 to q, and Ad ≡ Ad [p, q]. Evaluating the integral,
one finds

〈R〉 = ρ2
c V 2Γ (d + 1)Γ ( d

2 )

4Γ ( 3d
2 )

. (17)

Using 〈n〉 = ρcV , Meyer (1988) obtained a dimension estimator from 〈R〉 by noting
that the ratio

〈R〉
〈n〉2 =

Γ (d + 1)Γ ( d
2 )

4Γ ( 3d
2 )

≡ f0(d) (18)

is a function only of d. In the large n limit this is is half of Myrheim’s ordering fraction
r .

However, the fluctuations in R are large and hence the right dimension cannot
be obtained from a single realisation C ∈ C(Ad , ρc), but rather by averaging over
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Fig. 12 Two different chains
between x and x ′. One is a
k = 4 chain and the other is a
k = 7 chain

the ensemble. For large enough ρc, however, the relative fluctuations should become
smaller, and allow one to distinguish causal sets obtained from sprinkling into dif-
ferent dimensional Alexandrov intervals. Such systematic tests have been carried out
numerically using sprinklings into different spacetimes by Reid (2003) and show a
general convergence as ρc is taken to be large, or equivalently the interval size is taken
to be large.

How can we use this dimension estimator in practice? Let C be a causal set of suf-
ficiently large cardinality n. If the dimension obtained from Eq. (18) is approximately
an integer d, this means that C cannot be distinguished from a causal set that belongs
to C(Ad , ρc) using just the dimension estimator, for n ∼ ρcvol(Ad). We denote this
by C ∼d Ad . This also means that C cannot be a typical member of C(Ad ′, 1) for
dimension d ′ 
= d, so that C �d ′ Ad ′ . The equivalence C ∼d Ad itself does not of
course imply that C ∼ Ad or even that C is manifold-like. Rather, it is the limited
statement that its dimension estimator is the same as that of a typical causal set in
C(Ad , ρc) for n ∼ ρcvol(Ad).

This is our first example of a O-Hauptvermutung, where the order invariant O is
the ordering fraction r and the spacetime dimension d is the corresponding manifold
invariant G. This example provides a useful template in the search for manifold-like
order invariants some of which we will describe in the next few subsections.

Using simulations Abajian and Carlip (2018) recently obtained the Myrheim–
Meyer dimension as function of interval size for nested intervals in a causal set in
C(Ad , ρc) for d = 3, 4, 5. As the interval size decreases, they found that the result-
ing causal sets are likely to be disconnected due to the large fluctuations at small
volumes. In the extreme case, there is a single point with no relations and hence the
Myrheim–Meyer dimension goes to∞ rather than 0. Using a criterion to discard such
disconnected regions, it was shown that this dimension estimator gives a value of 2
at small volumes, even when d = 3, 4, 5, in support of the dimensional reduction
conjecture in quantum gravity (Carlip 2017) which we discuss briefly in Sect. 5.

Meyer’s construction is in fact more general and yields a whole family of dimension
estimators. If we think of the relation e1 ≺ e2 as a chain c2 of two elements, then
a k-chain ck is the causal sequence e1 ≺ e2 . . . ≺ ek−1 ≺ ek (see Fig. 12), where
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the length of ck is defined as k − 2. We denote the abundance, or number of the
ck’s contained in C , by Ck . Its expectation value in C(Ad [p, q], ρc) is therefore given
by a sequence of k nested integrals over a sequence of nested Alexandrov intervals,
Ad [p, q] ⊃ I (x1, q) ⊃ I (x2, q) . . . I (xk, q) which, as was shown by Meyer (1988),
can be calculated inductively to give

〈Ck〉 = ρk
c χk V k, χk ≡ 1

k

(
Γ (d + 1)

2

)k−1 Γ ( d
2 )Γ (d)

Γ ( kd
2 )Γ (

(k+1)d
2 )

. (19)

Thus for any k, k′, the ratio of 〈Ck〉1/k to 〈Ck′ 〉1/k′ only depends on the dimension.
This gives a multitude of dimension estimators.

Meyer’s calculation of 〈Ck〉 was generalised to a small causal diamond Ad [p, q]
that lies in an RNN of a general spacetime, i.e., one for which RT 2 << 1, where T is
the proper time from p to q and R denotes components of the curvature at the centre
of the diamond (Roy et al. 2013). In such a region the dimension satisfies the more
complicated equation

f 20 (d)

(
−1

3

(d + 2)

(3d + 2)
− (4d + 2)

(2d + 2)

( 〈C3〉
χ3

) 4
3 1

〈C1〉4

+1

3

(4d + 2)(5d + 2)

(2d + 2)(3d + 2)

〈C4〉
χ4

1

〈C1〉4
)
= −〈C2〉2
〈C1〉4 , (20)

where f0(d) is given by Eq. (18). It is straightforward to show that the expression
above reduces to the Myrheim–Meyer dimension estimator in M

d . The calculation of
Roy et al. (2013) uses a result of Khetrapal and Surya (2013), which makes explicit
earlier calculations of the volume of a causal diamond in an RNN (Myrheim 1978;
Gibbons and Solodukhin 2007). The Ck themselves are order invariants and hence are
covariant observables for finite element causal sets.

This class of dimension estimators is just one among several that have appeared in
the literature, including the mid-point scaling estimator (Bombelli 1987; Reid 2003),
and more recent ones (Glaser and Surya 2013; Aghili et al. 2019). We refer the reader
to the literature for more details.

4.2 Topological invariants

The next step in our reconstruction is that of topology. There are several poset topolo-
gies described in the literature (see Stanley 2011 as well as Surya 2008 for a review).
However, our interest is in finding one that most closely resembles the “coarse” con-
tinuum topology. It is clear that the full manifold topology cannot be reproduced in
a causal set since it requires arbitrarily small open sets. However, according to the
Hauptvermutung, topological invariants like the homology groups and the fundamen-
tal groups of (M, g) should be encoded in the causal set.

A natural choice for a topology in C based on the order relation is one generated
by the order intervals I[ei , e j ] ≡ Fut(ei ) ∩ Past(e j ). Indeed, in the continuum the
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topology generated by their analogs, the Alexandrov intervals, can be shown to be
equivalent to the manifold topology in strongly causal spacetimes (Penrose 1972).
However, even for a causal set approximated by a finite region of M

d , this order-
interval topology is roughly discrete or trivial. This is because the intersection of any
two intervals in the continuum can be of order the discreteness scale and hence contain
just a single element of the causal set, thus trivialising the topology. A way forward is
to use the causal structure to obtain a locally finite open covering of C and construct
the associated “nerve simplicial complex” (see Munkres 1984).

InMajor et al. (2007, 2009), a “spatial” homology ofC was obtained in this manner
by considering an inextendible antichainA ⊂ C (see Sect. 3.3),which is an (imperfect)
analog of a Cauchy hypersurface. The natural topology on A is the discrete topology
since there are no causal relations amongst the elements. In order to provide a topology
on A, one needs to “borrow” information from a neighbourhood of A. The method
devised was to consider elements to the future of A and “thicken” by a parameter
v to some collar neighbourhood Tv(A) ≡ {e| |IFut(A) ∩ IPast(e)| ≤ v}. Here IFut
and IPast denote the inclusive future and past respectively, where for any S ⊂ C ,
IFut(S) = Fut(S) ∪ S and IPast(S) = Past(S) ∪ S.

A topology can then be induced on A from Tv(A) by considering the open cover
{Ov ≡ Past(e) ∩A} of A, for e ∈Mv(A), the set of future most elements of Tv(A).
The “nerve” simplicial complexNv(A) can be constructed from {Ov} for every v. For
a spacetime (M, g) with compact Cauchy hypersurface Σ , and for C ∈ C(M, ρc) it
was shown in Major et al. (2007, 2009) that there exists a range of values of v such
that Nv(A) is homological to Σ (up to the discreteness scale) as long as there is a
sufficient separation between the discreteness scale �c ≡ V 1/d

c and �K the scale of
extrinsic curvature of Σ .

One might also imagine a similar construction on C using the nerve simplicial
complex of causal intervals of a given minimal cardinality v which cover C . However,
in the continuum the intersection of such intervals may not only be of order the
discreteness scale, but also such that they “straddle” each other.As an example consider
the equal volume intervals A[p1, q1],A[p2, q2] in M

2 where p1, q1 are at x = 0 in
a frame (x, t), with the x-coordinate of p2 being < 0 and that of q2 being > 0.
These two intervals not only intersect, but straddle each other, i.e., the set difference
A[p1, q1]\A[p2, q2] is disconnected as is A[p2, q2]\A[p1, q1]. By choosing p2, q2
appropriately, the intersection region can be made very “thin”, pushing most of the
volume ofA[p2, q2] out ofA[p1, q1]. Thus, while they intersect in M

2 these intervals
would not intersect in the corresponding causal setC . This results in a non-trivial cycle
in the associated nerve simplicial complex for C , which is absent in the continuum.
Such a construction can be therefore made to work only in a sufficiently localised
region within C .

An example of a localised subset of C is the region sandwiched between two
inextendible and non-overlapping antichains A1 and A2. The resulting homology
constructed from the nerve simplicial complex of the order intervals of volume∼ v is
then is associated with a spacetime region rather than just space, and hence includes
topology change.While preliminary investigations along these lines have been started,
there is much that remains to be understood. Another possibility for characterising the
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spatial homology uses chain complexes but this has only been partially investigated.
A further open direction is to obtain the causal set analogues of other topological
invariants.

4.3 Geodesic distance: timelike, spacelike and spatial

In Minkowski spacetime, the proper time between two events is the longest path
between them; the shortest path between two time-like separated events is of course
any zig-zag null path, which has zero length. In a causal set C , if ei ≺ e f , one can
construct different chains from ei to e f , of varying lengths. A natural choice for the
discrete timelike geodesic distance between ei and e f is the length of the longest chain,
which we denote by l(ei , e j ), as was suggested by Myrheim (1978). It was shown in
Brightwell and Gregory (1991) that the expectation value of the associated random
variable l in the ensemble C(Ad , ρc) limits to a dimension dependent constant

lim
ρc→∞

〈l(x, x ′)〉
(ρcV (x, x ′))1/d

= md (21)

where

1.77 ≤ 21− 1
d

Γ (1+ 1
d )
≤ md ≤ 21− 1

d e (Γ (1+ d))
1
d

d
≤ 2.62. (22)

For a finite ρc, the fluctuations in l(ei , e j ) are very large (Meyer 1988; Bachmat 2007)
and hence the correspondence becomes meaningful only when averaged over a large
ensemble.

In Roy et al. (2013), an expression for the proper time T of a small causal diamond
Ad in an RNN of a d dimensional spacetime was obtained to leading order correction
in terms of the random variables Ck associated to the abundance of k-chains,

T 3d = 1

2d2ρ3
c

(
J1 − 2J2 + J3

)
. (23)

where

Jk ≡ (kd + 2)((k + 1)d + 2)
1

ζ 3
d

( 〈Ck〉
χk

)3/k

, (24)

with 〈Ck〉 the ensemble average in C(Ad , ρc) and ζd , χk defined in Eqs. (15) and (19).
This definition is not intrinsic to a single causal set but requires the full ensemble.
Nevertheless, it is of interest to study the intrinsic version of the expression by replacing
〈Ck〉 by Ck for each causal set and then taking the ensemble average to check for
convergence. Recent simulations suggest that these expressions converge fairly rapidly
to their continuum values.

Spacelike distance is far less straightforward to compute from the poset, because
events that are spacelike to each other have no natural relationship to each other. We
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saw this already in trying to find a topology on the inextendible antichain. Thus, the
relationship must be “borrowed” from the elements in the causal past and future of the
spacelike events. Brightwell and Gregory (1991) defined the following, naive spatial
distance function in M

d . For a given spacelike pair p, q ∈ M
d , the common future

and past are defined as J+(p, q) ≡ J+(p)∩ J+(q) and J−(p, q) ≡ J−(p)∩ J−(q)

respectively. For every r ∈ J+(p, q) and s ∈ J−(p, q) let τ(s, r) be the timelike
distance. Then the naive distance function is given by

ds(p, q) ≡ minr ,sτ(r , s). (25)

While this is a perfectly good continuum definition of the distance in M
d , it fails for

the causal set when d > 2 since the number of pairs (r , s) which minimise τ(r , s)
lies in the region between a co-dimension 2 hyperboloid and the light cone τ = 0.
In the causal set we can use the length of the maximal chain l(r , s) to obtain τ(r , s),
but in d > 2 since there are an infinite number of proper time minimising pairs (r , s),
there will almost surely be those for which l(r , s) is drastically underestimated. The
minimisation in Eq. (25) will then always give 2 as the spatial distance!

Rideout andWallden (2009) generalised the naive distance function usingminimis-
ing pairs (r , s) such that either r or s is linked to both p and q. Instead of minimising
over these pairs (again infinite), the 2-link distance can be calculated by averaging
over the pairs. Numerical simulations for the naive distance and the 2-link distance for
sprinklings into a finite region of M

3 show that the latter stabilises as a function of ρc.
The former underestimates the spatial distance compared to the continuum, and the
latter overestimates it. The spatial distance functions of both Brightwell and Gregory
(1991) and Rideout and Wallden (2009) are however strictly “predistance” functions
since they do not satisfy the triangle inequality.

Recently, a one-parameter family of discrete induced spatial distance functions
was proposed for an inextendible antichain in a causal set by Eichhorn et al. (2019a).
To begin with, a one parameter family of continuum induced distance functions dε

was constructed for a globally hyperbolic region (M, g) of spacetime with Cauchy
hypersurface Σ using only the causal structure and the volume element. In M

d with
Σ a constant time slice in an inertial reference frame, the volume of a past causal
cone from p � Σ has a simple relation to the diameter D of the base of the cone
J−(p) ∩Σ

vol(J−(p) ∩ J+(Σ)) = ζd

(
D

2

)d

. (26)

Since D is the distance between any two antipodal points on the Sd−2 ⊂ Σ , this simple
formula defines the induced distance onΣ . In a general spacetime this formula can be
used to extract an approximate induced distance function in a sufficiently small region
of Σ . In order to define the distance function on all of Σ , a meso-scale ε must be
introduced, and the full distance function can then be obtained by minimising over all
segmented paths, such that each segment is bounded from above by ε. For ε << �K ,
the scale of the extrinsic curvature of Σ , dε was shown in Eichhorn et al. (2019a) to
converge to the induced spatial distance function dh on (Σ, h).
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Fig. 13 The error in the discrete spatial distance is plotted as a function of the continuum induced distance
on Σ for causal sets in M

2 for Σ of both constant negative and constant positive extrinsic curvature. The
discrete spatial distance always overestimates the continuum distance around the discreteness scale giving
rise to “discrete asymptotic silence”. For larger distances, when there is a good separation of scales, the
discrete distance gives a good approximation to the continuum induced distance

Since the dε are constructed from the causal structure and volume element they are
readily defined on an inextendible antichain on a causal set. For causal sets in C(M, ρc)

withΣ ⊂ M the discrete distance function dε was shown to significantly overestimate
the continuum induced distance on Σ when the latter is close to the discreteness
scale (Vc)

1/d . This discrete “asymptotic silence” of Eichhorn et al. (2017) mimics the
narrowing of light cones in the UV, and can be traced to the large fluctuations expected
around the discreteness scale. At larger distances, on the other hand, dε is a good
approximation of the continuum induced distance when (Vc)

1/d << ε << �K . It was
shown moreover that the continuum induced distance is slightly underestimated for
positive curvature and slightly overestimated for negative curvature, when restricted
to small regions of Σ . This was confirmed by extensive numerical simulations in
M

d for d = 2, 3 (see Fig. 13). This works paves the way to recovering more spatial
geometric invariants from the causal set, and is currently in progress (Eichhorn, Surya
and Versteegen).

4.4 The d’Alembertian for a scalar field

One of the very first questions that comes to mind in the continuum approximation of
CST is whether a tangent space can be defined naturally on a causal set. To answer
this (unfortunately in the negative), we need to examine the non-local nature of a
manifold-like causal set in more detail. The nearest neighbours of an element e are
those that it is linked to, both in its future and its past. In a causal set approximated
by Minkowski spacetime for example, and as discussed in Sect. 3, every element has
an infinite number of nearest neighbours (see Fig. 8). Similarly, the “next nearest”
neighbours to e are those for which the interval |I[e, e′]| = 1 or |I[e′, e]| = 1.16 Thus,
in keeping with the covariance of the causal set, we say that if e ≺ e′ and |I[e, e′]| = k
(or e′ ≺ e and |I[e′, e]| = k), then e′ is the k-nearest neighbour of e. Examples of
past k-nearest neighbours of an element in a Minkowski-like causal set are shown in
Fig. 14.

It is already clear from the picture that emerges in M
d that, unlike a regular lattice,

a simple construction of a locally defined tangent space from the set of links or next
to nearest neighbours to e is not possible, since the valency of the graph is infinite.

16 Note that this is the exclusive interval and hence there exists exactly one element e′′ such that e ≺ e′′ ≺ e′.
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Fig. 14 The layered structure of neighbourhoods. The nearest neighbours are the links or zero intervals, the
next to nearest neighbours are the 1-element intervals, the etc. Here we depict the types of 0, 1, 2 element
intervals. In the figure two examples of 3 element intervals are also shown

This means in particular that derivative operators cannot also be simply defined. How
then can we look for the effect of discreteness on the propagation of fields? We will
discuss this in more detail in Sect. 5 but for now we notice that the best way forward
is to look for scalar quantities, rather than more general tensorial ones, in making the
discrete-continuum correspondence.

A scalar field d’Alembertian is a good first step. In Sorkin (2007b) and Henson
(2010), a proposal was given for a discrete d’Alembertian of a free scalar field on
a causal set approximated by M

2, and extended in Benincasa and Dowker (2010),
Benincasa (2013) and Dowker and Glaser (2013) to higher dimensions. For a real
scalar field on a causal set φ : C → R define the d = 4 dimensionless discrete
operator

Bφ(e) ≡ 4√
6

[
−φ(e)+

( ∑

e′∈L0(e)

− 9
∑

e′∈L1(e)

+ 16
∑

e′∈L2(e)

− 8
∑

e′∈L3(e)

)
φ(e′)

]
, (27)

where Lk(e) denotes the set of k-nearest neighbours to the past of e ∈ C . This
is a highly non-local operator since it depends on the number of all the (possibly
infinite) nearest k = 0, 1, 2, 3 neighbours. Notice the alternating sum whose precise
coefficients turn out to be very important to the continuum limit. The expectation value
of the random variable Bφ(x) associated with C(M4, ρc) at x ∈M

4 is

1√
ρc
〈Bφ(x)〉= 4

√
ρc√
6

[
−φ(x)

+ρc

∫

y∈J−(x)

d4y φ(y) e−ρcv

(
1− 9ρcv + 8(ρcv)2 − 4

3
(ρcv)3

)]
, (28)
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where v ≡ vol(A(y, x)) and we have used the probability Pn(v) for v to contain
n elements, Eq. (8). We have also made the expression dimensionful, in order to
be able to make a direct comparison with the continuum. Let us consider the past
of x in M

2 and choose a frame Fφ such that φ(y) varies slowly in the immediate
past of x with respect to Fφ . As was shown in M

2 by Sorkin (2007b) and in M
4 by

Benincasa and Dowker (2010) (see also Benincasa 2013), for φ of compact support
there are miraculous cancellations that make the contributions far down the light cone
negligible, thus making the operator effectively local.

In order to evaluate this integral, we first note that since φ is of compact support,
the region of integration is compact. In Fφ , a small |y − x | expansion of φ(y) around
φ(x) can be done. Following Sorkin (2007b), Benincasa and Dowker (2010) and
Benincasa (2013), the non-compact region of integration J−(x) can be split into 3
non-overlapping regions, W1,W2,W3 in Fφ : W1 is a neighbourhood of x , W2 is a
neighbourhood of ∂ J−(x) but bounded away from the origin andW3 is bounded away
from ∂ J−(x). The integral over W3 was shown in Benincasa (2013) to be bounded
from above by an integral that tends to zero faster than any power of ρ−1c , while the

integral over W2 was shown to go to zero faster than ρ
−3/2
c . The local contribution

fromW1 dominates so that

lim
ρc→∞

1√
ρc
〈Bφ(x)〉 = �φ(x). (29)

Thus, B(φ) is “effectively local” since its dominant contribution comes fromW1 which
is a local neighbourhood of x defined by the frame Fφ . In this frame, the contribution
toBφ(x) is dominated by the restrictions of Lk toA(p, q)∩ J−(x). Thus, whileBφ(x)

is not determined just by the value of φ at x , it depends on φ only in an appropriately
defined compact neighbourhood of x , rather than all of J−(x). This “restoration of
locality” is an important subtlety in CST kinematics.

How does a scalar field on a causal set evolve under this non-local d’Alembertian?
There are indications that while the evolution in d = 2 is stable, it is unstable in
d = 4 as suggested by Aslanbeigi et al. (2014). Hence it is desirable to look for
generalisations of the Bκ operator. An infinite family of non-local d’Alembertians has
been constructed by Aslanbeigi et al. (2014) and shown to give the right continuum
limit. It is still an open question whether there is a subfamily of these operators that
lead to a stable evolution.

An interesting direction that has been explored by Yazdi and Kempf (2017) is to use
the spectral information of the d’Alembertian operator to obtain all the information
about the causal set. This was explored for A2[p, q] ⊂M

2 and it was shown that the
spectrum of the d’Alembertian (or Feynman propagator) gives the link matrix (see
Eq. (56) below), i.e., the matrix of all linked pairs using which the entire causal set
can be reconstructed via transitivity. Extending these results to higher dimensions is
an interesting open question.
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4.5 The Ricci scalar and the Benincasa–Dowker action

Next we describe a very important development in CST: the construction of the dis-
crete Einstein–Hilbert action or the Benincasa–Dowker (BD) action for a causal set
(Benincasa and Dowker 2010; Dowker and Glaser 2013). The approach of Benin-
casa and Dowker (2010) was to generalise Bφ(x) to an RNN in curved spacetime in
d = 2, d = 4. Again, the region of integration can be split into three parts as was
done for flat spacetime. The contribution from W3 i.e., away from a neighbourhood
of ∂ J−(x) can again be shown to be bounded from above by an integral that tends to
zero faster than any power of ρ−1c . In the limit, the contribution from the near region
W1 contained in an RNN is such that

lim
ρc→∞

1√
ρc
〈Bφ(x)〉|W1= �φ(x)− 1

2
R(x)φ(x). (30)

whereR(x) is the Ricci scalar (Benincasa and Dowker 2010; Benincasa 2013). How-
ever, the calculation in region W2 which is in the neighbourhood of ∂ J−(x) but
bounded away from the origin, is non-trivial, and needs a further set of assumptions
to show that it does not contribute in the ρc → ∞ limit. A painstaking calculation
in Belenchia et al. (2016a) using Fermi Normal Coordinates shows that this is indeed
the case in an approximately flat region of a four dimensional spacetime. Generalising
this calculation to arbitrary spacetimes is highly non-trivial but is an important open
question in CST.

What is of course exciting about this form for the d’Alembertian Eq. 27 is that it
can be used to find the discrete Ricci curvature and hence the action. Assuming that

lim
ρc→∞

1√
ρc
〈Bφ(x)〉|W2 = 0 (31)

holds in all spacetimes, and putting17 φ(x) = 1

lim
ρc→∞

1√
ρc
〈Bφ(x)〉 = −1

2
R(x). (32)

Thus we can write the dimensionless discrete Ricci curvature at an element e ∈ C
(Benincasa 2013) as

R(e) = 4√
6

[
1− N0(e)+ 9N1(e)− 16N2(e)+ 8N3(e)

]
, (33)

17 By doing so, we violate the condition that φ is of compact support. However, given that the regionsW3
and by assumption W2 contribute negligibly, we can always ensure this by only requiring constancy of φ

in a neighbourhood of W1.
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where Nk(e) ≡ |Lk(e)|. Summing over the n elements of a finite element causal set
gives the dimensionless discrete action

S(4)(C) =
∑

e∈C

R(e) = 4√
6

[
n − N0 + 9N1 − 16N2 + 8N3

]
, (34)

where Nk is the total number of k-element order intervals in C .
Benincasa and Dowker (2010) (see also Benincasa 2013) showed that (under the

assumption Eq. (31)) the random variable S(4) associated with C(M, g) gives the
Einstein–Hilbert action in the continuum limit

lim
ρc→∞

�
�2c

�2p
〈S(4)(C)〉 = SEH(g), (35)

up to (as yet unknown) boundary terms.
Equation (35) is exactly true in an approximately flat region of a four dimensional

spacetime as shown in Belenchia et al. (2016a). Proving Eq. (31) in general is how-
ever non-trivial since there are caustics in a generic spacetime which complicate the
calculation. On the other hand, numerical simulations suggest that again, up to bound-
ary terms, the Benincasa–Dowker action S is the Einstein–Hilbert action (Benincasa
2013; Cunningham 2018b). We will discuss these boundary terms below.

Before doing so, we note that crucial to the validity of the causal set action are its
fluctuations in a given causal set. These were shown in Sorkin (2007b) to be large for
the operator B in M

2. This can be traced to the fact that the elements in Lk(e) for
k = 0, 1, 2, 3 are very close to the discreteness scale and hence the d’Alembertian
is susceptible to large Poisson fluctuations at small volumes. In order to “shield” the
continuum from these fluctuations, a newmesoscale �κ > �c and its associated density
ρκ was introduced in Sorkin (2007b). Thus instead of a single discrete operator B, we
have a one parameter family of operators:

Bκφ(e) ≡ 4√
6

[
−φ(e)+ ε

∑

e′≺e

f (n(e′, e), ε)φ(e′)
]
, (36)

where ε ≡ ρκ/ρc is a non-locality parameter,18 n(e, e′) = |I (e, e′)| and

f (n, ε) = (1− ε)n
[
1− 9εn

1− ε
+ 8ε2n(n − 1)

(1− ε)2
− 4ε3n(n − 1)(n − 2)

3(1− ε)3

]
. (37)

This function “smears out” the contributions of the Nk into four “layers” which appear
with alternating sign, as shown in Fig. 15. Each layer is thus thickened from a single
value of k to a range of k values depending on ε. When this mesoscale matches the
discreteness scale, i.e., ε = 1, each layer collapses to a single value of k. This then
gives us a one-parameter family of actions Sκ(C, ε), where ε can be viewed as a

18 ε is a new free parameter in the theory, whose value should ultimately be decided by the fundamental
dynamics.
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Fig. 15 The function f (n, 0.05). There are 4 regions of alternating sign corresponding to 4 “smeared out”
layers

tunable coupling constant. As we will see in Sect. 6, this gives rise to an interesting
phase structure in 2d CST.

The result for d = 2, 4 are due to Benincasa and Dowker (2010) and Benincasa
(2013) and were generalised to arbitrary dimensions by Dowker and Glaser (2013)
and Glaser (2014), using a dimension dependent smearing function fd(n, ε).

There have been other attempts to obtain the action of a causal set. In Sverdlov and
Bombelli (2009), the curvature at the centre of an Alexandrov interval Ad [p, q] in a
RNN was obtained using the leading order corrections to the volume of a small causal
diamond (Gibbons and Solodukhin 2007)

V = V0

(
1− d

24(d + 1)(d + 2)
R(0)T 2 + d

24(d + 1)
R00T 2

)
, (38)

where T is the proper time from p to q and V0 is the flat spacetime volume. The
expression obtained is in terms of the discrete volume and the length of the longest
chain from p to q. Since R is approximately a constant inAd [p, q], this also gives the
approximate action. Extending it to an action on the full spacetime is however quite
tricky since it is unclear how to localise the calculation.

The calculation for the abundance of k-chains Ck in an RNN in Roy et al. (2013)
also gives an expression for the curvature

R(0) = −2(n + 2)(2n + 2)(3n + 2)2
3n+2
3n n

4
3n−1 (K1 − 2K2 + K3)

(J1 − 2J2 + J3)
3n+2
3n

. (39)

where

Jk ≡ (kn + 2)Kk

Kk ≡ ((k + 1)n + 2)Qk, (40)
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and

Qk ≡
( 〈Ck〉

ρkζk

)3/k

= 1

ζ 3
0

( 〈Ck〉
ρkχk

)3/k

. (41)

While this expression is compact, it is not defined on a single causal set, but rather,
over the ensemble. Whether this can be expressed as a function on a single causal
set or not is an interesting open question and under current investigation. As in the
previous case, having obtained R(0), however, it is non-trivial to construct the action,
without a localisation requirement as was done for the BD action.

4.6 Boundary terms for the causal set action

Although the BD action gives the bulk Einstein–Hilbert action in the continuum
approximation, the role of boundary terms is less clear. As shown by Benincasa et al.
(2011) the expectation value for the BD action does not vanish for C(A2, ρc), where
A2[p, q] ⊂ M

2 as one might expect, but instead converges to a constant as ρc →∞
and is independent of vol(A2). Buck et al. (2015) showed more generally that for
C(Ad , ρc) with d ≥ 2 that

lim
N→∞

1

�

〈
Sd
BDG

〉
= 1

ld−2
p

vol(J (d−2)) , (42)

whereJ (d−2) ≡ ∂ J+(p)∩∂ J−(q) is the co-dimension 2 “joint” of the causal diamond
Ad , which is a round sphere Sd−2. In d = 2 this is the volume of a zero sphere S0

which is the constant found in Benincasa et al. (2011). This in turn corresponds to the
Gibbons–Hawking–York (GHY) null boundary term of Jubb et al. (2017) and Lehner
et al. (2016) for a particular choice of the null affine parameter.19 Extending this
calculation to curved spacetime is challenging but would provide additional evidence
that the BD action contains the null GHY term (Dhingra, Glaser and Surya, work in
progress).

Simulations of causal sets corresponding to different regions of M
2 moreover sug-

gest that while the BD action contains timelike boundary terms, it does not contain
spacelike boundary terms. Recent efforts by Cunningham (2018a) have been made
to obtain time like boundaries in a causal set using numerical methods for d = 2,
but it is an open question whether they admit a simple characterisation in arbitrary
dimensions.

Unlike timelike boundaries, spacelike boundaries are naturally defined in a finite
element causal set: a future/past spatial boundary is the future-most/past-most inex-
tendible antichain in the causal set, which we denote as F0,P0 respectively. GHY
terms for spacelike boundaries play an important role in the additivity of the action
in the continuum path integral (though such an additivity is far from guaranteed in a
causal set because of non-locality).

19 It is an interesting question whether the choice of affine parameter along “almost” null directions can
be obtained from the causal set.
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The spatial causal set GHY terms were found by Buck et al. (2015), and we will
describe that construction here briefly. Let (M, g) be a spacetime with initial and final
spatial boundaries (Σ±, h±). The GHY term on (Σ±, h±) can be re-expressed as

∫

Σ±
dd−1x

√
h± K± = ∂

∂n

∫

Σ±
dd−1x

√
h± = ∂

∂n
AΣ± , (43)

where ∂
∂n is the normal derivative, and AΣ± is the co-dimension 1 volume of Σ±.

Using the n ∼ ρcv correspondence, this suggests that AΣ± should be given by the
cardinality F0 ≡ |F0| or P0 ≡ |P0| with the normal gradient represented by the
change in the cardinality. But of course this is subtle, since apart from the future
most F0 or pastmost P0 antichains, one needs another “close by” antichain. Let us
focus on (Σ+, h+) without loss of generality. There are two ways of finding this
nearby antichain. To begin with if (M, g) ⊂ (M ′, g′) such that (Σ+, h+) is not a
boundary in (M ′, g′), then we can use this embedding to define the two antichains,
in any C ∈ C(N , ρc): one to its immediate past F0(Σ

+) and one to its immediate
future P0(Σ

+). Thus the GHY term should be proportional to the difference in the
cardinality of these two antichains.

However, this partitioning is not intrinsic to the causal set. Instead consider a par-
tition C = C− ∪C+, such that C+ ∩C− = ∅, and Fut(C−) = C+, Past(C+) = C−.
Let F−0 and P+0 , be the future-most and past-most antichains of C− and C+ respec-
tively. We can then define the dimensionless causal set “boundary term” (Buck et al.
2015)

Sd
CBT[C, C−, C+] ≡ ad

2Γ
( 2

d

)
(

F0[C−] − P0[C+]
)

, (44)

where

ad = d(d + 1)

(d + 2)

( Vd−2
d(d − 1)

) 2
d

, (45)

and Vd = (d + 1)π
d+1
2 /Γ

( d+1
2 + 1

)
is the volume of the unit d-sphere.

To make contact with the continuum, let (M, g) be a spacetime with compact
Cauchy hypersurfaces. For a given Cauchy hypersurface (Σ, h) let M± = J±(Σ)

and letC± ∈ C(M±, ρc). It was shown by Buck et al. (2015) that in the limit ρc →∞

lim
ρc→∞

(
�c

�p

)d−2〈
S(d)
CBT[M,Σ, ρc]

〉
= 1

ld−2
p

∫

Σ

dd−1x
√

h K = SGHY(Σ, M−), (46)

where S(d)
CBT is the associated random variable in (M, g). To obtain this expression, the

volume of a half cone J+(p) ∩ J−(Σ) was calculated using a combination of RNN
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coordinates and GNN coordinates20

V�(T , x) = Sd−2
d(d − 1)

T d
(
1+ d

2(d + 1)
K (0, x)T

)
+ O(T d+2), (47)

for p ∈ J+(Σ) sufficiently close to Σ , where T is the proper time from p to Σ .
As might be expected from dimensional considerations, the leading order correction
to the flat spacetime volume of the half cone comes from the trace of the extrinsic
curvature of Σ from which the GHY contribution can be obtained.

If on the other hand, (Σ, h) is a future boundary of (M, g), thenwe require a second
antichain in Past(F0) for C ∈ C(M, ρc). Define the antichain F1 in C− to be the set
of elements in C− such that ∀e ∈ F1, |Fut(e) ∩ C−| = 1 (where Fut(e) excludes the
element e).21 The boundary term can then be expressed as

Sd
CBT[C, C−, C+] ≡ ad

Γ
( 2

d

)
(

d F1[C−] − F0[C+]
)

, (48)

which again yields the GHY term Eq. (46) in the limit. Indeed, a whole family of of
boundary terms was obtained using the antichains Fk[C−] = {e ∈ C−||Fut(e)| = k},
Pk[C+] = {e ∈ C+||Past(e)| = k} each of which gives the GHY term in the limit
Eq. (46).22

A by-product of the analysis of Buck et al. (2015) is that for the partitioned causal
set C = C− ∪ C+ described above, the quantities

Ad+[C−] ≡
bd

Γ ( 1d )
F0[C−], Ad−[C+] ≡

bd

Γ ( 1d )
P0[C+] (49)

for ad = d+1
d(d+2)b2d limit to the spatial volume of Σ

lim
ρc→∞

(
�p

�c

)d−2
〈Ad±[C∓]〉 =

1

�d−1
p

∫

Σ

dd−1x
√

h = AΣ. (50)

Again, as for the boundary terms, one can construct a whole family of functions Ad [C]
each of which limit to the spatial volume of Σ as ρc →∞.

4.7 Localisation in a causal set

In these calculations generalisations are made to curved spacetime using an RNN
which represent a local region of a spacetime. How are we to find such local regions
in a causal set using a purely order theoretic quantities? For a causal set a natural

20 This calculation has later been extended by Jubb (2017) to higher orders to obtain more information
about the spatial geometry.
21 Note that while F1 ∩F0 = ∅, F1 is not necessarily an inextendible antichain.
22 The expression in Buck et al. (2015) holds for any two subsets of C not just those we consider here.
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definition of a local region is given by the size of an interval, but for a manifold-
like causal set, this will not necessarily correspond to regions in which the curvature
is small. On the other hand, many of the order invariants we have obtained so far
correspond to geometric invariants only in such RNN-type regions.

A characterisation of intrinsic localisationwas obtained byGlaser and Surya (2013)
using the abundance N d

m of m element order intervals for C ∈ C(Ad , ρc). They found
the following closed form expression for the associated expectation value

〈Nd
m(ρ, V )〉 = (ρV )m+2

(m + 2)!
Γ (d)2

( d
2 (m + 1)+ 1

)
d−1

1
( d
2m + 1

)
d−1

d Fd

(
1+ m, 2

d + m, 4
d + m, . . . ,

2(d−1)
d + m)

3+ m, 2
d + m + 2, 4

d + m + 2, . . . , 2(d−1)
d + m + 2

∣∣∣∣− ρV

)

,

(51)

The distribution of 〈Nd
m〉 with m therefore has a characteristic form which depends on

dimension, and as a by-product, can be used as a dimension estimator. However, it can
also be used look for intervals in a manifold-like causal set which are approximately
flat by comparing the interval abundances N d

m to the above expression for 〈Nd
m〉.

While one might expect the fluctuations for a given causal set C to be large, numerical
simulations show that there is typically a “self averaging” which results in relatively
small fluctuations even for a given realisation. Thismakes it an ideal diagnostic tool for
checking whether a neighbourhood in a manifold-like causal set is approximately flat
or not. Once such local neighbourhoods have been found, a local check of geometric
estimators can be made.

In Glaser and Surya (2013), the analytic curves were compared against simulations
for a range of different causal sets including those that are not manifold-like (see
Fig. 16).While curvature affects the abundance of the intervals, the distribution retains
its characteristic form. Hence the dependence of the abundance of intervals with size
also becomes a test for manifold-likeness.

There are other ways of testing for manifold-likeness. In a similar approach, the
distribution of the longest chains or linked paths of length k in a finite element causal
set C has been studied in M

d , d = 2, 3, 4 and shown to have a dimension-dependent
peak (Aghili et al. 2019). In Bolognesi and Lamb (2016), a novel way to test for
manifold-likeness was given, using the order invariant obtained from counting the
number of elements with a fixed valency in a finite element causal set. In Henson
(2006a), an algorithm for determining the embeddability of a causal set in M

2 was
given, which again gives an intrinsic characterisation of manifold-likeness in d = 2.
Extending and expanding on these studies using causal sets obtained from sprinklings
into different types of spacetimes would be a straightforward but useful exercise.

4.8 Kinematical entropy

Since the classical continuum geometry itself is fundamentally statistical in CST, it is
interesting to ask if a kinematic entropy can be assigned even classically to the con-
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Fig. 16 The expectation value of interval abundances in a 100 element causal set ∼ M
2 as a function of

interval size m. The red dots depict the average value obtained from simulations with 1000 realisations,
along with error bars. The solid blue line depicts the analytic expectation value for n = 100 and the blue
dotted lines for n ±√n

tinuum. In Dou and Sorkin (2003), a kinematic entropy was associated with a horizon
H and a spatial or null hypersurface Σ in a dimensionally reduced d = 2 black
hole spacetime by counting links between elements in J−(Σ) ∩ J−(H) and those in
J+(Σ) ∩ J+(H), with the additional requirement that the former is future-most and
the latter past-most in their respective regions. A dimensionally reduced calculation
showed that the number of links is proportional to the horizon area. Importantly, the
calculation yields the same constant for a dimensionally reduced dynamical spacetime
where a collapsing shell of null matter eventually forms a black hole. However, extend-
ing this calculation to higher dimensions proves to be tricky. InMarr (2007), an entropy
formula was proposed for higher dimensions by replacing links with other sub-causal
sets. While these ideas hold promise, they have not as yet been fully explored.

In analogy with Susskind’s entropy bound, the maximum causal set entropy associ-
atedwith a finite spherically symmetric spatial hypersurfaceΣ was defined byRideout
and Zohren (2006) as the number of maximal or future most elements in its future
domain of dependence D+(Σ). It was shown that for several such examples this
bound limits to the Susskind entropy bound in the continuum approximation. Again,
extending this discussion to more general spacetimes is an interesting open question.

In Benincasa (2013), the mutual information between different regions of a causal
set was defined using the BD action. The source of this entropy is non-locality which
implies that SBD is not in general additive. Dividing a causal set C into two (set-wise)
disjoint regions C1 and C2, so that C = C1 � C2, we see that in general SBD(C) 
=
SBD(C1) + SBD(C2). This is because there can be order intervals between elements
in C1 and in C2 that are not counted by either SBD(C1) or SBD(C2). The mutual
information is thus defined as

M I [C,C2] ≡ SBD(C1)+ SBD(C2)− SBD(C). (52)
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In Benincasa (2013) a spacetime region with a horizon H and a spacelike or null
hypersurface Σ was considered. Defining X = J+(H) ∩ J−(Σ) and Y = J−(H) ∩
J−(Σ) the mutual information between X and Y was calculated from a causal set
obtained from sprinkling into X ∪Y . Under certain assumptions, this equal to the area
of H ∩Σ . These results are suggestive, but currently incomplete.

As we will see in the next section, the Sorkin spacetime entanglement entropy
(SSEE) for a free scalar field provides a different avenue for exploring entropy.

4.9 Remarks

To conclude this section we note that several order invariants have been constructed
on manifold-like causal sets whose expectation values limit to manifold invariants as
ρc →∞. At finite ρc there are fluctuations that serve to distinguish the fundamental
discreteness of causal sets from the continuum, and these have potential phenomeno-
logical consequences. Numerical simulations are often important in assessing the
relative importance of these fluctuations.

For each of these invariants, one has therefore proved anO-Hauptvermutung.While
this collection of order invariants is not sufficient to prove the full Hauptvermutung,
they lend it strong support. These order invariants are moreover important observables
for the full theory. In addition to these manifold-like order invariants, there are several
other order invariants that can be constructed, some of which may be important to the
deep quantum regime but by themselves hold no direct continuum interpretation.

5 Matter on a continuum-like causal set

Before passing on to the dynamics of CST, we look at a phenomenologically important
question, namely how quantum fields behave on a fixed manifold-like causal set. The
simplest matter field is the free scalar field on a causal set in M

d . As we noted in the
previous Section, this is the only class of matter fields that we know how to study,
since at present no well defined representation of non-trivial tensorial fields on causal
sets is known. However, as we will see, even this very simple class of matter fields
brings with it both exciting new insights and interesting conundrums.

5.1 Causal set Green functions for a free scalar field

Consider the real scalar field φ : M
d → R and its CST counterpart, φ : C → R

where C ∈ C(Md , ρc). The Klein Gordon operator of the continuum is replaced on
the causal set by the Bκ operator of Sect. 4, Eq. (36). In the continuum �−1 gives the
Green function, and we can do the same with Bκ to obtain the discrete Green function
B−1κ .

However, there are more direct ways of obtaining the Green function as was shown
in Daughton (1993), Salgado (2008), Johnston (2008) and Dowker et al. (2017). The
causal matrix
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C0(e, e′) ≡
{
1 if e′ ≺ e
0 otherwise

(53)

on a causal set C . For C ∈ C(Md , ρc), C0(e, .) is therefore zero everywhere except
within the past light cone of e at which it is 1. In d = 2, this is just half the massless
retarded Green’s function G(2)

0 (x, x ′) = 1
2θ(t − t ′)θ(τ 2(x, x ′)). Hence, we find the

almost trivial relation

C0(x, x ′) = 2G(2)
0 (x, x ′), (54)

without having to take an expectation value, so that the dimensionless massless causal
set retarded Green function is (Daughton 1993)

K (2)
0 (x, x ′) ≡ 1

2
C0(x, x ′). (55)

To obtain the d = 4 massless causal set Green function we use the link matrix

L0(x, x ′) :=
{
1 if x ′ ≺ x is a link
0 otherwise

(56)

For C ∈ C(M4, ρc) the expectation value of the associated random variable is

〈L0(x, x ′)〉 = θ(x0 − x ′0)θ(τ 2(x, x ′)) exp(−ρcV (x, x ′)), (57)

where V (x, x ′) = vol(J−(x) ∩ J+(x ′)) = π
24τ

4(x, x ′). Since the exponential in the
above expression is a Gaussian which, in the ρc →∞ limit is proportional to δ(τ 2),
we see that it resembles the massless retarded Green function in M

4,

lim
ρc→∞

√
ρc

6
〈L0(x, x ′)〉 = θ(x0 − x ′0)δ(τ 2) = 2πG(4)

0 (x, x ′). (58)

Hence we can write the dimensionless massless causal set scalar retarded Green func-
tion as (Johnston 2008, 2010)

K (4)
0 (x, x ′) = 1

2π

√
1

6
L0(x, x ′) . (59)

In the continuum the massive Green function can be obtained from the massless
Green function in M

d via the formal expression (Dowker et al. 2017)

Gm = G0 − m2 G0 ∗ G0 + m4 G0 ∗ G0 ∗ G0 + · · · =
∞∑

k=0
(−m2)k G0 ∗ G0 ∗ . . . G0︸ ︷︷ ︸

k+1
(60)
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where

(A ∗ B)(x, x ′) ≡
∫

dd x1
√−g(x1)A(x, x1)B(x1, x ′) . (61)

Using this as a template, with the discrete convolution operation given by matrix
multiplication,

(A ∗ B)(e, e′) ≡
∑

e′′
A(e, e′′)B(e′′, e), (62)

a candidate for the d = 2 dimensionless massive causal set Green function is

K (2)
M (x, x ′) = 1

2

∞∑

k=0
(−1)k M2k

2k
Ck(x, x ′). (63)

Here M is dimensionless and we have used the relation Ck(x, x ′) = Ck
0 (x, x ′), where

the product is defined by the convolution operation Eq. 61 and, Ck(x, x ′) counts the
number of k-element chains from x to x ′. For C ∈ C(M2, ρc) it can be shown that
(Johnston 2008, 2010)

〈K(2)
M (x, x ′)〉 = G(2)

m (x, x ′) , (64)

when M2 = m2

ρc
. Similarly, a candidate for the d = 4massive causal set Green function

is

K (4)
M (x, x ′) = 1

2π
√
6

∞∑

k=0
(−1)k

(
M2

2π
√
6

)k

Lk(x, x ′), (65)

where we have used the fact that the number of k-element linked paths Lk(x, x ′) =
Lk
0(x, x ′). For C ∈ C(M4, ρc),

lim
ρc→∞

√
ρc〈K(4)

M (x, x ′)〉 = G(4)
m (x, x ′) , (66)

when M2 = m2√
ρc
.

These massive causal set Green function were first obtained by Johnston (2008,
2010) using an evocative analogy between Feynman paths and the k-chains or k-
linked paths (see Fig. 17). “Amplitudes” a and b are assigned to a “hop” between two
elements in the Feynman path, and to a “stop” at an intervening element, respectively.
This gives a total “amplitude” ak+1bk for each chain or linked path, so that the massive
Green functions can be expressed as

K (2)
m (e, e′) ≡

∑

k=0
ak+1
2 bk

2Ck(e, e′), K (4)
m (e, e′) ≡

∑

k=0
ak+1
4 bk

4Lk(e, e′), (67)
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Fig. 17 The hop and stop amplitudes a and b on a 2-element chain from e to e′ for a massive scalar field
on a causal set

where the coefficients ad , bd are set by comparing with the continuum.
Finding causal set Green functions for other spacetimes is more challenging, but

there have been some recent results (Dowker et al. 2017) which show that the flat
spacetime form of Johnston (2008, 2010) can be used in awider context. These include
(a) a causal diamond in an RNN of a d = 2 spacetime with M2 = ρc

−1(m2 + ξ R(0)),
where R(0) is the Ricci scalar at the centre of the diamond and ξ is the non-minimal
coupling, (b) a causal diamond in an RNN of a d = 4 spacetime with Rab(0) ∝ gab(0)
and M2 = ρc

−1(m2 + ξ R(0)) when (c) d = 4 de Sitter and anti de Sitter spacetimes
with M2 = ρc

−1(m2 + ξ).
The de Sitter causal set Green function in particular allows us to explore cosmolog-

ical consequences of discreteness, one of which we will describe below. It would be
useful to extend this construction to other conformally flat spacetimes of cosmological
relevance like the flat FRW spacetimes. Candidates for causal set Green functions in
M

3 have also been obtained using both the volume of the causal interval and the length
of the longest chain (Johnston 2010; Dowker et al. 2017), but the comparisons with
the continuum need further study.

As the attentive reader would have noticed, in d = 4 the causal set Green function
matches the continuum only for ρc →∞, unlike in d = 2. At finite ρc, there can be
potentially observable differences with the continuum. Comparisons with observation
can therefore put constraints on CST. Dowker et al. (2010a) examined a model for the
propagation of a classical massless scalar field from a source to a detector on a back-
ground causal set. In M

d , an oscillating point source with scalar charge q, frequency
ω and amplitude a, and a “head-on” rectangular shaped detector was considered, so
that the field produced by the source is

φ(y) =
∫

P
G(y, x(s))qds (68)

where P is the world line of the source and s the proper time along this world line. If
D represents the spacetime volume swept out by the detector during its detection time
T then the output of the detector is
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F =
∫

D
φ(y)d4y = q

∫

P
ds

∫

D
d4yG(y, x(s)) ≈

√
1+ ν

1− ν

q

4π R
vD (69)

where R is the distance between the source and detector, ν is the component of the
velocity along the displacement vector between the source and detector and vD is the
spacetime volume of the detector region D. Here, R >> a and R >> ω−1 which in
turn is much larger than the spatial and temporal extent of the detector region D. The
causal set detector output can then be defined as

F̃ = q
1

2π
√
6

∑

e∈P̃

∑

e′∈D̃
L0(e

′, e) (70)

where D̃ and P̃ correspond to the detector and source subregions in the causal set and
the causal set function L(e, e′) is equal to some normalisation constant κ when e and e′
are linked and is zero otherwise. For C ∈ C(M4, ρc) it was shown that, with the above
constraints on R, ω, a and the dimensions of the detector, that 〈̃F〉 approximates to

same continuum expression Eq. (69) when R >> ρ
− 1

4
c . A detailed calculation gives an

upper bound on the fluctuations, which, for a particular AGNmodel is one part in 1012

forρc = ρp. Hence the discreteness does not seem tomesswith the coherence ofwaves
from distant sources. As we will see in Sect. 7 there are other potential signatures of
the discreteness that may have phenomenological consequences (Dowker et al. 2004;
Sorkin 1991, 1997; Ahmed et al. 2004).

5.2 The Sorkin–Johnston (SJ) vacuum

Having obtained the classical Green function and the d’Alembertian operator in M
2

and M
4, the obvious next step is to build a full quantum scalar field theory on the

causal set. As we have mentioned earlier, the canonical route to quantisation is not an
option for causal sets nor for fields on causal sets and hence there is a need to look at
more covariant quantisation procedures.

Johnston (2009, 2010) used the the covariantly defined Peierls’ bracket

[Φ̂(x), Φ̂(y)] = iΔ(x, y) (71)

as the starting point for quantisation, where

Δ(x, y) ≡ G R(x, x ′)− G A(x, x ′) (72)

is the Pauli Jordan function, and G R,A(x, x ′) are the retarded and advanced Green’s
functions, respectively. As we have seen, these Green functions can be defined on
certain manifold-like causal sets and hence provide a natural starting point for quan-
tisation.

However, even here, the standard route to quantisation involves the mode decom-
position of the space of solutions of the Klein Gordan operator, ker(�− m2). In M

d

the space of solutions has a unique split into positive and negative frequency classes
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of modes with respect to which a vacuum can be defined. In his quest for a Feyn-
man propagator, Johnston (2009) made a bold proposal, which as we will describe
below, has led to a very interesting new direction in quantum field theory even in the
continuum. This is the Sorkin–Johnston or SJ vacuum for a free quantum scalar field
theory.

Noticing that the Pauli–Jordan function on a finite causal set C is a Hermitian
operator, and that Δ(e, e′) itself is antisymmetric, Johnston used the fact that the
eigenspectrum of iΔ

iΔ̂ ◦ vk(e) ≡
∑

e′∈C

iΔ(e, e′)vk(e′) = λkvk(e) (73)

splits into pairs (λk,−λk), with eigenfunctions (v+k , v−k ), v−k = v+k
∗
. This provides

a natural split into a positive part and a negative part, without explicit reference to
ker(�− m2).23 A spectral decomposition of iΔ̂ then gives

iΔ(e, e′) = λk
∑

k

v+k (e)v+k
∗
(e′)− v+k (e)∗v+k (e′). (74)

This decomposition is used to define the SJ Wightmann function as the positive part
of iΔ

WS J (e, e′) ≡ λk
∑

k

v+k (e)v+k
∗
(e′). (75)

Importantly, for a non-interacting theory with a Gaussian state, the Wightmann func-
tion is sufficient to describe the full theory and thus the vacuum state. Simulations in
M

d for d = 2, 4 give a good agreement with the continuum (Johnston 2009, 2010).
Sorkin (2011a) noticed that the construction on the causal set, which was born out

of necessity, provides a new way of thinking of the quantum field theory vacuum. A
well known feature of quantum field theory in a general curved spacetime is that the
vacuum obtained from mode decomposition in ker(�̂ − m2) is observer dependent
and hence not unique. Since the SJ vacuum is intrinsically defined, at least in finite
spacetime regions, one has a uniquely defined vacuum. As a result, the SJ state has
generated some interest in the broader algebraic field theory community (Fewster and
Verch 2012; Brum and Fredenhagen 2014; Fewster 2018). For example, while not in
itself Hadamard in general, the SJ vacuum can be used to generate a new class of
Hadamard states (Brum and Fredenhagen 2014).

In the continuum, the SJ vacuumwas constructed for the massless scalar field in the
d = 2 causal diamond (Afshordi et al. 2012) and recently extended to the small mass
case (Mathur and Surya 2019). It has also been obtained for the trousers topology and
shown to produce a divergent energy along both the future and the past light cones
associated with the Morse point singularity (Buck et al. 2017). Numerical simulations

23 The identification of ker(� − m2) with I m(iΔ) is in fact well known (Wald 1994) when the latter is
restricted to functions of compact support.
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of the SJ vacuum on causal sets are are approximated by de Sitter spacetime suggest
that the causal set SJ state differs significantly from theMottola–Allenα vacuua (Surya
et al. 2019). This has potentially far reaching observational consequences which need
further investigation.

5.3 Entanglement entropy

Using the Pauli Jordan operator iΔ̂ and the associated Wightman Ŵ , Sorkin (2014)
defined a spacetime entanglement entropy, Sorkins’ Spacetime Entanglement Entropy
(SSEE)

S =
∑

i

λi ln |λi | (76)

where λi are the generalised eigenvalues satisfying

Ŵ ◦ vi = iλi Δ̂ ◦ vi . (77)

It was shown by Saravani et al. (2014) that for a causal diamond sitting at the centre
of a larger one in M

2, S has the expected behaviour in the limit that the size of the
smaller diamond l is much smaller than that of the larger diamond,

S = b ln

(
l

luv

)
+ c, (78)

where luv is the UV cut-off and b, c are constants that can be determined.
One of the promises that discretisation holds is of curing the UV divergences of

quantum field theory and in particular those coming from the calculation of the entan-
glement entropy of Bombelli et al. (1986). As shown by Sorkin and Yazdi (2018) the
causal set version of the above calculation is proportional to the volume rather than the
above “area”, thus differing from the continuum. This can be traced to the fact that the
continuum spectrum of eigenvalues (Eq. 77) agrees with the discrete eigenvalues only
up to a “knee”, beyond which the effects of discreteness become important, as shown
in Fig. 18. Using a double truncation of the spectrum—once in the larger diamond
and once in the smaller one, Sorkin and Yazdi (2018) obtained the requisite area law.
This raises very interesting and as yet unanswered puzzles about the nature of SSEE
in the causal set. It is for example possible that in a fundamentally non-local theory
like CST an area law is less natural than a volume law. Such a radical understanding
could force us to rethink continuum inspired ideas about Black Hole entropy.

Extending the above calculation to actual black hole spacetimes is an important
open problem. Ongoing simulations for causal sets obtained from sprinklings into 4d
de Sitter spacetime show that this double truncation procedure gives the right de Sitter
horizon entropy (Dowker, Surya, X and Yazdi, work in progress), but one first needs
to make an ansatz for locating the knee in the causal set iΔ spectrum.
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Fig. 18 A log-log plot depicting the SJ spectra for causal sets in a causal diamond in M
2. A comparison

with the continuum (the straight black line) shows that the causal set SJ spectrum matches the continuum
in the IR but has a characteristic “knee” in the UV after which it deviates significantly from the continuum.
As the density of the causal set increases, this knee shifts to the UV

5.4 Spectral dimensions

An interesting direction in causal set theory has been to calculate the spectral dimension
of the causal set (Eichhorn and Mizera 2014; Belenchia et al. 2016c; Carlip 2017).
Carlip (2017) has argued that d = 2 is special in the UV limit, and that several
theories of quantum gravity lead to such a dimensional reduction. In light of how we
have presented CST, it seems that this continuum inspired description must be limited.
It is nevertheless interesting to ask if causal sets that are manifold-like might exhibit
such a behaviour around the discreteness scales at which the continuum approximation
is known to break down. As we have seen earlier (Sect. 4.3), one such behaviour is
discrete asymptotic silence (Eichhorn et al. 2017).

Eichhorn andMizera (2014) calculated the spectral dimension on a causal set using
a randomwalk on afinite element causal set. Itwas found that in contrast, the dimension
at small scales goes up rather than down. On the other hand, Belenchia et al. (2016c)
showed that causal set inspired non-local d’Alembertians do give a spectral dimension
of 2 in all dimensions. As we noted in Sect. 4, Abajian and Carlip (2018) showed that
dimensional reduction of causal sets occurs for theMyrheim–Meyer dimension as one
goes to smaller scales. Recently in Eichhorn et al. (2019b), the spectral dimension was
calculated on a maximal antichain for a causal set obtained from sprinklings into M

d ,
d = 2, 3 using the induced distance function of Eichhorn et al. (2019a). It was seen to
decrease at small scales, thus bringing the results closer to that conjectured by Carlip
(2017).

6 Dynamics

Until now our focus has been on manifold-like causal sets, since the aim was to
find useful manifold-like covariant observables as well as to make contact with phe-
nomenology. However, as discussed in Sect. 3, the arena for CST is a sample space
Ω of locally finite posets which replaces the space of 4-geometries, and contains non-
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manifold-like causal sets. A CST dynamics is given by the measure triple (Ω,A, μ)

where A is an event algebra and μ is either a classical or a quantum measure. We will
define these quantities later in this section.

To begin with,Ω itself can be chosen depending on the particular physical situation
inmind. In the context of initial conditions for cosmology, for example, it is appropriate
to restrict to the sample space of past finite countable causal sets Ωg , while for a
unimodular type dynamics using the Einstein–Hilbert action, the natural restriction
is to Ωn the sample space of causal sets of fixed cardinality n. We will see that
dimensional restrictions on the sample space are also of interest and can lead to a
closer comparison with other approaches to quantum gravity.

As discussed in Sects. 3 and 4, in the asymptotic n →∞ limit the sample spaceΩn

is dominated by the non-manifold-like KR causal sets depicted in Fig. 9. This is the
“entropy problem” of CST. These posets have approximately just three “moments” of
time and hence should not play a role in the classical or continuum approximation of
the theory.

For a quantum dynamics of CST we would like to start with a few basic axioms,
including discrete general covariance and dynamical causality. A very important step
in this direction was made by the classical sequential growth models (CSG)(Rideout
and Sorkin 2000a), which are Markovian growth models. We will describe these in
Sects. 6.1 and 6.2.

One of the main challenges in CST is to build a viable quantum sequential
growth(QSG) dynamics. The appropriate framework for the dynamics is as a quan-
tum measure space which is a natural quantum generalisation of classical stochastic
dynamics (Sorkin 1994, 1995, 2007d). This means replacing the classical probability
measure P in the measure space triple (Ω,A, μc) with a quantum measure μ. The
quantum measure is defined via a decoherence functional and can also be defined as
a vector measure in a corresponding histories Hilbert space. We will discuss this in
Sect. 6.3.

It is also of interest to construct an effective continuum-inspired dynamics, where
the discrete Einstein–Hilbert or BD action is used to give the measure for the discrete
path integral or path sum. The quantum partition function can either be evaluated
directly or converted into a statistical partition function over causal sets using an
analytic continuation. Thismakes it amenable toMarkovChainMonteCarlo (MCMC)
simulations as we will see below in Sect. 6.4.

6.1 Classical sequential growthmodels

The Rideout and Sorkin (2000a) classical sequential growth or CSGmodels are a class
of stochastic dynamics in which causal sets are grown element by element, with the
dynamics satisfying a few basic principles (Rideout and Sorkin 2000a, 2001; Martin
et al. 2001; Rideout 2001; Varadarajan and Rideout 2006). The stochastic dynamics
finds a natural expression in measure theory and allows for an explicit definition of
covariant classical observables (Brightwell et al. 2003; Dowker and Surya 2006). This
measure theoretic structure provides an important template for the quantum theory,
and hence we will first flesh it out in some detail before discussing quantum dynamics.
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Fig. 19 The first two stages of a
classical sequential
growth(CSG) dynamics. The
probability for a single element
(red) to appear at coordinate
time n = 1 is 1. Subsequently,
the new element (blue) at n = 2
is added either to the future of
the existing element with
probability p or is unrelated to it
with probability 1− p

Let us start with a naive picture. Imagine living on a classical causal set universe,
with our universe represented by a single causal set. Since causal sets are locally
finite, the “passage of time” occurs with the addition of a new element. If we are to
respect causality, this new element cannot be added so as to disturb the past. Instead
it can be added to the future of some of the existing events or it can be unrelated to
all of them. Every such “atomic change” in spacetime corresponds to the causal set
changing cardinality or “growing” by one. Starting with a causal set c̃n of cardinality
n, the passage of time means transitioning from c̃n → c̃n+1 where the new element in
c̃n+1 is to the future of some of the elements of c̃n , but never in their past. In the infinite
“time” limit, n → ∞, the dynamics, either deterministic, probabilistic or quantum,
will take you from c̃n to a countable causal set.

Working backwards, on the other hand, leads us to a “beginning”, with n = 0. This
gives the most natural initial condition24 for causal sets: begin with the empty set ∅.
The only way to go forward from here, is to make n = 1, i.e., we have a single element.
For n = 2, the new element could either be to the future of the existing element or
unrelated to it, as in Fig. 19.

Thus, one can build up the tree T of causal sets as n →∞ as shown in Fig. 20. As
n increases, the number of possibilities grows superexponentially as expected from
the KR theorem (Kleitman and Rothschild 1975), and there is no easy enumeration
of this space. The growth process generates a sample space Ω̃g of countable causal
sets which are are all past finite and labelled by the “time” at which each element is
added. A causal set c̃ in Ω̃g is said to be naturally labelled, i.e., there exists an injective
map L : c̃ → N (the natural numbers) which preserves the order relation in c̃, i.e.,
e ≺ e′ ⇒ L(e) < L(e′). In the growth process, this label is the coordinate time.

In the spirit of covariance, however, we cannot take the time label to be fundamental;
the dynamics and the observables cannot depend on the order in which the elements
are born. Thus, the probability to get a labelled causal set c̃n and any of its relabellings,
c̃′n must be the same. Identifying relabelled causal sets as the same object in the CST
tree T gives us a non-trivial poset of causal sets or the “postcau” P of Rideout and
Sorkin (2000a). On P , a covariant dynamics is thus path-independent: if there is more
than one path from an unlabelled initial causal set cni to an unlabelled final causal set
cn f in P , then in order to satisfy covariance, the measure on both paths should be the
same.

24 Of course, we could insist that there is no beginning, in which case n is never finite.
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Fig. 20 The CSG tree T . There are three ways to get the 3-element unlabelled causal set whose natural
labellings are given by the 3rd, 4th and 5th 3-element labelled causal sets in the figure. One path is via the 2-
element chain and the other two are from the 2-element antichain. Covariance demands that the probability
along each path is the same

Apart from covariance, this dynamics also satisfies an internal causality condition,
dubbed Bell causality. Consider the transition c̃n → c̃n+1 with probability αn where
the new element en+1 is added to the future of a “precursor” set pn ⊂ c̃n , and is
unrelated to a “spectator set” sn ⊂ c̃n . Causality suggests that the probability for the
transition should not depend on the spectator set sn . For non-empty sn with |sn| < n,
consider the causal sets c̃m = c̃n\sn and c̃m+1 = c̃n+1\sn , where \ denotes set
difference and m + |sn| = n. The transition probability αm for c̃m → c̃m+1 should
then be proportional to αn . If c̃n → c̃′n+1 is another transition from c̃n , then defining
p′n, s′n , α′n , and c̃′m+1 = c̃′n+1\s′n , analogously, the condition of Bell causality is

αn(c̃n → c̃n+1)
α′n(c̃n → c̃′n+1)

= αm(c̃m → c̃m+1)
α′m(c̃m → c̃′m+1)

(79)

Though relatively easy to implement classically, a quantum version of Bell causality
has been hard to find (Henson 2011).

The triple requirements of (a) covariance, (b) Bell causality and (c) Markovian evo-
lution define the classical sequential growth dynamics of Rideout and Sorkin (2000b).
Starting from the empty set, a causal set is thus grown element by element, assign-
ing probabilities to each transition c̃n to a c̃n+1, consistent with these requirements.
Because of it being a Markovian evolution, the probability associated with any finite
cn is given by the product of the transition probabilities along a path in P .

The dynamics was shown in Rideout and Sorkin (2000a) to be fully determined by
the infinite set of coupling constants, tn , one for each stage of the growth. If qk denotes
the transition probability from the k-element antichain to the k+1-element antichain,
these coupling constants can be expressed as
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Fig. 21 A post is an analogue of
a bounce in causal set
cosmology

tn ≡
n∑

k=0
(−1)n−k

(
n

k

)
1

qk
. (80)

In general, the tn can be independent of each other. Including relations between the
different tn thus simplifies the dynamics. The simplest example is that of transitive
percolation determined by the probability (1 − q) ≥ 0 of adding an element to the
immediate future of an existing element,25 and q of being unrelated to it. Thus, the
probability of adding a new element to the immediate future ofm elements of cn and of
being unrelated tom′ others is (1−q)mqm′ . In terms of the general coupling constants,

tn = tn ≡
(
1−q

q

)n
.

In Varadarajan and Rideout (2006) and Dowker and Surya (2006), a generalisation
of the dynamics was explored, where some of the transition probabilities were allowed
to vanish, consistent with (a) (b) and (c). This requires a generalisation of the Bell
causality condition. The resulting dynamics exhibits a certain “forgetfulness” when
these transition probabilities vanish, but are otherwise very similar to the CSGmodels.

Since the generic dynamics consistent with (a), (b) and (c) does not by itself lead
to constraints on the tn , this is an embarrassment of riches. Does nature pick out
one set over another? In Martin et al. (2001), an evolutionary mechanism for doing
so was suggested using cosmological bounces which give rise to new epochs which
“renormalise” the coupling constants towards fixed points. A cosmological bounce in
a causal set is naturally described by the appearance of a post which is an inextendible
antichain of cardinality 1 (Fig. 21).

Thus, every element in c either lies to its past or to its future. Moreover, because
it is a single element maximal antichain, there are no “missing links” (see Fig. 11),
and the post is indeed a summary of its past. The post is the causal set equivalent to a
“bounce” but is non-singular in the causal set. We define the causal set between two
posts as an “epoch”, with the last epoch being the one after the last post. Let e be a
post in c and let r = |Past(e)|. Then a set of “effective” coupling constants in the
epoch after e can be defined as (Martin et al. 2001)

25 By this we mean that the new element is “linked” to an existing one, not just related to it.
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t̃ (r)
n =

r∑

k=0

(
r

k

)
tn+k . (81)

Thus, the memory of the past of the post, which is common to all the elements to the
future of the post is “washed” out, but not without “dressing” up the new effective
coupling constants. Denoting the set of effective couplings by T (i) ≡ {t (i)0 , t (i)1 , . . .}
with i = 0 being the original set of couplings, this corresponds to applying r copies
of the transform M : T (i) → T (i+1) where t (i+1)n = t (i)n + t (i)n+1, i = 0, . . . r − 1. In
Martin et al. (2001), it was shown that the fixed points of the map M give tn = tn

(transitive percolation) for some t ≥ 0 andmoreover M does not have any other cycles.
Starting from any set T (0) for which limn→∞(t (0)n )1/n is finite, Mr : T (0) → T (r),
is such that T (r) converges pointwise to t (r)

n = tn for t = limn→∞(t (0)n )1/n . While
this result does not guarantee that every T (0) will converge to transitive percolation,
Martin et al. (2001) examined several cases, and conjectured that the deviation from
percolation-like values are “rare” and that typically, T (r) will be nearly like transitive
percolation.

Such an evolutionary renormalisation thus brings the infinite dimensional coupling
constant space to a one dimensional space, which is remarkable. Assuming that this
is indeed the case in general, a sufficiently late epoch will likely have a transitive
percolation dynamics.

What can one say about the causal sets generated from this dynamics? A very
important result from transitive percolation is that the typical causal sets obtained are
not KR like posets and hence the dynamics beats their entropic dominance. The ques-
tion of whether there is a continuum-like limit for transitive percolation dynamics was
explored in Rideout and Sorkin (2001), using a comparison criterion. The abundance
of fixed small subcausal sets was examined as a function of the coupling, by fixing
the density relations. Comparisons with Poisson sprinklings in flat spacetime showed
a convergence, suggestive of a continuum limit. In Ahmed and Rideout (2010), it
was shown that the dynamics typically yields an exponentially expanding universe.
Moreover, for (1 − q)  1 and n " 1

1−q , after a post the universe enters a tree
like phase and then a de Sitter-like phase, in which the cardinality of large causal
diamonds are de Sitter like functions of the discrete proper time. In Glaser and Surya
(2013), it was shown that despite this, the abundance of causal intervals is not de Sitter
like, and thus, this is not strictly a manifold-like phase. In Brightwell and Georgiou
(2010) and Brightwell and Luczak (2015), moreover, it was shown explicitly that in
the asymptotic limit n → ∞ the causal sets limit to “semi-orders” which, though
temporally ordered, have no spatial structure at all, and are hence non-manifold-like.
Nevertheless, the dominance of measure over entropy is important and the hope is that
it will be reflected in the right quantum version of the dynamics.

Recently, Dowker and Zalel (2017) proposed a method for dealing with black hole
singularities in CSG models. As in the case of cosmological bounces a new epoch is
created beyond the singularity. Using “breaks” which are multi-element versions of a
post, they demonstrated that a renormalisation of the coupling constants occurs in the
new epoch.
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Fig. 22 The cylinder set for the “V” poset consists of all countable causal sets in Ω̃g whose first three
elements are the labelled “V” poset. Examples of causal sets that lie in cyl(V) are depicted in the boxes

6.2 Observables as beables

As mentioned in the introduction to this section, a dynamics for CST is given by the
triple (Ω,A, μ). In CSG this is a probability measure space, where the sample space
Ω̃g is the set of all past finite naturally labelled causal sets.

The event algebra A can be constructed from the sequential growth process as
follows. We define a cylinder set cyl(c̃n) ⊂ Ω̃g as the set of all labelled causal sets
in Ω̃g whose first n elements are the causal set c̃n . Figure 22 depicts an example of
a cylinder set.26 For every finite element causal set c̃n , cyl(c̃n) ⊆ Ω̃g , and in the
trivial n = 1 case, cyl(c̃1) = Ω̃g . The cylinder sets in CSG satisfy a nesting property.
Namely, if n′ > n and cyl(c̃n′) ∩ cyl(c̃n) 
= ∅, then cyl(c̃n′) ⊂ cyl(c̃n). Thus, a non-
trivial intersection of two different cylinder sets is possible only if one is strictly a
subset of the other.

The event algebra Ã is generated from the cylinder sets via finite unions, inter-
sections and set differences. It is closed under finite set operations and contains the
null set ∅ as well as Ω̃g . In the growth process we assign a probability μ(c̃n) to every
finite labelled causal set c̃n . By identifying c̃n with its cylinder set cyl(c̃n), we define
the measure μ(cyl(c̃n)) ≡ μ(c̃n) and hence on all elements of Ã, since μ is finitely
additive. This makes (Ω̃g, Ã, μ̃′) a “pre-measure” space.

An event α is an element of A deemed to be covariant as a measurable subset
α ⊂ Ω̃g if for every c̃ ∈ α, its relabelling c̃′ also belongs to α. Since a relabelling can

26 A useful example to keep in mind is the 1-d random walk. Let γ T be a finite element path in the t − x
plane from t = 0 to t = T . A cylinder set cyl(γ T ) is then the set of all infinite time paths, which coincide
with γ T from t = 0 to t = T .
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happen arbitrarily far into the future, no event in A is covariant, since A is closed only
under finite set operations. Take for example the covariant post event which is the set
of all causal sets which have a post. This is a covariant event, and is the equivalent of
the return event in the random walk. In both cases, the event cannot be defined using
only countable set operations, and hence the post event does not belong to A.

One route to obtaining covariant events is to pass to the full sigma algebra S̃
generated by Ã, which is closed under countable set operations. For classical measure
spaces, the Kolmogorov–Caratheodory–Hahn extension theorem allows us to extend
μ̃′ to S̃ and hence pass with ease to a full measure space (Ω̃g, S̃, μ̃), where μ̃|Ã = μ̃′.
Not every event inS is covariant, but we can restrict our attention to covariant events,
i.e., sets that are invariant under relabellings. If ∼ denotes the equivalence up to
relabellings one can define the quotient algebra S = S̃/ ∼ of covariant events. An
element of S is measurable covariant set, or a covariant observable (or beable). Our
example of the post event belongs to S. Another example of a covariant event is the
set of originary causal sets, i.e., causal sets with a single initial element to the past
of all other elements. Constructing more physically interesting covariant observables
in S is important, since it tells us what covariant questions we can ask of causal set
quantum gravity.

Amore covariant way to proceed is to generate the event algebra not via the cylinder
sets in Ω̃g but by using covariantly defined sets in Ωg , the sample space of unlabelled
causal sets. Because causal sets are past finite we can use the analogue of past sets
J−(X) to characterise causal sets in a covariant way. A finite unlabelled sub-causal set
cn of c ∈ Ωg is said to be a partial stem if it contains its own past. A stem set stem(cn)

is then a subset of Ωg such that every c ∈ stem(cn) contains the partial stem c̃n . Let
S be the sigma algebra generated by the stem sets. Although S is a strictly smaller
subalgebra of S, it differs on sets of measure zero for the CSG and extended CSG
models as shown by Brightwell et al. (2003) and Dowker and Surya (2006). Thus, one
can characterise all the observables of CSG in terms of stem sets. This is a non-trivial
result and the hope is that some version of it will carry over to the quantum case.

6.3 A route to quantisation: the quantummeasure

The generalisation of CSG to QSG is, at least formally, very straightforward. One
“quantises” the classical covariant probability space (Ωg,S, μc), by simply replacing
the classical probability μc with a quantum measure μ : S→ R

+, where μ satisfies
the quantum sum rule (Sorkin 1994, 1995; Salgado 2002; Sorkin 2007d)27

μ(α ∪ β ∪ γ ) = μ(α ∪ β)+ μ(α ∪ γ )+ μ(β ∪ γ )− μ(α)− μ(β)− μ(γ ),(82)

for the mutually disjoint sets α, β, γ ∈ S. μ(.) is not in general a probability measure
since it does not satisfy additivity μ(α ∪ β) 
= μ(α) + μ(β) for α ∩ β = ∅. As
in the classical case, observables in this theory are simply the quantum measurable

27 We will not discuss the very rich and interesting literature on the co-event interpretation of the quantum
measure, which though incomplete, contains essential features that one would seek for a theory of quantum
gravity (Sorkin 2007c).
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sets inS. The quantum measure μ(.) can be obtained from a decoherence functional
D : S×S→ C of quantum theory with

μ(α) = D(α, α), (83)

where D satisfies

– Hermiticity: D(α, β) = D∗(β, α)

– Countable biadditivity: D(α,�iβi ) = ∑
i D(α, βi ) and D(�iαi , β) = ∑

i D
(αi , β)

– Normalisation: D(Ω,Ω) = 1
– Strong positivity: Mi j ≡ D(αi , α j ) for any finite collection {αi } is positive semi-
definite

In a QSG model the transition probabilities of CSG are replaced by the decoherence
functional D or quantum measure. Leaving aside Bell causality, the other principle of
the growth dynamics are easy to implement. InDowker et al. (2010c), a simple complex
percolation dynamicswas studied, given by a product decoherence function D̃(α, β) =
A∗(α)A(β) on A×A, where A(α) is obtained from the transition amplitudes q ∈ C,
similar to transitive percolation. Thus, as in the case of CSGmodels, one starts with the
labelled event algebra A generated by the cylinder sets, and a quantum pre-measure
D̃′. Again, in order to obtain covariant observables one has to pass to the full sigma
algebraS associated with A. However, unlike a classical measure D̃ need not extend
to a full sigma algebra. In Dowker et al. (2010c), the quantum pre-measure was shown
to be a vector pre-measure μ̂′ in the associated histories Hilbert space (Dowker et al.
2010b). Extension of μ̂′ toS is then possible provided certain convergence conditions
are satisfied.28

Although the vector measure is 1-dimensional in complex percolation dynamics,
it was shown in Dowker et al. (2010c) not to satisfy this convergence condition and
hence one cannot pass toS to construct covariant observables.However a smaller alge-
bra may be sufficient for answering physically interesting questions, which require far
weaker convergence condition as suggested by Sorkin (2011b). This relaxation of con-
ditions means that some simple measurable covariant observables can be constructed
in complex percolation, including for the originary event (Sorkin and Surya, work in
progress). Whether these results on extension are shared by all QSG models or not
is of course an interesting question. Another possibility is that an extension of the
measure in QSG could, for example, be a criterion for limiting the parameter space of
QSG. Very recently a class of QSG dynamics that does admit an extension has been
found (Surya and Zalel, work in progress).

The space of QSG models is largely unexplored. It is however critical to study it
extensively in order to find the right CST quantum dynamics based on first principles.

28 In general, these are given by the conditions in theKolmogorov–Caratheodory–Hahn–Kluvanek theorem
(Diestel and Uhl 1977).
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6.4 A continuum-inspired dynamics

As we have seen, at a fundamental level the quantum dynamics of causal sets looks
very different from that of a continuum theory of quantum gravity, even if the latter is
formulated as a path integral. However, as one approaches the continuum approxima-
tion of the theory, it is possible that the effective quantum dynamics begins to resemble
the continuum path integral. In CST, the quantum partition function is

ZΩ ≡
∑

c∈Ω
e

i S(c)
� (84)

where S(c) is an action for causal sets, and the choice of sample space Ω is
determined by the problem at hand. One might also consider more generally a
decoherence functional D(c1, c2) on causal sets, inspired by the continuum, where

D(c1, c2) = e−i 1
�
(S(c1)−S(c2)) f (c1, c2) with f (c1, c2) a causal set analog of the delta

function associated with unitarity quantum theories. This is currently an unexplored
direction and we will not discuss it further in this work.

The natural choice for S(c) is the d dimensional BD action S(d)
BD(c) which limits to

the Einstein–Hilbert action in the continuum. As discussed in Sect. 3, the sample space
Ωn of causal sets of cardinality n is dominated by KR type causal sets. An important
question is whether the action S(d)

BD(c) can overcome the KR entropy in the large n
limit.

Indeed, there is a hierarchy of sub-dominant causal setswhich are nonmanifold-like
(Dhar 1978, 1980; Kleitman and Rothschild 1975; Promel et al. 2001), with the set
of bilayer posets B being the next subdominant class. A recent calculation by Loomis
and Carlip (2018) shows that B is suppressed by the BD action when the mesoscale
and dimension satisfy certain conditions. The only relations in a bilayer poset are
links. Given that the maximum number of relations is

(n
2

)
the causal sets in B can be

classified by the linking fraction p given by the ratio of the total number of links N0
to the maximal possible number of links

(n
2

)
. Moreover, the action itself reduces to a

simple sum over n and N0. In the limit of large n, Loomis and Carlip (2018) consider
p to be a continuous variable using which the partition function ZB can be expressed
as an integral over p

ZB =
∫

dp|Bp,n|ei S(p)/� = eiμn
∫

dp|Bp,n|e 1
2 iμλ0 pn2+o(n2) (85)

where Bp,n denotes the class of n-element causal sets in B with linking fraction p and

μ, λ0 are related to the mesoscale ε and function fd(n, ε) that appears in S(d)
BD(c). The

challenge is then shifted to calculating |Bp,n|. Using another parameter q which gives
the cardinality of the upper layer as a further subclassification ofBp,n , the leading order
contribution to |Bp,n| was found. The resulting partition function was then shown to
be strictly suppressed when μλ0 satisfy the condition

tan(−μλ0/2) >

(
27

4
e−

1
2 − 1

)
. (86)

123



The causal set approach to quantum gravity Page 59 of 75 5

This is an important analytic calculation and paves the way for a more rigorous under-
standing of the CST partition function.

More than the partition function, however, it is the expectation value of observables
or order invariants

〈O〉 = 1

Zc

∑

c∈Ω
O[c]ei 1

h S[c] (87)

that is of physical significance.29 Evaluating this for larger values of n is a big challenge
and we turn to numerical simulations to help us.

One route could be to simply “perform” the sum above. However, given that |Ωn|
grows superexponentially (to leading order it is∼ 2

n2
4 ), this is computationally chal-

lenging even for relatively small values of n. On the other hand, Markov Chain Monte
Carlo (MCMC) methods for sampling the space Ω can be used if we can convert ZΩ

into a statistical partition function.
In CST, there is no analogue of a Wick rotation: since the order relation derives

from the causal structure, it cannot be “Euclideanised”. On the other hand, there are
other ways to analytically continue ZΩ (see Louko and Sorkin 1997 for a continuum
example). One option, first explored in Surya (2012) is to introduce a new parameter
β such that

ZΩ,β ≡
∑

c∈Ω
ei β

�
S(c). (88)

This allows us to analytically continue ZΩ,β from real to imaginary values of β, thus
rendering the quantum partition function into a statistical partition function. We can
then use standard tools in statistical physics, including MCMC methods, to find the
expectation values of suitable observables (Surya 2012; Glaser and Surya 2016; Glaser
et al. 2018; Glaser 2018; Cunningham and Surya 2019).

In Henson et al. (2017), MCMC methods were used to examine the sample space
of naturally labelled posets Ω̃n to determine the onset of the KR regime, using the
uniform measure (β = 0). The Markov Chain was generated via a set of moves that
sample Ωn . A mixture of two moves, the link move and the relation move, was used
to obtain the quickest thermalisation.

To illustrate the complexity of these moves we describe in detail the link move. A
pair of elements e, e′ are picked randomly and independently from the causal set c,
and retained if L(e) < L(e′), where L is the natural labelling defined in Sect. 6.1.
If e ≺ e′ and moreover the relation is a link, then the move is to “unlink” them.
Those relations implied by this link via transitivity also need to be removed. These
are relations between elements in IPast(e) and those in IFut(e′) which are “mediated”
solely either by e or e′. On the other hand if e and e′ are not related, then one adds in
a link between e and e′, provided that there are no existing links between elements in
IPast(e) and IFut(e′), after which the transitive closure is taken. In the relation move,
although the existence or non-existence of a link from e to e′ is also required, the move

29 We leave out interpretational questions!
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doesn’t care about the sanctity of links, but is in other ways more restrictive. Thus,
for both moves, picking of a pair of elements at random in c does not always lead
to a possible move, let alone a probable one, and hence this MCMC model is slow
to thermalise. Trying to find a more efficient move is however non-trivial precisely
because of transitivity.

The simulations of Henson et al. (2017) suggest that the onset of the asymptotic
KR regime occurs for n as small as n ≈ 90. Ωn is very large even for n = 90 (∼ 290

2

!) and hence thermalisation becomes a problem very quickly. Recently, steps have
been taken to incorporate the action (β 
= 0) into the measure, but again, because of
thermalisation issues, the size of the posets are fairly small.

Instead of taking the full sample space, one can restrictΩn to causal sets that capture
some gross features of a class of spacetimes. As discussed above, for large enough n,
Ωn contains causal sets that are approximated by spacetimes of arbitrary dimensions.
It is thus of interest to restrict the sample space so that those causal sets that are
manifold-like in the sample space are approximated only by spacetime regions of a
given dimension. Such a restriction is typically hard to find, since it requires “tailoring”
Ω using non-trivial order theoretic constraints determined by dimension estimators of
the kind we have encountered in Sect. 4.

Somewhat fortuitously, this restriction is very natural in d = 2. Here, the sample
space of “2-orders”Ω2d is one inwhich the continuumdimension and a particular order
theoretic dimension coincide (Brightwell et al. 2008; El-Zahar and Sauer 1988; Win-
kler 1991). The latter is defined only for a certain class of posets, namely those obtained
by the “intersection” of d totally ordered sets. For example, an n element 2-order is
the intersection of two linear orders U = (u1, u2, . . . un) and V = (v1, v2, . . . vn)

where each ui and vi are valued on a set Sn of n non-overlapping points in R.U and V
are therefore “totally ordered” by the relation < in R. Their intersection is the poset

U ∩ V ≡ {(ui , vi ) ∈ U × V |(ui , vi ) ≺ (u j , v j )⇔ ui < u j & vi < v j }. (89)

Similarly, one can define a d-order as the intersection of d linear orders. This is the
order theoretic dimension referred to above.

For d = 2, the total ordersU ,V can be thought of as the set of light-cone coordinates
of a causal set obtained from an embedding (not necessarily faithful) into a causal
diamond in M

2. Of special interest is the 2-order obtained from a Poisson sprinkling,
an example of which is shown in Fig. 7. As shown in Brightwell et al. (2008) this
is equivalent to choosing the entries of U and V from a fixed Sn at random and
independently. Importantly, this random order dominates Ω2d in the large n limit as
shown in El-Zahar and Sauer (1988) andWinkler (1991), and grows as |Ω2d| ∼ n!/2.
Thus, unlike Ωn , the sample space is dominated by manifold-like causal sets, though
it also contains causal sets that are distinctly non-manifold-like. This makes it an
ideal starting point to study the non-perturbative quantum dynamics of causal sets.
Moreover, as shown in Brightwell et al. (2008), 2-orders also have trivial spatial
homology in the sense of Major et al. (2007) (see Sect. 4) and henceΩ2d is the sample
space of topologically trivial 2d causal set quantum gravity.
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The continuum-inspired partition function for 2-orders or topologically trivial 2d
CST is

Z2d(β, n) =
∑

c∈Ω2d

exp
i
�

S2d(c,ε) , (90)

where S2d(c, ε) is theBDaction for d = 2with the non-locality parameter ε = l2p/l2c ∈
(0, 1] (see Eq. (36)). Taking β → iβ allows one to obtain the expectation values of
order invariants using MCMC techniques as was done by Surya (2012). The MCMC
move in Ω2d is very straightforward, unlike that in Ωn : a pair of elements is picked
independently and at random in eitherU or V , and swapped. For example, if ui ↔ u j ,
then the elements (ui , vi ) and (u j , v j ) in U ∩ V are replaced by (u′i = u j , v

′
i = vi )

and (u′j = ui , v
′
j = v j ), hence changing the poset. Every move is possible, and hence

one saves considerably on efficiency and thermalisation times.
Importantly, the MCMC simulations of Surya (2012) give rise to a phase transition

from a continuum phase at low β to a non-manifold-like phase at high β. This is very
similar to the disordered to ordered phase transition in an Ising model. The β2 versus
ε phase diagram moreover indicates that the continuum phase survives the analytic
continuation for any value of ε.

It was recently demonstrated by Glaser et al. (2018) using finite size scaling argu-
ments that that this is a first order phase transition. The analysis moreover suggests that
the continuum phase corresponds to a spacetime with negative cosmological constant.
This is an explicit example of a non-perturbative theory of quantum gravity in which
the cosmological constant is generated via the dynamics.

This simple system also allows us to examine other physically relevant questions.
Of particular interest is the Hartle–Hawking wave function using the no-boundary
proposal. In 2d CST, this was constructed by Glaser and Surya (2016) using a natural
no-boundary condition for causal sets, namely requiring the existence of an “initial”
element e0 to the past of all the other elements. ψHH(A f ) is the wave function for
a final antichain of cardinality |A f |, where one is summing over all causal sets that
have an initial element e0 and final boundary A f .

TheMCMC simulations give the expectation value of the action S2d fromwhich the
partition function can be calculated by numerical integration, up to normalisation. The
normalisation itself was determined in Glaser and Surya (2016) using a combination
of analytic and numerical calculations. The results of the extensive analysis was that
the Hartle–Hawking wave function ψHH(A f ) peaks at low β on antichains of small
cardinality, with the peak jumping at higher β to antichains with cardinality ∼ n/2.
Interestingly, in the latter, high β (low temperature) phase, the dominant causal sets
satisfy some of the rudimentary features of early universe cosmology: (a) the growth
from a single element to a large antichain takes place rapidly and (b) each element
in A f is causally related to all the elements in its immediate past which makes A f

“homogeneous”. However, this is a nonmanifold-like phase, and it is an open question
how one exits this phase into a manifold-like phase. If there is a dynamical mechanism
that makes β small, then this would be a promising new mechanism for generating
cosmologically relevant initial conditions for the universe.
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Will this analysis survive higher dimensions? One of the issues at hand is that even
for 2-orders the cardinality of Ω2d grows rapidly with n and hence thermalisation
can become a major stumbling block. However, the finite sized scaling analysis of
Glaser et al. (2018) and the techniques used therein, tell us that it suffices to be in the
asymptotic regime. For 2-orders, this is already true around n ∼ 80 and hence the
results of Surya (2012) and Glaser and Surya (2016) are at least qualitatively robust.
Nevertheless, to get to the asymptotic regime in d = 4 will require far more extensive
computational power. Recently, using new sophisticated computational techniques
(Cunningham 2018b), the algorithms of Surya (2012) have been updated, so that
n ∼ 300 simulations can be done in a reasonable time.

An important question, however is how to obtain a dimensionally restricted Ωn

more generally. While 2-orders are a good representation of 2d (topologically trivial)
causal set quantum gravity, this is not true for higher order theoretic dimension. For
d > 2 a d-order is an embedding into a spacewith “light-cubes” rather than lightcones.
Though potentially interesting, this does not serve our more narrowly defined goal of
obtaining a continuum-inspired dimensionally reduced sample space.

Recently, a lattice inspired method has been investigated to generate sample
spaces which are both dimensionally and topologically restricted. These are obtained
as embeddings (not necessarily faithful) into a fixed spacetime, and thus include
manifold-like causal sets. In d = 2, the simplest example comes from causal
sets obtained from sprinkling into the flat cylinder spacetime ds2 = −dt2 + dθ2,
θ ∈ [0, 2π ]. Recently it has been demonstrated that topologically non-trivial lattice
inspired models in d = 2 and d = 3 also exhibit phase transitions similar to 2-orders
(Cunningham and Surya 2019). The next step is to include awider class of embeddings
as well as topology change into the model, and hence bring it closer to a full 2d theory
of quantum gravity.

Of course, 2d causal set quantum gravity without matter does not have a continuum
counterpart, since 2d continuum quantum gravity is coupled to a scalar field (for exam-
ple, Liouville gravity). Studying 2d CST with matter is therefore an open interesting
question. In Glaser (2018), Ising spins were coupled to the causal set by placing a spin
si = ±1 at every element ei and coupling spins along the links, i.e.,

SI ( j) ≡ j
∑

ik

si sk Lik , (91)

where Lik is the link matrix and j the spin coupling constant. The phase structure of
this model coupled to the BD action is substantially richer. In particular, the hope is
that some of the resulting phase transitions are of higher order and hence comparisons
with conformal field theories might be possible. Further analysis of this model would
definitely be useful and interesting.

In the MCMC simulations discussed above, labelled posets are used for practical
reasons, since this is how they are stored on the computer. A single unlabelled poset
admits many relabellings or “automorphisms”, but the number of relabellings varies
from poset to poset even for the same cardinality. For example, in the list of coloured
or labelled 3-element causal sets in Fig. 20, we see that there is only one 3-element
causal set with three distinct natural labellings, while all the others admit only one
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natural labelling. Enumerating the number of automorphisms for a given causal set
quickly becomes very difficult as n increases.

In the continuum path integral, the “correct” measure in a gauge theory involves
the volume of the gauge orbits. In this discrete setting, as we have discussed above, the
analogous gauge orbits corresponding to to the automorphisms, are not of the same
cardinality for each c ∈ Ω̃n .

Indeed, the choice of measure is not obvious in CST since it is not merely a dis-
cretisation of the continuum theory, with the path sum Eq. (84) including causal sets
that are non-manifold-like. There is no underlying order theoretic reason to pick the
specific BD action; we have done so, “inspired” by the continuum. For continuum like
causal sets of a fixed dimension the number of relabellings is approximately the same,
so that they appear roughly with the same weight in the path integral. However, it is
the relative weight compared the non-continuum-like causal sets that depends on the
relabellings. In the classical sequential growth model described above, the labelling
is related to temporality and hence the choice of a uniform measure on the set of
labelled causal sets Ω̃g is a natural one. In the MCMC simulations, therefore we pick
a measure that is uniform on Ω̃n , rather than on the unlabelled sample space Ωn .
Causal sets that admit more relabellings come with a higher natural weight than those
that admit fewer relabellings. However, discrete covariance or label invariance is not
compromised since the observables themselves are label independent.

While these numerical simulations have uncovered a wealth of information about
the statistical thermodynamics of causal sets, one must pause to ask how this is related
to the quantum dynamics, as β → −iβ. There is for example no analogue of the
Osterwalder–Schrader theorems to protect the results we have obtained in the MCMC
simulations. Pursuing these questions further is important, though finding definitive
and rigorous answers is perhaps beyond the scope of our present understanding ofCST.

7 Phenomenology

While the deep realm of quantum gravity is extremelywell shielded from experimental
probes in the foreseeable future, it is possible that certain properties of quantum grav-
ity can “leak” into observationally accessible regimes. This is the reason for the push,
in the last couple of decades, for exploring quantum gravity phenomenology. Without
a full theory of quantum gravity, of course there is little hope that any phenomenology
is entirely believable, since it requires assumptions about an incomplete theory. Nev-
ertheless, quantum gravity phenomenology can be useful in setting realistic bounds
on these leaked out properties, and hence constrain theories of quantum gravity, albeit
weakly. Models of quantum gravity phenomenlogy moreover use distilled properties
of the underlying theory to build reasonable models that can be tested. Some of these
properties are unique to a given approach.

In CST spacetime discreteness takes a special form and brings with it a special type
of non-locality that can affect observable physics. We have already encountered the
possibility of voids in Sect. 3 as well as the propagation of scalar fields from distance
sources in Sect. 5. The continuum approximation of CST is Lorentz invariant and con-
sistent with stringent observational bounds as summarised in Liberati and Mattingly
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(2016). In addition, as suggested by Dowker et al. (2004), there is the possibility of
generating very high energies particles through long time diffusion in momentum
space. This arises from the randomness of CST discreteness, which cause particles to
“swerve”, or suddenly change their momentum, as they traverse the causal set underly-
ing our universe (Philpott et al. 2009; Contaldi et al. 2010). This spacetime Brownian
motion was calculated in M

d and can be constrained by observations (Kaloper and
Mattingly 2006), but an open question is how to extend the calculation to our FRW
universe.

There have been some very interesting recent ideas by Belenchia et al. (2016b) for
testing CST type non-locality via its effect on propagation in the continuum using the
d’Alembertian operator. Belenchia et al. (2015) have looked at the associated quantum
field theorywhich contain critical instabilities. These can be removed bymodifying the
d’Alembertian, but the relationship to CST is unclear. Saravani and Afshordi (2017)
have proposed a candidate for dark matter as off-shell modes of the non-local CST
d’Alembertian. This is an exciting proposal and should be investigated in more detail.

Wewill not review these very interesting ideas onCST phenomenology here, except
one, namely the prediction of Λ.

7.1 The 1987 prediction for3

One of the most outstanding questions in theoretical physics is understanding the
origin of “dark energy” which observationally has been seen to make up ∼70% of
the total energy of the universe. The current observational value is∼ 2.888× 10−122
in Planck units. Quantum field theory predictions for dark energy interpreted as the
energy of vacuum fluctuations of quantum fields on the other hand gives a huge value,
perhaps as large as∼ 1 in Planck units. The gross conflict with observation obviously
implies that this cannot be the source of Λ.30

In light of this conundrum, theCSTprediction forΛ due to Sorkin (1991) is startling
in its simplicity and accuracy, especially since it was made several years before the
1998 observation. One beginswith the framework of unimodular gravity (Sorkin 1997;
Unruh andWald 1989) inwhich the spacetime volume element is fixed.Λ then appears
as a Lagrange multiplier in the action, with Λ

∫
dV = ΛV = constant, for any finite

spacetime region of volume V . In a canonical formulation of the theory, therefore
Λ and V are conjugate to each other, so that on quantisation there is an uncertainty
relation

ΔV ΔΛ ∼ 1. (92)

Using the fact thatΔV is generated from Poisson fluctuations of the underlying causal
set ensemble

ΔV ∼ √V . (93)

30 On the other hand, it would be interesting to understand why the back of the envelope quantum field
theory calculation is not observationally relevant. Interesting insights into this question could come from a
better understanding of the SJ vacuum in de Sitter spacetime.
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Assuming 〈Λ〉 = 0, moreover, we see that

Λ ∼ 1√
V
∼ H2 = 1

3
ρcritical (94)

where H is the Hubble constant. If V is taken to be the volume of the visible universe,

Λ = ΔΛ ∼ 10−120, (95)

in Planck units. This is very close to the subsequently observed value ofΛ! Importantly,
the prediction also states that that under these assumptions,Λ always tracks the critical
density and is hence “everpresent”.

This argument is general and requires three important ingredients: (i) the assump-
tion of unimodularity and hence the conjugacy between Λ and V , (ii) the number
to volume correspondence V ∼ n and (iii) that there are fluctuations in V which
are Poisson, with δV = √V ∼ √n. While (i) can be motivated by a wide range
of theories of quantum gravity, (ii) and (iii) are both distinctive to causal set theory.
No other discrete approach to quantum gravity makes the n ∼ V correspondence at
a fundamental level and also incorporates Poisson fluctuations kinematically in the
continuum approximation. Quoting from Sorkin (1991), “Fluctuations in Λ arise as
residual nonlocal quantum effects of spacetime discreteness”. Interestingly, as shown
by Sorkin (2005a), if spacetime admits large extra directions, then the contribution to
V is very different and gives the wrong answer for ΔΛ.

Of course, an important question that arises in this quick calculation is why we
should assume that 〈Λ〉 = 0.31 The answer to this may well lie in the full and as
yet unknown quantum dynamics. Nevertheless, phenomenologically this assumption
leads to further predictions that can already be tested. The first conclusion is that a
fluctuating Λ must violate conservation of the stress energy tensor, and hence the
Einstein field equations.

In Ahmed et al. (2004), a dynamical model for generating fluctuations of Λ was
constructed, starting with the flat k = 0 FRW spacetime. In order to accommodate a
fluctuating Λ, one of the two Friedmann equations must be dropped. In Ahmed et al.
(2004), the Friedmann equation

3

(
ȧ

a

)2

= ρ + ρΛ (96)

was retained,32 with

ρΛ = Λ, pΛ = −Λ− Λ̇/3H , (97)

31 In Samuel and Sinha (2006), a very striking analogy was made between a fluctuating Λ and the surface
tension T of a fluid membrane. In addition, using the atomicity of the model, the mean value of T was
shown to be zero, with a suggestion of how this might extend to CST.
32 Subsequently, more general “mixed equation” models were examined in Ahmed and Sorkin (2013),
which indicate that the results of Ahmed et al. (2004) are robust to these modifications.
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and Λ modelled as a stochastic function of V , such that

ΔΛ ∼ 1√
V

. (98)

More generally, Λ can be thought of as the action S per unit volume, which for
causal sets means thatΛ ∼ S/V . A very simple stochastic dynamics is then generated
by assuming that every element contributes ±� to S, so that

S =
∑

elements

±�⇒ S/� ∼ ±√N ∼ ±
√

V /l4p ⇒ Λ ∼ ±�/l2p√
V

, (99)

where we have equated the discreteness scale lc with the Planck length l p. One then
gets the integro-differential equations

da

a
=

√
ρ +Λ

3
dτ

V dΛ = V d(S/V ) = d S −ΛV̇ dτ ,

where

V (τ ) = 4π

3

∫ t

0
dt ′a(t ′)3

(∫ t ′

0
dt ′′ 1

a(t ′′)

)3

(100)

is the volume of the entire causal past of an event in the FRW spacetime. The stochastic
equation is then generated as follows. At the i th step one has the variables ai (scale
factor), Ni , Vi , Si and Λi . The scale factor is updated using the discrete Friedmann

equationai+1 = ai+ai

√
ρ+Λ
3 (τi+1−τi ), fromwhichVi = V (τ ) can be calculated and

thence Ni+1 = Vi+1/�4. The action is then updated via Si+1 = Si +α ξ
√

Ni+1 − Ni ,
where ξ is aGaussian randomvariable, with Δξ = 1, andα is a tunable free param-
eterwhich controls themagnitude of the fluctuations. Finally,Λi+1 = Si+1/Vi+1, with
S0 = 0. It was shown in Ahmed et al. (2004) that in order to be consistent with astro-
physical observations, 0.01 < α < 0.02. The results of simulations moreover suggest
that Λ is “everpresent” and tracks the energy density of the universe.

This model assumes spatial homogeneity and it is important to check how inho-
mogeneities affect these results. In Barrow (2007) and Zuntz (2008), inhomogeneities
were modelled by taking Λ(xμ), such that ΔΛ(x) is dependent only on Λ(y) for
y ∈ J−(x). This would mean that well separated patches in the CMB sky would con-
tain uncorrelated fluctuations inΩΛ, which in turn are strongly constrained to< 10−6
by observations and hence insufficient to account for Λ. In Ahmed et al. (2004) and
Zwane et al. (2018), it was suggested that quantum Bell correlations may be a possible
way to induce correlations in the CMB sky. However, incorporating inhomogeneities
into the dynamics in a systematic way remains an important open question.
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In Zwane et al. (2018), a phenomenological model was adopted which uses the
homogeneous temporal fluctuations in Λ to model a quintessence type spatially inho-
mogeneous scalar field with a potential term that varies from realisation to realisation.
UsingMCMCmethods to sample the cosmological parameter space, and generate dif-
ferent stochastic realisations, it was shown that these CST inspired models agrees with
the observations as well as ΛC DM models and in fact does better for the Baryonic
Acoustic Oscillations (BAO) measurements. The very extensive and detailed analysis
of Zwane et al. (2018) sets the stage for direct comparisons with future observations
and heralds an exciting phase of quantum gravity phenomenology.

8 Outlook

CST has come a long way in the last three decades, despite the fact that there are only a
few practitioners who have been able to dedicate their time to it. Over the last decade,
in particular, there has been a growth of interest with inputs from the wider quantum
gravity community. This is heartening, since an extensive exploration of the theory is
required in order to make significant progress. It is our hope that this review will spark
the interest of the larger quantum gravity community, and continue what has been a
productive dialogue.

We have in this review touched upon several open questions, many of which are
challenging but some of which are straightforward to carry out.Wewill not summarise
these but just pick two that are of utmost importance. One is the the pursuit of CST-
inspired inhomogeneous models of fluctuatingΛwhich can be tested against the most
recent observations. The second, on the other side of the quantum gravity spectrum,
is the construction from first principles of a viable quantum dynamics for causal sets.
Between these two ends lie myriad interesting questions. We invite you to join us.
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A Notation and terminology

We list some of the more widely used definitions as well as the abbreviations used in
the paper.
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Definitions

Relation: e, e′ ∈ C are said to be related if e ≺ e′ or e ≺ e′.
Link: e ≺ e′ ∈ C is said to be a link if � e′′ ∈ C such that

e′′ 
= e, e′ and e ≺ e′′ ≺ e′.
Hasse diagram: In a Hasse diagram, only the nearest neighbour relations or

links are depicted with the remaining relations following
from transitivity (see Fig. 4).

Valency: The valency v(e) of an element e in a causal set C is the
set of elements in C that are linked to e.

Order Interval: The order interval between the pair ei , e j ∈ C is the set
I[ei , e j ] ≡ Fut(ei ) ∩ Past(e j ) where Fut(x),Past(x) are
the exclusive future and past of x .

Labelling: A labelling of the causal setC of cardinality n is an injective
map L : C → N, where N is the set of natural numbers.

Natural Labelling: A labelling L : C → N is called natural if ei ≺ e j ⇒
L(ei ) < L(e j ).

Total Order: A poset C is totally ordered if for each pair ei , e j ∈ C ,
either ei ≺ e j or e j ≺ ei .

Chain: A k-element set C is called a chain (or k-chain) if it is a
totally ordered set, i.e., for every ei , e j ∈ C either ei ≺ e j

or e j ≺ ei .
Length of a chain: The length of a k-chain is k − 2.

Antichain: A causal setC is an antichain if no two elements are related
to each other.

Inextendible Antichain: A subsetA ⊆ C is an inextendible antichain in C if it is an
antichain and for every element e ∈ C\A (where \ is set
difference) either e ∈ Past(A) or e ∈ Fut(A) (see Eq. (3)).

Order Invariant: O :→ R is an order invariant if it is independent of the
labelling of the causal set C . It is possible to replace R by
a more general field, but since this has not been explicitly
used here, the above definition is sufficient.

Manifold-like: A causal set C is said to be manifold-like if C has a con-
tinuum approximation.

Alexandrov interval: This is the generalised causal diamond in (M, g),A[p, q] ≡
I+(p) ∩ I−(q), p, q ∈ M .

Sample Space Ω: This is a collection or space of causal sets.
Non-locality parameter: ε ≡ ρκ/ρc appears in the BD action.

Abbreviations in alphabetical order

BD action: Benincasa–Dowker action (see Sect. 4.5).
BLMS: Bombelli, Lee, Meyer and Sorkin’s CST proposal (Bombelli et al.

1987).
CSG: Classical sequential growth dynamics (see Sect. 6.1).
CST: Causal set theory.
GHY: Gibbons–Hawking–York (see Sect. 4.6).
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GNN: Gaussian normal neighbourhood.
HKMM theorem: Hawking–King–McCarthy–Malament theorem (see Sect. 2).

KR posets: Kleitman–Rothschild posets (see Sect. 3.1).
MCMC: Markov Chain Monte Carlo (see Sect. 6.4).

QSG: Quantum sequential growth dynamics (see Sect. 6.3).
RNN: Riemann normal neighbourhood.

SJ vacuum: Sorkin–Johnston vacuum (see Sect. 5.2).
SSEE: Sorkin spacetime entanglement entropy (see Sect. 5.3).
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