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Abstract 

A wide variety of complex systems are characterized by interactions of different types 
involving varying numbers of units. Multiplex hypergraphs serve as a tool to describe 
such structures, capturing distinct types of higher-order interactions among a collec-
tion of units. In this work, we introduce a comprehensive set of measures to describe 
structural connectivity patterns in multiplex hypergraphs, considering scales from node 
and hyperedge levels to the system’s mesoscale. We validate our measures with three 
real-world datasets: scientific co-authorship in physics, movie collaborations, and high 
school interactions. This validation reveals new collaboration patterns, identifies trends 
within and across movie subfields, and provides insights into daily interaction dynam-
ics. Our framework aims to offer a more nuanced characterization of real-world systems 
marked by both multiplex and higher-order interactions.

Keywords: Higher-order networks, Multiplex networks, Complex networks, 
Hypergraph algorithms

Introduction
From biological organisms to social groups, both natural and artificial systems demand 
sophisticated modeling tools to accurately capture their fundamental properties. Under-
standing how to represent interactions in such complex systems is crucial for unraveling 
their intricate architecture and emergent functionality. Networks have long offered a 
common language for studying these systems, representing units as nodes and interac-
tions as dyadic links (Boccaletti et al. 2006; Cimini 2019). However, this approach over-
looks group interactions involving three or more nodes, which are essential in systems 
where higher-order interactions are prevalent (Battiston 2020, 2021; Torres et al. 2021; 
Battiston and Petri 2022). Examples include collaboration networks (Patania et al. 2017), 
human face-to-face interactions (Cencetti et al. 2021, folksonomies (Ghoshal et al. 2009), 
species interactions within complex ecosystems (Grilli et al. 2017), brain networks (Petri 
2014), and cognitive associations (Citraro 2023).

Hypergraphs (Berge 1973), able to explicitly encode group interactions as hyperedges, 
have emerged as a popular framework to represent higher-order networks (Battiston 2020, 
2021). Recently, significant effort has been dedicated to the characterization of hypergraphs, 
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from centrality (Benson 2019; Tudisco and Higham 2021) and clustering (Benson et  al. 
2018) measures, to backboning (Musciotto et  al. 2021, 2022) and reconstruction (Young 
et al. 2021). Investigations into higher-order networks cover both micro- (Lotito et al. 2022, 
2023; Lee et al. 2020) and mesoscale levels (Wolf et al. 2016; Vazquez 2009; Carletti et al. 
2021; Eriksson et al. 2021; Chodrow et al. 2021; Contisciani et al. 2022; Chodrow et al. 2023; 
Ruggeri et  al. 2023; Lotito et al. 2024), unveiling structural principles essential to under-
standing group interactions in real-world systems. These higher-order interactions are 
known to impact the dynamic and collective phenomena within networked systems (Bat-
tiston 2021), affecting processes such as synchronization (Skardal and Arenas 2020; Millán 
et al. 2020; Lucas et al. 2020; Gambuzza 2021; Zhang et al. 2023), diffusion (Schaub et al. 
2020; Carletti et al. 2020), spreading (Iacopini et al. 2019; Chowdhary et al. 2021; Neuhäuser 
et al. 2020) and evolution (Alvarez-Rodriguez 2021).

However, not all interactions in complex systems are alike; they may differ in nature, type, 
and scope. This observation led researchers to introduce the concept of multilayer and 
multiplex networks (Boccaletti 2014; Kivelä 2014), where links are encoded into different 
interaction layers, each representing a distinct type of relationship (De Domenico 2013; 
Battiston et al. 2014). Multilayer and multiplex networks can successfully describe systems 
such as trade networks (Barigozzi et al. 2010), transportations networks (Aleta et al. 2017), 
collaboration networks (Battiston et al. 2016), and the brain (De Domenico 2017). Multiplex 
hypergraphs, where layers encoding hyperedges of different type, could offer a robust tool 
for describing complex systems that involve group interactions of varying types. Despite a 
few exceptions (Vasilyeva 2021) and a significant potential, however, multiplex hypergraphs 
remain relatively unexplored, and a general set of tools for their analysis is still missing.

In this paper, we introduce some basic measures to characterize multiplex networks with 
higher-order interactions, spanning from the node/hyperedge level to the system’s mes-
oscale. We propose measures for the activity of nodes in different layers and orders, as well 
as for node degree correlation. Moreover, we partition nodes in generalists or specialists 
based on how their higher-order degree is spread across layers. We characterize hyperedges 
by examining hyperedge order distributions and overlap in multiple layers. Additionally, we 
introduce measures to quantify the layer-dependent ability to connect either generalist or 
specialist nodes. Finally, we study the correlation of community and core-periphery struc-
tures across layers.

We apply our proposals to three different real-world datasets: scientific co-authorship in 
physics, collaborations in movies and face-to-face interactions in a high school. Our meas-
ures are able to highlight patterns of actors’ collaborations across various film genres, dis-
cern co-authorship trends within and across physics subfields, and offer insights into the 
daily interaction dynamics of students.

Multiplex hypergraphs
Multiplex hypergraphs model systems where interactions among units (i) may belong to 
multiple types and (ii) are not necessarily dyadic, i.e. they may involve more than two units. 
A multiplex hypergraph H is defined as:

H = {H1(V ,E1), . . . ,HM(V ,EM)}
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where each layer α is a hypergraph Hα(V ,Eα) . Each hypergraph Hα(V ,Eα) share the 
same set of entities V. Eα ⊆ P(V ) is the set of all interactions of a specific type α . More-
over, we require |e| ≥ 2 for all e ∈ Eα for any α . In other words, each layer in our frame-
work shares the same set of nodes and represents a distinct set of interactions of the 
same nature. In Fig. 1, we show a simple multiplex hypergraph with 7 nodes and hyper-
edges spread across 3 layers.

We remark that our proposed framework is different from a multiplex representation 
of higher-order interactions where layers are defined by interactions of different order 
(Lucas et al. 2020; Sun and Bianconi 2021).

In this work, we introduce a set of general tools to investigate multiplexity across dif-
ferent system scales in networks with higher-order interactions. We validate our meas-
ures and discuss relevant findings for three distinct real-world datasets:

• aps (Co-authorship network), where nodes are authors, and hyperedges represent 
groups of authors who have co-authored a paper. Each layer collects papers from the 
same subfield of physics, identified by a PACS code (Physics and Astronomy Classifi-
cation Scheme) (Dataset 2021).

• imdb (Co-starring network), where nodes represent actors, and hyperedges repre-
sent the cast of a specific movie. Each layer corresponds to a movie genre.

• high school (Social network), where nodes are students, and hyperedges represent 
groups of students interacting face-to-face, with each layer grouping interactions 
from the same day of the week (Mastrandrea et al. 2015).

Fig. 1 Multiplex hypergraphs represent systems of units that display interactions of different orders and 
different types. Each type of interaction is encoded into a single layer of the hypergraph. All the layers share 
the same set of nodes
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Detailed statistics about datasets are provided in Table 1.

Node properties
We begin by investigating multiplex properties at the node level. The first basic meas-
ure we consider is node activity (Nicosia and Latora 2015). A node i is active at layer α 
if i participates in at least one interaction at layer α . Figure 2 shows statistics on nodes’ 
simultaneous activity across multiple layers. Specifically, the y-axis plots the proportion 
of nodes (from the total node count) active in at least x layers. By definition, these curves 
exhibit a decreasing trend, with variations in the negative slopes reflecting the datasets’ 

Table 1 Statistics about three real-world multiplex hypergraphs

For each layer, we report the number of active nodes N, the number of hyperedges E and their average order d̄ . In the case 
of multiple PACS codes or genres associated with a paper or movie, only one code or genre is randomly selected. H is the 
layer-aggregated hypergraph

aps imdb high school

Layer N E d̄ Layer N E d̄ Layer N E d̄

AMPhys 30375 12562 3.7 Anim 5545 864 9.5 Mo 312 2655 1.3

CM1 63919 27241 3.2 Comedy 69303 9111 13.6 Tu 310 3002 1.2

CM2 103075 58075 4.0 Doc 13357 2007 7.4 We 303 2543 1.2

EMag 57056 30908 2.8 Drama 103163 15384 12.6 Th 295 2529 1.2

EPart 62997 26703 62.2 Family 12968 1274 12.6 Fr 299 2339 1.2

GAA 41535 10670 9.6 Fantasy 14793 1136 15.0

GasPhy 16182 5120 5.3 Horror 28254 2964 11.6

Gen 69074 35940 3.2 Thriller 44188 4739 13.8

IntPhy 48136 17382 3.0

NPhy 50142 20672 16.7

H 315421 219769 12.2 H 195377 37465 12.6 H 327 7818 1.3

Fig. 2 Proportion of nodes active in at least x layers across three different datasets. Colored dashed lines 
indicate the number of layers in each respective dataset
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diversity. While it is uncommon for scientists and actors to be active across more than 2 
or 3 layers, students tend to be active in all layers. In fact, the inactivity of a student in a 
specific layer implies their absence from school on that day.

So far, we have grouped all interactions together, regardless of their order. To obtain 
more detailed insights about higher-order interactions, we can examine node activity for 
each specific interaction order d. To this scope, we introduce a list A of node activity 
matrices, one for each node i:

Similarly, one can define activity from a layer perspective and consider a list B of layer 
activity matrices, one for each layer α:

It can be useful to aggregate information about nodes and define an aggregated layer 
activity matrix L as:

In Fig.  3a, each dataset is represented as a graph where vertices are the layers of the 
multiplex hypergraph and links measure the similarity in activity patterns of two lay-
ers α and β , quantified as the cosine similarity of their node activity matrices Bα and 
Bβ . The thicker the link, the higher the similarity. This figure emphasizes layers that not 
only share common active nodes, but also exhibit similar patterns of participation across 
different hyperedge orders. Particularly, a consistent higher-order similarity is observed 
across school days, reflecting recurring interaction patterns throughout the week. Other 

Ai = {aαd} =
{

1 if i is active at order d in α

0 otherwise.

Bα = {bid} =
{

1 if i is active at order d in α

0 otherwise.

L = {lαd} = |{nodes active at order d in α}|

Fig. 3 a Each dataset is a graph in which vertices represent the layers of the multiplex hypergraphs and 
the thickness of an edge (α,β) quantifies the pairwise cosine similarity of layer activity matrices Bα ,Bβ 
associated with layers α and β . Vertex size is proportional to the number of nodes active in that layer. b Matrix 
L associated with each dataset. Rows are normalized by the number of nodes active in each layer. Interaction 
orders are binned exponentially
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datasets show more heterogeneous behaviour, with documentary casts differing signifi-
cantly from other layers, while drama and comedy casts exhibit similar patterns.

Figure  3b shows the aggregated layer activity matrices L for the three datasets. To 
account for variations in layer size, we normalize each row by the total number of active 
nodes in the respective layer. Distinct collaboration patterns emerge across the subfields 
of physics and movie genres. For instance, scientists in General or Electromagnetic Phys-
ics usually contribute to papers with a smaller number of co-authors, whereas co-author 
groups in fields like Elementary Particles and Nuclear Physics exhibit more variation in 
size. In movie collaborations, actor activity is concentrated in medium-size groups, typi-
cally between ten and twenty members. However, documentaries often feature smaller 
casts, while family and comedy movies tend to have larger ones. The figure once again 
highlights how students at school maintain a consistent group size in their interactions 
throughout the week.

Similar to node activity, node degree (defined as the number of interactions in which a 
node participates) is another property that can be used to measure the activity across the 
different layers and interaction orders. We define a list K of node degree matrices, one for 
each node i:

We use kiα to denote the total number of interactions involving i in layer α , irrespective 
of their order:

where D is the order of the largest interaction in the dataset.
In Fig. 4a, we analyze the correlation of node degree across layers, exploring the extent 

to which a node with a high or low degree in one layer similarly exhibits a high or low 
degree in another layer. The correlation matrix for physics collaborations uncovers a 
hierarchical structure, with strong correlations among specific subfields sharing com-
monalities and notable scientists, such as in Nuclear and Elementary Particles Physics. In 
contrast, the degree correlations among actors are generally weak, though certain gen-
res, like thriller and horror, show similarities. A significant correlation in node degrees 
across consecutive days in high school suggests stable and structured daily interaction 
patterns, implying that individuals with numerous interactions on one day tend to main-
tain similar levels of interactions on subsequent days, and vice versa.

We now define the overlapping degree oi for a node i as the total number of interac-
tions involving i, irrespective of both layers or orders:

It can be interesting to measure (i) how the overlapping degree of a node i is spread 
across the layers, i.e., if the degree is concentrated in certain layers or if it is uniformly 
distributed; (ii) how interactions involving node i are spread across orders. We measure 

Ki =
{kαd} = |{hyperedges of order d

involving i at α}|

kiα =
D
∑

d=1

Kiαd ,

oi =
M
∑

α=1

kiα
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(i) by defining the participation coefficient Pi of a node i of the degree with respect to the 
layers:

where kiα is the degree of node i at layer α , oi is the overlapping degree of node i and M is 
the total number of layers. We measure (ii) by considering the average order of the inter-
actions node i participates in.

In Fig. 4b, we represent each unit i of the different systems on a Cartesian plane, char-
acterizing them across three distinct dimensions: their overlapping degree oi (on the 
y-axis), their participation coefficient Pi (on the x-axis), and the average order of the 
interactions in which they are involved (indicated by color intensity). In general, such 
three dimensions provide different information about connectivity patterns and are only 
weakly correlated, or even uncorrelated. In aps, scientists are spread across the plane in 
terms of degrees and average interaction order, displaying an overall tendency towards 
specialization in a selected number of physics subfields, yet the behavior remains hetero-
geneous. imdb displays isolated outliers with a very high degree, low dispersion around 
the average interaction order, and a general tendency towards uniform participation 
across multiple genres. high school shows students covering the entire spectrum of 
node degrees and average group orders, with an expected tendency to interact uniformly 
across school days.

Pi =
M

M − 1

[

1−
M
∑

α=1

(

kiα

oi

)2
]

Fig. 4 a The heatmap shows the pairwise correlation between the degrees of nodes across different layers. 
The color scale indicates the strength of the correlation, with blue representing low correlation and red 
representing high correlation. b A system unit i  is represented as a point on a Cartesian plane, with the 
overlapping degree oi on the y-axis, the participation coefficient Pi on the x-axis, and the average order of the 
interactions in which the unit is involved indicated by color intensity
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Hyperedge properties
We now turn our attention to the properties of the hyperedges encoding interactions in 
the same three real-world systems.

We begin by considering the simplest measure for characterizing higher-order 
interactions, namely, the order of the groups. In Fig. 5, we plot the hyperedge order 
distribution disaggregated by layers. aps and imdb reveal heterogeneity across lay-
ers, suggesting that different physics subfields and movie genres exhibit distinct pat-
terns of collaboration in terms of the number of people involved in a paper or a movie 
cast. For example, genres such as documentaries and animated movies typically fea-
ture fewer actors compared to other genres. Conversely, papers in Elementary Parti-
cles and Nuclear Physics often include a larger number of authors compared to those 
in other areas of physics. The distributions in high school are stable across layers, 
indicating that patterns of face-to-face interactions tend not to change over the days, 
with a general preference for smaller groups over larger ones.

Another property frequently studied in the context of multiplex networks is edge 
overlap, which measures the extent to which interactions among the same nodes 
tend to repeat across multiple layers. We define hyperedge overlap as the maximum 
number of layers in which an interaction repeats exactly. In Fig.  6, we present the 
distribution of hyperedge overlap, including information about the order of the inter-
actions. As expected, aps displays a high degree of hyperedge overlap, indicating that 
the same set of scientific authors consistently interact across multiple areas of phys-
ics. Conversely, for actors, hyperedge overlap decays very rapidly. Small interactions 
typically exhibit a higher degree of overlap than large interactions. Historically, edge 
overlap in multiplex networks with higher-order interactions has often been investi-
gated by projecting hyperedges at different layers into cliques, frequently resulting in 
extremely high values of edge overlap. Our analysis suggests that patterns of hyper-
edge overlap are more complex and that projections of hyperedges can account for 
the high amount of overlap previously observed (Battiston et al. 2014).

Finally, we assign a score Pe to each hyperedge e, defined in terms of the participa-
tion coefficient of the nodes involved in the interaction:

Fig. 5 Distribution of hyperedge orders disaggregated by layers in each dataset. Colors distinguish between 
different layers, with interaction orders binned exponentially



Page 9 of 14Lotito et al. Applied Network Science            (2024) 9:55  

where |e| represents the number of nodes participating in hyperedge e and Pi is the par-
ticipation coefficient of node i, as defined in the previous section.

This measure captures the tendency of hyperedges to connect nodes that either 
specialize in a few layers or act as generalists across multiple layers. In Fig.  7, we use 
boxplots to show distributions of P for hyperedges in various layers. It is noteworthy 
that layers can display heterogeneous mean values for the participation coefficient of 
their hyperedges. For example, casts in documentaries and co-authors in Nuclear and 
Elementary Particles Physics tend to include specialists. On the other hand, family 
and thriller movies are more likely to feature generalist actors. In high school, lay-
ers exhibit a consistent maximum mean value for the participation coefficient of hyper-
edges, attributed to students’ regular attendance at school each day.

Pe =
1

|e|
∑

i∈e
Pi

Fig. 6 Number of hyperedges as a function of their overlap, i.e., the maximal number of layers in which an 
interaction repeats. Markers are scaled proportionally to the average order of hyperedges. Colored dashed 
lines indicate the corresponding number of layers in each dataset

Fig. 7 Boxplots showing the distribution of hyperedge participation coefficient Pe across layers in each 
dataset
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Mesoscale properties
We finally shift our focus towards mesoscale structures, examining the emergence 
of communities and core-periphery structures within different layers of real-world 
hypergraphs.

Communities are groups of nodes that display a higher degree of connectivity among 
themselves than with the rest of the nodes in the system. In hypergraphs, a community is 
defined as a subset of nodes that tend to form cohesive units by participating in common 
hyperedges. When analyzing multiplex systems, it is typical to examine the similarities 
in community structures observed across various layers. In this direction, we employ a 
method for hard clustering, applied independently to each layer, which is an extension of 
the well-established Infomap algorithm to the case of hypergraphs (Eriksson et al. 2021). 
In general, Infomap minimizes the map equation, which quantifies the description 
length required to represent the random walker’s movements on the network (Rosvall 
et al. 2009). This optimization effectively partitions the network into communities that 
best capture the inherent modular structure. The method is publicly available (Eriksson 
et al. 2021) and we have used default parameters.

To assess the similarity and consistency of community structure across different 
hypergraph layers, we use Normalized Mutual Information (NMI), taking into account 
the set of nodes active in both layers. NMI is defined as:

 where I(C1,C2) denotes the mutual information between partitions C1 and C2 . Mutual 
information quantifies the amount of information shared between the two partitions, 
i.e., measures how much knowing the community structure in one partition informs 
about the structure in the other. H(C1) and H(C2) represent the entropies of the parti-
tions C1 and C2 , respectively. By normalizing the mutual information I(C1,C2) with the 
geometric mean of these entropies, NMI adjusts for the variability in partition sizes and 
the number of communities, allowing for a fair comparison of community structures 
across different partitions. NMI ranges from 0 (indicating no mutual information) to 1 
(indicating perfect agreement).

In Fig.  8a, we present the outcomes of this analysis through heatmaps, highlighting 
the strength of community structure similarities across layers. For example, commu-
nity structures in animation and fantasy movie casts are closely related, as are those in 
comedy and family movie genres, whereas documentary casts show a completely uncor-
related structure. The community structure within high school interactions remains 
consistent across days. Physics collaborations reveal a significant degree of similar-
ity across fields, though some layers exhibit more pronounced similarities than others. 
Overall, communities tend to be preserved within physics subfields and school days, 
while movie genres often demonstrate predominantly uncorrelated communities.

We then direct our attention to core-periphery structures. Core-periphery structures 
delineate the existence of a group of central and tightly connected nodes, the core, sur-
rounded by less densely connected peripheral nodes, forming a distinctive organiza-
tional pattern often crucial for system functionality (Borgatti and Everett 2000).

NMI(C1,C2) =
I(C1,C2)√
H(C1)H(C2)
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We detect core-periphery structure for each layer independently using a method tai-
lored for hypergraphs (Tudisco and Higham 2023). Such a method ranks nodes assign-
ing to each node i a value ci , where ci is a real number within the range of 0 to 1. This 
value delineates the extent to which a node participates in the core (value closer to 1) 
or the periphery (value closer to 0) structure of the system. Vector c is selected for each 
layer α independently. Following the work by Tudisco and Higham (Tudisco and Higham 
2023), for each layer α we select the vector c that optimizes the following function:

This continuous scale allows for a nuanced characterization of each node’s role within 
the core-periphery framework. Additionally, by comparing the coreness score ci for each 
node i across the different layers of a multiplex hypergraph, we can analyze the varia-
tion or consistency of a node centrality across the layers. This method is publicly avail-
able (Tudisco and Higham 2023). We use the implementation from Hypergraphx (Lotito 
2023).

To provide a visually appealing way of highlighting correlations of core-periphery 
structures and node behaviour across layers, Fig.  8b shows heatmaps in which rows 
are layers and columns are nodes, and each entry is coloured depending on node core-
ness. To compare the coreness value of single nodes across layers and visualize to which 
extent it keeps its core value, we maintain a consistent sorting of the nodes on the 
x-axis. For each dataset, nodes are sorted according to their core values in the aggre-
gated hypergraphs (i.e., the hypergraph obtained by dropping information about layers 

max
c

∑

e∈Eα

1

|e|
·

(

∑

i∈e
ci

)

subject to �c�2 = 1 and ci ≥ 0 for all i

Fig. 8 a Heatmaps illustrating the similarity of community structures across layers, measured by Normalized 
Mutual Information (NMI), for the three datasets. In these heatmaps, high NMI values are represented by light 
colors, while low NMI values are represented by dark colors. b Core-periphery score ci across layers for each 
node in the datasets, visualized as heatmaps. Rows are layers and columns represent nodes. Lighter colors are 
higher coreness values. Nodes are consistently sorted across layers based on their coreness in the aggregated 
hypergraphs, i.e., the hypergraph obtained by collapsing all layers into a single layer



Page 12 of 14Lotito et al. Applied Network Science            (2024) 9:55 

and collapsing every hyperedge to a single layer). We observe that coreness values of 
nodes are maintained across layers exhibiting patterns similar to those seen in commu-
nity structure correlations.

Conclusions
Networks have established themselves as a fundamental tool in a variety of disciplines to 
encode and study systems of interacting units. With the idea of capturing richer informa-
tion about interactions, novel and more comprehensive network models have emerged: 
(i) multiplex networks, describing links of different types, and (ii) hypergraphs, encod-
ing non-dyadic ties. Bridging these two notions, in this work we have introduced a gen-
eral set of measures to characterize the structure of multiplex hypergraphs at multiple 
scales. We introduced a description of nodes in terms of higher-order activity patterns 
and degrees, to quantify the extent and magnitude of node participation in interactions 
of different orders across layers. Nodes have been also characterized in terms of how 
their degree is correlated and spread in the different layers, and by their preferred order 
of group interactions. For hyperedges, we have studied their order distribution disag-
gregated by layers, highlighting different patterns of group interactions depending on 
the hyperedge type. We have quantified the extent to which hyperedge tends to repeat 
exactly in multiple layers and we have analyzed the layer-dependant property of hyper-
edges of linking nodes with low or high participation coefficients. Finally, we have ana-
lyzed hypergraphs at their mesoscale, quantifying similarities of communities and 
core-periphery participation across layers. We have validated our proposed measures on 
three datasets from different domains, describing collaboration patterns across physics 
subfields, movie genres and daily interactions among students.

In summary, we believe that our measures can be useful in describing the structure 
of various empirical datasets characterized by both multiplex and higher-order interac-
tions. We also hope that this initial characterization of multiplex hypergraphs will spark 
interest from a methodological perspective, such as proposing frameworks for extract-
ing multiplex communities in hypergraphs. Further characterizations could be enhanced 
by considering the complex patterns of temporality in hyperedges, a common feature of 
higher-order systems (Cencetti et al. 2021; Ceria and Wang 2023; Gallo et al. 2023; Iaco-
pini et al. 2023; Di Gaetano et al. 2024; Arregui-García et al. 2024; Mancastroppa et al. 
2024; Chodrow 2020).
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