
C A S E  S T U DY Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. 
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party 
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by-nc-nd/4.0/.

Dhamo et al. Applied Network Science            (2024) 9:53 
https://doi.org/10.1007/s41109-024-00663-x

*Correspondence:
Xhilda Dhamo
xhilda.merkaj@fshn.edu.al
1Department of Applied 
Mathematics, Faculty of Natural 
Sciences, University of Tirana, 
Tirana, Albania
2EuroMov Digital Health in Motion, 
University of Montpellier, IMT Mines 
Ales, Montpellier, France
3Department of Automation, 
Faculty of Electrical Engineering, 
Polytechnic University of Tirana, 
Tirana, Albania

Synchronization processes in fNIRS visibility 
networks
Xhilda Dhamo1* , Eglantina Kalluçi1 , Eva Noka1, Gérard Dray2 , Coralie Reveille2 , Stephane Perrey2 , 
Gregoire Bosselut2 , Darjon Dhamo3  and Stefan Janaqi2

Introduction
Collective synchronization phenomena are quite popular in various fields of science and 
they have been observed in biology, physical, social, technological, neurological sciences 
for centuries (Pikovsky et al. 2001; Osipov et al. 2007; Arenas et al. 2008; Dörfler and 
Francesco 2014; Jiruska et al. 2013). It is a complex phenomenon in which large groups 
of coupled oscillators, with similar natural frequencies, self- synchronize into coherent 
collective modes of motion and include many variety of biological examples such as con-
gregations of synchronously flashing fireflies, crickets that chirp in unison, an audience 
clapping at the end of a performance, networks of pacemaker cells in the heart, insu-
lin- secreting cells in the pancreas, as well as neural networks in the brain and spinal 
cord that control rhythmic behaviors such as breathing, walking and eating (Sherman 
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Abstract
We employ Kuramoto model to assess the presence of synchronization in individuals 
who fulfill a cooperation task. Our input data is a couple of signals obtained 
from functional Near-Infrared Spectroscopy Data Acquisition and Pre-processing 
technology that is used to capture the brain activity of an individual by measuring 
the oxyhemoglobin (HbO) level. We consider 1 min signal for individuals in three 
distinct states: (i) rest; (ii) before a disturb happens; (iii) after the disturbance. We 
estimate global and local order parameters synchronization with the purpose 
to compare the conditions of reaching a synchronous state in the networks 
corresponding to different states for distinct individuals and hemispheres of the 
prefrontal cortices of same individual. Experimental results confirmed once more 
that coherent state is reached not for same conditions in both individuals and 
hemispheres of the prefrontal cortices. Furthermore, condition changes even for 
different events. The computation of the effective frequencies for each degree class 
indicates clearly the network difference in rest, before and after disturb. Finally, we 
investigate the dynamic connectivity matrix and consider the similarity between 
distinct prefrontal cortices over time.
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and Rinzel 1991; Timme and Wolf 2008; Osipov et al. 2009; Ma and Tang et al. 2015; 
Ramírez-Ávila et al. 2018). A classical approach to the problem of synchronization con-
sists on modelling each component of the population studied as a phase oscillator. One 
of the most popular models of coupled phase oscillator is the Kuramoto model (KM), 
firstly studied in all- to- all coupled oscillators (Acebrón et al. 2005) and years later has 
been proposed in complex networks (Rodrigues et al. 2016). Researches in this field 
reflect the importance of KM in describing a wide variety of synchronization processes: 
phase synchronization (Rosenblum et al. 1996; Arenas et al. 2006a, b; Fell and Axmacher 
2011), cluster synchronization (Lu et al. 2010; Pecora et al. 2014; Sorrentino et al. 2016), 
explosive synchronization (Gómez-Gardeñes et al. 2011; Boccaletti et al. 2016; D’Souza 
et al. 2019), chimera states (Abram and Strogatz 2004; Wolfrum and Omel’chenko 2011; 
Schöll 2016) etc. In this paper we are focused on the investigation of the phase synchro-
nization in functional Near-Infrared Spectroscopy Data Acquisition and Pre-processing 
(fNIRS) visibility networks.

Visibility graphs provide a powerful technique to study time series in the context of 
complex networks (Lacasa et al. 2008). Through these techniques, time series can be 
mapped onto complex networks (both directed and undirected; weighted and non- 
weighted) and their structure and dynamics can be studied by means of the complex 
networks. Studies on visibility networks have been focused primarily on two distinct 
directions: (i) canonical dynamics such as stochastic and chaotic processes (Brú et al. 
2017; Gonçalves et al. 2016; Lacasa et al. 2009; Luque et al. 2011, 2013); (ii) a feature 
extraction procedure to make statistical learning (Bhaduri and Ghosh 2016; Hou et al. 
2016; Long et al. 2014). In the literature, the reader can find a lot of papers using visibil-
ity networks in neuroscience studies: analysis of the electroencephalogram (EEG) data 
(Mira- Iglesias et al. 2016; Bhaduri and Ghosh 2016); functional magnetic resonance 
imaging (fMRI) data (Sannino et al. 2017); and fNIRS data (Dhamo et al. 2024).

Inter- brain synchrony in individuals, computed by using the time series of brain sig-
nals refers to the dynamical and complex way how two brains communicate and syn-
chronize with each- other during social interaction (Li et al. 2021). Recently, scientists 
have used fNIRS technology to measure the brain activity of individuals during social 
interactions and then employing the Wavelet Transform Coherence approach to esti-
mate the synchronization between human brains through the whole time duration of 
the experiments conducted (Li et al. 2021; Wang et al. 2022). In this paper, we extend 
our previous study (Dhamo et al. 2024) by modelling the fNIRS data acquisition and 
pre-processing time series as undirected and unweighted networks employing the vis-
ibility criteria and then analyzing the KM in the constructed networks. Here, we are not 
focused on analyzing the inter- brain synchronization between brains of different indi-
viduals, but we consider each individual separately and concentrate in different brain 
regions of same individual with the purpose to compare the conditions of synchroniza-
tion in different brain regions. During the time duration of the experiment, the partici-
pants passed three different events: (i) rest event, where participants were doing nothing; 
(ii) before disturbance (five minutes after the beginning of the experiment a disturbance 
were given to the participants); (iii) after disturbance. The fNIRS technology measured 
the brain activity (Li et al. 2021) by capturing the oxyhemoglobin (HbO) signals using 
the optodes positioned in the left and right hemispheres of the prefrontal cortices (PFC) 
of the participants in the experiment. Our approach consists on three consecutive 
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moments: (i) firstly, we obtain the brain activity time series from fNIRS technology as 
described before; (ii) secondly, we model the time series describing the brain activity of 
one PFC in one specific event as a network by employing the visibility graph technique. 
This means that each participant will result in two networks for each event (rest, before 
and after disturbance event); (ii) thirdly, we apply Kuramoto model in all the networks 
constructed based on the specifications provided in Sect. 3.2 of this study and aim the 
study at three targets: (i) the computation of the values of the complex order parameter 
for all networks in each event and compare the values of the coupling strength for which 
the coherent state between oscillators is reached for different participants and events; 
(ii) the computation of the effective frequencies within a degree class to describe the 
evolution of the dynamics for each node in the networks constructed; (iii) the computa-
tion of the dynamic connectivity matrix for all networks and evaluating the similarity 
between connectivity matrices during the simulation time for all combinations of the 
PFC. To our knowledge, the studies in this field addresses the problem of inter- brain 
synchronization and does not explore the synchronization phenomena of different brain 
regions, which is why we have not included a comparative study of our approach to oth-
ers in this paper.

The Kuramoto model can model the synchronization phenomena in time series, 
without the need of network representations, however it has its own limitations. Time 
series analysis focuses on the temporal evolution of individual oscillators, but does not 
provide insights into how the structure of interactions between these oscillators influ-
ences synchronization. Network representations, on the other hand, capture how the 
arrangements and connections between oscillators affect the synchronization dynamic. 
Furthermore, when considering large systems of many oscillators, time series may lead 
to information overloaded, which makes it difficult to capture meaningful patterns, 
whereas networks can capture this information by using different structural features 
such as centrality or community structures (Lotfi et al. 2018; Courson et al. 2023). In 
addition, time series can indicate when and how synchronization happens, but they are 
less effective at analyzing collective behaviors, like the formation of synchronized clus-
ters or communities of oscillators (Böhm et al. 2010; Favaretto et al. 2017). These are the 
reasons, why we analyze Kuramoto model on the networks constructed by time series 
and not directly on time series.

The rest of the paper is organized as follows. In the second section we introduce the 
visibility graph approach to map time series into networks and its properties and give 
the mathematics behind the KM in studying synchronization in undirected, unweighted 
networks. The third section describes the generation of the data used in this study. In 
addition, we provide the reader with results obtained when studying and analyzing syn-
chronization dynamics using KM in brain activity data. Conclusion summarizes once 
more all the work conducted and results obtained from our analysis.

Background and methods
Throughout this paper we will refer to a graph (network) as a pair G = (V, E) where V  is 
called the vertex set and E  is the edge set. This study is focused only on undirected and 
unweighted networks with symmetric adjacency matrix A whose entries are aij = 1 if 
there exists a link between nodes i  and j  and 0 otherwise (Newman 2018; Estrada and 
Knight 2015, Barabási and Pósfai 2016; Boccaletti et al. 2006).
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We will refer to node degree, the number of edges adjacent to a given node and node 
degree distribution as the probability distribution of the degrees across all nodes in the 
network (Newman 2018).

The visibility graph

The construction of the visibility graph is described in detail in (Lacasa et al. 2008, 2009, 
2012). Let’s consider a time series with N  data measured at times ti, i = 1, 2 , . . . , N  
with values xi, i = 1, 2, . . . , N  and consecutive time points (ti, xi), (tk, xk) and (tj, xj)
. Time points (ti, xi) and (tj, xj) are visible and consequently will become two connected 
nodes in the visibility graph if for any point (tk, xk) between them, they fulfill the follow-
ing inequation:

xk < xj + (xi − xj)
tj − tk
tj − ti

(1)

The network, whose nodes fulfill the above condition has four main properties: it is con-
nected, undirected, invariant under affine transformations of the series data and it can 
be applied to any kind of time series (Lacasa et al. 2008). The construction of visibility 
graph is illustrated schematically in Fig. 1 given a time series with N = 20.

Synchronization dynamic

Synchronization is one of the hottest collective phenomena studied nowadays in com-
plex networks (Boccaletti et al. 2006, 2016). In this study we focus on Kuramoto oscil-
lators where the coupling matrix is a visibility matrix, and provide results referred to 
phase synchronization in our visibility brain networks.

Initially, we consider an unweighted and undirected network which is composed of N  
coupled phase-oscillators and the connections among oscillators are described by the 
adjacency matrix of the network, A  which has the value Aij = 1 if the oscillators i  and 
j  are connected and 0 otherwise. For physicists, the phase of a system refers to one of its 
states. The phase is characterized by some physical properties which can be considered 
as uniform over a macroscopic length scale (Boccaletti et al. 2016). We will denote the 
phase of each oscillator by θ i (t) , i = 1, 2, . . . ., N  and the evolution of each oscillator 
is described by the Kuramoto model:

Fig. 1 Construction of visibility graph corresponding to a univariate time series. Adapted from Lacasa et al. (2008)
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θ̇ i = ω i + λ
∑

N
j=1Aijsin (θ j − θ i) , i = 1, 2, . . . , N (2)

where ω i  represents the natural frequency of the oscillator i  and λ  refers to the 
coupling strength of the connections and here it is considered identical for all the 
connections.

When studying synchronization, we are interested in the transition from the state 
when the phases of the oscillators are different from each other, thus determining an 
incoherent state, to the state when all the oscillators have their phases approximately 
similar and identical (synchronized). This process is referred as phase transition and in 
our problem, it is described by the complex order parameter which quantifies the degree 
of synchronization among N  oscillators for increasing values of the coupling strength λ
:

r (t) eiψ (t) =
1

N

∑
N
j=1e

iθ j(t) (3)

where ψ (t) stands for the average phase of the collective dynamics of the system and 
r (t) ∈ [0; 1] is the degree of synchronization. This is the modulus of the above order 
parameter, where 0 refers to an incoherent state and 1 refers to a fully synchronized state 
of the network.

When studying the average value of the order parameter as a function of the coupling 
strength λ , typically a second-order phase transition occurs, but this depends on the 
distribution of the natural frequencies. In the next section, we have considered a normal 
distribution of the natural frequencies with zero mean and unit variance. We will see 
further that a second-order phase transition is obtained from the incoherent state to the 
synchronized state.

Although the usage and definition of the complex order parameter is suitable for 
mean-field models, it does not provide sufficient information about the local dynamic 
effects. This is the reason that instead of considering a global observable, authors have 
defined a matrix p  of local order parameter which measures the average of the correla-
tion between pairs of oscillators (Arenas et al. 2006a, b):

pij =< cos (θ i (t)− θ j (t)) > (4)

Where the brackets (< > ) stand for the average over initial random phases. Making use 
of this methodology it is possible to trace the time evolution of pairs of oscillators and to 
extract information about clusters composed by pairs of oscillators.

After defining the matrix p , a dynamic connectivity matrix is defined as:

Dt(T )ij =

{
1 if pij > T

0 if pij < T
(5)

Where T  is a given threshold, which is used to convert the correlation matrix p  to a 
binary matrix. Different representation of the matrix Dt (T )  can be obtained by fixing 
the time t  and moving the value of the threshold T . When increasing the threshold, 
more disconnected components are created and otherwise, when decreasing the value 
of the threshold, all the oscillators tend to cluster to the same group. In this study, we fix 
the value of the threshold T  and evolve in time in order to analyze the structure of the 
dynamic connectivity matrix at various time scales.
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In order to analyze in detail the change of the order of the synchronization transition, 
the effective frequencies are computed which describe the evolution of the dynamics for 
each node (oscillator) in the network:

ω eff
i =

1

T

∫ t+T

t

θ̇ i (τ ) dτ , T � 1 (6)

Furthermore, one can compute even the evolution of ω eff
i

 within a degree class k :

< ω >k =
1

Nk

∑
i: ki=kω

eff
i (7)

where Nk  is the number of nodes with degree k  in the network.

Experimental results
Experiment setup

The experiment considered in this study is the same analyzed in our previous paper 
(Dhamo et al. 2024), but here we consider not only one event, but three events happen-
ing during the entire experiment. In summary, there were 18 participants divided into 
9 dyads who took part at the cooperative task called “MapTask”. The task is described 
in Fig. 2. Both participants in one dyad had the same icons on their screen, but one of 
them had a path drawn on its screen, whereas the other one did not have that path. The 
idea was that the second participants had to draw the same path as the first one, based 
only on the instruction given by the first participant. From now on, we will refer as the 
participant pA the one who had the path drawn on his screen and pB the one who had to 
draw the same path.

We were interested in the brain activity of the participants during the time- interval 
of the experiment. The technology used to measure brain activity is fNIRS. Each of the 
participants had two optodes in their PFC: one positioned in the left hemisphere (hL) 
and the other in the right hemisphere (hR). These optodes captured the HbO and deoxy-
hemoglobin (HbR) signals. Considering that the HbO signal is more sensitive to changes 
in cerebral blood flow than the HbR signal, we focused on the HbO signal (Wang et al. 
2022). The dataset used and analyzed in this study is not public, but the reader can assess 
it by contacting the corresponding author.

Figure 3 illustrates the events of the experiment. The first events was the Rest one. No 
participants did nothing during this event. The time duration of the Rest event slightly 

Fig. 2 “MapTask”, pA is on the left and pB on the right
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differs for different participants, but here we consider the first minute of the event. Fur-
thermore, five minutes after the participants started to give instructions and draw the 
path, a disturbance was given to them. Their screen disappeared immediately for a short 
time and then appeared again. In our previous study (Dhamo et al. 2024) we consider 
only the five minutes before the disturbance happened, but here we extend our study 
and consider the HbO signals in the time intervals one minute from the beginning of the 
rest event, one minute before disturb and one minute after disturb. Our intention is to 
analyze the phase synchronization and conditions for which an explosive synchroniza-
tion is present in different participants, in different events and in different PFCs of the 
same participants.

Kuramoto model in fNIRS networks

The HbO signals measured at different events (described in Sect. 3.1) were mapped into 
visibility networks following Lacasa et al. (2008). Since, the time duration is one minute 
in each of the events considered; all the visibility networks have the same number of 
nodes (613 nodes). From now on, we will refer as lPFC (rPFC) to signals measured in 
the left (right) prefrontal cortex hemispheres; pAhL (pAhR) the signals measured at the 
left (right) prefrontal cortex hemisphere of the participant pA; pBhL (pBhR) the signals 
measured at the left (right) cortex hemisphere of the participant pB.

In this section we consider natural frequencies from normal distribution with zero 
mean and unit variance. The Kuramoto model is executed for all the networks con-
structed and obtained the evolution of the phases θ i, i = 1, 2, . . . ., 613 for all the net-
works for different values of the coupling strengths. The value of the coupling strength 
needed to obtain the stationary state depend on different networks. In Rest networks, 
the values of the coupling strength are taken from interval [0; 1] with step of 0.01. The 
complex order parameter is computed using Eq. (2) within the stationary state. Since the 
natural frequencies are taken randomly, we repeat the execution of the Kuramoto model 
20 times for each network and then computed the final complex order parameter as the 
average of the order parameters obtained in each execution. The model is programmed 

Fig. 3 Rest, train and experiment events for the HbO signals in two participants. Green vertical lines stands for the 
beginning and ending of each event
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in Matlab and we use Runge-Kuta 4-th order to solve numerically systems of differential 
equations.

The results of the complex order parameter computed for networks in the (i) rest; (ii) 
before disturb; and (iii) after disturb events are illustrated in Figs. 4, 5 and 6 respectively. 
It is observed that in the 78% of the After Disturb networks, it is needed a bigger value 
of the coupling strength to obtain the coherent state between oscillators compared to 
the Rest and Before Disturb networks. The Rest networks corresponding to the hL (Dyad 
1, 2, 3, 4, 5, 6, 9) achieve the coherent state for smaller values of the coupling strength 
then the Rest networks corresponding to hR in both pA and pB. There is a big change 
between the phase- transition of the hL and hR for pA in Dyad 1, 3, 4, and 9 from the 
incoherent state up to the stationary state. In Dyad 9 both lines in pA and pB intersect 
each other: for small values of the coupling strength the hR provide a higher value of 

Fig. 5 Complex order parameter in Before Disturb networks. A refers to pA and B pB. The main plot illustrates the 
order parameter for pA and inset for pB. Blue color stands for hL and red color for hR

 

Fig. 4 Complex order parameter in Rest networks. A refers to pA and B pB. The main plot illustrates the order 
parameter for pA and inset for pB. Blue color stands for hL and red color for hR
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the order parameter then the hL, but when increasing the coupling strength only the hL 
reaches the stationary state. So, the hR in Dyad 9, Dyad 3 pA and Dyad 1 pA does not 
reach the stationary state for value of the coupling strength up to the value 1.5.1

Comparing the phase transitions between rest and before disturb networks, it is evi-
dent that they do not follow the same evolution. In Dyads 2, 5 and 6 there is a significant 
change between the values of coupling strength for which synchronization is achieved 
in rest and before disturb networks. On the other hand, Dyad 8 present approximately 
the same transition to the stationary state in both states, whereas for the other dyads the 
change between the coupling strength of different hemispheres becomes smaller.

Considering the networks after disturbance, the results show that in Dyad 3 for both 
pAhL and pAhR and pAhL in Dyad 8, the phase transition curve does not exhibit a 
monotonic increasing evolution toward the stationary state at low values of the coupling 
strength.

Furthermore, we have computed the effective frequencies based on Eq.  (7) within a 
degree class, which describe the evolution of the dynamics for each node in the network. 
Figure 7 illustrates the effective frequencies for all pAhL Rest networks, whereas for the 
other networks the graphical results are provided in the supplementary material 1.

The effective frequencies related to networks corresponding to signals in Rest event 
tend to reach the coherent state faster than the networks corresponding to before and 
after disturb. In the Rest network the coherent state is achieved approximately at the 
same small values of λ . The nodes in the network with higher degree tend to reach faster 
the stationary state. Whereas in Before disturb network (see supplementary material 1) 
the graphical representations of the effective frequency have a different look. This nodes 
with high and low degree become coherent for small values of the coupling strength, 
but it requires increasing the coupling strength to reach the stationary state. This is in 
contrast with Rest networks where the stationary state is reached without as much oscil-
lations as in Before disturb networks. On the other hand, in the After disturb networks 

1 We have visualized the phase transitions lines for values of the coupling strength from 0 to 1 with step 0.01, but for 
the other analyzes we have increased the value of the coupling strength until the stationary state is reached for all net-
works and then computing the effective frequencies and similarities.

Fig. 6 Complex order parameter in After Disturb networks. A refers to pA and B pB. The main plot illustrates the 
order parameter for pA and inset for pB. Blue color stands for hL and red color for hR
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some dyads reveal the same properties as in the Rest networks and some other as in 
the Before disturb networks. We relate these effects with the fact that in Before disturb 
event the human brain is performing a cognitive task and has an activity to deal with, 
whereas in the rest event, the human brain is just resting. Considering the after disturb 
results, there are some dyads which were affected more and some other less from the 
disturbance given in the experiment. The effective frequencies corresponding to After 
disturb events for dyads 3, 4, 5, and 8 display the same evolution as for rest event. These 
dyads did not have a strong impact from the disturbance in contrast from dyads 1, 2, 6, 
and 7 which display a similar evolution as in before disturb event.

Based on Eqs.  (4) and (5) we computed the dynamic connectivity matrix for all net-
works. Our interest is to study the similarity between connectivity matrix during the 
simulation time for combinations:

1. pAhL-pAhR.
2. pBhL-pBhR.
3. pAhL-pBhL.
4. pAhL-pBhR.
5. pAhR-pBhL.
6. pAhR-pBhR.

We employ the mean-square error (MSE) measure to evaluate the similarity between 
two adjacency matrices corresponding to two distinct network. A lower MSE value 
indicates greater similarity between two adjacency matrices. Taking into account all the 
combinations presented in Figs. 8 and 9, and 10, it is clear that the dynamic connectiv-
ity matrices initially exhibit dissimilarity, followed by a decrease in the MSE coefficient. 
However, as the simulation time progresses, the MSE coefficient begins to rise.

Conclusions
In this paper we studied the brain synchronization problem employing the Kuramoto 
model in complex networks. The fNIRS technology was used to measure the brain activ-
ity during cognitive task for 9 dyads in three distinct states. We considered in total 36 

Fig. 7 Effective frequencies related to the pAhL networks considering all dyads. Numbers positioned in upper left 
of each figure correspond to the number of a dyad
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Fig. 10 Similarity in the After Disturb dynamic connectivity matrices

 

Fig. 9 Similarity in the Before Disturb dynamic connectivity matrices

 

Fig. 8 Similarity in the Rest dynamic connectivity matrices
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fNIRS signals. In addition, the visibility graph approach is used to convert signals onto 
networks. Furthermore, we analyse the conditions for which a coherent state is reached 
based on global order parameters (complex order parameters) and on local order 
parameters (dynamics connectivity matrix). Analysing the values of the complex order 
parameters versus the values of coupling strength, we confirmed our previous paper 
results (Dhamo et al. 2024) that the synchronization state is not reached for the same 
conditions, not only for different individuals, but also for different prefrontal cortices 
of the same individual. Furthermore, the conditions change even in different states of 
the experiment. The computation of the effective frequencies clearly shows the differ-
ence between different events. In this paper, we do not study the effects of structural 
components of the networks in the occurrence of the synchronization phenomena both 
theoretical and experimental, but this is our goal for future work. However, we have pre-
sented the results related to structural aspects of fNIRS visibility networks in the ‘before 
disturb’ event at the final Conference of the COST Action “Mathematical models for 
interacting dynamics on networks”. As far as we know, there does not exists any paper 
till now which describes in details the fNIRS visibility networks topology and provide 
insights on the impacts of structural components of these kind of networks in dynamic 
processes.
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