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Abstract 

For simplicity of mathematical modeling of epidemic spreading, the assumption 
is that hosts have identical rates of disease-causing contacts. However, in the real 
world, the scenario is different. The network-based framework allows us to capture 
the complex interdependencies and structural heterogeneity present in real-world 
systems. We examine two distinct scenarios involving the dynamics of susceptible-
infected-recovered (SIR) in interconnected networks. In the first part, we show 
how the epidemic threshold of a contact network changes as a result of being 
coupled with another network for a fixed infection strength. The model employed 
in this work considers both the contact networks and interconnections as generic. 
We have depicted the epidemic threshold curve for interconnected networks, con-
sidering the assumption that the infection could be initially present in either one 
or both of the networks. If the normalized infection strengths are above the thresh-
old curve, the infection spreads, whereas if the normalized infection strengths are 
below the threshold curve, the disease does not spread. This is true for any level 
of interconnection. In the second part, we investigate the spillover phenomenon, 
where the disease in a novel host population network comes from a reservoir network. 
We have observed a clear phase transition when the number of links or the inter-net-
work infection rate exceeds a certain threshold, keeping all other parameters constant. 
We observe two regimes for spillover: a major spillover region and a minor spillo-
ver region based on interpopulation links (fraction of links between two networks) 
and inter-network infection strength (infection rate between reservoir and host net-
work). If the interpopulation links and inter-network infection strength are in the major 
spillover region, the spillover probability is high, while if the former parameters are 
in the minor spillover region, the spillover probability is low. When the number 
of infected individuals within a reservoir network is nearly equal, and the inter-network 
infection strength remains constant, the threshold number of links required to achieve 
the spillover threshold condition varies based on the network topology. Overall, this 
work contributes to the understanding of SIR dynamics in interconnected networks 
and sheds light on the behavior of epidemics in complex systems.
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Introduction
Various types of contagious diseases are found all over the world. It is crucial to prevent 
the spread of these diseases. Consequently, extensive research is being conducted to halt 
their transmission. In addition to other research endeavors, scientists are also crafting 
diverse mathematical models. These models can aid in understanding disease-spreading 
mechanisms, estimating potential outbreak sizes, and formulating more effective mitiga-
tion strategies.

Considerable progress has been made in the realm of mathematical research on epi-
demic diseases, encompassing both theoretical and practical applications. Numerous 
epidemic models are formulated as dynamical systems of ordinary differential equations. 
Delay differential equations have demonstrated their efficacy in capturing the variability 
observed in infectious periods within diverse epidemic models. Furthermore, incorpo-
rating factors like age structure and spatial considerations has contributed to the devel-
opment of partial differential equations (Ji and Jiang 2014).

Compartmental models are also very useful for studying epidemic diseases. These 
models for epidemics are of different types, such as the SIS (Susceptible-Infected-Sus-
ceptible) model, the SIR (susceptible-infected-recovered) model, and the SEIR (suscepti-
ble-exposed-infected-recovered) model, among others (Brauer 2008). In the SIR model, 
infected agents recover and become permanently immune, never becoming infected 
again. The SIR model is particularly effective in explaining diseases like influenza, 
COVID-19, and other contagious diseases.

Many epidemiological models simplify the assumptions regarding the patterns of dis-
ease-causing interactions among hosts. Specifically, in homogeneous-mixing models, it 
is assumed that hosts have identical rates of disease-causing contact. In recent years, 
several network-based approaches have been developed to explicitly model the hetero-
geneity in host contact patterns (Bansal et al. 2007).

A contact network plays a crucial role in facilitating the transmission of epidemics. 
This network is composed of nodes, which correspond to individual agents, and links, 
which signify the connections between any two individuals. At its simplest, a contact 
network takes on a binary form with two distinct values: a non-zero value denoting con-
tact between a pair of individuals and 0 indicating no contact. Each node within this net-
work represents an individual, while the interconnecting links between nodes provide 
insights into the quantity and types of interactions. For instance, these links shed light 
on an individual’s associations with susceptible or infected individuals, thereby offering 
a comprehensive view of the underlying dynamics of disease transmission within the 
network.

In many cases, a single generic network is used to model epidemic diseases, but in 
reality, every network has some interaction with other networks. That’s why the concept 
of interconnected networks is a very critical research area nowadays, especially for epi-
demic disease modeling (Wang et al. 2014; Wang and Xiao 2011).

It is a proven result that in a generic contact network, if the ratio of infection to cure 
rate is less than a particular threshold, the infection cannot survive in the network. 
However, for SIS spreading dynamics in two interconnected networks, the epidemic 
can survive though the infection-to-cure rate in both networks is less than the epidemic 
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threshold (Sahneh et al. 2013a). In that case, we have seen an epidemic threshold curve, 
which is plotted to show the epidemic threshold of one network as a function of effec-
tive infection strength (infection to cure rate) in the other network for a specific level of 
interconnection. To our best knowledge, this result has not been proven for SIR spread-
ing dynamics.

In the initial portion of this paper, we have demonstrated the alteration of the epi-
demic threshold of a specific network due to its coupling with another network, assum-
ing a constant infection strength. However, we have specifically examined the change 
in the epidemic threshold concerning the dynamics of SIR spreading. We have plotted 
three distinct epidemic threshold curves corresponding to three different types of cou-
pling: weak, medium, and strong. We show that for SIR dynamics, although the epi-
demic threshold of both networks is less than the epidemic threshold, the infection can 
still survive in the whole interconnected system.

In our work in depicting the epidemic threshold curve for interconnected networks, 
the consideration has been that few initial infections either die out or invade both net-
works, causing an epidemic.

However, in reality, there are certain diseases where the infection is endemically pre-
sent in one population represented by a contact network, and from that, the disease 
spills to another population represented by another contact network if the two networks 
are interconnected. This event is known as spillover.

In the second portion, we have done significant work on spillover in various network-
based models and obtained a clear phase transition for the probability of spillover. These 
network-based models for spillover include both homogeneous and heterogeneous node 
degree distributions. We have also drawn a spillover threshold curve based on inter-
population link density and inter-network infection strength that divides the entire area 
into two regions: major and minor spillover. If the inter-network infection strength and 
interpopulation link density are in the major spillover region, the probability of spillo-
ver is very high, whereas if the inter-network infection strength and interpopulation link 
density are in the minor spillover region, the probability of spillover is low.

Summarizing the novel contributions of this paper are:

•	 The determination of an epidemic threshold curve for SIR spreading in intercon-
nected networks.

•	 The discovery of a phase transition for spillover as a function of the level of intercon-
nection.

•	 The determination of a major or minor spillover probability region as a function of 
the level of interconnection and inter-network infection strength.

The rest of the paper is organized as follows. “Background” section presents some back-
ground on spillover and interconnected networks. The epidemic threshold curve for SIR 
dynamics in interconnected networks is illustrated in “Modeling SIR spreading in inter-
connected network” section. Modeling spillover and discovering the phase transition 
through extensive simulations are shown in “Modelling spillover” section.
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Background
Multi-layer networks are formed by several networks that evolve and interact with each 
other. These networks are ubiquitous and include social networks, financial markets, 
and multi-modal transportation systems. The multi-layer structure of these networks 
strongly affects the properties of dynamical and stochastic processes defined on them, 
which can display unexpected characteristics (Bianconi 2018).

As the field of network science has dramatically increased, researchers have found 
that most complex systems do not work in isolation. Every complex system depends 
on another complex system to some extent. For example, communication systems 
often depend on the power grid to be operational (Gao et  al. 2022; D’Agostino and 
Scala 2014). So, if there is a failure in any part of an interconnected system, that fault 
propagates to other parts of the system. So, for the proper functioning of an intercon-
nected system, insight into fault propagation mechanisms in an interconnected sys-
tem is very important. This kind of research also provides insight into the robustness 
of the system (Shekhtman et al. 2023). Similarly, research has been done to revive a 
failed network through microscopic interventions. The complex system represented 
by a complex network generally fails due to node, link removal, or due to reduction in 
link weights. But just reversing the topological damage, i.e., reconstruction of links, 
nodes, or increase of link weight, does not guarantee the spontaneous recovery of a 
system. So scientists have come out with a two-step intervention process by which a 
system can be steered towards its functionality after reversing the topological dam-
age (Sanhedrai et  al. 2022). Radicchi et  al. have shown that depending on the rela-
tive importance of inter and intra-layer connection, the entire interconnected system 
can have two regimes; in one regime, various layers act as independent entities, and 
in another regime, the whole system behaves as a single network (Radicchi and Are-
nas 2013). These are some examples of various research conducted on interconnected 
networks.

Interconnected networks are also used to model epidemic spreading. Research-
ers have shown how the epidemic threshold of an interconnected network struc-
ture varies for SIS spreading dynamics without any approximation. They have also 
shown the upper and lower bound of the epidemic threshold and how it is related 
to properties of network parameters (eigenvalue and eigenvector) (Wang et  al. 
2013). Scientists have found that for an interconnected network system, there exists 
a global threshold above which the infection prevails in every network of the sub-
system and below which the infection dies out. Another finding indicated that hav-
ing a diverse structure enhances the likelihood of infection, with this impact being 
particularly noticeable in interconnected network systems (Zhu et  al. 2015). The 
epidemic threshold in two interconnected networks is always lower than any of the 
two-component networks. Moreover, in interconnected networks, interconnection 
correlation has no significant contribution to epidemic size (Wang and Xiao 2012). 
Dickison and colleagues discovered that when considering SIR spreading dynamics 
within a connected network, there are two clear modes. In the case of strongly cou-
pled interconnected networks, there’s a threshold infection strength beyond which 
the epidemic invades the entire interconnected structure, while below this thresh-
old, the epidemics die away. But for weakly coupled networks, a mixed phase exists, 
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where the epidemic does not spread in the whole interconnected system, and inter-
connections affect the less interconnected network mostly (Dickison et  al. 2012). 
The directed interconnected network is also used for epidemic modeling. For vari-
ous types of directed interconnected networks, mathematical expression of R0 . The 
disease will become endemic if R0 is greater than 1; otherwise, it will die out. Cou-
pling can increase R0 and even make a disease endemic. There are certain consid-
erations for epidemic prevalence in a single sub-network, which is only possible in 
directed network (Jia et al. 2019). A new type of model has been made to investigate 
the epidemics on interconnected networks. One contact network has a fixed infec-
tion rate, and another has a periodic infection rate. They have some novel findings 
regarding R0 based on their model and showed the dependence of infection rate and 
other network parameters on R0 (Xu et al. 2019).

In recent years, many works have been done on modeling spillover. Nandi et  al. 
have considered the effect of seasonal variation on transmission and recovery rates 
in the context of spillover. They have focused on the direct transmission of pathogens 
between humans and animals and considered all the infection and recovery rates are 
periodic. A branching process approximation has been applied near the disease-free 
equilibrium to predict the first spillover event. It also shows how the probability of 
spillover depends on the human-to-human infection rate, human-to-animal infection 
rate, and animal recovery rate (Nandi and Allen 2021). Grange et al. have identified the 
host, viral, and environmental risk factors contributing to zoonotic virus spillover and 
spread in humans. They have also developed an interactive web tool that estimates the 
risk score of wildlife-origin viruses and lists a number of viruses based on their risk 
score (Grange et  al. 2021). Ellwanger et  al. have reviewed the basic aspects and the 
main factors involved in zoonotic spillover. The focus was on the role of inter-species 
interaction, phylogenetic distance between host and species, environmental drivers, 
and specific characteristics of the pathogen. They have also shed light on preventing 
zoonotic spillover in various ways (Ellwanger and Chies 2021). Royce et al. have used a 
new mathematical spillover model with an intermediate host. The agents are in three 
categories: wild animals, domestic animals, and humans. They have assumed that the 
pathogen in domestic animals mutates itself and becomes strong enough to infect a 
human. Even though R0 is less than 1 in humans, it can still infect the human popula-
tion (Royce and Fu 2020). A synthetic framework for animal-to-human virus transmis-
sion is proposed by Plowright et  al., and this study integrates the relevant spillover 
mechanism. According to the authors, all zoonotic pathogens must overcome a hier-
archical series of barriers to cause spillover. If any barriers are impenetrable, then 
the spillover cannot happen. They describe these barriers in detail and claim that the 
probability of spillover is determined by the interaction among the barriers and the 
associated bottlenecks that might prevent cross-species transmission (Plowright et al. 
2017). Rees et al. review the mathematical models of spillover. There are two criteria 
for selecting diseases included in models. The first one is the disease must be zoonotic, 
and the second one is the pathogen must be alive for 48 h and should be able to infect 
humans. This appears to describe the scope of future research in zoonotic spillover, 
model validation, and other important information (Rees et al. 2021). We have been 
discussing only zoonotic spillover till now, but recently, spillover from plants has also 
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been spotted. A 61-year-old person with no previous history of the disease has been 
infected by a plant fungus in Kolkata (a city in Eastern India). The scientific name of 
the plant pathogen is Chondrostereum purpureum (Dutta and Ray 2023).

Modeling SIR spreading in interconnected network
One of the most commonly employed compartmental models in epidemic modeling is 
the SIR model, which stands for susceptible-infected-recovered. The SIR model is highly 
popular for understanding and predicting the spread of infectious diseases within a 
population.

S (Susceptible): A susceptible individual is someone who has the potential to become 
infected when exposed to an individual carrying the infection.

I (Infected): The infected individuals represent the people who have already contracted 
the disease and can transmit it to susceptible individuals.

R (Recovered): Recovered individuals are those who have previously been infected 
with the disease and have subsequently overcome it, resulting in immunity and no 
longer being capable of transmitting the infection.

The SIR model on a contact network with N number of agents is shown in Fig. 1.
The equation of the SIR model with a mean-field approximation for ith agent in a net-

work having N number of nodes (without considering demography) is

dSi(t)

dt
= −β · Si(t)




N�

j=1

aijIj(t)




dIi(t)

dt
= β · Si(t)




N�

j=1

aijIj(t)


− δ · Ii(t),

dRi(t)

dt
= δ · Ii(t).

Fig. 1  Schematic of a contact network along with the agent-level stochastic transition diagram for agent i 
according to the SIR epidemic spreading model. β and δ denote the infection and recovery rate, respectively. 
The notation aij is used to represent the connection between agent i and agent j. Specifically, if the value of 
aij is 0, it signifies the absence of a link between the two agents. Conversely, if aij is nonzero, it indicates the 
presence of a link between agent i and agent j. Ij(t) is the state probability of being infected of node j at time t 
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Considering a node denoted by i within a network comprising N nodes, where each 
node is assigned labels ranging from 1 to N. The parameter β is the infection rate, and 
δ is the recovery rate. Si(t) , Ii(t) , Ri(t) denote the state probability of agent i being in 
the susceptible, infected, or recovered compartment, respectively. aij represents an 
entry in the network’s adjacency matrix, where the values can only be 0 or 1. A nonzero 
value indicates a connection between agent i and agent j, while a value of 0 signifies the 
absence of a link between agent i and j. It can also be written that at any point in time, 
Si(t)+ Ii(t)+ Ri(t) = 1.

Generalized epidemic threshold curve

Let us consider two groups of agents of sizes: N1 and N2 . Let’s take the first graph, G1 , 
whose agents are labeled as 1 to N1 , and in the second graph, the agents are labeled as 
(N1 + 1) to (N1 + N2) . The adjacency matrix of graph G1 is denoted by A11 , and the adja-
cency matrix of graph G2 is denoted by A22 . The elements of sub-matrix A12 and A21 
denotes the connection between node i and node j, where node i belongs to graph G1 
and node j belongs to graph G2 . So, the adjacency matrix for the two interconnected 
networks is:

The topology of networks G1 and G2 is undirected. As the interconnection between 
both networks G1 and G2 is undirected, it can be written as A12 = (A21)

T  . The infection 
rates β11,β12,β21,β22 are such that a susceptible agent of graph Gm receives the infec-
tion from an infected agent of graph Gn with the infection rate, βmn for m, n ∈ [1, 2] . 
The recovery rates of the agents of both networks are the same and equal to µ . The 
equations for the change in the state probability of infection of node i at time t for SIR 
spreading dynamics in the interconnected network can be expressed in the following 
manner:

Our assumption is that if there is no interconnection, then infection cannot survive in 
G2 ; that is, β22/µ will be less than the epidemic threshold of G2 . So, in our case, the effec-
tive infection strength β22/µ will be between zero to 1/�(A22) . Here �(A22) is the highest 
eigenvalue of A22.

As the initial fraction of infected individuals is very small, we can assume that 
Si(0) ≈ 1 . So, Eqs. (1) and (2) can be written as follows:

[
A11 A12

A21 A22

]

(1)
dIi(t)

dt
=Si(t) ∗ [β11

N1∑

j=1

aijIj(t)+ β12

N1+N2∑

j=N1+1

aijIj(t)] − µIi(t); i = 1, . . . ,N1

(2)

dIi(t)

dt
=Si(t) ∗ [β21

N1∑

j=1

aijIj(t)+ β22

N1+N2∑

j=N1+1

aijIj(t)] − µIi(t); i = N1 + 1, . . . ,N1 + N2
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To find the epidemic threshold, we follow the approach of Youssef and Scoglio (2011).
Equations (3) and (4) can be written as follows:

The element Lij = ( βaij − µδij ) of Eq. (5) is the element of the Jacobian matrix L defined 
as follows [Eq. (6)].

where δij is the Kronecker delta function and I(N1+N2)(N1+N2) is the identity matrix of 
dimension (N1+ N2)(N1+ N2) . We now perform the spectral analysis of the Jaco-
bian matrix to study the growth or decay of epidemics in interconnected systems. In the 
above-mentioned Jacobian matrix, the elements were in the form of βaij − µδij . How-
ever, instead of using these elements in the form of βaij − µδij , we can write them as 
µ[τaij − δij] , where τ = β/µ . Now a new matrix L̄ can be constructed where each ele-
ment will be in the form [τaij − δij].

For interconnected graphs, this new matrix ( ̄L ) is shown in Eq. (7)

where τ11 = (β11/µ); τ12 = (β12/µ); τ21 = (β21/µ); τ22 = (β22/µ). Thus, we can define 
L = µL̄ . Let us denote the matrix L̄ as [L̃− I] . It is known that a system with nega-
tive eigenvalues indicates that perturbations will decay over time, leading the system 
towards stability. Since the recovery rate, µ , is a positive quantity, it follows that if the 
eigenvalues of [L̃− I] are all less than zero, the disease will not spread throughout the 
entire network system. This insight is crucial for understanding the stability and con-
tainment of epidemic spread in network structures. To ensure the epidemic threshold 
condition is met, the maximum eigenvalue of L̃ must be 1. Given that the overall net-
work is connected, L̃ is an irreducible, non-negative square matrix. The largest absolute 
value of any eigenvalue of a matrix is called its spectral radius. According to the Perron-
Frobenius theorem (Horn and Johnson 2012), for an irreducible, non-negative square 
matrix L̃ , the spectral radius is a real, positive, and simple eigenvalue. Furthermore, the 
corresponding Perron vector is strictly positive. Let V1 and V2 denote the Perron vectors 
when the spectral radius equals 1.

(3)
dIi(t)

dt
≈ [β11

N1∑

j=1

aijIj(t)+ β12

N1+N2∑

j=N1+1

aijIj(t)] − µIi(t); i = 1, . . . ,N1

(4)

dIi(t)

dt
≈ [β21

N1∑

j=1

aijIj(t)+ β22

N1+N2∑

j=N1+1

aijIj(t)] − µIi(t); i = N1 + 1, . . . ,N1 + N2

(5)
dIi(t)

dt
≈

∑

j

LijIj(t).

(6)L =

[
β11A11 β12A12

β21A21 β22A22

]
− µ ∗ I(N1+N2)(N1+N2)

(7)L̄ =

[
τ11A11 τ12A12

τ21A21 τ22A22

]
− I(N1+N2)(N1+N2)
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So, for a spectral radius equal to 1, we can write as follows:

Based on Eq. (8) above, we can write the equations below [(9) and (10)].

Finding the value of V2 from Eq. (10), we get

As V1 is positive, it follows that V2 = τ21(I − τ22A22)
−1A21V1 exists and is non-negative. 

By substituting the expression for V2 into Eq. (11) and then into Eq. (9), we can rewrite 
equation (9) as HV1 = V1 , where H is given by:

We know that the infection process is the result of interactions between pairs of agents. 
It depends on the rate at which the disease is transmitted and the ability of the suscep-
tible to receive the disease. So β11,β12,β21,β22 are not completely independent on each 
other. Following the analysis of the infection rates in any interconnected network (Sah-
neh et al. 2013a), we can write.

As the recovery rates for all the agents are same, we can write the Eq. (13) as

Here α is a positive scalar accounting for the heterogeneity of interconnection and intra-
connection. So, by substituting Eq. (14) in Eq. (12), we obtain

We can update equation (15) as H = τ11HT , where HT can be defined as

As we have stated, Eq. (9) can be expressed in the form of HV1 = V1 , so from Eqs. (15) 
and (16), we can also update the expression HV1 = V1 as

We said V1 is a Perron vector, which is positive, and from the analysis of Sahneh et al. 
(2013a), we can conclude that HT is an irreducible matrix. Therefore, from the Perron-
Frobenius Theorem for irreducible matrices, we can conclude that τ11 is the inverse of 
the spectral radius of HT.

(8)
[
τ11A11 τ12A12

τ21A21 τ22A22

] [
V1

V2

]
=

[
V1

V2

]

(9)τ11A11V1 + τ12A12V2 = V1

(10)τ21A21V1 + τ22A22V2 = V2

(11)V2 = τ21(I − τ22A22)
−1A21V1

(12)H = τ11A11 + τ21τ12A12(I − τ22A22)
−1A21.

(13)β12β21 = α2β11β22

(14)τ12τ21 = α2τ11τ22

(15)H = τ11A11 + α2τ22τ11A12(I − τ22A22)
−1A21.

(16)HT = [A11 + α2τ22A12(I − τ22A22)
−1AT

12]

(17)τ11HTV1 = V1
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If we call the epidemic threshold τ11c , we can say that τ11c is the spectral radius of the 
matrix HT , which is denoted in Eq. (16). So, for any given infection strength τ22 and cou-
pling level, if the τ11 value is lower than τ11c , we can say the epidemic will die out.

The threshold curve

To give an example of application of the results obtained in the previous section, we 
have generated two different realizations of the Watts–Strogatz (WS) model (Watts 
and Strogatz 1998). In layer 1, we have a WS network with 500 nodes, a mean node 
degree of 20, and a rewiring probability of 0.2. In layer 2, we have a WS network with 
100 nodes, a mean degree of 4, and a rewiring probability of 0.1. We have activated 
all potential edges between the two layers with some probability ω for the intercon-
nection of these two graphs. For high, medium, and low interconnection levels, the 
values of ω are respectively 0.2, 0.042, and 0.01. We have generated a plot of the nor-
malized epidemic threshold τc1 = τ11,c�(A11) as a function of the normalized infec-
tion strength τ2 = τ22�(A22) for different interconnection levels. The plot of epidemic 
threshold curves is shown in Fig. 2.

We have taken various normalized epidemic strengths ( τc1 and τ2 ) and found that 
when the epidemic strengths are below the threshold curve, the infection is not spread-
ing, whereas when the infection strengths are above the threshold curve, the infection 
is spreading. This is true for any level of interconnection. Through the following figures, 
we have shown how the number of agents in different compartments varies with time. 
The network topologies are the same Watts–Strogatz models as mentioned earlier. In 
the given scenario where the normalized infection strengths ( τc1 and τ2 ) for both net-
work one and network 2 are 0.4, and the inter-network infection strengths are equal 
with a value of alpha being 1, as well as a recovery rate of 1 for the agents of both net-
works, we observe that the epidemic is spreading when the level of interconnection 
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Fig. 2  Graph of normalized epidemic threshold τc1 = τ11,c∗�(A11 ) as a function of normalized infection 
strength τ2 = τ22∗�(A22 ) with different interconnection levels and α = 1 . The yellow curve is for a strong 
level of interconnection ( ω = 0.2 ), the red curve is for a medium level of interconnection ( ω = 0.042 ), 
and the blue curve is for a low level of interconnection ( ω = 0.01 ). The curve shown in this figure is for the 
above-mentioned small-world network topology
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between the networks are strong (Fig. 3). Conversely, when the level of interconnection 
is weak, the epidemic does not spread (Fig. 3).

We have also plotted the epidemic threshold curves for the Erdos–Renyi network 
(Erdős et  al. 1960) (Fig.  4). The first layer is a Gilbert model with 500 nodes and a 
probability of interconnection of 0.02. The second layer is a Gilbert model with 100 
nodes and a probability of interconnection of 0.1. For this configuration, the epidemic 
threshold curve is shown in Fig. 4.

We have also plotted the epidemic threshold curve for an interconnected network 
system where both the network is an Erdos-Reyni network of 500 nodes, and the 
probability of interconnection is 0.02. The curve is shown in Fig. 5.
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Fig. 3  Figures depicting spreading scenarios for weak and strong-level interconnections. The figure shows 
that when the normalized epidemic strengths are above the threshold, the infection spreads in the contact 
network (left). When the normalized epidemic strengths are below the threshold, the infection spreads in the 
contact network (right)
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Fig. 4  Graph of normalized epidemic threshold τc1 = τ11,c∗�(A11) as a function of normalized infection 
strength τ2 = τ22∗�(A22) with different interconnection level and α = 1 for Gilbert networks. The yellow 
curve is for the high number of interconnections ( ω = 0.2 ), the red curve is for a medium number of 
interconnections ( ω = 0.042 ), and the blue curve is for a low number of interconnections ( ω = 0.01 ). The 
network topologies for both networks are Erdos–Renyi
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Modelling spillover
Spillover refers to transferring a virus from its usual circulating species, known as the 
reservoir, to a different species, known as the novel host. In the host species, the virus 
can either perish or undergo adaptations, potentially leading to the emergence of an epi-
demic. Zoonotic infectious diseases spread from animals to humans. Sixty percent of 
human infectious diseases are zoonotic, and seventy-five percent are emerging zoonoses 
(Salyer et al. 2017). Many emerging zoonotic diseases are caused by viruses, including 
avian influenza, rabies, and Ebola (Sahu et al. 2021; Nandi and Allen 2021).

The graphical representation in Fig. 6 illustrates the transfer of infection, referred to 
as spillover. The upper network represents a reservoir network, where the nodes are 
highlighted in red. The lower network represents the population of a novel host, with its 
nodes marked in blue. The red and blue links between the agents of reservoir and novel 
host population network denotes the intra network connection between the agents. The 
black-directed links indicate the transmission of the disease from the infected agents in 
the reservoir network to the agents in the novel host population network.

In a contact network where there are already some infected individuals, the spread 
of a disease can occur, and various factors influence the extent of the spread. However, 
if we keep all other properties of the network constant, it has been observed that when 
the initial number of infected individuals is low, the threshold for an epidemic to occur 
becomes higher. This means that if the initial number of infected individuals is very low, 
the spread of the disease can be controlled (Machado and Baxter 2022).

In our work, when the number of infected individuals in the new host network exceeds 
a significant threshold (considered as three), it indicates an effective spillover event. 
Therefore, if the number of infected agents resulting from spillover in the host net-
work is less than three, the spillover size is considered zero. Similarly, if the probability 
of spillover in the host network (calculated as the ratio of spillover occurrences to the 
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Fig. 5  Graph of normalized epidemic threshold τc1 = τ11,c∗�(A11) as a function of normalized infection 
strength τ2 = τ22∗�(A22) with different interconnection level and α = 1 for Gilbert networks. The yellow 
curve is for the high number of interconnections ( ω = 0.2 ), the red curve is for a medium number of 
interconnections ( ω = 0.042 ), and the blue curve is for a low number of interconnections ( ω = 0.01 ). The 
network topologies for both networks are Erdos–Renyi
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total number of realizations) is less than 0.1, it is classified as a non-spillover scenario. 
These assumptions are in line with previous research on the stochastic epidemic model 
(Andersson and Britton 2012).

To simulate the spillover events, we have used the stochastic simulator GEMFsim 
based on the Generalized Epidemic Mean Field (GEMF) framework developed by the 
Network Science and Engineering (NetSE) group at Kansas State University (Sahneh 
et al. 2013b, 2017). We have used the Matlab and Python version for simulation.

Simulation results

Our simulation model pertains to diseases like avian influenza, West Nile virus, and 
Ebola. In the first portion of our simulation based study we have modeled avian influ-
enza and West Nile virus diseases. Transmission of avian influenza occurs primarily 
from birds to other birds and occasionally from birds to humans. For West Nile disease, 
the mechanism of transmission is different. The disease mainly circulates between mos-
quitoes and birds, which can infect each other and be infectious. When mosquitoes can-
not find birds, they sometimes target mammals and can infect them (such as humans). 
Mammals cannot transmit the disease and are known as dead-end hosts. Hosseini et al. 
have explained the mechanism of West Nile virus transmission using a system of dif-
ferential equations and employ this model to predict the number of new cases (Hosseini 
et al. 2024). Our network-based model for West Nile disease and avian influenza in this 
simulation study draws inspiration from the work of Moon et al. (2019). In our simula-
tion-based study of avian influenza and West Nile virus, we can envision a scenario in 
which the agents within the reservoir network represent birds while the agents in the 

Reservoir Network 

Novel Host Popula�on Network 

Fig. 6  Spillover in networks from reservoir population to the novel host population



Page 14 of 24Das et al. Applied Network Science            (2024) 9:50 

novel host population network represent humans. Consequently, within our spillover 
model, we establish an effective infection rate of zero between the agents in the novel 
host population network. Conversely, both the effective infection rate within the reser-
voir network and the effective infection rate between the novel host population network 
and the reservoir network are non-zero.

The examination of data from the 2019 European study (EFSA) et al. (2019) revealed 
that the percentage of infected birds can vary significantly due to various factors. With 
this study as a reference, we aim to establish an effective infection rate within our res-
ervoir network such that the number of infected agents in the reservoir network falls 
within the range of 4 to 6 percent of the total population. Notably, the study (EFSA) et al. 
(2019) found that, on average, 5.6 percent of birds were infected with highly pathogenic 
avian influenza (HPAI) in eight European countries.

In this specific situation, both the novel host network and reservoir network are 
Erdos–Renyi networks consisting of 1000 nodes and 3255 links. Throughout the simu-
lation, the infection rates have been set as follows. The infection rate within reservoir 
network β22 is set to 0.15 in order to obtain the expected number of infected agents to be 
within 4 to 6 percent of the total population as reported in (EFSA) et al. (2019).

Now, the probability that a human is infected by a bird can vary a lot based on differ-
ent factors like virus strain, immunity of people, infection-spreading capability of birds, 
etc. However, based on a study conducted on Egyptian people, the probability of a per-
son being infected by a poultry bird is 0.02 (Gomaa et  al. 2015). Another study con-
ducted in European countries claims that the risk of avian influenza for general people 
is low, and for occupationally exposed people, the risk of infection is low to medium 
(European Food Safety Authority et al. 2023). Based on these studies, the infection rate 
between agents of the reservoir network and the novel host population network β12 is 
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total possible links between novel host population network and reservoir network. Every 16,000 realizations 
have been shown in the boxplot



Page 15 of 24Das et al. Applied Network Science            (2024) 9:50 	

set equal to 0.02 such that the probability of infection for humans from birds is 0.02, and 
the rate is also low to moderate. Finally, we set the infection rate within the novel host 
population network β11 equal to 0, assuming human-to-human disease transmission is 
very limited. The recovery rate δ for all agents is assumed to be equal to 1 to maintain a 
proper effective infection rate. The fraction of the total number of interpopulation links 
between the two networks has ranged from 0.0001 to 0.03. To establish an interpopula-
tion link, we randomly select one node from the reservoir network and one node from 
the novel host population network, creating a directed link from the reservoir network 
to the novel host population network.

To measure the spillover size, 16,000 simulations have been conducted for each 
fraction of all possible links. For each specific fraction of links, a box plot has been 
generated to depict the spillover size (Fig. 7). Ten random nodes were chosen as ini-
tially infected nodes in the reservoir network. This random selection process was 
repeated for each realization, resulting in different sets of initially infected nodes for 
each iteration.

Based on the assumptions about spillover mentioned earlier in this paper, we have 
generated a plot between the probability of spillover in the host network and the frac-
tion of links between the reservoir and the host network (Fig. 8).

It is important to mention that when the fraction of links is smaller than 0.0013, the 
probability of spillover remains very low. However, beyond this threshold, there is a 
noticeable increase in the probability of spillover. Therefore, we can conclude that the 
fraction of 0.0013 of the total possible inter-network links acts as a clear threshold, 
indicating a distinct phase transition.

In the next scenario, the number of links between the novel host population net-
work and reservoir network has been kept constant at 1000. However, the inter-
network infection rate ( β12 ) has been systematically reduced from 0.7 to 0.005. The 
infection rate within the novel host population network ( β11 ) is set to zero, while 
the infection rate within the reservoir network ( β22 ) remains at 0.15. The novel host 
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Fig. 8  Probability of spillover in novel host population network with inter-population link density. All other 
parameters are kept constant
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network and the reservoir network maintain the same topology as previously men-
tioned. It is assumed that ten random nodes are infected during each iteration.

To analyze the impact of different inter-network infection rates on spillover size, 
16,000 realizations have been recorded for each value of inter-network infection rate. 
For each inter-network infection strength, a box plot has been generated to represent 
the spillover size visually (Fig. 9).

Based on the previously mentioned assumptions about spillover, we draw a curve 
between the probability of spillover and inter-network infection strength between 
two networks (Fig. 10).
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Fig. 9  The number of infected agents in novel host population network with the inter-network infection rate 
between novel host population network and reservoir network. Every 16,000 realizations have been shown in 
the boxplot. These boxplots are generated in Matlab
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Fig. 10  Probability of spillover with inter-network infection rate keeping all other parameters constant
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If we observe Fig. 10 closely, we can see that the inter-network infection rate close 
to 0.026 acts as a threshold between a low and significantly high probability of spillo-
ver. A clear phase transition in spillover probability also exists for the change in inter-
network infection rate.

When all other factors remain unchanged, and the fraction of total possible links 
between different populations exceeds approximately 0.001 in a fixed network structure, 
we can observe a relationship between the strength of infection between networks ( β12 ) 
and the total fraction of inter-population links between populations. This relationship 
confirms the validity of our assumption regarding the extent of spillover events. In fact, 
the strength of infection between networks ( β12 ) and the proportion of links between 
populations are inversely proportional to each other. Based on this correlation, we can 
represent a rectangular hyperbola curve where either of these two quantities can be 
plotted on the x-axis and the other on the y-axis (Fig. 11). The region above this curve 
(shown in green in Fig. 11) corresponds to a significant spillover area, while the region 
below the curve represents a minor spillover area (shown in yellow in Fig. 11).

Furthermore, we conducted the same experiment with scale-free networks (Barabási 
and Bonabeau 2003) in both layers. There were no significant changes in the results 
compared to the previous findings when the inter-network links between the host and 
reservoir networks were randomly connected.

However, when the agents of the novel host network were connected with the hubs 
of the reservoir network using the same inter-network infection rate, a phase transi-
tion occurred at a significantly lower fraction of links compared to the previous results 
shown in Fig. 8. In this case, we had a scale-free network consisting of 1000 nodes and 
2957 links for both the novel host population network and the reservoir network. The 
infection rate among the agents of the reservoir network was 0.1, and the inter-network 
infection rate was 0.02. We distributed the number of links equally among five hubs. 
However, the fraction of links varied from 0.0001 to 0.0039, and for each fraction of 
links, we conducted 16,000 realizations to illustrate the size of spillover, shown in the 
boxplot (Fig. 12). We observed the same phase transition in the spillover probability as 
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before, but it occurred when the fraction of inter-population links was much smaller, 
approximately 0.00018 (Fig. 13).

In our study, we expanded our simulations to include small-world networks (based on 
Watts and Strogatz’s model) and observed that the same phase transition phenomenon 
also exists for these networks.

To summarize, the primary focus of our simulations was on exploring the spillover 
threshold. To achieve this, we selected random networks, scale-free networks, and sev-
eral small-world networks with varying rewiring probabilities (ranging from 0.01 to 1). 

0.00025 0.0007 0.0013 0.0022 0.0031 0.004

Fraction of interpopulation links

0

50

100

150

200

250

N
um

be
r o

f i
nf

ec
te

d 
ag

en
ts

Fig. 12  The inter-population links are connected with only the hubs of the reservoir network. The spillover 
size for each fraction of links has been shown in boxplot
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Fig. 13  The phase transition curve when the inter-population links between novel host population network 
and reservoir network are connected with the hubs of reservoir network. The phase transition occurs for a 
very low fraction of links
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All of these networks contained the same number of nodes (1000), while the small-world 
networks had a slightly higher number of links.

During the course of the experiments, we carefully controlled the infection rate to 
ensure that the average number of total infected individuals within the reservoir net-
work remained consistently stable. Across all mentioned network topologies, this aver-
age ranged around 5 percent throughout the entire infection process. Additionally, the 
inter-network infection strength ( β12 ) was kept constant. Our goal was to measure the 
number of inter-population links required to reach the spillover threshold. For this 
threshold, we validated our previous assumption, stating that approximately 0.1 frac-
tions of all realizations would exhibit a spillover non-negligible spillover size.

Our findings revealed that the number of links needed to reach the spillover thresh-
old was the lowest for scale-free networks and the highest for regular lattice networks. 
As for the small-world networks, an increase in the rewiring probability resulted in a 
decrease in the number of inter-population links required to reach the spillover thresh-
old. This behavior can be attributed to the emergence of the small-world effect, which 
promotes the spread of epidemics (Liu et al. 2015).

In the case of scale-free networks, the presence of hubs, which are highly connected 
nodes, contributed to an enhanced spread of epidemics within the network.

In another scenario, our simulation-based study has been expanded to discuss one of 
the most notorious zoonotic diseases, Ebola, which is prevalent in West African coun-
tries. Unlike other infections where humans serve as dead-end hosts, Ebola can also 
spread through human networks. The Susceptible-Exposed-Infected-Recovered (SEIR) 
model is particularly apt for modeling Ebola due to its ability to incorporate the incu-
bation period before the disease becomes transmissible. This model enhances the SIR 
model by introducing an ’Exposed’ state that accounts for the incubation period. The 
transition between states in the SEIR model, as shown in  14, includes the incubation 
rate ( κ ), which is incubation rate related the time it takes for an exposed individual to 
become infectious.

In this analysis, we examine a hypothetical yet plausible scenario for the transmis-
sion of the Ebola virus from animal reservoirs to human populations. To enhance the 
realism of our model, we constructed two distinct network layers (Fig.  14). The first 
layer, representing the animal population, is modeled as a stochastic block network 
comprising 2000 nodes and 5079 undirected edges. This network simulates 20 distinct 
animal herds, where each block represents a particular herd, each connected to at least 
two other herds, mimicking the potential inter-herd transmission dynamics. For the 
human population layer, we employed a Barabasi–Albert (BA) network to represent 
a small village setting. The BA network, renowned for its scale-free properties, accu-
rately captures the intricate social structures present in human communities, featuring 
5000 nodes and 14991 undirected edges. In Fig. 15, an example of these two networks 
structure is presented. We extracted the parameters for the SEIR model from the cases 
covered in Drake et al. (2015) as Uganda 2000 case and adjusted the rates to accurately 
reflect the network structure for both humans and animals. The rates were adapted 
based on the average degree of nodes 〈k〉 . The parameters used for this experiment are 
detailed in Fig. 14.
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We ran 16000 simulations to examine the effects of varying the number of links 
between humans as hosts and animals as networks as we increase the links from 100 
to 30,000 edges. Figure 16 shows the number of infected agents in the novel host popu-
lation network for a specific fraction of interpopulation links. The data from a total of 
16,000 simulation realizations is represented using a boxplot. The probability of spill-
over with respect to the fraction of interpopulation links is also presented in Fig. 17. In 
this simulation-based study, we can also see a clear phase transition for the probability 

Fig. 15  Illustration of an example for two-layer network structure used in the simulation; the contact 
network among animals and the contact network among humans are depicted in red and blue color nodes, 
respectively, and the grey arrows denote the directed transmission links from animals to humans
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Fig. 14  SEIR Transition Graph for Ebola Across Interconnected Networks. The diagram illustrates the 
transition rates between SEIR states, a and h subscript denote to animal and human agents, respectively. 
Parameters β11 and β22 represent the infection rates between the agents of the novel host population 
network and reservoir network, respectively. and β12 denotes infection rate between the agents of the 
reservoir network and novel host population network; κ1 and κ2 indicate the incubation rates of animals and 
humans respectively that lead to infectious states; δ1 and δ2 are the recovery rates of animals and humans 
respectively. Dashed arrows show the inducing state for transitions
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of spillover as the number of interpopulation links increases. A fraction of up to 0.0001 
of the total possible number of links acts as a threshold for this phase transition curve.

Based on the simulation-based study of the above-mentioned zoonotic diseases, we 
can conclude that there will always be a clear phase transition in the probability of spillo-
ver as the number of interpopulation links increases, regardless of whether humans act 
as dead-end hosts.

Conclusions
Our work investigated two situations for SIR spreading dynamics in interconnected net-
works. In the first case, we have a situation where the initial infection could be present in 
any of the two interconnected networks. The infection will not spread in interconnected 
networks if the normalized infection strengths are below the threshold curve for any 

Fig. 16  The boxplot of number of infected agents in novel host population network for simulation-based 
study of Ebola. The number of infected agents in the novel host population network increases with the 
fraction of the possible links between the novel host population network and the reservoir network

Fig. 17  Probability of spillover in host population network for simulation-based study of Ebola
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level of interconnection. However, in the second situation, the infection in the novel host 
population comes only from the reservoir network. For avian influenza and West Nile 
virus modelling, we conducted experiments by changing the number of inter-popula-
tion links and by changing the inter-network infection rate, keeping all other parameters 
constant. Experiments have been conducted on Erdos–Renyi networks, Barabasi–Albert 
networks, and Watts–Strogatz networks. The inter-population links were distributed 
randomly. In all the cases, we obtained a phase transition in the probability of spillover. 
While keeping all other network parameters constant, we obtain a relationship between 
the inter-population link density and inter-network infection strength, based on which 
we get two regimes of significant and minor spillover zones. When the inter-population 
links are connected only with the hubs, we get a phase transition at a very low number 
of links while keeping all other parameters constant. It can be concluded that hubs of 
scale-free networks also play a crucial role in spillover. For small-world networks, we 
found that the number of interpopulation links for the spillover threshold decreases with 
the increase in rewiring probability. The spillover threshold, when considering a fixed 
number of infections in the reservoir population, follows a pattern of highest to lowest 
interpopulation links: Regular Lattice networks have the highest number of links, fol-
lowed by Small-World networks, Erdos–Renyi networks, and finally Scale-Free networks 
with the lowest number of links. Finally, when we expanded our simulation-based study 
to model Ebola, where human-to-human infection spreading is significant, we observed 
a clear phase transition in the probability of spillover.

For future work, this study can be enhanced by developing a theoretical model to 
determine the spillover threshold for both inter-population links and inter-network 
infection strength. Additionally, simulations using various network topologies and inter-
population link patterns can provide diverse results. These simulation outcomes can be 
used to train a neural network for predicting spillover in new scenarios.
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