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Abstract

As networks grow in size and complexity, backbones become an essential network rep-
resentation. Indeed, they provide a simplified yet informative overview of the underly-
ing organization by retaining the most significant and structurally influential connec-
tions within a network. Network heterogeneity often results in complex and intricate
structures, making it challenging to identify the backbone. In response, we introduce
the Multilevel Backbone Extraction Framework, a novel approach that diverges

from conventional backbone methodologies. This generic approach prioritizes

the mesoscopic organization of networks. First, it splits the network into homoge-
neous-density components. Second, it extracts independent backbones for each
component using any classical Backbone technique. Finally, the various backbones

are combined. This strategy effectively addresses the heterogeneity observed in net-
work groupings. Empirical investigations on real-world networks underscore the effi-
cacy of the Multilevel Backbone approach in preserving essential network structures
and properties. Experiments demonstrate its superiority over classical methods

in handling network heterogeneity and enhancing network integrity. The framework

is adaptable to various types of networks and backbone extraction techniques, making
it a versatile tool for network analysis and backbone extraction across diverse network
applications.

Keywords: Complex network, Graphs, Backbone extraction, Mesoscopic structure,
Component structure, Community structure, Multi-core structure

Introduction

In recent years, complex networks have emerged as an ideal tool for deciphering and under-
standing complex systems (Torre 2017; Costa et al. 2011; Mourchid et al. 2019; Qureshi
et al. 2021; Rajeh et al. 2023). A network is a set of nodes connected by edges representing
binary interactions, and can model any complex system (Heitzig 2011). Sparsity is particu-
larly advantageous in networks as it reduces computational complexity in various analytical
techniques. With the ever-increasing volume of data, network analysis has become more
challenging, necessitating methods that retain relevant information while reducing network
size. Backbones are crucial in this context, simplifying networks to their essential structure
by filtering out non-critical edges and nodes (Shin 2013; Zhang 2018). These backbones find
applications across diverse fields, such as social, transportation, biological, and telecom-
munication networks (Liang 2021). Researchers have developed techniques to condense
networks, categorizable into structural and statistical approaches. Structural methods
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maintain the network’s essential topological properties by removing nodes or links (Yassin
et al. 2024a; Ghalmane et al. 2023), while statistical methods discard edges or nodes based
on statistical insignificance (Yassin et al. 2024b). Structural approaches often require prior
knowledge of the network’s characteristics, but statistical methods can be applied to any
network regardless of its structure. Backbone extraction, an active research field, focuses
on distilling networks to their most significant components (Cao 2019; Yassin et al. 2023b;
Ghalmane et al. 2020a). This process can uncover crucial patterns, communities, and other
network characteristics (Philippe 2010).

The component structure is a key property of real-world networks, which refers to how
nodes are organized into distinct groups or clusters based on their connectivity (Newman
and Girvan 2004; Clauset et al. 2004). In particular, many real-world networks exhibit a
modular structure, where nodes within a module tend to be highly interconnected with
each other but only weakly connected to nodes in different modules (Ravasz et al. 2002;
Newman 2006). There are various methods for analyzing the component structure of net-
works, such as community detection algorithms that identify clusters of highly connected
nodes, or centrality measures that quantify the importance of individual nodes or edges
(Fortunato 2010; Freeman 1977). By studying the component structure of real-world net-
works, researchers can gain a deeper understanding of the complex patterns of connectivity
that underlie many natural and engineered systems, from social networks to transportation
networks to biological systems (Estrada 2012).

In this work, we present a novel approach for extracting a network backbone based on its
mesoscopic properties. The mesoscopic structure of a network refers to the organization
of node subgroups within the network, which can be identified through the community or
core-periphery structure. Our approach is built upon the recently introduced component
structure, which has proven to be flexible (Diop et al. 2021, 2022a, 2023a, 2022b, 2023e, b,
¢, d). However, other mesoscopic representations can be used as well. To extract the back-
bone of a network, we propose a generic framework that can utilize any backbone extrac-
tion technique developed for weighted networks. We conduct experiments on real-world
networks using two prominent techniques: the Global Threshold and the Disparity Filter.
We use several measures such as global properties, distributions, distances, and meso-
scopic properties to demonstrate the effectiveness of leveraging the component structure to
extract the backbone. This approach can reveal important insights into complex networks’
underlying organization and behavior.

The article is structured as follows: “Related work” section discusses related work,
“Background” section provides the research background, and “Multilevel backbone
extraction framework based on the component structure” section details our backbone
extraction framework. In “Data and methods” section describes the data and methods,
while in “Experimental results and discussion” section interprets the results from the Global
Threshold and Disparity Filter applications. In “Conclusion” section concludes the paper.

Related work

In network analysis, the network backbone refers to a simplified version of the origi-
nal network that retains essential and relevant information while eliminating noise and
irrelevant details. Extracting a backbone enables more streamlined management and
comprehension of complex networks. The research on backbone extraction primarily
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concentrates on two types of networks: mono-mode networks and bipartite networks.
This study focuses explicitly on mono-mode networks, where backbone extraction is
accomplished through coarse-graining or filter-based approaches (Ghalmane et al. 2021).
Coarse-graining methods aim to identify nodes with shared characteristics, aggregating
them into communities or groups represented as single nodes. This process reduces the
overall size of the network while preserving its essential properties. Typically, the assem-
bled nodes exhibit dense interconnectivity within their community, distinguishing them
from nodes outside the group (Ahn et al. 2010). For instance, Gfeller and De Los Rios
(2007) describe in their study how they maintain random walks and group nodes with
similar neighbors, making them indistinguishable in terms of random walk perspectives.
On the other hand, filter-based approaches employ a bottom-up strategy to extract the
network backbone (Ghalmane et al. 2021). They define specific statistical features for
nodes or links and use them as criteria to determine which nodes or links should be
retained or discarded from the original network. Consequently, the resulting backbone
comprises only the most relevant nodes and links based on the defined properties (Boc-
caletti et al. 2006).

Structural and statistical methods are two prominent approaches for extracting
backbones from networks in network analysis. Statistical backbones employ statisti-
cal measures to identify the network’s most significant or informative elements. These
methods leverage node degree, eigenvector centrality, local clustering coefficient,
and edge betweenness to filter out less important nodes or edges and retain the most
influential ones (Yassin et al. 2022b). Statistical backbones provide insights into the
importance or relevance of individual network components based on their statisti-
cal characteristics. These methods can be categorized based on the type of informa-
tion utilized for the filtering process, which can be global, local, or a combination
of both. A previous study by Serrano et al. (2009) used local measures to extract the
backbone. They introduce a filtering method that extracts the important connections
in complex multiscale networks. The approach considers small-scale interactions,
maintaining edges that signify statistically relevant deviations from a null model. It
is evaluated against alternative techniques and deployed on real-world networks.
The results revealed the efficacy of the Disparity Filter algorithm in extracting dense
subnetworks from weighted networks with missing links. However, the algorithm
was limited because it only applied to undirected graphs and graphs with no cycles.
Additionally, it was assumed that the weights of the edges were uniformly distributed
across the different subsets of the network. Other filtering methods employ global
measures, such as the “link salience” approach (Grady et al. 2012). This technique
involved constructing the shortest path tree, which summarizes the shortest connec-
tions from a reference node to the rest of the network. An average shortest-path tree
matrix S is calculated, where each element s;; represents the number of shortest-path
trees in which the link (i, ) is included. Only edges with values above a certain thresh-
old are retained, forming the network’s backbone. The robust approach worked well
on many empirical networks, enabling the prediction of essential features of conta-
gion phenomena and offering a better understanding of the hidden universal features
in complex networks. Other types of filtering methods combine both local and global
measures. For example, the h-Backbone technique, which entails three phases, was
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suggested by Zhang et al. (2018). The first step was determining each link’s bridge
measure, calculated by dividing its betweenness by the total number of nodes in
the network. The h-bridge (/;) was then determined as the largest number of links
with a bridge measure greater than or equal to /. Second, the h-strength (/) was
identified as the largest number of links with strength greater than or equal to 4.
Finally, the links that satisfy the h-bridge and h-strength criteria were merged to form
the h-backbone, which included significant links connecting the network and high-
strength links located in the network’s core.

On the other hand, structural backbones focus on identifying the core structure of a
network by capturing its essential connections and relationships. These methods simplify
the network representation while preserving its overall structural properties. Techniques
such as k-core decomposition, modularity-based methods, and community detection
algorithms are commonly used to extract the structural backbone (Dai et al. 2018).
Recent advancements in community detection algorithms have significantly contributed
to understanding complex networks. Asmi et al. (2022) introduced the greedy coupled-
seeds expansion method for overlapping community detection, which efficiently identi-
fies overlapping communities by expanding seed nodes based on their connectivity. This
method has demonstrated superior performance in large-scale social networks due to its
balance of computational efficiency and detection accuracy. In another study, Asmi et al.
(2017) developed a large-scale community detection algorithm based on a new dissimi-
larity measure. This algorithm addresses scalability issues in large networks by introduc-
ing a novel way to quantify dissimilarity between nodes, facilitating accurate community
boundary identification. Both methods offer robust solutions for detecting community
structures in various types of networks, enhancing the overall understanding of network
dynamics. Ghalmane et al. recently proposed node-filtering techniques based on the
network’s community structure (Ghalmane et al. 2020a). They presented two algorithms:
one preserves overlapping nodes and network hubs, while the other retains overlapping
nodes and their one-step neighbors to form the backbone. These algorithms outperform
the widely used disparity filter, emphasizing the importance of community structure in
preserving essential network information while reducing its size. The experiments were
performed on real-world weighted networks from various domains and compared with
the disparity filter. Results showed that the proposed methods were almost identical and
more effective than the disparity filter in preserving the relevant nodes and connections.
The effectiveness of the three backbones is also compared in terms of information gate-
way, connectedness, and link strength, and results showed that the proposed methods
were effective in uncovering the most relevant components of the network. Building on
these insights, Rajeh et al. (2022) proposed the “modularity vitality backbone” algorithm,
leveraging the network’s community structure. This technique evaluated the node con-
tribution to modularity, filtering out nodes with the lowest contributions to the quality
measure of the community structure. The remaining nodes constituted the backbone.
Experimental results demonstrated that the modularity vitality backbone performed
well in terms of weighted modularity, average weighted degree, and average link weight
compared to alternative methods. However, it did not specifically retain nodes contrib-
uting to information spreading efficiency. Instead, it strategically preserved nodes and
their edges that enhance the network’s modularity.
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In light of these studies, we propose a Multilevel Backbone Extraction Framework
that utilizes any technique designed for extracting backbones in weighted networks and
exploits the network’s component structure to preserve mesoscopic features.

Background

Mesoscopic representation

The mesoscopic representation of a network provides an intermediate-scale analysis that
bridges the macroscopic level of the entire network and the microscopic level of indi-
vidual nodes (Barrat et al. 2008). It focuses on subgroups of nodes such as communities
or clusters, which allows for a detailed study of the network’s structure and dynamics.

Community structure

Community structure refers to dividing a complex network into distinct groups or com-
munities, where nodes within each community are more densely connected than nodes
outside the community (Cherifi et al. 2019). In simpler terms, it’s the organization of
nodes in a network into groups or modules that exhibit higher internal connectivity and
weaker connectivity between groups. Understanding network communities is essential
for grasping how networks are structured and follow certain patterns. Moreover, these
communities aid in visualizing and compressing networks. The significance of commu-
nity structure lies in its connection to the hierarchical arrangement found in numerous
complex real-world systems. This hierarchical setup aligns with the hierarchical commu-
nity structure-networks consist of communities that encompass smaller ones, creating a
cascade of diminishing size. Such a hierarchical arrangement optimizes the system’s effi-
ciency and functionality. Within this hierarchy, individual segments can integrate new
technologies autonomously, thus lessening the potential for errors or failures propagat-
ing throughout the entire system (Shen 2013).

Core-periphery structure

Core-periphery structure characterizes a complex network where nodes are divided
into two main categories: the core and the periphery. The core nodes have stronger con-
nections among themselves and typically exhibit higher levels of connectivity, while
the periphery nodes have weaker connections and tend to be connected to the core
nodes without strong connections between each other. This structure reflects a hierar-
chical arrangement where the core nodes play a central and influential role, while the
periphery nodes have more limited interactions and often serve as conduits between the
core elements. Core-periphery structures are common in various real-world networks,
such as social networks, economic systems, and transportation networks (Holme 2005)
(Csermely et al. 2013). According to Borgatti and Everett (2000), core-periphery struc-
ture in a network refers to the presence of a dense central core of nodes, which are more
interconnected to each other than to the rest of the network, surrounded by a more
sparsely connected periphery of nodes. The authors define the core-periphery structure
as a pattern where certain group members are more densely related to one another than
other members. They also note that the core-periphery structure can be observed at dif-
ferent levels of analysis, such as within a single network or between different networks.
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Local Components

Original Weighted Network Dense Parts

Fig. 1 Component structure extraction of a toy example

Component structure

The field of network science includes concepts such as community structure and core-
periphery structure, which both are premised on the understanding that a network’s
connection density is not uniform. Dense areas within a network can form communities
or core elements; the difference betwedense areas form the communities or the core ele-
ments of the network approach assumes that communities are sparsely connected, while
the core-periphery structure sees peripheral nodes as poorly connected and to core
nodes. The component structure combines these approaches, with dense areas forming
local components tied together by proxy links and nodes to form global components.
Identifying the global components is straightforward once the dense areas have been
extracted. Definitions of dense areas used in community detection or multi-core-periph-
ery studies can be used to extract local components (Diop et al. 2021).

Toy example Figure 1 illustrates a toy example of network decomposition into compo-
nents. First, the dense parts are uncovered using algorithms designed to detect areas of
high connectivity within the network. Nodes and links that belong to the same region
share the same color. Inter-community links that connect the different dense parts are
colored in black. The toy network contains three dense parts, which are colored in green,
red, and yellow. We remove the inter-community links (links in black) to extract the
local components. Each dense area represents a local component that possesses local
information. We obtain the global component by eliminating the intra-community links
and the isolated nodes. Global components play a significant role in information trans-

mission among the network’s different dense areas.

Backbone extraction techniques

Backbone extraction techniques play a crucial role in network analysis as they seek to
uncover the key structure and significant elements within intricate networks. By employ-
ing these methods, network complexity is effectively minimized while still retaining
crucial connectivity patterns and capturing essential information about the network’s
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organization and functionality. In this study, we utilize two distinct approaches to
extract network backbones: the Global Threshold Method and the Disparity Filter. These
techniques offer complementary perspectives by utilizing global and local measures to
identify the most significant edges in a network. By employing both techniques, our
objective is to assess the effectiveness of the proposed multilevel backbone framework,
comparing its performance in local and global filtering processes. Through this analy-
sis, we aim to determine whether a localized or broader global filtering approach yields
superior results in extracting the network backbone. This evaluation will shed light on
the optimal method for capturing the essential structural components of the network
and facilitate a deeper understanding of its dynamics and underlying relationships.

Global threshold

The Global Threshold Method, focusing on global measures, is a widely used and
straightforward technique for network backbone extraction. This method involves set-
ting a predefined threshold value and retaining only the edges whose weights exceed this
threshold (Dai et al. 2018). The threshold can be defined in various ways, such as an
absolute value, a proportion of the maximum observed edge weight, or the mean weight
(Neal 2013). Global Threshold is popular due to its efficiency in producing sparser net-
works. However, it is important to note that Global Threshold may encounter limita-
tions when applied to real-world networks. Many real-world networks exhibit uneven
edge weights across multiple scales, introducing challenges. These include arbitrariness
in threshold selection, structural bias in edge retention, and the assumption of a single
scalar threshold (Neal 2014). These limitations impact the effectiveness and representa-
tiveness of the resulting network backbone.

Disparity filter

The Disparity Filter adopts a local measures-based approach, focusing on the statistical
significance of individual edge weights, to extract the network backbone. It is a widely
used method that operates under the assumption that the weights of a node’s edges,
once normalized, conform to a uniform distribution. By comparing the normalized edge
weights to this baseline model, it becomes possible to selectively filter out edges based
on a desired significance level o. The resulting filtered network, known as the backbone,
retains only those statistically significant edges that conform to the null model. Impor-
tantly, an edge weight’s significance can vary between nodes, as the method defines a
distinct null model for each node, leading to potential asymmetry in significance assess-
ment (Serrano et al. 2009; Yassin et al. 2023a).

Multilevel backbone extraction framework based on the component structure
General scheme

In real-world networks, node clusters exhibit varying degrees of interaction and can
be called multicores, groups, or communities. Neglecting this structure and treat-
ing all groups equally can be problematic, notably when the weights of links in these
groups differ significantly. To overcome this issue, the backbone extraction tech-
nique should be tailored to a specific group of nodes rather than the entire network
(Hmaida et al. 2023). The component structure is a helpful tool in achieving this goal,
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as it divides the network into local and global components. Local components, cor-
responding to communities or cores, represent the densely connected parts of the
network. Conversely, global components comprise nodes and links connecting these
communities or cores. Thus, by concentrating on both local and global components,
it becomes possible to discern the network’s relevant connections more precisely.

The proposed framework involves two major steps, as shown in Fig. 2. The first step
requires uncovering the dense parts of the network using a community detection
algorithm or a core-periphery detection algorithm. Thus, the component structure
of the network is established by first removing the inter-community links to isolate
local components, followed by eliminating intra-community edges to obtain global
components. In the second step, the backbone extraction technique is applied to
each component rather than the whole network. Finally, the extracted backbones of
both the global and local components are combined to reveal the overall backbone
of the network. This approach enables the backbone extraction technique to accom-
modate the diverse topologies of each component, ensuring adaptability to potential
heterogeneities.

Original
Network

Uncover
Dense
Parts

Dense Parts of
the network

Remove Inter- Remove Intra-

Community Community
Links Links
Local Global
Components Components
| |
Extract Extract
Backbones Backbones
1 1
Backbones Backbones
of Local of Global
Components Components
Union of
Backbones

Multilevel
Backbone

Fig. 2 Scheme of the multilevel backbone extraction framework based on the component structure
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Multilevel backbone extraction algorithm

In this subsection, we describe in detail the algorithm used for extracting the Multilevel
backbone. Considering the following undirected and weighted network G(V; E) , where
V ={v1,...,vn} represents the set of nodes and E = {(v;; vj, wj)\vi,vj € V,w; € R}
denotes the set of edges with their weight. The algorithm (see Algorithm 1) employs
several functions. The function Extract_dense(G) identifies the graph G’s dense parts.
The function Extract_local(G) is used to extract the local components of the graph G by
removing the inter-community links. However, Extract_global(G) is the function that
extracts the global components of the graph G by removing the intra-community links.
Finally, Extract_backbone(G) is the function that extracts the backbone of the graph
G. This function can utilize any backbone extraction algorithm, tailored to the specific
requirements of the network being analyzed.

Algorithm 1 Multilevel backbone extraction algorithm

Input : Original graph G(V, E)
Output: Backbone graph Gy (Vy, Ep)
1 G4(V, E) < Extract-dense(G(V, E))
2 Local < Extract_local(Gq(V, E)) //Local = {L1, L3, ..., Ly}, with n is the total number of
local components.
s Global < Extract_global(G4(V, E)) //Global = {G1,G2,...,Gm}, with m is the total
number of global components.
a Local_back < 0 // Initialize empty local backbone set.
for L; € Local do
L_back; + Extract_backbone(L;)
Local_back < Local_back U L_back;
end
o Global_back < 0 // Initialize an empty global backbone set.

10 for G; € Global do

11 G _back; + Backbone(G;)
‘ Global_back < Global_back U G_back;

13 end

14 Gy, < Local_back U Global_back // Build the backbone as a union of local and global
backbones.

15 return Gy(Vs, Ep)

Toy example

Figure 3 uses a weighted and undirected toy network to illustrate the process of the
proposed Multilevel backbone extraction algorithm. The original network is repre-
sented in the first graph. The Louvain algorithm is applied to the network to reveal
its community structure. In the second graph, different colors highlight each com-
munity’s nodes and edges, with inter-community links shown in black. To obtain the
global components, intra-community links are removed, as shown in the graph on
the right. Conversely, inter-community links are removed to isolate the local compo-
nents, depicted in the graph on the left. The backbone’s size is fixed at 30% of the net-
work’s edges. The Global Threshold algorithm is applied to each component to reveal
the backbones. Finally, the Multilevel backbone is obtained by merging all the back-
bones of local and global components.
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Fig. 3 Multilevel backbone extraction of a toy example using global threshold
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Data and methods
Data
In this section, we briefly outline the datasets utilized in our investigation. We selected
networks from different domains (social, co-appearance, ecological, technological,
transportation, and collaboration networks). To encompass a broad range of scenarios,
we selected diverse networks with varying numbers of nodes and edges, ranging from
hundreds to thousands. Small networks were chosen for qualitative evaluation of each
backbone’s behavior, while large networks were selected for quantitative analysis. The
following paragraphs provide a brief overview of these networks. Table 1 reports the
fundamental topological characteristics of these networks.

Zachary’s karate club Friendship network among students in a karate club in 1970 at
a US University. This network contains 33 nodes that signify the club’s members and 77
edges that reflect their relationship. The weights assigned to these edges represent the
strength of the relationships between the club members, with a number between 0 and 8
indicating the strength of their friendship (Ghalmane et al. 2020b).

textitWind surfers Network of interpersonal contacts among windsurfers in the fall
of 1986 in southern California. Nodes are windsurfers, edges represent the friendship
between windsurfers, and edge weights indicate the surfers’ interpersonal relationships
(Almquist and Butts 2014).

textitMadrid train bombing Network of associations among the terrorists involved in
the Madrid attack of March 11, 2004. Nodes denote terrorists, edges represent the con-
nections between them, and edge weights represent how strongly they are connected
(Rajeh et al. 2022).

textitLes Misérables The network of scene appearances of characters from “Les Misé-
rables” by Victor Hugo. The nodes signify the personalities of this book, the edges rep-
resent the appearance of two nodes inside the same novel chapter, and the edge weights
serve as a count of these occurrences (Coscia 2021).

textitUnicode languages This network describes the various nations and languages.
Nodes represent languages and countries; edges represent the relationship between a
country and the language in which it is spoken; and weights represent the percentage of
the population that is literate in a particular language (Ghalmane et al. 2020b).

textitWorld air transportation Data about international flights was obtained from Flight-
Aware. Since the data covers six days of 2018 (May 17—May 22), it ensures that less frequent

Table 1 Fundamental topological characteristics of the real-world networks under study

Network v E <ky> ¢ ® € r Q

Zachary’s karate club 33 78 13.59 0.256 0.139 0.492 — 0476 0.444
Wind surfers 43 336 56.09 0.564 0.372 0.679 —0.147 0371
Madrid train bombing 62 243 8.81 0.561 0.121 0448 0029 0435
Les Misérables 77 254 21.30 0.499 0.087 0435 —0.165 0.565
Unicode languages 868 1255 0.697  0.00 0.003 0.255 —0.171 0.772
World air transportation 2734 16,665 131.49 0.257 0.004 0.283 —0.047 0.630
Scientific collaboration 16,726 47,594 9.23 0.360 0.0003 0.117 0.185 0873

The total number of nodes is V. The number of edges is represented by E. < k, > signifies the average weighted degree. {
indicates transitivity. @ symbolizes density. € represents efficiency. The assortativity is r. Q stands for the network’s weighted
modularity
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connections are included. Airports are represented by nodes, while direct flights between
airports are represented by edges. (Diop et al. 2021).

textitScientific collaboration Collaboration graphs for scientists. Nodes represent
writers of papers in the arXiv category “Condensed Matter’, the edges indicate co-
authorship, and weights are the number of articles the authors have written together
(Ghalmane et al. 2020b).

Methods

In this subsection, we evaluate our proposed method, wherein we utilize the compo-
nent structure to extract the backbone. This evaluation is based on a variety of metrics.
Firstly, we focus on fundamental global properties to assess the backbone’s ability to
preserve the global features of the original network. Secondly, we employ cumulative
distributions and the Kolmogorov—Smirnov (KS) statistic to compare the microscopic
characteristics of the extracted backbones with those of the original network. Addition-
ally, we calculate the number of nodes and weights preserved in each extracted back-
bone to compare their mesoscopic properties. Lastly, we employ the Portrait Divergence
Distance, Laplacian Spectrum Distance, and Network Laplacian Spectral Distance to
measure the similarity between each backbone and the original network, thus determin-
ing the closest match.

Basic global properties
textitDensity The density of networks is a measure of the number of links or connections
between the nodes of a network relative to the total number of possible links in the net-
work (Meunier et al. 2009).

For an undirected network with V' nodes and E links, the density w is given by:

_2E
©=Viv-D @

textitDiameter The diameter of a network measures the maximum shortest path
between any two nodes in the network. In other words, it is the longest path that must
be traversed to go from one node to another, whereas “shortest” refers to the path with
the fewest edges (Ng and Efstathiou 2006; Kaiser 2011). It’s given by:

d= Max(dij) (2)

where d;; represents the shortest path between nodes i and ;.

textitAverage shortest path The average shortest path is the number of edges found on
all possible network node pairs’ shortest paths (Jebabli et al. 2018). The average shortest
path of a network is a measure of the typical distance between pairs of nodes in the net-
work, where “distance” refers to the number of edges that must be traversed to go from
one node to another using the shortest path (Watts et al. 1998). The average shortest
path is defined as Dorogovtsev and Mendes (2004):

_ nv
" Inlk)

(3)
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where Vis the total number of nodes and (k) is the average degree.

textitAverage node degree The average node degree is the average number of edges
connected to each node in the graph. In other words, it is the total number of edges in
the graph divided by the total number of nodes in the graph (Meghanathan 2014). The
formula for the average node degree is:

-k
(k) =271

L @

where k; represents the degree of node i.

textitMax node degree The max node degree is the highest number of edges connected
to any single node in the graph (Meghanathan 2014). In other words, it is the maximum
degree of any node in the graph given by:

Kinax = Max(k;) (5)

where k; represents the degree of the node i.

textitAssortativity coefficient The assortativity coefficient measures the degree to
which nodes in the graph tend to be connected to other nodes with a similar degree. It
measures the correlation between the degrees of connected nodes in the graph (New-
man 2003, 2002). The assortativity coefficient, denoted by r, is calculated as follows:

i Zi(ki * knnl') - [Z,’(O'S * (k; + knn;))]z
0.5 (k2 + K2,)) — [32,(0.5 % (ki + kun,)]?

(6)

where k; denotes the degree of a node i and &, is the average degree of nodes connected
to a node i.

The assortativity coefficient can take values between —1 and 1. A positive value indi-
cates that nodes tend to be connected to other nodes with a similar degree, while a neg-
ative value indicates that nodes tend to be connected to nodes with different degrees
(McCormack et al. 2013).

textitClustering coefficient The clustering coefficient indicates the degree to which
network nodes tend to cluster together (Gupta et al. 2015). It measures the density of
triangles in the graph, where a triangle is a set of three nodes mutually connected by
edges (Artameeyanant et al. 2016). The clustering coefficient is defined as Dorogovtsev
and Mendes (2004):

(mi) _ 2k PR)(n(k))

C= =
(ki (k; — 1)/2) (k%) — (k))/2

(7)

where: n; represents the number of connections between the nearest neighbours of the
node i, k; represents the degree of the node i, P(k) represents the degree distribution,
n(k) is the number of vertices of degree k, and (k) is the average degree.

Distributions
Two cumulative distributions are utilized to describe the microscopic characteristics of
the networks. One is related to node degree, and the second is linked to edge weight.
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textitCumulative degree distribution The cumulative degree distribution of a network
is a measure of the number of nodes in the network that have a degree greater than or
equal to a certain value. It is calculated by summing up the degrees of all nodes in the
network that are greater than or equal to a certain degree and dividing by the total num-
ber of nodes in the network (Wang et al. 2021).

textitCumulative weight distribution However, the cumulative weight distribution of
a network is a measure of the total weight of edges in the network that have a weight
greater than or equal to a certain value. It is calculated by summing up the weights of all
edges in the network that are greater than or equal to a certain weight and dividing by
the total weight of all edges in the network.

textitKolmogorov-Smirnov statistic The Kolmogorov-Smirnov (KS) statistic is a non-
parametric test that compares the cumulative distribution functions of two probability
distributions. It quantifies the maximum vertical distance (or supremum) between the
cumulative distribution functions of the two distributions being compared (Goldstein
et al. 2004). The Kolmogorov-Smirnov statistic (K) is calculated as follows:

K = supy|F(x) — S(x)| 8)

Where sup, represents the maximum value over all x, and F(x) and G(x) are the cumula-
tive distribution functions of the two distributions.

Distances
textitPortrait divergence distance Portrait divergence distance is a measure of the simi-
larity between two networks. It is based on graph portraits, which are compact repre-
sentations of the local connectivity patterns in a network (Lafhel et al. 2021). The graph
portraits of the two networks are first computed to compute the portrait divergence
distance between two networks. Then, the distance between the two portraits is cal-
culated using a suitable distance metric, such as the Euclidean or Manhattan distance.
The portrait divergence distance captures the differences between the local connectivity
patterns in the two networks, rather than the differences in global network properties
such as degree distribution or clustering coefficient. It is particularly useful for compar-
ing networks with similar global properties but differ in their local connectivity patterns
(Bagrow and Bollt 2019).

textitLaplacian spectrum distance The Laplacian spectrum distance measures the
similarity between two graphs based on the eigenvalues of their Laplacian matrices. The
Laplacian matrix of a graph is a matrix that encodes the local connectivity structure of
the graph. To compute the Laplacian spectrum distance between two graphs, the Lapla-
cian spectra of the two graphs are first computed, which is a vector of the eigenvalues of
their Laplacian matrices. Then, the distance between the two spectra is calculated using
a suitable distance metric, such as the Euclidean distance or the spectral angle distance
(Grone et al. 1990). The Laplacian spectrum distance captures the structural similari-
ties and differences between the two graphs, and it is particularly useful for comparing
graphs that have similar degree distributions but different connectivity patterns (Mohar
etal. 1991).
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textitNetwork Laplacian spectral distance The Network Laplacian Spectral Distance
(NetLSD) measures the distance between two networks based on their Laplacian spec-
tral properties. To compute the NetLSD between two networks, the Laplacian matrix
of the networks is first constructed. Then, the eigenvalues of the Laplacian matrices are
computed and sorted in non-decreasing order. Finally, the distance between the two sets
of eigenvalues is calculated using a suitable distance metric, such as the Euclidean dis-
tance or the spectral angle distance (Tsitsulin et al. 2018). The NetLSD is generally con-
sidered a more sophisticated measure than the Laplacian Spectral Distance because it
considers more information about the structure of the networks being compared. The
Laplacian Spectral Distance only considers the eigenvalues of the Laplacian matrices and
does not consider the eigenvectors. While the Network Laplacian Spectral Distance con-
siders both the eigenvalues and the eigenvectors of the Laplacian matrices (Tantardini
et al. 2019).

Mesoscopic properties
textitQuantitative analysis At the mesoscopic level, we use two indicators to quantify the
proposed multilevel backbone.

- Fraction of preserved nodes in the backbone,

- Fraction of preserved weight in the backbone,

textitModularity Modularity is a fundamental concept in network analysis, particu-
larly in studying complex networks. It quantifies the strength of dividing a network into
modules, or communities. High modularity indicates a clear division into communities,
reflecting a network structure where nodes are more likely to connect within their group
than with nodes in other groups. Modularity is a key measure for understanding the
community structure in networks. Identifying the presence and extent of community-
like structures in various types of networks, including social, biological, and techno-
logical networks is crucial. High modularity often suggests functional or organizational
segmentation within the network (Newman 2006).

Modularity is typically calculated using Newman’s modularity measure (Newman
2006), defined as:

1 kik
Q=5 > |:Aij - 2m]]5(cz‘, <) 9)

y

where A;; represents the edge weight between nodes i and j, k; and k; are the degrees of
nodes i and j, m is the total weight of all edges in the network, c; and ¢; are the communi-
ties of nodes i and j, and § is the Kronecker delta function.

textitInter-community connectivity Inter-Community Connectivity pertains to the
connections between distinct communities or modules within a network. This property
is pivotal in understanding how different groups or communities within a network inter-
act and communicate with each other. Inter-Community Connectivity is instrumental in
revealing a network’s integrative and segregative properties. It highlights the pathways
through which information, resources, or influence flow between different communities,
thereby elucidating the overall network structure and function (Girvan and Newman
2002). The Inter-Community Connectivity ICCy,,,; is given by:
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ICCtOtﬂl = Z Wij ( 10)
(i) EEinter

Where Ejuzr is the set of edges that connect nodes in different communities and w;; is
the weight of the edge between nodes i and .

High inter-community connectivity can indicate a network with integrated communi-
ties, whereas low connectivity may suggest segregated or isolated communities.

textitIntra-community connectivity Intra-Community Connectivity refers to the
extent and strength of connections within individual communities or modules of a
network. This property is essential for understanding the internal cohesion and struc-
tural integrity of communities, which are groups of nodes more densely connected than
nodes in other communities (Newman 2006). Intra-Community Connectivity provides
insights into how nodes within a community are interconnected, reflecting the commu-
nity’s robustness and resilience to disruptions. It’s defined as:

Icczotal = Z Z Wij (11)

ceC \ (ij)eE,

Where C is the set of all communities, E, is the set of edges within a community ¢, and
wj; is the weight of an edge between nodes i and ;.

High intra-community connectivity often indicates a strong, tightly knit community,
which can be critical in networks where community structure dictates functional prop-
erties (Fortunato 2010).

Experimental results and discussion

In this section, we conduct a thorough experimental analysis featuring real-world net-
works collected from various fields, each containing hundreds to thousands of nodes
and edges to accommodate a range of circumstances. We analyze and compare the pro-
posed Multilevel backbone with the Classical version of the backbone, where the back-
bone is directly extracted from the original graph using a backbone extraction algorithm.
For Multilevel backbone extraction, we employ Louvain, the most efficient and effec-
tive community detection algorithm for large-scale networks (Blondel et al. 2008). Local
components represent the communities, and global components consist of all the nodes
and edges connecting these local components. In the two parts of the experiment, we
choose to use global and local techniques for the backbone extraction of each compo-
nent, which are the Global Threshold and the Disparity Filter. Finally, we construct the
Multilevel backbone by merging all of these backbones.

For all the networks under study, we perform the same comparative analysis, ensuring
that the generated backbones’ size is consistently 30% of the original network size. This
fixed percentage was chosen based on extensive empirical testing, which demonstrated
that 30% provides an optimal balance between reducing network complexity and pre-
serving key structural properties. Maintaining this consistent parameter setting ensures
a fair comparison across different networks.
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Firstly, we use two small networks, the Wind Surfers Network and the Madrid Train
Bombing Network, to visualize the network and its extracted backbones. For the evalu-
ation metrics, we present and discuss the results of all the networks in terms of Global
properties and KS statistics. However, the Unicode Languages Network serves as an
example in visualizing the degree and weight distribution, mesoscopic properties, and
distance measures. In the Supplementary Materials (SM), a similar evaluation of the
other networks is presented.

Global threshold

In this section, we employ the Global Threshold algorithm to simplify the network
representation by retaining only the most significant edges based on a predefined
threshold, allowing for efficient extraction of a sparser network backbone. However,
acknowledging the limitations of the Global Threshold method in networks with vari-
able density structures, we have introduced an adaptive thresholding mechanism that
varies across different parts of the network. This mechanism calculates local thresholds
based on the statistical properties of edges within each community structure, ensur-
ing the retention of significant edges in both dense and sparse areas. Furthermore, our
multiscale backbone strategy specifically addresses these limitations by extracting back-
bones from different dense parts of the network as well as from the global component.
This approach ensures that important substructures are preserved and that the overall
network complexity is accurately represented. These combined approaches enhance the
robustness and accuracy of the backbone extraction process. Quantifying the effective-
ness of the Multilevel backbone in revealing or retaining the organization of networks’
structure beyond visual examination is valuable. Despite the significance of network
visualization in network analytics, particularly for small- to medium-sized networks, it
becomes increasingly challenging as the network size grows. To address this, we utilize
several small networks, such as the Wind Surfers and Madrid Train Bombing networks,
to visualize the differences between the Multilevel and Classical Global Threshold
methods.

Figure 4 represents the Wind Surfers network alongside its Multilevel Global
Threshold and Classical Global Threshold backbones, with a fraction of preserved
edges fixed at 30%. The Multilevel backbone operates as a multi-threshold method,
tailored to the weight distribution of each component rather than the entire net-
work’s weight distribution. In contrast, the Classical version eliminates the global
component, leading to only one preserved link shared between nodes 1 and 7.
Additionally, the Madrid Train Bombing network, containing six local compo-
nents, is visualized in Fig. 5. Notably, the Classical Global Threshold removes the
blue-colored local component, while the Multilevel Global Threshold preserves the
overall component structure of the network, except for the small pink-colored local
component, which consists of only two nodes and one link. The results demonstrate
that the Multilevel Global Threshold employs multiple strategies adapted to the
weight distribution of individual components rather than the overall network weight
distribution.
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Classical Global Threshold

Wind Surfers network

Fig. 4 The extracted backbones using Global Threshold of the "Wind Surfers'network (43 nodes and 336
edges), with a fraction of edges fixed at 30%

Classical Global Threshold e

Madrid Train Bombing

Fig. 5 The extracted backbones using Global Threshold of the ‘Madrid Train Bombing'network (62 nodes
and 243 edges), with a fraction of edges fixed at 30%

Comparing the basic global properties

Table 2 provides a comprehensive description of the global properties of the original net-
works under investigation, along with their corresponding extracted Classical and Mul-
tilevel Global Threshold backbones. For Zachary’s Karate Club network, the Multilevel
Global Threshold almost preserves the diameter, average shortest path, and assortativity,
while the Classical Global Threshold closely matches the density value of the original
network. Both backbones exhibit equivalent values for average node degree, max node
degree, and clustering coefficient. Regarding the Wind Surfers network, the Multilevel
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Table 2 Global properties of the real-world networks under study and their Classical Global
Threshold and Multilevel Global Threshold

v E ) d L (k) kmax 1 C
Zachary's karate club 34 78 1.39E-01 5 241 459 17 =048 057
Classical global threshold 19 23 1.35E-01 7 323 242 6 —-019 021
Multilevel global threshold 23 23 1.21E-01 4 233 230 5 —-027 022
Wind surfers 43 336 3.72E-01 3 1.67 15.63 31 —0.15 065
Classical global threshold 39 101 1.36E—01 5 261 5.18 21 —030 054
Multilevel global threshold 36 101 1.60E—01 5 229 561 21 —031 051
Madrid train bombing 64 243 1.21E-01 6 269 7.59 29 0.03 0.62
Classical global threshold 33 73 1.38E-01 3190 442 29 —065 073
Multilevel global threshold 41 72 8.87E—02 5 244 3.51 23 —-030 033
Les Misérables 77 254 8.68E—02 5 2.64 6.60 36 —-017 057
Classical global threshold 35 76 1.28E—01 6 302 434 13 —004 067
Multilevel global threshold 41 76 9.27E—02 7 327 3.71 15 —012 048
Unicode languages 868 1255  3.34E-03 8 421 289 141 —-017 0
Classical global threshold 399 376 474E-03 11 407 188 106 —-024 0
Multilevel global threshold 341 373 6.43E—03 12 404 2.19 105 —-024 O
World air transportation 2518 16,313 5.15E—03 9 362 1296 242 —007 047
Classical global threshold 802 4894 1.52E-02 7 314 12.20 154 —0.17 039
Multilevel global threshold 918 4892  1.16E—02 7 340 1066 119  —007 039
Scientific collaboration 16,264 47,594  3.60E—04 18 663 5.85 107 0.18 0.64
Classical global threshold 9815 14,278  296E—-04 25  8.09 291 44 0.04 033

Multilevel global threshold 9345 14,217  356E-04 20 816 3.04 40 0.08 0.34

Vis the number of total nodes. E is the number of edges. w denotes density. d is the diameter. L represents the average
shortest path. (k) is the average node degree. kg represents the max node degree. r is the assortativity coefficient. C
denotes the clustering coefficient

and Classical Global Threshold yield similar values for all the global properties. In the
case of the Madrid Train Bombing network, the Multilevel backbone demonstrates simi-
lar values for diameter and average shortest path as the original network. However, the
Classical backbone better preserves the density, average node degree, max node degree,
and clustering coefficient. Concerning the Les Misérables network, the Multilevel Global
Threshold comes close to preserving global properties concerning density, assortativity,
and clustering coefficient. The Classical version shows similarity to the original network
in terms of diameter and average node degree. Meanwhile, the average shortest path and
max node degree are equivalent for both Multiscale and Classical backbones. As for the
Unicode Languages network, the Multilevel Global Threshold preserves only the average
node degree, whereas the Classical version retains only the density. For the other prop-
erties, both backbones yield similar results. In the World Air Transportation network,
the Multilevel Global Threshold preserves the average shortest path and assortativity,
while the Classical Global Threshold maintains the average node degree of the original
network. The remaining properties have comparable results for both backbones. In the
Scientific Collaboration network, the Classical backbone does not preserve any proper-
ties, whereas the Multilevel backbone effectively preserves the density, diameter, average
node degree, and assortativity of the original network. Additionally, the average shortest
path, max node degree, and clustering coefficient results are similar for both the Classi-
cal and Multilevel backbones. Overall, one can say that the Multilevel Global Threshold
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can preserve the global properties of the original network, especially for the Scientific
Collaboration network.

Comparing the distributions
textitCumulative degree distribution Let’s now discuss the cumulative degree distribu-
tion presented in Fig. 6 for the Unicode Languages network and its extracted backbones,
which are the Multilevel and the Classical Global Threshold. Interestingly, the Multilevel
Global Threshold provides a sub-graph with a distribution slightly more similar to the
original network than the Classical Global Threshold. Moreover, it is more likely to pre-
serve the main characteristics of the original network than the Classical version. This
finding is reinforced by the Kolmogorov-Smirnov (KS) statistics, which are highlighted
in Table 3. Notably, the KS statistic is small (0.086), indicating a considerable resem-
blance between the Multilevel Global Threshold degree distribution and that of the orig-
inal network. In contrast, there is a more substantial difference between the Classical
Global Threshold degree distribution and the original network degree distribution.

Similar results are observed for the other networks under examination (see Supple-
mental Materials). The cumulative degree distribution of the overall networks and
their backbones exhibits analogous behavior to that of the Unicode Languages net-
work. Except for Zachary’s karate club and Les Misérables networks, the KS statistic of
the Classical Global Threshold is consistently lower than that of the Multilevel Global
Threshold, as depicted in Table 3. This signifies that the cumulative degree distribution
of the Classical backbone is more closely aligned with the original network compared to
the Multilevel version.

textitCumulative weight distribution In analyzing the cumulative weight distribu-
tion (Fig. 7), we observe that the Multilevel Global Threshold preserves nearly all scales,
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Fig.6 Cumulative degree distribution for the unicode language network and its extracted multilevel and
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Fig. 7 Cumulative weight distribution for the unicode language network and its extracted multilevel and
classical global threshold

with only the area of extremely light weights being impacted. Conversely, the Classical
Global Threshold eliminates a significant portion of small weights, retaining only high-
scale ones. This finding is further supported by the results of the KS statistic, which
confirm that the Multilevel Global Threshold weight distribution is more similar to the
original network weight distribution compared to the Classical Global Threshold weight
distribution.

Table 3 KS statistics between the extracted backbone degree distribution and the original network
degree distribution, as well as between the extracted backbone weight distribution and the original
network weight distribution

Network Backbone KS (Degree KS (Weight
Distribution) Distribution)

Zachary's karate club Classical global threshold 0339 0.644
Multilevel global threshold 0.371 0.557

Wind surfers Classical global threshold 0.797 0.652
Multilevel global threshold 0.699 0497

Madrid train bombing Classical global threshold 0443 0.278
Multilevel global threshold 0.381 0.283

Les Misérables Classical global threshold 0.296 0.664
Multilevel global threshold 0.337 0.532

Unicode languages Classical global threshold 0.176 0.697
Multilevel global threshold 0.086 0481

World air transportation Classical global threshold 0.088 0.700
Multilevel global threshold 0.049 0.550

Scientific collaboration Classical global threshold 0.321 0618

Multilevel global threshold 0.282 0.510
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Similar patterns have been observed in other networks under investigation (refer
to the Supplemental Materials). Most networks and their backbones exhibit behav-
ior similar to the cumulative weight distribution of the Unicode Languages network.
However, in the case of the Madrid Train Bombing network, as indicated in Table 3,
the KS statistic between the network and its Classical Global Threshold is slightly
lower than the KS statistic between the network and its Multilevel Global Threshold.
Therefore, in contrast to the Multilevel backbone, the cumulative weight distribution
of the Classical Global Threshold is slightly more similar to the original network.

Comparing the distances
Let’s now examine different distance measures. Figure 8 illustrates the progression of Por-
trait Divergence Distance (left panel), Laplacian Spectrum Distance (middle panel), and
Network Laplacian Spectral Distance (right panel) between the Unicode Languages net-
work and its extracted backbones. In the left panel, we observe that, for all link fractions
below 90%, the Multilevel Global Threshold exhibits a lower distance than the Classical
Global Threshold, indicating a closer similarity between the Multilevel Global Thresh-
old and the original network in terms of visual characteristics. Concerning the Lapla-
cian Spectrum Distance, the Multilevel Global Threshold is closer to the original network
than the Classical backbone for link fractions less than 60%. The right panel of the Figure
further confirms that for percentages below 25% and above 55%, the Network Laplacian
Spectral Distance (NetLSD) value for the Multilevel Global Threshold is smaller than the
Classical Global Threshold values. In fact, by comparing the underlying network struc-
tures, we can conclude that the Multilevel Global Threshold is closer to the original net-
work than the Classical Global Threshold. Overall, the collective distance measurements
support the notion that the Multilevel Framework, employing a Global Threshold algo-
rithm, preserves more properties of the original graph than the Classical version.
Discrepancies between this network and the others can be observed (refer to the Sup-
plementary Materials). Specifically, concerning Zachary’s karate club network, when the
fraction of preserved edges exceeds 70%, the Laplacian Spectrum Distance between the
original network and the Classical Global Threshold is smaller than the distance between
the original network and the Multilevel Global Threshold. Additionally, for percentages
below 20% and above 40%, the Classical backbone shows closer proximity to the original
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network compared to the Multilevel version. In the case of the Wind Surfers network,
the Portrait Divergence Distance indicates that the Multilevel Global Threshold is
closer to the original for fractions under 70%. However, the Laplacian Spectrum Dis-
tance reveals that the Multilevel Global Threshold significantly deviates from the origi-
nal network for fractions of edges between 30% and 70%. Regarding the Les Misérables
network, both the Portrait Divergence Distance and the Laplacian Spectrum Distance
confirm that the Classical Global Threshold is the closer backbone to the original net-
work. Nevertheless, concerning NetLSD, for fractions below 30%, the distance between
the original network and the Multilevel Global Threshold is higher, implying that, for
this fraction, the Classical Global Threshold tends to be closer to the original network.
Lastly, for the World air transportation network, we can deduce that after a certain frac-
tion of preserved links, the Classical Global Threshold tends to be closer to the original
network than the Multilevel Global Threshold.

Comparing the mesoscopic properties

textitQuantitative analysis As we apply the Multilevel Global Threshold and Classical
Global Threshold to extract the backbone of the network, we present statistics regard-
ing the relative sizes of each backbone in terms of fractions of total weight and nodes
preserved while varying the fraction of retained edges, as shown in Fig. 9. Specifically,
for the Unicode Languages network, the Multilevel Global Threshold reduces the num-
ber of nodes more than the Classical Global Threshold. Looking at the right panel, we
also observe that the Classical Global Threshold retains a higher proportion of weight
than the Multilevel Global Threshold. This difference can be attributed to the Multilevel
Global Threshold’s interest in both high and low weights, while the Classical backbone
filters out low weights and preserves only the high weights of the network. Similarly, the
other networks (refer to the Supplemental Materials) exhibit similar behavior regarding
the preserved weight fraction. However, for networks such as Zachary’s karate club, Les
Misérables, and World Air Transportation, the Multilevel Global Threshold preserves a
higher fraction of nodes than the Classical version for all link fractions below 60%.
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Fig. 9 Fraction of preserved nodes and weights as a function of the fraction of edges maintained by the
Multilevel and Classical Global Threshold of the Unicode Language network
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Table 4 Modularity of the real-world networks under study and their Classical Global Threshold and
Multilevel Global Threshold

Network Modularity
Original network Classical global Multilevel
threshold global
threshold
Zachary’s karate club 0443 0442 0480
Wind surfers 0371 0408 0.375
Madrid train bombing 0435 0.061 0.386
Les Misérables 0.565 0.522 0.523
Unicode languages 0.771 0.789 0.733
World air transportation 0.630 0.388 0441
Scientific collaboration 0.873 0.903 0.883

textitModularity The modularity of the examined real-world networks and their
extracted backbones using Global Threshold is shown in Table 4. The essence of modu-
larity as an evaluative metric lies in its ability to quantify the strength of the division
within a network into communities. Consequently, higher modularity values are indica-
tive of a pronounced community structure.

The Classical Global Threshold seems to either maintain or enhance modularity in
most cases, indicating a potential for reinforcing the prE—existing community struc-
tures within the networks. Notably, this method significantly increased modularity in the
Wind Surfers and Scientific Collaboration networks, suggesting it might be particularly
effective in networks with strong inherent community structures. On the other hand,
the Multilevel Global Threshold generally exhibits a more conservative approach. In the
case of the Madrid Train Bombing network, the Multilevel Global Threshold better pre-
served the modularity of the original network compared to the Classical Global Thresh-
old, which significantly diminished it. This suggests that the Multilevel Global Threshold
may be more adept at maintaining the integrity of the original network’s structure, par-
ticularly in cases where the Classical Global Threshold might over-prune connections
and disrupt the community layout.

Overall, if the objective is to maintain modularity closest to the original network, the
Multilevel Global Threshold appears to be the more consistent method across varied
network structures. It strikes a balance between preserving the original network’s modu-
larity and extracting a meaningful backbone, suggesting its utility in applications where
the integrity of the original network’s community structure is paramount.

textitParticipation coefficient Figure 10 illustrates the distribution of the Participation
Coefficient across the original Unicode Language network and its backbones, processed
through the Classical Global Threshold and the Multilevel Global Threshold techniques.
The Participation Coefficient measures the diversity of intermodular connections of
nodes in a network. A higher Participation Coefficient suggests that a node is connected
to many different communities, while a lower value indicates that a node’s connections
are largely confined within its community.

The plot indicates that the original network has a certain distribution of the Participa-
tion Coefficient, a reference for the effectiveness of the two thresholding methods. The
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Fig. 10 Participation coefficient for the unicode language network and its extracted multilevel and classical
global threshold

Classical Global Threshold appears to skew the distribution towards lower Participa-
tion Coefficient values, suggesting a tendency to confine nodes within their communi-
ties, reducing the intermodular connectivity. On the other hand, the Multilevel Global
Threshold shows a distribution that is more aligned with the original network’s, main-
taining a broader spread of Participation Coefficient values. This implies that the Multi-
level Global Threshold preserves the diversity of intermodular connections better than
the Classical Global Threshold.

From this visualization, we can infer that the Multilevel Global Threshold is more
effective at preserving the network’s community structure, as measured by the Partici-
pation Coefficient. The nodes maintain a level of connectivity to multiple communities
that is more similar to the original network structure compared to the Classical Global
Threshold, which seems to promote a higher level of modularity by restricting nodes to
within-community connections.

This analysis suggests that the Multilevel Global Threshold would be the preferred
method for maintaining network connections’ structural diversity. It preserves the intri-
cate balance of within-community and between-community connections that charac-
terize the original network, which is crucial for understanding the network’s functional
dynamics.

textitInter-community connectivity Table 5 provides values of the inter-commu-
nity connectivity of networks under study and their backbones using Classical Global
Threshold and Multilevel Global Threshold techniques. Inter-community connectivity
is a crucial metric in network analysis, as it measures the extent of connections between
distinct communities within a network. A higher value indicates more community con-
nections, often associated with a robust and integrated network structure.

Upon examining the inter-community connectivity values, it is apparent that both
thresholding techniques generally reduce this metric compared to the original network
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Table 5 Inter-Community Connectivity of the real-world networks under study and their Classical
Global Threshold and Multilevel Global Threshold

Network Inter-community connectivity
Original network Classical global Multilevel
threshold global
threshold
Zachary’s karate club 51.00 21.00 19.00
Wind surfers 118.00 20.00 59.00
Madrid train bombing 55.00 27.00 17.00
Les Misérables 154.00 101.00 101.00
Unicode languages 3753 2743 3570
World air transportation 1041054 945,906 803,281
Scientific collaboration 3001.50 148850 174751

values, indicative of a loss of cross-community links post-thresholding. However, the
degree to which each method preserves the original network’s inter-community connec-
tivity varies.

For instance, in Zachary’s Karate Club network, the original inter-community connec-
tivity is 51.00, which is reduced to 21.00 by the Classical Global Threshold and, to an
even lower extent, by the Multilevel Global Threshold at 19.00. This pattern, where the
Multilevel Global Threshold retains connectivity closer to the original structure, is also
reflected in the Wind Surfers network, although the Classical Global Threshold results
in a drastic reduction from the original 118.00 to 20.00, whereas the Multilevel Global
Threshold maintains higher connectivity at 59.00. The Madrid Train Bombing network
offers a contrasting result, with the Classical Global Threshold preserving more of the
original network’s connectivity (27.00) than the Multilevel Global Threshold (17.00). The
same behaviour is seen in the World Air Transportation Network; the Multilevel back-
bone preserves less than the Classical backbone regarding inter-community connectiv-
ity. Les Misérables, on the other hand, shows equal preservation by both methods, each
maintaining the connectivity at 101.00, a decrease from the original value of 154.00. For
the Unicode Languages network, the Multilevel Global Threshold preserves more con-
nectivity (35.70) than the Classical Global Threshold (27.43), against an original value
of 37.53. Finally, the Scientific Collaboration network, which starts with a significantly
high inter-community connectivity of 3001.50, retains 1488.50 with the Classical Global
Threshold and 1747.51 with the Multilevel Global Threshold, indicating that the Multi-
level Global Threshold is more effective at preserving inter-community connections in
this case.

In summary, our results suggest that the effectiveness of the Classical Global Thresh-
old and the Multilevel Global Threshold in preserving the original network’s inter-
community connectivity is context-dependent. While the Multilevel Global Threshold
better maintains connectivity for Wind Surfers and Unicode Languages networks, the
Classical Global Threshold is more effective for the Zachary’s Karate Club and Madrid
Train Bombing networks. Both methods are equivalent for networks like Les Miséra-
bles, and for the highly interconnected Scientific Collaboration network, the Multilevel
Global Threshold shows superior performance. This nuanced analysis indicates that
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careful consideration must be given to the backbone extraction method based on the
specific network’s structure and the analytical objectives of preserving inter-community
connectivity.

textitIntra-community connectivity Table 6 illustrates the intra-community connectiv-
ity values of the networks under evaluation and their extracted backbones: the Classical
Global Threshold and the Multilevel Global Threshold. Intra-community connectivity
measures the density of links within individual communities, and high values typically
reflect a tightly-knit community structure.

For Zachary’s Karate Club, the original network exhibits an intra-community con-
nectivity of 180.0, which is reduced to 81.00 by the Classical Global Threshold and
further marginally by the Multilevel Global Threshold to 80.00. This marginal differ-
ence suggests that both methods reduce connectivity within communities for this
network. In the Wind Surfers network, the original intra-community connectivity
of 1088.00 is significantly reduced by both methods; however, the Classical Global
Threshold maintains higher connectivity (839.00) compared to the Multilevel Global
Threshold (766.00), indicating a better preservation of the original network’s intra-
community structure. The Madrid Train Bombing network sees an increase in intra-
community connectivity from 85.00 to 94.00 with the Multilevel Global Threshold,
contrary to a reduction to 85.00 by the Classical Global Threshold, positioning the
Multilevel approach as a more conservative method in terms of preserving the net-
work’s original connectivity. In Les Misérables, the original intra-community connec-
tivity of 666.00 is reduced to 429.00 by the Classical Global Threshold and, to a slightly
lower extent, by the Multilevel Global Threshold of 412.00. Both methods decrease
connectivity, with the Classical Threshold showing a closer value to the original net-
work. The Unicode Languages network originally possesses an intra-community
connectivity of 265.15, which is reduced to 245.75 by the Classical Global Threshold
and further to 169.48 by the Multilevel Global Threshold, implying that the Classical
method is closer to the original connectivity value. For World Air Transportation, the
Classical Global Threshold and the Multilevel Global Threshold reduce the original
intra-community connectivity; however, the Classical method preserves the higher
connectivity, which shows a closer value to the original network than the Multilevel

Table 6 Intra-Community Connectivity of the real-world networks under study and their Classical
Global Threshold and Multilevel Global Threshold

Network Intra-Community Connectivity
Original Network Classical Global Multilevel
Threshold Global
Threshold
Zachary’s karate club 180.00 81.00 80.00
Wind surfers 1088.00 839.00 766.00
Madrid train bombing 227.00 85.00 94.00
Les Misérables 666.00 429.00 412.00
Unicode languages 265.15 24575 169.48
World Air transportation 3,475,074 2,642,841 2,634,522

Scientific collaboration 24208.00 17252.17 15860.66
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method. Lastly, the Scientific Collaboration network, with a high original connectiv-
ity of 24208.00, sees reductions to 17252.17 by the Classical Global Threshold and
to 15860.66 by the Multilevel Global Threshold. Although both methods significantly
reduce intra-community connectivity, the Classical Global Threshold retains a value
closer to the original network.

In summary, applying the Classical Global Threshold and Multilevel Global Thresh-
old has distinct impacts on the intra-community connectivity of networks. The Classi-
cal Global Threshold tends to preserve intra-community connectivity more closely to
the original values for most networks, except for the Madrid Train Bombing network,
where the Multilevel Global Threshold is more aligned with the original structure.

Disparity filter

In this section, we employ the Disparity Filter as an algorithm for backbone extraction.
The Disparity Filter captures statistically significant edges at the local level, consider-
ing the unique characteristics of individual nodes and their respective null models. This
nuanced approach provides a deeper understanding of the network’s structure, uncov-
ering hidden patterns or relationships that global filtering methods might overlook.
Although network visualization plays a vital role in analyzing smaller to medium-sized
networks, it becomes increasingly challenging as the network grows in size. To highlight
the distinctions between the Multilevel Disparity Filter and the Classical Disparity Fil-
ter, we present visualizations of two small networks and their extracted backbones: the
Wind Surfers and the Madrid Train Bombing networks.

The Wind Surfers network and its Multilevel Disparity Filter and Classical Disparity
Filter, with a fixed fraction of edges at 30%, are shown in Fig. 11. Remarkably, the Clas-
sical Disparity Filter tends to eliminate the global component, resulting in only three
preserved edges shared between the two local components, which are (7,1), (7,2), and
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Fig. 11 The extracted backbones using Disparity Filter of 'Wind Surfers’ network (43 nodes and 336 edges),
with a fraction of edges fixed at 30%
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Fig. 12 The extracted backbones using Disparity Filter of 'Madrid Train Bombing' (62 nodes and 243 edges),
network with a fraction of edges fixed at 30%

(7,9). In contrast, the Multilevel Disparity Filter successfully maintains all the network
components. Furthermore, Fig. 12 displays the network of the Madrid Train Bombing
and its extracted backbones, with the same fraction of preserved edges (30%). The Clas-
sical Disparity Filter filters out two local components (colored blue and hunter green).
On the other hand, the Multilevel Disparity Filter preserves the network’s component
structure. Except for the small local component highlighted in pink, which contains only
two nodes connected by one edge, the Multilevel and Classical backbones remove this
component. In conclusion, the findings indicate that the Multilevel Disparity Filter func-
tions as diverse approaches tailored to the weight distribution of individual components,
rather than being dependent on the overall network weight distribution. Overall, after
pruning 70% of the network, the results demonstrate that the Multilevel Disparity Fil-
ter operates as multiple strategies customized to each component’s weight distribution

rather than relying on the overall network weight distribution.

Comparing the basic global properties

The global properties of the studied networks, their Classical Disparity Filter, and their
Multilevel Disparity Filter backbones are presented in Table 7. The results for the Clas-
sical Disparity Filter and the Multilevel Disparity Filter exhibit some similarities. For the
first network, Zachary’s Karate Club, both backbones display nearly identical values for
density, diameter, average shortest path, average and max node degree. However, there
are slight differences in assortativity and clustering coefficients, where the Multilevel
Disparity Filter’s values are closer to those of the original network than the Classical ver-
sion. In the case of the Wind Surfers network, the Multilevel Disparity Filter preserves
the diameter, average shortest path, and max node degree of the original network better
than the Classical version. Conversely, the Classical Disparity Filter has a clustering coef-
ficient closer to the original network. The other global properties show similar values for
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Table 7 Global properties of real—world networks under study, their Classical Disparity Filter, and
their Multilevel Disparity Filter

v E w d L (k) Kmax 1 C
Zachary's Karate Club 34 78 1.39E-01 5 24 4.59 17 —048 0.57
Classical disparity filter 21 23 1.10E—01 7 341 2.19 6 —0.26 0.17
Multilevel disparity filter 21 23 1.10E—-01 7 340 2.19 6 —0.31 0.24
Wind Surfers 43 336 3.72E-01 3 1.67 15.63 31 —0.15 0.65
Classical disparity filter 43 101 1.12E-01 6 310 4.70 19 —039 0.54
Multilevel disparity filter 41 101 1.23E-01 4 237 493 24 —0.32 0.46
Madrid Train Bombing 64 243 1.2E—-01 6 269 7.59 29 0.03 0.62
Classical disparity filter 39 73 9.85E-02 4 243 374 16 —046 037
Multilevel disparity filter 45 72 7.27E—02 5 2.82 3.20 14 —046 0.28
Les Misérables 77 254 8.68E—02 5 2.64 6.60 36 —0.17 0.57
Classical disparity filter 45 76 7.68E—-02 7317 338 11 —0.04 0.36
Multilevel disparity filter 47 76 7.03E—02 6 307 3.23 13 —0006 043
Unicode languages 868 1255  3.34E-03 8 421 289 141 —-0.17 0
Classical disparity filter 404 376 4.46E—-03 12 439 1.86 87 —-0.20 0
Multilevel disparity filter 332 373 6.79E—03 12 444 2.25 78 —0.19 0
World Air Transportation 2518 16,313 5.15E—03 9 362 1296 242 —0.07 047
Classical disparity filter 1433 4894 4.77E—-03 8 374 6.83 120 —0.15 0.16
Multilevel disparity filter 1470 4892  4.53E-03 8 386 666 107 —-0.15 0.18
Scientific Collaboration 16,264 47594 3.60E—04 18 663 5.85 107 0.18 0.64
Classical disparity filter 9264 14278 333E-04 26 968 3.08 38 0.18 033
Multilevel disparity filter 9498 14217 315E-04 25 857 2.99 40 0.16 0.28

Vis the number of total nodes. E is the number of edges. w denotes density. d is the diameter. L represents the average
shortest path. (k) is the average node degree. kg represents the max node degree. r is the assortativity coefficient. C
denotes Clustering Coefficient

both backbones. For the Madrid Train Bombing network, the Multilevel backbone pre-
serves the diameter and average shortest path, while the Classical backbone preserves
the clustering coefficient. The density, average node degree, max node degree, and assor-
tativity coefficient values are similar for both backbones. In the Les Misérables network,
the Classical Disparity Filter maintains the density and assortativity coefficient more
effectively than the Multilevel backbone. However, the Multilevel backbone is closer to
the original network regarding diameter and clustering coefficient. The other proper-
ties show similar values for both backbones. Moving on to the Unicode Languages net-
work, the Classical backbone only preserves the density, while the Multilevel backbone
only preserves the average node degree of the original network. Both extracted back-
bones have similar values for all other properties. For the World Air Transportation
network, the Classical and Multilevel Disparity Filters exhibit similar values for all the
calculated properties. In the Scientific Collaboration network, the Classical Disparity
Filter preserves the density, average node degree, and assortativity coefficient, whereas
the Multilevel version only preserves the average shortest path of the original network.
The diameter, max node degree, and clustering coefficient have comparable values for
both Classical and Multilevel backbones. Overall, it can be concluded that the Multilevel
Disparity Filter enhances the preservation of global properties compared to the Classical

version.
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Fig. 13 Cumulative degree distribution for the Unicode Language network and its extracted Multilevel and
Classical Disparity Filter

Comparing the distributions

Cumulative degree distribution Using a fixed edge percentage of 30%, Fig. 13 illustrates
the degree distribution of the Unicode Languages network and its extracted backbones.
It is worth noting that the Multilevel disparity filter backbone’s cumulative degree dis-
tribution is slightly closer to the initial network distribution than the Classical Disparity
Filter distribution. The Kolmogorov-Smirnov (KS) statistic between the original back-
bone distribution and the backbone distribution, as presented in Table 8, highlights this
result. The KS statistic is minimal (0.063) for the Multilevel Disparity Filter, indicat-
ing a close similarity between its degree distribution and that of the original network.
However, the Classical Disparity Filter’s degree distribution differs significantly from
the original network’s degree distribution. Some other networks display similar behav-
ior when comparing the distributions of the Classical and Multilevel Disparity filters.
Specifically, the Zachary’s Karate Club and World Air Transportation networks exhibit
small KS values calculated between the Multilevel Disparity Filter degree distribution
and the original network degree distribution. In contrast, the degree distributions of the
Classical Disparity Filter for the other four networks are closer to those of the original
networks. textitCumulative weight distribution The Multilevel Disparity Filter retains
practically all scales of weights, as observed in Fig. 14. In contrast, the Classical Disparity
Filter removes several regions of tiny weighted edges. This finding is corroborated by the
KS statistic, which indicates that the Multilevel Disparity Filter weight distribution more
closely follows the original network weight distribution than the Classical Disparity
Filter weight distribution. Similar results have been observed in other networks under
investigation (refer to the Supplemental Materials). The original networks’ cumulative
weight distribution and backbones demonstrate the same behavior as the Unicode Lan-
guages network. Except for the Madrid Train Bombing and Les Misérables networks, the
KS statistic of the Classical Disparity Filter is somewhat lower than the KS statistic of
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Fig. 14 Cumulative weight distribution for the unicode language network and its extracted multilevel and
classical disparity filter

Table 8 KS statistics between the backbones degree distribution and the original network degree
distribution, as well as between the backbones weight distribution and the original network weight

distribution
Network Backbone KS (degree KS (weight
distribution) distribution)

Zachary’s karate club Classical disparity filter 0447 0.513
Multilevel disparity filter 0.409 0470

Wind surfers Classical disparity filter 0.767 0.642
Multilevel disparity filter 0.806 0.464

Madrid train bombing Classical disparity filter 0.370 0.278
Multilevel disparity filter 0414 0.283

Les Misérables Classical disparity filter 0.332 0447
Multilevel disparity filter 0.384 0.480

Unicode languages Classical disparity filter 0.149 0.495
Multilevel disparity filter 0.063 0361

World air transportation Classical disparity filter 0.185 0.379
Multilevel disparity filter 0.157 0.378

Scientific collaboration Classical disparity filter 0.268 0.398
Multilevel disparity filter 0.304 0.369

the Multilevel Disparity Filter, as shown in Table 8. Consequently, the cumulative weight
distribution of the Classical Disparity Filter is slightly closer to the original network
compared to the Multilevel version.
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Comparing the distances

Turning our attention to various distance metrics, Fig. 15 illustrates the evolution of
Portrait Divergence Distance (Left), Laplacian Spectrum Distance (Middle), and Net-
work Laplacian Spectral Distance (Right) between the Unicode Languages network and
its extracted backbones in the function of preserved edges. Examining the left panel,
we observe that the Portrait Divergence Distance between the original network and the
Multilevel Disparity Filter is consistently smaller for all link fractions below 90%. This
indicates that the Multilevel backbone more closely resembles the visual properties of
the original network compared to the Classical backbone. However, for link fractions
between 20% and 60%, the Multilevel Disparity Filter exhibits closer proximity to the
original network than the Classical Disparity Filter in terms of the Laplacian Spectrum
Distance, as seen in the middle panel. Analyzing the right panel, we can conclude that
for fractions of preserved edges below 25% and above 55%, the Multilevel Disparity Fil-
ter is more similar to the original network’s structure than the Classical Disparity Filter,
based on the NetLSD metric. Overall, considering all distance measurements together,
the Multilevel Framework utilizing the Disparity Filter algorithm preserves more origi-
nal graph features compared to the Classical method.

Regarding the other networks, several differences are observed. For the Wind Surf-
ers network, the Laplacian Spectrum Distance between the original network and the
Classical Disparity Filter is less than the distance between the original network and
the Multilevel Disparity Filter for fractions of preserved edges between 20% and 60%.
However, except for fractions between 70% and 80% for Laplacian Spectrum Distance,
the extracted Multilevel Disparity Filter exhibits closer proximity to the Madrid Train
Bombing network. For all fractions higher than 20%, the Multilevel Disparity Filter
closely resembles the original network, according to the Network Laplacian Spectrum
Distance. Regarding the Network Laplacian Spectrum Distance calculated for the Les
Misérables network, the Classical Disparity Filter is the closest to the original network.
However, the Multilevel Disparity Filter appears closer to the original network in terms
of the other two distances. It is noteworthy that for the World Air Transportation net-
work, the Classical Disparity Filter tends to be closer to the original network after main-
taining 60% of links, in terms of the Network Laplacian Spectrum Distance.
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Fig. 15 Distance measurements according to the fraction of preserved links between Unicode Languages
network and Multilevel Disparity Filter (curve in orange), and between Unicode Languages network and
Classical Disparity Filter (curve in blue). Panels represent respectively Portrait Divergence Distance (Left),
Laplacian Spectrum Distance (Middle), and Network Laplacian Spectral Distance (Right)
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multilevel and classical Disparity Filter of Unicode Language network

Table 9 Modularity of the real-world networks under study and their classical disparity threshold
and multilevel disparity threshold

Network Modularity
Original network Classical disparity filter Multilevel

disparity
filter

Zachary’s karate club 0443 0.460 0486

Wind surfers 0.371 0434 0372

Madrid train bombing 0435 0.392 0402

Les Misérables 0.565 0.550 0.519

Unicode languages 0.771 0.802 0.743

World air transportation 0.630 0404 0450

Scientific collaboration 0.873 0916 0.889

Comparing the mesoscopic properties
textitQuantitative analysis In Fig. 16, we present statistics regarding the relative sizes of
retained backbones for the Unicode Languages network when filtered by the Multilevel
Disparity Filter and the Classical Disparity Filter in terms of fractions of total weight and
nodes. A noteworthy difference is observed as the Multilevel Disparity Filter maintains
fewer nodes and lower weights than the Classical Disparity Filter. This behavior can be
attributed to the Multilevel Disparity Filter’s interest in both large and small weights.
Similar patterns are observed in other networks concerning the preserved weight frac-
tion. Moreover, for the Madrid Train Bombing, Les Misérables, and Scientific Collab-
oration networks, the Multilevel Disparity Filter preserves a higher fraction of nodes
compared to the Classical version.

textitModularity Table 9 illustrates the modularity of the investigated real-world
networks and their identified backbones through the application of the Disparity
Filter. The Classical Disparity Filter, in most instances, increases the modularity of
the original network’s value, indicating an enhancement of the network’s community
structure. This is particularly evident in networks such as Wind Surfers, where the
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modularity increases from 0.371 to 0.434, and in the Scientific Collaboration network,
which rises from 0.873 to 0.916. Such increases suggest that the Classical Disparity
Filter may reinforce the definition of community boundaries within these networks.
Conversely, the Multilevel Disparity Filter tends to result in modularity values closer
to the original network’s modularity. For instance, in the Wind Surfers network, the
modularity is reduced from 0.371 in the original to 0.372 with the Multilevel Dispar-
ity Filter, compared to a decrease to 0.434 with the Classical Disparity Filter. In the
Madrid Train Bombing network, the original modularity is 0.435, and the Multilevel
Disparity Filter produces a modularity of 0.402, closer than the Classical’s 0.392.

In conclusion, while the Classical Disparity Filter often enhances the modularity,
potentially sharpening the community structure, the Multilevel Disparity Filter seems
to preserve the original network’s modularity better. This preservation is crucial when
we aim to maintain the existing network structure while still identifying significant
community divisions. The Multilevel Disparity Filter, therefore, may be preferable
in scenarios where a less invasive modification to the network’s original structure is
desired.

textitParticipation coefficient From Fig. 17, it is observable that the original net-
work exhibits a specific profile of the Participation Coefficient, which serves as a
baseline for comparison. The Classical Disparity Filter shows a skewed distribution
towards higher Participation Coefficient values, suggesting that it may be more likely
to retain or even accentuate a node’s connections across multiple communities than
the original network. In contrast, the Multilevel Disparity Filter displays a distribu-
tion that closely tracks the original network’s profile, indicating that it preserves the
original network’s structure of node connections among communities. The alignment

of the Multilevel Disparity Filter with the original network is particularly evident in
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the central peak of the distribution, where it closely matches the original network’s
density and range of Participation Coefficient values.

Based on this comparative analysis, we can deduce that the Multilevel Disparity
Filter is more effective in maintaining the Participation Coefficient distribution that
represents the original network. This suggests that the Multilevel Disparity Filter
would be preferable for analyses requiring the preservation of the original network’s
community interaction structure. It offers a more faithful replication of the original
network’s modular connectivity, an essential characteristic for understanding the
complex interplay of nodes within and between communities in the network.

textitInter-community connectivity In this part, we compare the impact of the Clas-
sical Disparity Filter and the Multilevel Disparity Filter on the Inter-Community Con-
nectivity of a set of real-world networks (refer to Table 10). The goal is to evaluate
which filtering method best preserves the inter-community connections as evidenced
in the original networks.

The original Inter-Community Connectivity stands at 51.00 for Zachary’s Karate Club
network. Post-filtering, the Classical Disparity Filter reduces this value to 19.00, while
the Multilevel Disparity Filter further reduces it to 18.00. In the case of the Wind Surfers
network, the original connectivity is significantly reduced from 118.00 to 11.00 by the
Classical Disparity Filter, whereas the Multilevel Disparity Filter lessens the reduction,
maintaining a higher connectivity value of 59.00. In the Madrid Train Bombing network,
the original Inter-Community Connectivity value of 55.00 is decreased to 14.00 by the
Classical Disparity Filter and to a slightly higher value of 17.00 by the Multilevel Dispar-
ity Filter. For Les Misérables, the original value of 154.00 drops to 69.00 with the Clas-
sical Disparity Filter and is better preserved at 99.00 with the Multilevel Disparity Filter.
Starting with connectivity of 37.53, the Unicode Languages network sees a reduction
to 21.45 with the Classical Disparity Filter and, to a lesser extent, with the Multilevel
Disparity Filter, which yields a value of 30.30. In contrast, the Classical Disparity Filter
maintains a higher connectivity value for the World Air Transportation network than
the Multiscale Disparity Filter, significantly reducing the original connectivity. Finally, in
the case of the Scientific Collaboration network, which has a high original connectivity
value of 3001.50, both methods significantly reduce this value. However, the Multilevel

Table 10 Inter-Community Connectivity of the real-world networks under study and their Classical
Disparity Filter and Multilevel Disparity Filter

Network Inter-community connectivity

Original network Classical disparity filter Multilevel disparity filter

Zachary’s karate club 51.00 19.00 18.00
Wind surfers 118.00 11.00 59.00
Madrid train bombing 55.00 14.00 17.00
Les Misérables 154.00 69.00 99.00
Unicode languages 37.53 2145 30.30
World air transportation 1,041,054 878,974 677,358

Scientific collaboration 3001.50 1093.73 1497.25
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Disparity Filter retains higher connectivity (1497.25) than the Classical Disparity Filter
(1093.73).

Through this analysis, it emerges that while both the Classical Disparity Filter and the
Multilevel Disparity Filter decrease the Inter-Community Connectivity relative to the
original networks, the Multilevel Disparity Filter consistently maintains a closer connec-
tivity value to the original network across most of the networks analyzed. These obser-
vations are integral to network analysis, especially when the objective is to discern the
robustness of the network structure and the efficiency of information or influence spread
across communities. Therefore, the Multilevel Disparity Filter can be recommended for
preserving the essence of the original network’s inter-community interactions.

textitIntra-community connectivity Table 11 provides the Intra-Community Connec-
tivity values of the networks under study and their extracted backbones using Classi-
cal Disparity Filter and Multilevel Disparity Filter. Zachary’s Karate Club experiences
a decrease in Intra-Community Connectivity from the original 180.00 to 79.00 when
both the Classical Disparity Filter and Multilevel Disparity Filter are applied, indicat-
ing no variance between the two methods in terms of preserving internal community
connections. For the Wind Surfers network, the original Intra-Community Connectiv-
ity of 1088.00 is reduced to 838.00 by the Classical Disparity Filter, while the Multilevel
Disparity Filter results in a slightly lower connectivity of 746.00. Here, the Classical
Disparity Filter maintains a connectivity value closer to the original. The Madrid Train
Bombing network’s connectivity decreases from 227.00 to 98.00 using the Classical
Disparity Filter, which is marginally better preserved than the Multilevel Disparity Fil-
ter’s reduction to 94.00. Les Misérables shows a similar trend; the original connectiv-
ity of 666.00 is better preserved by the Classical Disparity Filter, which decreases it to
427.00, compared to the Multilevel Disparity Filter’s reduction to 400.00. A pronounced
difference is observed in the Unicode Languages network, where the original connectiv-
ity of 265.15 is decreased less by the Classical Disparity Filter to 213.63, as opposed to
the Multilevel Disparity Filter’s reduction to 145.20, indicating a significant advantage
for the Classical method in maintaining connectivity similar to the original network.
The World Air Transportation network makes an exception in terms of intra-commu-
nity connectivity. The original connectivity decreases using both methods. However,
the Multilevel Disparity Filter preserves a higher connectivity value than the Classical

Table 11 Intra-community connectivity of the real-world networks under study and their classical
disparity filter and multilevel disparity filter

Network Intra-community connectivity
Original network Classical disparity filter Multilevel disparity filter
Zachary’s karate club 180.00 79.00 79.00
Wind surfers 1088.00 838.00 746.00
Madrid train bombing 227.00 98.00 94.00
Les Misérables 666.00 427.00 400.00
Unicode languages 265.15 21363 145.20
World air transportation 3,475,074 2,259,421 2,396,006

Scientific collaboration 24208.00 15598.06 14639.58
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Disparity Filter. Finally, the Scientific Collaboration network, which starts with an intra-
community connectivity of 24208.00, retains 15598.06 with the Classical Disparity Filter,
whereas the Multilevel Disparity Filter reduces it further to 14639.58, suggesting that the
Classical Disparity Filter more closely preserves the network’s original connectivity.

Our findings suggest that while both disparity filters reduce Intra-Community Con-
nectivity from the original network values, the Classical Disparity Filter generally pre-
serves this connectivity better than the Multilevel Disparity Filter. This observation is
consistent across most networks studied, with the Classical Disparity Filter demonstrat-
ing a closer approximation to the original network’s intra-community structure. This
information is particularly valuable when choosing a backbone extraction method that
minimizes the loss of community cohesion within the network.

Discussion

In this study, using a dataset of seven networks from different domains of various sizes,
we use several backbone quality measures to compare our approach with the Classical
technique. The comparison’s objective is to assess the Backbone extraction Framework
based on the Component structure. In the first part, we use a global algorithm to extract
the Global Threshold backbone. Results show that the Multilevel Global Threshold is
the most effective in weight and degree distributions. The Multilevel Global Threshold
maintains all scales of weight. However, the Classical Global Threshold prioritizes edges
with significant weights. Therefore, the proposed method can preserve the network
structure. In contrast to the Classical method, it does not consider the preservation of
the network structure. The backbone may lose one or more components. Furthermore,
the Multilevel Global Threshold exhibits good performance in terms of distance. We
find small values of distances between the Multilevel Global Threshold and the origi-
nal network compared with the Classical Global Threshold. It can be concluded that
the proposed method is closer to the original network than the Classical method. How-
ever, comparing the mesoscopic properties, our findings indicate that while the Classi-
cal Global Threshold tends to preserve a higher fraction of total weight, suggesting its
preference for stronger links, the Multilevel Global Threshold is more conservative in its
approach, often maintaining closer modularity to the original network. The Multilevel
Threshold also illustrates this better preserves intercommunity connectivity, particu-
larly in networks with robust initial community structures. The choice of method thus
hinges on the specific attributes of the network and the desired outcome of the analysis,
whether it is the strength of connectivity or the fidelity to the original community struc-
ture that is of primary concern.

The differences in network properties such as diameter, average shortest path, and
clustering coefficient between the original networks and their backbones, as extracted
using the Multilevel Global Threshold method, can be attributed to both the selected
threshold and the community detection method used. The threshold determines which
edges are preserved, which directly impacts these properties. Meanwhile, the commu-
nity detection method influences the initial segmentation of the network, thus affect-
ing the overall structure of the backbone. Our analysis indicates that these variations
arise mainly from the interaction between these two factors. The community detection
method establishes the initial dense regions, while the threshold defines the edges to be
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retained in the final backbone. This interaction is crucial for preserving the backbone’s
integrity and accurately reflecting the network’s complexity.

In the second part, we use a local algorithm to extract the backbone, the Disparity Fil-
ter. The results indicate that the Multilevel Disparity Filter is the most efficient in terms
of weight and degree distributions. The Multilevel Disparity Filter maintains all weight
scales. The Classical Disparity Filter focuses on edges with large weights. Furthermore,
the network structure may be preserved using the suggested method. Unlike the Classi-
cal method, the preservation of the network structure is not considered. The backbone
can lose one or more of the network components. Moreover, the Multilevel Disparity
Filter performs well in terms of distance. Compared to the Classical Disparity Filter,
we obtain low values of distances between the Multilevel Disparity Filter and the origi-
nal network. In summary, compared to the Classical technique, the suggested method
more closely preserves some properties and structure of the network. In our compara-
tive analysis of network structures, the Classical Disparity Filter and Multilevel Disparity
Filter exhibit distinct tendencies in terms of preserving intra-community and inter-com-
munity connectivity. The Classical Disparity Filter generally maintains a greater degree
of the original network’s connectivity within communities, suggesting its potential to
preserve stronger intra-community ties. On the other hand, the Multilevel Disparity Fil-
ter tends to align more closely with the original network’s community structure, particu-
larly in preserving the diversity of node connections across different communities. This
is reflected in its more conservative approach to reducing inter-community connectiv-
ity, maintaining the integral network structure. Both filters, therefore, present unique
advantages: The classical Disparity Filter could be preferable for studies emphasizing
internal community strength, while the Multilevel Disparity Filter may be better suited
for analyses that require a broader view of the network’s overall community framework.

The observed variations in distance conservation across different networks and link
fractions can be attributed to these networks’ inherent structural characteristics and
weight distributions. Our empirical results demonstrate that these variations are pre-
dominantly influenced by the interplay between the chosen backbone extraction method
and the network’s structural properties. For example, in networks like the Unicode Lan-
guages network, both methods preserved distance metrics relatively well at higher link
fractions. However, in more complex and heterogeneous networks such as the World
Air Transportation network, the Disparity Filter method showed better performance in
maintaining distance metrics.

In this paper, we are analyzing our Multilevel Backbone Extraction Framework based
on the Component structure in the context of global and local backbone extraction
methods (Global Threshold and Disparity Filter) to reveal distinct aspects of network
structure that each method can preserve. For the Global method, it appears to be effec-
tive in preserving global properties such as network diameter and density, particularly in
larger networks. This method also maintains the degree and weight distributions across
the network, ensuring minimal distance alteration between the backbone and the origi-
nal network, which is crucial for maintaining the integrity of the network’s structure.
However, for the Local method, represented by the Disparity Filter, shows efficacy in
preserving the weight distribution and minimizing the distance from the original net-
work structure. Regarding mesoscopic properties, it effectively maintains modularity,



Hmaida et al. Applied Network Science (2024) 9:41 Page 40 of 43

participation coefficient, and inter-community connectivity, especially in larger net-
works, with a minimal total number of nodes and weights.

When considering mesoscopic properties, both methods show strengths in different
areas. The Global method exhibits robustness in maintaining modularity, participa-
tion coefficient, and inter-community connectivity, particularly for the largest network
analyzed, along with minimal alteration to the total number of nodes and weights. This
suggests that the Global Threshold method might be more suitable for preserving com-
munity structures for larger-scale networks. Conversely, the local method improves
mesoscopic properties for larger networks, particularly in modularity, participation
coefficient, and inter-community connectivity. This indicates the method’s ability to
maintain the community-based structure and the interaction between these communi-
ties within the network.

Conclusion

The architecture and dynamics of complex systems must be characterized through analysis.
However, this procedure is limited by the complexity of networks. It is crucial to eliminate
redundant data from the network while maintaining nodes and edges that preserve per-
tinent information (Yassin et al. 2022a). As a result, scientists are interested in backbone
extraction or filter-based methods to solve this problem. This paper investigates a new
approach to backbone extraction based on component structure.

This work reveals a comparative study between the Multilevel and Classical backbone
extracted from real-world networks. The basic global properties, the weight and degree dis-
tributions, the mesoscopic properties, and the distances are used to evaluate the proposed
method. Results show that the proposed backbone extraction framework is the most effec-
tive method to extract the backbone while preserving the mesoscopic representation of the
network compared to Classical methods. This finding is confirmed regarding distributions,
mesoscopic properties, and distance measures. It’s not the case for the basic global proper-
ties. Results show that these properties are enhanced in the Classical version.

In conclusion, the suggested framework successfully exploits the heterogeneity of real-
world networks, improving the benefits of Classical methods. Future research will exam-
ine its association with more advanced backbone extraction methods. We also intend to
examine the effects of different component structure detection techniques.
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