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Abstract 

In this work, we explore the extent to which the spectrum of the graph Laplacian can 
characterize the probability distribution of random graphs for the purpose of model 
evaluation and model selection for network data applications. Network data, often 
represented as a graph, consist of a set of pairwise observations between elements 
of a population of interests. The statistical network analysis literature has developed 
many different classes of network data models, with notable model classes includ-
ing stochastic block models, latent node position models, and exponential families 
of random graph models. We develop a novel methodology which exploits the infor-
mation contained in the spectrum of the graph Laplacian to predict the data-gener-
ating model from a set of candidate models. Through simulation studies, we explore 
the extent to which network data models can be differentiated by the spectrum 
of the graph Laplacian. We demonstrate the potential of our method through two 
applications to well-studied network data sets and validate our findings against exist-
ing analyses in the statistical network analysis literature.

Keywords:  Statistical network analysis, Network data, Model selection, Social network 
analysis

Introduction
Network data have witnessed a surge of interest across a variety of fields and disciplines 
in recent decades, including the study of social networks (Lusher et al. 2013), network 
epidemiology (involving the spread of disease through networks of contacts) (Morris 
2004), covert networks of criminal activity and terrorism (Coutinho et al. 2020), brain 
networks (Obando and de Vico Fallani 2017), financial markets (Finger and Lux 2017), 
and more. Network data, as a data structure, is typically represented as a graph, consist-
ing of a set of nodes representing the elements of a population of interest (e.g., research-
ers in a collaboration network) and a set of pairwise observations or measurements 
between nodes represented as edges between nodes (e.g., co-authorship on a paper). 
Many classes of models have been proposed and developed to study and model network 
data. A non-exhaustive review includes exponential families of random graph models 
(ERGMs) (e.g., Lusher et al. 2013; Schweinberger et al. 2020), stochastic block models 
(SBMs) (e.g., Holland et al. 1983; Anderson et al. 1992), latent position models (LPMs) 
(e.g., Hoff et al. 2002; Sewell and Chen 2015; Athreya et al. 2018), and more. Each class 
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offers a unique mathematical platform for constructing statistical models of networks, 
with respective strengths and weaknesses.

A persistent challenge in statistical network analysis applications is how to compare 
different models and select models for specific network data sets. The literature has pri-
marily focused on model selection problems within specific classes of models (SBMs: 
Wang and Bickel (2017); Latouche et al. (2014); ERGMs: Hunter et al. (2008); Yin et al. 
(2019); LSMs: Ryan et al. (2017); Loyal and Chen (2023)). At present, the literature which 
explores methods for comparing model fit or performing model selection across models 
from different mathematical foundations is underdeveloped.

The main contributions of this work include:

•	 Conducting extensive simulation studies that explore the extent to which statistical 
models for network data can be differentiated based on the spectrum of the graph 
Laplacian, the results of which demonstrate that the empirical properties of the spec-
trum of the graph Laplacian hold great potential for predicting model classes of net-
works.

•	 Elaborating a novel non-parametric methodology under weak assumptions in net-
work data settings that facilitates comparing models and performing model selection 
across models with different mathematical foundations. We demonstrate the poten-
tial of this proposed methodology with two real-world applications that have been 
previously studied, validating our findings against established findings.

The rest of the paper is organized as follows. Section “Spectral properties of the graph 
Laplacian” reviews spectral properties of the graph Laplacian for networks and motivates 
the use of spectral information in the model selection problem for network data. Our 
proposed methodology is introduced in Sect. “Methodology”. We present experimental 
studies and simulations in Sect. “Simulation studies”, and two applications of our meth-
odology in Sect. “Applications”. We conclude with a discussion in Sect. “Conclusion”.

Spectral properties of the graph Laplacian

Eigenvalues of the graph Laplacian encode many well-known properties of a network. 
The multiplicity of the eigenvalue 0 corresponds to the number of connected compo-
nents in a network (Brouwer and Haemers 2011). The second smallest eigenvalue is 
known as the algebraic connectivity (Fiedler 1973), and measures the overall connec-
tivity of a graph (de Abreu 2007). It is used to establish Cheeger inequalities (Donetti 
et al. 2006), which have applications in image segmentation (Shi and Malik 2000), graph 
clustering (Kwok et al. 2013) and expander graphs (Hoory et al. 2006). The subsequent 
eigenvalues of the graph Laplacian have been used to establish inequalities in the mini-
mal number of cuts (edge deletions) required to partition a network into independent 
subnetworks (Bollobás and Nikiforov 2004). In the case of isomorphic networks, the 
corresponding graph Laplacian matrices will be similar, so their eigenvalue decomposi-
tion will be the same. In our context, this means one can always differentiate two non-
isomorphic networks if their eigenvalues differ. The reverse result is not generally true 
as there are graphs possessing the same eigenvalue decomposition (cospectral) that are 
not isomorphic (Cvetković et al. 1980). However, numerical evidence suggests that the 
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fraction of (non-isomorphic) cospectral graphs tends to zero as the number of nodes in a 
graph grows (Brouwer and Haemers 2011).

Several applications of spectral decomposition of the graph Laplacian have been pro-
posed in the network analysis literature. For example, Lei and Rinaldo (2015) established 
the consistency of the spectral clustering method for stochastic block models. Another 
example is in Newman (2006), where a family of community detection algorithms were 
proposed for networks based on the spectral decomposition of the graph Laplacian. 
Athreya et al. (2018) provides an extensive survey of results in consistency, asymptotic 
normality, hypothesis tests, and inference for random dot product graphs based on the 
spectral embedding of the Laplacian. As a last example, Shore and Lubin (2015) pro-
posed a spectral based statistic for evaluating goodness-of-fit for network models remi-
niscent of the R2 statistic in regression settings. This statistic compares the eigenvalues 
of the graph Laplacian in a fitted model to the corresponding eigenvalues from a pre-
specified null model (typically taken to be a Bernoulli random graph model, referred to 
as a density-only model).

In light of these results, it is natural to regard the vector of eigenvalues of the graph 
Laplacian as a signature of a network, containing important information about its nature 
and structure, which can then be exploited for the purposes of model evaluation and 
selection. The methodology introduced in this work is, therefore, motivated by the fol-
lowing considerations: 

1.	 If the true data-generating process is in the list of candidate models, the observed 
eigenvalues (derived from an observed network) are expected to fall within the spec-
tral distribution of the data-generating process. If, in practice, none of the proposed 
models are the true generating process, candidate models can still be assessed by 
their ability to capture the spectrum of the observed graph Laplacian, providing a 
means for developing a method for model selection.

2.	 We can obtain a relative measure of fit among competing models depending on how 
well the spectrum of the observed graph Laplacian is captured by candidate models, 
providing a means to not only select a best-fitting model, but also to compare the fit 
of the best-fitting model to unselected alternatives.

3.	 Our methodology requires no parametric assumptions on the data-generating 
process and can compare models across different mathematical platforms, includ-
ing models which do not have a well-defined likelihood function or which are con-
structed through a stochastic process, examples of which include agent-based mod-
els (e.g., Snijders et  al. 2010; Jackson and Watts 2002) and generative algorithms 
based on preferential attachment models (e.g., Barabasi and Albert 1999; Zeng et al. 
2013).

Methodology
We consider simple undirected networks defined on a set of N ≥ 3 nodes which we 
denote by N := {1, . . . ,N } . The corresponding adjacency matrix is denoted by 
X ∈ {0, 1}N×N , where Xi,j = 1 corresponds to the event that there is an edge between 
nodes i and j and Xi,j = 0 otherwise. We adopt the standard conventions for undirected 
networks and assume that Xi,j = Xj,i (for all {i, j} ⊂ N ) and Xi,i = 0 (for all i ∈ N ); 
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extensions to directed networks are discussed Simulation study 2. Extensions to net-
works with valued edges are possible, but beyond the scope of this work. The degree of 
node i ∈ N is defined to be

defining d := (d1, . . . , dN ) ∈ {0, 1, . . . ,N − 1}N to be the vector of node degrees of 
the network. The graph Laplacian is defined as L(X) := diag(d)− X , where diag(d) is 
the N × N  diagonal matrix with diagonal d . Since L(X) is symmetric and positive semi-
definite (Brouwer and Haemers 2011), the eigenvalues of L(X) are real and non-nega-
tive. Throughout, let � ∈ R

N denote the vector of ordered eigenvalues (from smallest to 
largest) of the graph Laplacian matrix L(X) . The vector � will depend on the adjacency 
matrix X through L(X) , however, for ease of presentation, we do not make this depend-
ence explicit notationally, as it will be clear contextually.

We outline a methodology for model selection in network data settings that exploits 
the spectral properties of the graph Laplacian, motivated by the considerations dis-
cussed in the previous section. We assume there is a fully observed network denoted by 
its observed adjacency matrix Xobs . The corresponding observed vector of eigenvalues 
of the observed graph Laplacian L(Xobs) is denoted by �obs . Our inferential goal is to 
select a best fitting model for the observed network Xobs from a set of candidate models 
{M1, . . . ,MM} ( M ≥ 2 ), which typically will consist of models already fit to the observed 
network Xobs . We frame the problem as a classification problem and aim to construct 
a classifier P : RN �→ {1, . . . ,M} which will predict a model class for an observed net-
work. This classifier is trained on the graph Laplacian spectrum of simulated networks 
from each of the candidate model and predicts a model m⋆ ∈ {1, . . . ,M} from the set of 
candidate models {M1, . . . ,MM}.

We present our model selection method algorithm in Table 1. Our methodology aims 
to exploit the information contained in the empirical distribution of the eigenvalues 
of the graph Laplacian matrices to select the most appropriate class for the observed 
vector of eigenvalues. We do this by training a classifier P : RN �→ {1, . . . ,M} to dif-
ferentiate candidate models {M1, . . . ,MM} based on the spectral distribution of their 

di := degi(X) =

N

j=1

Xi,j ,

Table 1  Description of the model selection algorithm

Model selection procedure:

1. Simulate K networks X (m,1) , . . . , X (m,K) from each of the candidate models Mm ∈ {M1, . . .MM}.

2. For each X (m,k) , compute its graph Laplacian matrix L(X (m,k)) and the corresponding vector of eigenvalues 
�
(m,k) ∈ R

N.

3. Construct a design matrix D ∈ R
(KM)×N by stacking the KM vectors of eigenvalues �(m,k) to form the rows of 

D.

4. Train a classifier P : RN �→ {1, . . . ,M} to predict a model m⋆ ∈ {1, . . . ,M} using the K simulated vectors of 
eigenvectors �(m,k) for each class m ∈ {1, . . . ,M} contained in the design matrix D.

5. Compute the graph Laplacian matrix L(Xobs) for the observed network Xobs and the corresponding vector of 
eigenvalues �obs.

6. Predict a class m⋆ = P(�obs) for the observed network using the trained classifier from Step 4 and set 
M

⋆ = Mm⋆.
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corresponding graph Laplacians. If the observed vector of eigenvalues is an outlier com-
pared to the simulated distribution of eigenvalues from a particular model, we have 
evidence to reject said model as the true data-generating process in favor of a different 
model for which the observed vector of eigenvalues is more likely. Naturally, one might 
wonder if different models may give rise to the same distribution of eigenvalues. As 
remarked in the previous section, numerical evidence suggests the fraction of non-iso-
morphic graphs that share the same eigenvalue decomposition of its Laplacian tends to 
zero as the number of nodes tends to infinity (Brouwer and Haemers 2011). Because of 
this, if two models result in networks with similar eigenvalue distributions, we may con-
sider both models to fit the observed network equally well in this regard. On the issue 
of model misspecification (which we take to mean that the true data-generating model 
is not a candidate model in the set {M1, . . . ,MM} ), we can still utilize the proposed 
method to identify the candidate model out of the list of proposed candidate models 
which is closest to or most plausible for the observed network with respect to the distri-
bution of the eigenvalues of the graph Laplacian.

Selection and training of the classifier

Real-life networks can possess hundreds, thousands, or even millions of nodes. As the 
dimension of the vector of eigenvalues of the graph Laplacian matrices is equal to the 
number of nodes in the network, classification methods based on eigenvalues of the 
graph Laplacian matrix will be prone to the usual challenges of high dimensional clas-
sification. Since the literature on classification methods is quite extensive, it may seem 
that the choice of classifier is a critical step in our methodology. However, our results 
demonstrate that the choice of classifier may not significantly affect the results of our 
methodology under certain conditions. We briefly discuss some practical considerations 
of selecting the classifier.

There are several supervised algorithms to choose from when training a classification 
rule. Linear discriminant analysis, perhaps one of the oldest classifiers, requires the com-
putation of the inverse of the covariance matrix of features, and as such, suffers a decay 
in performance as the number of features grows (Bickel and Levina 2004). In general, lin-
ear classifiers based on projections of features (such as Principal Components Analysis 
or Partial Least Squares) can perform poorly for large dimensional classification tasks, 
except under stringent specific circumstances (Cai and Chen 2010). A second common 
classification approach are distance-based clustering algorithms, which include k-near-
est neighbor and nearest-centroids methods as classic examples. Such methods in high-
dimensional settings are reviewed by Cai and Chen (2010), whose findings suggest that, 
overall, a large number of noisy features (with low classification power) deteriorates the 
performance of such algorithms. The last broad class of classifiers are classifiers based 
on minimizing loss functions. These methods include support vector machines, neural 
networks, and boosting algorithms, and are generally regarded as the best-performing 
class of algorithms for minimizing a classification error. Succinctly, these methods learn 
a decision rule by minimizing a loss function plus a regularization term to help con-
trol the effects of over-fitting. Within this class, eXtreme Gradient Boosting (XGBoost) 
may be considered a state-of-the-art algorithm, and has gained notoriety for being one 
of the most prominent choices of classifiers in machine learning competitions (Chen and 
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Guestrin 2016). As one of its outstanding characteristics, XGBoost is virtually unparal-
leled in terms of scalability (in both sample size and number of features) and accuracy.

In the rest of this paper, we use exclusively XGBoost, except in one simulation study, 
where we compare the performance of our methodology under different classifiers. 
Regarding training, we advise including a feature selection step, which may involve fil-
tering eigenvalues with low importance scores, as well as potentially adding new features 
from the observed eigenvalues. An example in the latter case is the sum of eigenvalues, 
which corresponds to twice the number of edges in an undirected graph (Brouwer and 
Haemers 2011), providing relevant network information useful to distinguish between 
models. We follow this approach by both filtering the specific eigenvalues we use in the 
classifier through subset selection, which is a standard step of the XGBoost algorithm, as 
well as including the sum of eigenvalues as a measure of the density of the network, as 
discussed. We provide additional details about using XGBoost in the proposed method-
ology in the supplement.

Model comparison

Many classification algorithms provide more than just a predicted class, often return-
ing a vector of propensity scores or probabilities for each class s = (s1, . . . , sM) with the 
property that �s�1 = 1 . This measure is not invariant to the number of models being 
considered (here, the number of classes in the classifier). If more models are added to 
the set of candidate models, the propensity scores could shrink simply because more 
models are being considered under the condition that �s�1 = 1 , in which case the inter-
pretation of the raw propensity scores s1, . . . , sM will depend on the number of models 
M. To overcome this issue and facilitate the comparison of models, we propose to nor-
malize the propensity scores to obtain a relative measure of each models performance, 
relative to the best performing model. To this end, we define

to be the normalized score, which is equal to 1 for the highest scoring model. By rescal-
ing all propensity scores in this manner, the number of models M considered in the can-
didate set of models does not affect the interpretation of the relative propensity scores 
s̃1, . . . , s̃M.

Selection of the number of simulated networks K

The sample size KM of the design matrix D ∈ R
(KM)×N from which to build a classi-

fier depends on the number K of simulated networks X (m,1), . . . ,X (m,K ) drawn from 
each candidate model Mm ∈ {M1, . . .MM} . We assessed the effect that choosing dif-
ferent values of K has on the performance of our proposed methodology by compar-
ing the classification accuracy rate under different values of K, network sizes, and model 
parameters. To this end, we partitioned the design matrix into training and test sets to 
avoid a fictitiously high accuracy rate from potential overfitting. After experimenting 
with different values of K in the range of 100 to 10000, we found that this choice was not 
determinant in the success of our procedure. More concretely, we found small variations 
(around 1% ) in test set accuracy as K varies between 100 and 10000. As such, we use 

s̃i :=
si

�s�∞
, for each i = 1, . . . ,M,
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K = 100 throughout this work but note that different settings may require a larger train-
ing set to differentiate models successfully.

Model classification with overfit models

One challenge in model selection lies in the fact that certain models may overfit the net-
work, reproducing the observed network (or networks close to the observed network) 
with a higher propensity than might be plausible. A case in point lies in the following 
maximally overfit model. Let xobs be the observed network within a support X . Define

With probability 1, any sequence of networks X (1), . . . ,X (m) generated from the distribu-
tion δxobs will possess a sequence of vectors of eigenvalues �(1), . . . , �(m) which are identi-
cal to the observed �obs for xobs . Any classifier should systematically prefer this class of 
overfitted models over any alternative. Although our methodology does not penalize for 
overfitting, a case could be made that in the case of relatively similar normalized scores, 
the model with fewer parameters should be preferred at the expense of not capturing the 
observed eigenvalue distribution as well as other models.

This challenge is not unique to our method, however. When it comes to comparing 
models from different classes or when there are not theoretical guarantees supporting 
particular methods for model selection, a general approach in the literature is to com-
pare the distribution of simulated network statistics (such as degree distribution, geo-
desic distance, edgewise shared partners distribution, etc.) and the observed values of 
those statistics based on the observed network (Hunter et al. 2008). In this situation, the 
same pitfalls due to overfitting are shared with our methodology, evidenced by the same 
example above given by δxobs . In practice, one either chooses model specifications which 
are believed to not be overfitted, or one employs out-of-sample measures for model fit in 
order to study whether a particular model is representative of the observed network or is 
perhaps overfitted (Stewart et al. 2019; Yin et al. 2019).

As discussed in the introduction, there exist methods and theory for performing 
model selection within many prominent classes of models, despite the sparse literature 
on comparing models from different classes which motivates this work. One approach 
to countering overfitting within our methodology is to leverage the methods and proce-
dures for model selection within different classes of models and then to move forward 
into our proposed methodology the best candidate model from each class. For example, 
Loyal and Chen (2023) elaborate a Bayesian model selection algorithm for latent space 
models for networks which provably controls overfitting with respect to the dimension 
of the latent space.

Simulation studies
We conduct several simulation studies in order to demonstrate the potential of our 
proposed methodology. Specifically, we aim to examine the extent to which the signa-
ture of a network is contained within the spectrum of the graph Laplacian. Simulation 
studies permit knowledge of the true data-generating model, which facilitates empirical 
studies which aim to clarify the conditions under which our proposed methodology is 

δxobs(x) := 1(x = xobs) =

{

1 x = xobs

0 x �= xobs
, for all x ∈ X.
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able to successfully differentiate different network models and structural properties of 
networks.

Simulation study 1: curved exponential families

We study the performance of our methodology on curved exponential families, which 
have gained popularity in the social network analysis community (e.g., Snijders et  al. 
2006; Hunter and Handcock 2006), as well as other applications (e.g., Obando and 
de Vico Fallani 2017; Schweinberger et al. 2020; Stivala and Lomi 2021). The prominence 
of curved exponential family parameterizations for random graph models emerged out 
of a desire to solve challenges related to degeneracy and fitting of early and ill-posed 
model specifications (Snijders et  al. 2006). Additionally, curved exponential fam-
ily parameterizations are able to parsimoniously model complex sequences of graph 
statistics, such as degree sequences and shared partner sequences, without sacrificing 
interpretability (Hunter 2007; Stewart et al. 2019). A prototypical example used in the 
social network analysis literature is the geometrically-weighted edgewise shared partner 
model, which models transitivity through the shared partner sequence (Snijders et  al. 
2006; Hunter 2007; Stewart et al. 2019).

We simulate networks according to the following model:

where θ1 ∈ R controls the baseline propensity for edge formation, and

parameterizes the sequence of shared partner statistics

In words, SPt(x) counts the number of edges in the network between nodes which have 
exactly t mutual connections, commonly called shared partners in the social network 
analysis literature. While θ2 ∈ R , in typical applications θ2 ≥ 0 and θ3 ∈ (0,∞) , as values 
of θ3 < − log 2 correspond to models which are unstable in the sense of Schweinberger 
(2011), and empirical evidence suggests that θ3 ∈ (0,∞) in many applications (Schwein-
berger 2011; Stewart et al. 2019). The effect that the GWESP model specified by (1) has 
on the degree and shared partner distributions of networks is visualized in Fig. 1, where 
positive values of θ2 stochastically encourage network formations with more transitive 
edges, i.e., edges between nodes with at least one shared partner, relative to the Bernoulli 
random graph model with θ2 = 0 . This is evidenced by the rightward shift in the ESP 
distribution of the GWESP model, relative to the Bernoulli model.

We take the true data-generating model M⋆ to be the curved exponential fam-
ily specified by (1) with parameter vector θ⋆ = (−2.5, θ2, 1) , with θ2 on a grid covering 
the interval [0, 0.5] . Note that when θ2 = 0 , the model reduces to a Bernoulli random 
graph model with edge probability p = [1+ exp(−2.5)]−1 . We consider the problem of 

(1)P(X = x) ∝ exp



θ1

N
�

i<j

xi,j +

N−2
�

t=1

N
�

i<j

ηt(θ2, θ3) SPt(x)



,

ηt(θ2, θ3) = θ2 exp(θ3)
[

1− (1− exp(−θ3))
t
]

, t ∈ {1, . . . ,N − 2},

SPt(x) =

N
�

i<j

xi,j 1





N
�

h�=i,j

xi,h xh,j = t



, t ∈ {1, . . . ,N − 2}.
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selecting between two models M1 and M2 , where M⋆ = M1 and M2 is the Bernoulli 
random graph model with edge probability p = [1+ exp(2.5)]−1 . By varying θ2 we are 
able to study the threshold of effect size (θ2) for which we are able to correctly detect the 
presence of transitivity in the network, as modeled by the geometrically-weighted edge-
wise shared partner model in (1).

We vary the network size N = 25, 50, 75, 100, 200, 300 , performing 5000 replicates for 
each network size. The results of this simulation study are summarized in Fig. 2. When θ2 
is close to 0, the point at which M1 = M2 , as discussed above, our methodology tends to 
select M1 and M2 with equal probability. However, once θ2 is sufficiently large (relative 
to the network size N), our methodology correctly selects M1 in almost every replicate. 
The effect of the size of the network is seen as we vary N from 25 to 300. When the net-
work size is larger ( N = 100, 200, 300 ), we are able to correctly find the data-generating 
model M1 with high probability for smaller values of θ2 . In contrast, we require θ2 ≥ .25 
before we are able to have a high confidence in correctly selecting the data-generating 
model in networks of size N = 75 , requiring θ2 ≥ .5 for networks of size N = 25.

Simulation study 2: reciprocity in directed networks

When the adjacency matrix X  is undirected, the corresponding graph Laplacian 
matrix L(X) will be positive semidefinite (Brouwer and Haemers 2011), resulting in a 
real-valued vector of eigenvalues � ∈ R

N  . However, when X  is the adjacency matrix 
of a directed network, the graph Laplacian, as defined for undirected networks, may 
not be positive semidefinite, and may involve complex valued eigenvalues. A com-
mon adaptation for directed networks in the literature is to consider the incidence 
matrix B ∈ {0, 1,−1}N×|E| , where |E| is the total number of edges in the network. On 
each column of the incidence matrix exactly one element will be −1 , indicating the 

Fig. 1  We visualize the degree and ESP distributions for the Bernoulli and GWESP models with network 
size N = 25 . We simulate 1000 networks from (1) with data-generating parameters (θ1, θ2, θ3) = (−2.5, 0, 1) 
(Bernoulli) and (θ1, θ2, θ3) = (−2.5, .3, 1) (GWESP). By increasing θ2 , the term of shared partner counts in (1) 
carries more weight. This favors networks with a larger number of shared partners relative to the Bernoulli 
model. In consequence, denser networks are more likely to be observed as well. Because of these two 
considerations, we observe a rightward shift in the degree distribution and an upward shift in the ESP 
distribution in the GWESP model relative to the Bernoulli model
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node where an edge begins, and exactly one element will be 1, indicating the node 
where said edge ends. Every other entry is zero. In this manner, a directed network 
is completely specified by listing all existing edges as columns that indicate which 
nodes are connected and an orientation between them. We can adapt our proposed 
methodology to directed networks by considering the symmetric graph Laplacian 
defined by L := B

t
B (Brouwer and Haemers 2011).

We simulate directed networks from the probability mass function

We apply our methodology taking M1 to be the density only model with fixed θ2 = 0 
in (2). We take M⋆ = M2 to be the general model specified via (2) with unrestricted 
parameters. We conduct a simulation study by taking θ1 = −2.5 in both M1 and M2 , 
taking θ2 = 0 in M1 , and varying θ2 on a uniform grid of 100 values in [0, 1] for M2 . The 
simulation results in Fig.  3 are based on 1000 replications in each case, reconfirming 
findings in the previous simulation study which suggested that the ability of our meth-
odology to detect the true data-generating model depends on how far θ2 is from 0, the 
point at which M1 = M2 , and the size of the network. In other words, larger network 
sizes seem to allow for earlier detection of a reciprocity term in the case of an exponen-
tial model for directed networks. Alternatively, evidence suggests that for any value of a 
reciprocity effect, our methodology will be able to correctly pick up on that term if the 
network is large enough. Moreover, this study uniquely demonstrates that our method-
ology can be applied successfully to directed networks.

(2)P(X = x) ∝

N
∏

i<j

exp

(

θ1 (xi,j + xj,i)+
θ2

2
xi,j xj,i

)

,

Fig. 2  Results of Simulation study 1. (left) Estimate of the correct classification rate with 95% confidence 
bands for networks of sizes N = 25, 50, 75 . We observe that for any fixed θ2 in the range of (0, 0.5), a larger 
network size corresponds to a significative larger accuracy rate. (right) Estimate of the correct classification 
rate with 95% confidence bands for networks of sizes N = 100, 200, 300 . For this larger scale of network 
sizes, differences in the θ2 parameter are now significantly detected as θ2 varies in the even smaller range of 
(0, 0.1). Our numerical evidence suggests that for any given fixed value of θ2 , a large enough network size 
will be likely to detect said difference in θ2 . Conversely, for any fixed network size, differences in θ2 are almost 
guaranteed to be detected if the difference is large enough
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Simulation study 3: latent position models

Latent variable models for networks, especially latent position models, have witnessed 
increased popularity and attention since the seminal work of Hoff et al. (2002). In this 
class of models, nodes are given a latent position zi ∈ Z ( i = 1, . . . ,N  ) in a latent space, 
typically taken to be the Euclidean space (i.e., Z = R

k ), although alternative spaces and 
geometries have been proposed as well, as is the case of ultrametric spaces (Schwein-
berger and Snijders 2003), dot product similarity resulting in bilinear forms (Hoff et al. 
2002; Athreya et al. 2018), as well as hyperbolic (Krioukov et al. 2010) and elliptic geom-
etries (Smith et al. 2019). Edges in the network are assumed to be conditionally inde-
pendent given the latent positions of nodes. Following Hoff et  al. (2002), we simulate 
networks in this study accordingly:

where θ ∈ R and zi, zj ∈ R
k . Under this specification, the odds of two nodes forming 

an edge decreases in the Euclidean distance �zi − zj�2 between the positions of the two 
nodes in the latent metric space.

We explore the ability of our methodology to detect the true dimension of a latent 
space by generating networks from the latent Euclidean model described above, vary-
ing the dimension of the latent metric space k ∈ {1, 2, 3, 4, 5} . Latent positions of 
nodes are randomly generated from a multivariate normal distribution in dimension 
k ∈ {1, 2, 3, 4, 5} with zero mean vector and identity covariance matrix. The candidate 
competings models are generated in the same fashion across dimensions 1, . . . , 5 . We 
set θ = −2.5 to ensure a low baseline probability of edge formation, reflecting the spar-
sity of many real-world networks, and vary the network size N ∈ {50, 100, 150, 200, 250} . 
We apply our model selection methodology in each case and compute the percentage of 
times our methodology selects each of the candidate latent space models.

We summarize the results of the simulation study in Fig.  4, which demon-
strates that our methodology is able to correctly identify the true dimension of the 

(3)log
P(Xi,j = 1 | zi, zj)

P(Xi,j = 0 | zi, zj)
= θ − �zi − zj�2,

Fig. 3  Results of Simulation study 2. Estimates of the correct classification rate with 95% confidence band for 
various network sizes N. Larger network sizes allow for earlier detection of a reciprocity term in the case of an 
exponential model for directed networks. Alternatively, evidence suggests that for any value of a reciprocity 
effect, our methodology will be able to correctly pick up on that term if the network is large enough
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data-generating latent space model provided the network size is sufficiently large. 
The diagonal panels in Fig.  4 correspond to correct selection of the dimension of 
the latent space. Of particular note, the problem becomes more challenging as the 
dimension of the latent space grows, but this effect is mitigated as the network size 
increases, with most correct selection rates in this study close to 1 for networks of 
size N = 250.

Simulation study 4: comparing different latent mechanisms

We next study whether our proposed methodology is capable of distinguishing differ-
ent latent mechanisms for edge formation in a latent position model. The first one is 
the same latent space model specified in (3), while the second one replaces the Euclid-
ean distance term −�zi − zj�2 with the dot product ztizk , commonly referred to as a 
bilinear form. A related class of latent position models which utilize bilinear forms 
of latent node positions are random dot product graphs (Athreya et al. 2018). As in 
the previous simulation study, latent positions of nodes are randomly generated from 
a multivariate normal distribution with zero mean vector but this time with covar-
iance matrix σ 2 I  , with I  being the identity matrix (of appropriate dimension) and 
σ 2 ∈ {0.1, 0.2, . . . , 1.0} a scale factor. As the scale factor tends to zero, both models 
converge to a density-only model so detecting the true generating process becomes 
more difficult. We summarize the results of the simulation study in Fig. 5, which dem-
onstrates that our methodology is able to correctly identify the true model (distance 
based) when compared to a bilinear (similarity based) model. Of particular note, per-
formance improves as the dimension of the latent space increases and as the network 
size increases, as in the previous studies conducted.

Fig. 4  Results of Simulation study 3. Estimates of the correct classification rate with 95% confidence intervals 
for network sizes N = 50, 100, 150, 200, 250 and across latent space dimensions k = 1, 2, 3, 4, 5 . The diagonal 
panels correspond to a correct classification where the selection rate is desired to be the highest. We observe 
that larger network sizes are associated with a higher accuracy rate. However, as the dimension of the latent 
space grows, only networks large enough can be confidently classified
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Simulation study 5: stochastic block models

Following Wang and Bickel (2017), we simulate networks in this study according to a 
stochastic block model with K ∈ {1, 2, . . .} blocks:

where zi ∈ {1, . . . ,K } denotes the block membership of node i ∈ N and 
πk ,l = πl,k ∈ (0, 1) ( 1 ≤ k ≤ l ≤ K  ). The block membership variables Z1, . . . ,ZN can 
either be fixed (modeled as degenerate random variables) or can follow a probability dis-
tribution (e.g., the Multinomial distribution). In the following simulation study, we will 
assume that each Zi ( i ∈ N ) is drawn independently from a discrete uniform defined on 
{1, . . . ,K }.

This simulation study explores the extent to which our proposed methodology is able 
to distinguish networks which were generated from stochastic block models with dif-
ferent numbers of blocks, i.e., exploring the methods’ fitness for identifying the correct 
number of clusters. We generate networks from the stochastic block model described 
above, varying the true number of clusters K ∈ {2, 3, 4, 5} and assigning node mem-
berships to each block randomly based on a discrete uniform distribution defined on 
{1, . . . ,K } as mentioned above. Each of the candidate models is generated in the same 
way, with the candidate models being defined to follow a stochastic block model with a 
number of clusters in the range of {2, . . . , 5} . We fix all within-block probabilities to be 
a value pwithin ∈ {.05, .1, .15, .2} and similarly fix all between-block probabilities to be a 
constant pbetween = (2/3) pwithin , and consider networks of size N ∈ {200, 500} . Under 
this setup, our simulation study ensures a form of relative sparsity among the blocks 
(in the sense that the within-block subgraphs will be relatively more dense than the 

(4)P(Xi,j = xi,j |Zi = zi, Zj = zj) = πzi ,zj , xi,j ∈ {0, 1}, {i, j} ⊂ N,

Fig. 5  Results of Simulation study 4 comparing a distance-based model (true model) to a similarity based 
model. Estimates of the correct classification rate with 95% confidence band for different networks at 
different sizes and across different dimensions of latent spaces. Our procedure is significantly more accurate 
in detecting differences in the latent space mechanism as the network size and dimension of the latent space 
increase. As the variance coefficient is closer to zero, the two model configurations collapse to a density-only 
model so correct classification becomes more difficult
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between-block subgraphs), as well as making our parameter values comparable to the 
simulation studies conducted by Wang and Bickel (2017). We apply our model selection 
methodology in each case and compute the percentage of times our methodology selects 
each of the candidate stochastic block models.

We summarize the results of the simulation study in Fig. 6, which demonstrates that 
our methodology is able to correctly distinguish networks generated from stochastic 
block models with differing numbers of blocks, i.e., we are able to identify the data-gen-
erating number of clusters, provided the within probability is sufficiently large, with a 
high selection rate. The diagonal panels in Fig. 6 correspond to the correct selection of 
the number of clusters. Interestingly, we notice the problem becomes more challeng-
ing as the true number of clusters grows, but this effect is mitigated as the within-block 
probability increases or the network size increases.

Simulation study 6: effect of the choice of classifier

In this study, we repeat Simulation study 1 using three different classifiers, XGBoost 
(Chen and Guestrin 2016), Random Forest (Ho 1995; Liaw and Wiener 2002) and Naive 
Bayes (Hand and Yu 2001; Majka 2019). Doing so allows us to examine the effect that the 
choice of classifier has on the results of this simulation study, as well as to explore the 
relative effectiveness of each classifier in this simulation study. Figure 7 shows a similar 
performance for all classifiers in this simulation study, with the notable exception being 
the naive Bayes classifier when networks are size 25, suggesting that the choice of clas-
sifier has a weak effect on the performance of our proposed methodology, provided the 
network is sufficiently large. In line with conclusions in the previous simulation stud-
ies, larger network sizes result in more pronounced model signatures. In light of these 

Fig. 6  Results of Simulation study 5. Estimates of the correct classification rate with 95% confidence intervals 
for network size N ∈ {200, 500} , within-block probability pwithin ∈ {.05, .1, .15, .2} , and true number of clusters 
K ∈ {2, 3, 4, 5} . The diagonal panels correspond to a correct classification where the selection rate is desired 
to be the highest. We observe that accuracy increases as network size or within-block probability increases. 
However, as the number of clusters grows, only when the within probability is high enough we can be 
confident in accurately identifying the true number of clusters
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results, the effect of the choice of classifier appears to diminish if the model signal is suf-
ficiently strong.

Applications
In order to study the performance of our proposed model selection methodology in 
applications to real-world network data, we study two network data sets which have pre-
viously been studied in the literature, in order to have a baseline for evaluating whether 
our methodology confirms existing results and knowledge about these networks. The 
first is Sampson’s monastery network (Sampson 1968), whereas the second is a friend-
ship network consisting of third grade classes (Stewart et  al. 2019). We visualize each 
network in Fig. 8, discuss each data set in further detail in their respective sections.

Application 1: Sampson’s monastery network

We apply our model selection methodology to the Sampson’s monastery network data 
on social relationships (likeness) among 18 monk novices in a New England monas-
tery in 1968 (Sampson 1968). Based on the existing literature studying this network, we 

Fig. 7  Results of Simulation study 6. Estimates of the correct classification rate with 95% confidence band for 
different classifiers. As the network size increases, the choice of the classifier becomes less important, since 
eventually all classifiers agree and exhibit the same accuracy rates across the range of alternative models 
being considered. For lower network sizes and a range of low values in the effect size θ2 , differences in the 
classifier employed might emerge

Fig. 8  (left) Sampson’s monastery network, with node colors corresponding to group. (right) School classes 
friendship network based on 44 third grade classes, with node colors corresponding to class



Page 16 of 21Peña Hidalgo and Stewart ﻿Applied Network Science            (2024) 9:36 

propose different model structures for this network which are well-designed to capture 
the community structure known to be a critical component of the network. In order to 
model this structure, stochastic block models have been applied to the network (Airoldi 
et al. 2008), as well as latent position models with a hierarchical group-based prior dis-
tribution structure on the latent positions (Handcock et al. 2007).

We consider the following models:

•	 SBM: M1–M4 correspond to stochastic block models with K = 1, 2, 3, 4 blocks ( M1 
being equivalent to a density only model).

•	 LPM: M5–M8 correspond to latent position models with model terms for density 
and reciprocity and latent space dimensions K = 1, 2, 3, 4.

•	 GLPM: M9–M20 combine the two previous specifications by utilizing the hierarchi-
cal group-based prior distribution structure of Handcock et al. (2007), considering all 
combinations of group number K = 2, 3, 4 and latent space dimension d = 1, 2, 3, 4.

Each model was fit and our model selection methodology was applied to choose the 
best fitting model among the candidate models. The latent space models were fit with 
Krivitsky and Handcock (2014) and the stochastic block models were fit with Leger 
(2016). Table 2 presents the results. The model with the highest propensity score is M4 , 
the stochastic block model with K = 4 blocks. We can interpret this as model M4 dis-
playing a better agreement (relative to the alternative models) between its simulated 
graph Laplacian eigenvalues and the observed eigenvalues in Sampson’s graph Laplacian.

It has been well-established in the literature that the Sampson’s monastery net-
work features strong community structure (Handcock et  al. 2007; Airoldi et  al. 2008), 

Table 2  Propensity scores si and normalized propensity scores s̃i for models M1–M20 for the 
Sampson’s monastery network

Bold font identify the model with the highest propensity score, i.e, the model selected by our proposed method

Our methodology identifies model M4 as the most appropriate to describe Sampson’s network. This is based on a higher 
predicted probability for the observed eigenvalues in Sampson’s graph Laplacian in belonging to M4 ’s class of eigenvalues

Model si s̃i Model si s̃i

M1

(SBM, K = 1)
0.002 0.004 M2

(SBM, K = 2)
0.003 0.007

M3

(SBM, K = 3)
0.032 0.077 M4

(SBM, K = 4)
0.410 1

M5

(LPM, d = 1)
0.028 0.068 M6

(LPM, d = 2)
0.028 0.069

M7

(LPM, d = 3)
0.005 0.013 M8

(LPM, d = 4)
0.003 0.008

M9

(GLPM, K = 2, d = 1)
0.023 0.055 M10

(GLPM, K = 3, d = 1)
0.044 0.108

M11

(GLPM, K = 4, d = 1)
0.043 0.104 M12

(GLPM, K = 2, d = 2)
0.060 0.147

M13

(GLPM, K = 3, d = 2)
0.083 0.202 M14

(GLPM, K = 4, d = 2)
0.036 0.089

M15

(GLPM, K = 2, d = 3)
0.020 0.050 M16

(GLPM, K = 3, d = 3)
0.041 0.101

M17

(GLPM, K = 4, d = 3)
0.061 0.148 M18

(GLPM, K = 2, d = 4)
0.012 0.029

M19

(GLPM, K = 3, d = 4)
0.030 0.074 M20

(GLPM, K = 4, d = 4)
0.035 0.085
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featuring three labeled groups. However, statistical analyses have revealed the presence 
of a potential fourth group, evidenced in analysis which employ mixed membership sto-
chastic block models (Airoldi et al. 2008), as well as evidence in studies which employ 
latent position models which suggests certain nodes may have strong connections to two 
or more labeled groups (Handcock et  al. 2007). Within the context of the models we 
considered here, the choice of a stochastic block model with K = 4 blocks appears to 
be sufficient to capture the mixing patterns of the communities as well as the reciproc-
ity from the inclusion of a reciprocity term. We hold the opinion that the expression of 
transitivity is not sufficiently strong in this network, otherwise the latent position model 
with K = 4 groups would potentially serve as a better model, as latent position models 
are able to capture network transitivity through the latent metric space. Figure 9 sup-
ports this claim by simulating networks from M4 and comparing the empirical triangle 
count distribution of these simulated networks to the observed number of triangles in 
the network, demonstrating good model fit in this regard.

Application 2: third grade school classes friendship network

We end the section with an application to a multilevel network consisting of 6,607 third 
grade students over 306 classes across 176 primary schools in Poland in the 2010/2011 
academic year. A complete description of the data set can be found in Stewart et  al. 
(2019). Multilevel network data have become a focal point of attention in many applica-
tions and come in many different types (Snijders 2016). In this application, third grade 
students are nested within classes which are themselves nested within schools. The 
network is then a multilevel network where the first level consists of the students, the 
second consists of the classes, and the third level consists of the schools. Stewart et al. 
(2019) has extensively studied this data set, providing the closest we can get to a data-
generating model.

The network contains 306 classes, but features a significant portion of non-response 
resulting in a large percentage of missing edge data in the network. The issues of 
missing data require careful consideration and are beyond the scope of this work. As 

Fig. 9  Fit of the observed number of triangles in the Sampson network (indicated in red) relative to the 
triangle distribution in simulated networks from M4 . The consistency between this distribution and the real 
observed statistic suggests that M4 is a good choice to model Sampson’s network
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such, we restrict our study in this work to the 44 classes within the multilevel network 
that did not feature any missing edge data. This multilevel network data set naturally 
fits into the local dependence framework of Schweinberger and Handcock (2015), 
for which class based sampling is justified under the local dependence assumption 
(Proposition 3& Theorem  2, Schweinberger and Stewart 2020); additional details of 
the data set can be found in Stewart et al. (2019). The data set employed is a directed 
network of 906 nodes corresponding to the individual students within the 44 classes 
without missing edge data, where a directed edge i → j implies that person i stated 
they were friends person j. Part of the data collected included the sex of each student 
(recorded as male or female).

In this application, we study whether our proposed methodology for model selec-
tion coincides with published findings for this network by studying Models 1–4 
published in Stewart et al. (2019), which we summarize in Table 3. The first three 
model terms (edges, mutual, and out-degree terms) control for structural effects 
within the network, including density, reciprocity, and fitting the degree distribu-
tion. The next three model terms adjust for different sex-based edge effects and 
homophily. The last three model terms correspond to the geometrically-weighted 
shared partner (GWESP) term specified in (1) that was studied in Simulation 
study 1. The inclusion of this model term is aimed at capturing a stochastic ten-
dency towards network transitivity and triad formations based on values of the 
base parameter ( θ2 in (1)) and the decay parameter ( θ3 in (1)). Model 1 includes no 
GWESP term, whereas Model 2 and Model 3 fix the decay parameter at specific 
values found in the literature, reducing the curved exponential family to a canoni-
cal exponential family (see discussions in Hunter (2007) and Stewart et al. (2019)). 
Model 4 estimates the decay parameter.

We fit each of the four models M1,M2,M3,M4 and apply our model selection 
methodology, which selects model M4 ( propensity = 0.9967 ) above all other candi-
date models (Table 4). This coincides with the findings of Stewart et al. (2019), who 
explored the fit of various models to the data set with respect to common-place heu-
ristic measures (Hunter et al. 2008), as well as out-of-sample measures and through 
the Bayesian Information Criterion (BIC). Figure  10 demonstrates the model fit to 
relevant network features in the statistical network analysis literature.

Table 3  Descriptions of models 1–4 found in Stewart et al. (2019)

Model Term M1 M2 M3 M4

Edges � � � �

Mutual � � � �

Out-degrees (1–6) � � � �

Out-degree (Female) � � � �

In-degree (Female) � � � �

Sex-match � � � �

GWESP (decay parameter fixed at 0) �

GWESP (decay parameter fixed at .25) �

GWESP (decay parameter estimated) �
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Conclusion
We introduced a novel non-parametric methodology for model selection for network 
data. This methodology can be applied to a wide class of network models under very 
weak assumptions (namely, simulating networks from a fitted model), and it effectively 
allows the comparison of models under very different mathematical foundations. Our 
method is based on two key ideas. The first one is to exploit the topographical informa-
tion in the spectrum of the graph Laplacian in order to distinguish between different 
network models. All our simulation experiments confirm that different model specifi-
cations lead to distinguishably different empirical distributions of the spectrum of the 
graph Laplacian. Although there are no theoretical results in our work that can offer a 
guarantee for this methodology, we believe our experimental evidence shows merit in 
this approach and contributes to further its discussion. Our second key idea is to capi-
talize on the significant advancements in the literature of supervised classification, and 
delegate to it the job of assessing whether the predicted values of a model correctly fit 
a set of observations. We believe this approach is warranted given the intrinsic high-
dimensional nature of our spectral approach, although our own evidence shows this 
choice becomes less critical under certain conditions. At its output, our methodology 

Fig. 10  Difference in selected statistics between fitted models and the observed Polish school network. 
Values closer to the red horizontal line show better agreement with the observed statistic. (left) Difference 
between observed in-degree statistic and predicted distribution under different candidate models. (right) 
Difference between the observed edgewise shared partner statistic sequence and predicted distribution 
under different candidate models. We observe better agreement for model M4 compared to the alternative 
models in both statistics. This agreement is consistent with the result of our methodology that selects model 
M4 as the best-fitting model for the Polish school network data

Table 4  Propensity scores si and normalized propensity scores s̃i for models M1–M4 for the 
multilevel school network

Bold font identify the model with the highest propensity score, i.e, the model selected by our proposed method

Model si s̃i Model si s̃i

M1

(No decay)
0.0004 0.0004 M2

(Decay fixed at 0)
0.0006 0.0006

M3

(Decay fixed at 0.25)
0.0023 0.0023 M4

(Decay estimated)
0.9967 1
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provides a relative measure of fit that ranks how well a set of candidate models describes 
an observed graph Laplacian. This allows not only to choose the best-fitting model but 
also to assess its fit among competing alternatives.
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