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Introduction
The explosive growth of the World Wide Web during the past two decades has created a 
vast infrastructure that serves daily on-line needs of people all over the world. In parallel 
with the growth of the World Wide Web, in the past decade several social networks 
emerged and were adopted quickly by a large portion of the world population. The 
most popular social networks nowadays consist of hundreds of millions up to a billion 
of active users and they naturally capture important social activities. Both the Web and 
social networks can be represented by directed graphs. In Web graphs, the vertices 
represent static HTML pages and the edges the hyperlinks among the pages. In social 
networks, the vertices correspond to users of a social network and the edges represent 
the who-follows-whom information. The analysis of the structure of the underlying 
graphs in both Web and social networks is undoubtedly important in many scenarios. 
For instance, the structure of the Web can be beneficial for improving the browsing 
experience (Carrière and Kazman 1997). Moreover, the knowledge of the macroscopic 
structure of the Web has been used for designing efficient algorithms for computing 
PageRank values (Kamvar et al. 2003).
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The existing literature provides a good understanding of the connectivity structure in 
Web graphs and social networks. The bow-tie structure, that was observed for the first 
time more than 15 years ago, has been applied on different graphs revealing the macro-
scopic structure of several graphs, and also helped to study the evolution of the Web and 
several social networks. All these studies observed a giant strongly connected compo-
nent containing a substantial portion of the vertices, which is considered the core of the 
directed graph for both in Web graphs and social networks, and which is continuously 
growing as the graphs evolve. Although the characterization of the structure of a graph 
with respect to its pairwise connectivity has been known for over 15 years, just one sub-
sequent study further analyzed the structure inside the giant strongly connected com-
ponent of Web graphs and of social networks. In this scenario, it is necessary to analyze 
further the core of Web graphs and social networks in order to understand the structure 
of the core of the Web and of social networks. In this paper, we applied new theoretical 
notions and algorithms in order to conduct a novel analysis of the core of the Web and 
of social networks. We considered a natural extension of the methodology used in the 
pioneering study by Broder et al, by analyzing pairwise 2-connectivity of Web and social 
networks on the local level. Our findings shed light on the structural properties of the 
core of the Web and of social networks.

Background and definitions
Let G = (V, E) be a directed graph (digraph), with m edges and n vertices. Digraph G is 
strongly connected if there is a directed path from each vertex to every other vertex. The 
strongly connected components of G are its maximal strongly connected subgraphs. Two 
vertices u, v ∈ V  are strongly connected if they belong to the same strongly connected 
component of G. The size of a strongly connected component is given by its number 
of vertices. An edge (resp., a vertex) of G is a strong bridge (resp., a strong articulation 
point) if its removal increases the number of strongly connected components. Two ver-
tices u, v ∈ V  are said to be 2-edge-connected (resp., 2-vertex-connected), and we denote 
this relation by u ←→2e v (resp., u ←→2v v ), if there are two edge-disjoint (resp., two 
internally vertex-disjoint) directed paths from u to v and two edge-disjoint (resp., two 
internally vertex-disjoint) directed paths from v to u (note that a path from u to v and 
a path from v to u need not be edge-disjoint or vertex-disjoint). A 2-edge-connected 
component (resp., 2-vertex-connected component) of a digraph G = (V, E) is defined as 
a maximal subset B ⊆ V  such that v ←→2e w (resp., v ←→2v w ) for all v,w ∈ BGeorgi-
adis et al. (2018). A visualisation of mentioned definitions could be seen in Fig. 1.

Related works
Previous studies provided a good understanding of so called macroscopic connectivity 
structure of the underlying graphs for both Web and social networks. For the Web graph 
the first such understanding was given by Broder et al. (2000) more than two decades 
ago. In this study Broder et al. observed an existence of a macroscopic bow-tie structure 
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that was defined as follows. Macroscopic bow-tie structure is formed around the largest 
strongly connected component (in short LSCC). The rest of the vertices were partitioned 
into six distinct subsets according to their relation to the LSCC. Precisely, the vertices 
that have a directed path to a vertex in the LSCC form the IN subset; the vertices that 
have a directed path from a vertex in LSCC form the OUT subset; the vertices that have 
a directed path from a vertex that belongs to the IN subset form a subset called IN-TEN-
DRILS; the vertices that have a directed path to a vertex that belongs to the OUT subset 
form a subset called OUT-TENDRILS; the vertices that have both a path from a vertex 
in the IN subset and a path to a vertex in the OUT subset form the subset called TUBES. 
The rest of the vertices which do not have a path neither from the LSCC or to the LSCC 
and also do not have a path neither from IN subset or to OUT subset form DISCON-
NECTED subset. See Fig. 2 for an illustration of the mentioned relations. At that time 
Broder et al. reported the existence of largest strongly connected component in the Web 
that contained about 28% of all the vertices. Although later studies showed that several 
structural properties are crawler-sensitive (Serrano et al. 2007), such as the degree distri-
bution or the sizes of the different components of the graph, they all agreed on the exist-
ence of a giant strongly connected component.

Subsequent studies proposed different structures of the Web graphs, such as the “daisy” 
structure (Donato et al. 2005) and the “teapot” structure (Zhu et al. 2008), both defined 
with respect to the largest strongly connected component. The “daisy” structure of the 
Web discovered by Donato et. al. revealed that the Web has a dense core or the largest 
strongly connected component and fragmented IN and OUT components hanging 
from the largest strongly connected component. In their study Zhu et. al. analyzed the 
Chinese Web on the different aggregation levels and reported that the Web on the page 

Fig. 1 a A strongly connected digraph G, with strong articulation points and strong bridges shown in red 
(better viewed in color); b The 2-edge-connected components of G; c The 2-vertex-connected components 
of G Georgiadis et al. (2018)
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level has the “teapot” structure, where the largest strongly connected component has 
the biggest size, IN component has a medium size and OUT component has a small size. 
Their findings also revealed that with the increment of aggregation levels, the structure 
of the Chinese Web becomes increasingly close to the “daisy” structure.

In a much recent work Meusel et al. (2014) revisited aforementioned study of Broder 
et al. (2000) by collecting and analyzing a 2012 crawl of the Web containing 3.5 billion 
vertices and 128 billion edges. Their study revealed that the largest strongly connected 
component of the Web consisted of more than 50% of the total number of vertices. Their 
findings demonstrated that the Web became much more connected as it evolved, which 
was witnessed by the fact that the fraction of the vertices contained in the core of the 
Web (i.e., its LSCC) substantially increased.

Gabielkov et  al. (2014) conducted analysis of the macroscopic structure of the 
underlying graph of Twitter social network, consisting of 505 millions of vertices and 
23 billions of edges. They reported existence of the bow-tie structure of the underlying 
social network formed around the largest strongly connected component containing 
as well about half of the total number of vertices. In their study Gabielkov et al. (2014) 
characterized the largest strongly connected component as “the core of the regular 
Twitter activity”.

Fig. 2 A visualization of the global bow-tie structure of the Web (Broder et al. 2000)
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All aforementioned studies gave us an understanding of the macroscopic or global con-
nectivity structure of the Web and of social networks, which is centered around the core 
of the networks - their largest strongly connected component. Fujita et al. (2019) pro-
posed a local bow-tie structure of the Web, where they discovered that each community 
in the Web graph has its own bow-tie structure, which is formed in the same way as a 
global bow-tie structure, but not just around the largest strongly connected component, 
but around each strongly connected component. Their findings demonstrated a self-sim-
ilarity property of the Web, i.e that the structure of the Web as a whole repeats itself in 
its communities (see Fig. 3).

The first study that analyzed the core of the Web and of social networks (i.e. their 
LSCC) was made by Italiano et al. (2017), where it was shown that the largest strongly 
connected component has its own microscopic bow − tie structure. In their study they 
extended the notions of pairwise strong connectivity used in the pioneering study by 
Broder et al. by analyzing the pairwise 2− connectivity inside the LSCC. Their experi-
ments were conducted on eight Web graphs and seven social networks and revealed 
an inner bow-tie structure of the LSCC that was remarkably consistent across dif-
ferent Web graphs and across different social networks. The microscopic bow-tie 

Fig. 3 A visualization of the local bow-tie structure of the Google Web network (Fujita et al. 2019). This study 
showed that each community has its own bow-tie structure that consists of strongly connected component, 
IN, and OUT parts (better viewed in color)
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structure with respect to the pairwise 2-edge connectivity between the nodes of the 
LSCC was defined as follows. The core of the structure was defined its largest 2-edge-
connected block (in short, L2ECB), where all the vertices have two edge-disjoint paths 
to each other. The sets 2E-IN and 2E-OUT (in short, IN and OUT, respectively) were 
defined as the sets which contain the vertices that have two edge-disjoint paths to 
L2ECB, and from L2ECB, respectively. The vertices that do not have two edge-disjoint 
paths to L2ECB and also do not have two edge-disjoint paths from L2ECB, form the 
set 2E-OTHER (in short, OTHER), which also could be considered as an “analogy” 
of the DISCONNECTED set of the macroscopic bow-tie structure. The sets L2ECB, 
IN, OUT and OTHER were considered to be the components of proposed microscopic 
bow-tie structure. The visualization of microscopic bow-tie structure of the LSCC 
could be seen in Fig.  4. Italiano et  al. (2017) demonstrated that the L2ECB compo-
nent occupies in total about 40% of vertices in Web graphs and around 60% in social 
networks, while the component 2E-IN occupies about 43% and 8%, and the compo-
nent 2E-OUT occupies about 6% and 10% of total amount of vertices, respectively. 
Their findings showed that the structure of the largest strongly connected compo-
nent is remarkably consistent across different Web graphs and across social networks. 
Although the analysis in this study demonstrated noticeable differences in the struc-
tures of the LSCC of Web and of social networks, it undoubtedly needed further 
investigation of their structural properties.

Fig. 4 A visualization of the microscopic bow-tie structure of the LSCC Italiano et al. (2017). As we can see 
the structure consists of the largest 2− edge − connected block, IN, and OUT components (better viewed in 
color). To simplify the picture we depicted the OTHER component of the structure as DISCONNECTED set
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In this paper we make a step further in the structural analysis made by Italiano et al. 
(2017) and extend the notion introduced by Fujita et al. of local bow-tie structure with 
respect to strong connectivity to the notion of local bow-tie structure with respect to 
pairwise 2− connectivity among the vertices inside the giant strongly connected compo-
nent. We demonstrate existence of the local microscopic bow − tie structure of the larg-
est strongly connected component, showing in this way self − similarity property of the 
largest strongly connected component itself. Next, we analyze structural differences of 
the Web and of social networks by considering the distributions of average PageRank, 
Outdegree and Indegree values over the components of their local microscopic bow-tie 
structures. Our findings demonstrate differences in the structure of the LSCC for Web 
and for social networks.

The structure of this paper is organized as follows. In Sect.  2 we describe the data-
sets on which we performed our analysis. Section 3 contains methodology behind it. In 
Sect. 4 we present distributions of centrality measures among components of the micro-
scopic local bow-tie structure for considered Web and social networks. We also pre-
sent distributions of 2-connectivity characteristics among the components of the local 
structure. Based on local microscopic bow − tie structure we demonstrate self-similarity 
property of the largest strongly connected component of considered Web and of social 
networks and show structural differences between two types of networks.

Data
We conducted our analysis on the collection of 3 Web graphs and 3 social networks. This 
amount of networks were processed due to computational challenges to process bigger 
graphs. Among Web graphs we considered the following datasets. Stanford and Berkstan 
are the Web graphs of the Stanford and UC-Berkley University domains. The Google 
graph represents the Web pages under the google.com domain, as they were released 
as part of the Google programming contest in 2002. The datasets Stanford, Berkstan, 

Table 1 Characteristics of the Web and of social networks that we considered in ascending order of 
their number of edges

By n and m we refer to the number of vertices and edges, respectively; δavg is the average degree

Graph n m δavg nLSCC mLSCC Amount of 
local bow-
ties

Stanford 281K 2.31M 8.3 150K (53%) 1.57M (68%) 1.2K

Google 875K 5.10M 5.8 434K (50%) 3.41M (67%) 4.6K

Berkstan 685K 7.60M 11.1 334K (49%) 4.52M (60%) 2.9K

Epinions 75.80K 508K 6.7 32.30K (42%) 443K (87%) 70

Academia 200K 1.39M 7.0 147K (74%) 1.33M (88%) 222

Google+ 211K 1.50M 7.1 86.70K (41%) 1.01M (67%) 563
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and Google were taken from the SNAP data repository (Leskovec and Sosič 2014). We 
also considered the following social networks. Epinions (Richardson et al. 2003) repre-
sents a user oriented product review website. Academia (Fire et al. 2013) is the underly-
ing graph of the network of researchers registered on academia.edu. Google+ (Fire et al. 
2013) contains a small subgraph of Google’s famous social network. Table 1 summarizes 
the characteristics of the datasets that we considered with their largest strongly con-
nected components.

Methodology
Our methodology behind our microscopic local structural network analysis is the fol-
lowing. We consider microscopic bow-tie structure introduced in Italiano et al. (2017) 
and extend it to the local level, that is, we consider bow-tie structures, each of which is 
formed not around the largest 2-edge-connected block (L2ECB), but around of the each 
of 2-edge-connected blocks (2ECBs) of the largest strongly connected component of the 
digraph G. In other words local microscopic bow-tie structure consists of 2-edge-con-
nected blocks, IN, OUT and OTHER components inside the largest strongly connected 
component. Note, that IN, OUT and OTHER components are defined in the same way as 
for global microscopic bow-tie structure. The visualization of proposed structure could 

Fig. 5 A visualization of the local microscopic bow-tie structure of the largest strongly connected component 
proposed in this study. As we can see microscopic bow-tie structure consists of 2-edge-connected blocks, IN, 
and OUT parts (better viewed in color). To simplify the picture we did not depict OTHER part of the structures. 
We would like to highlight that proposed structure is valid for any strongly connected component of any 
directed graph
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Fig. 6 Distribution of the vertices among 2ECBs for the Web and social networks that we considered. As 
we can see most of the local bow-ties occupy considerably small amount of the vertices in Web and social 
networks

be seen in Fig. 5. It is worth mentioning that methodology for extracting local micro-
scopic bow-tie structure could be applied to any strongly connected component of any 
directed graph G.

Microscopic local bow‑tie structure
In this section we present local microscopic bow-tie structure of the largest strongly 
connected component for considered Web and social networks. We also analyze com-
ponents of the microscopic local bow-tie structure for considered Web and social 
networks. We compute several centrality measures for 2ECB, OUT, IN and OTHER com-
ponents of local structure and show how they differ for Web and social networks. More 
specifically, we compute average Pagerank, average Outdegree and average Indegree for 
2ECB, OUT, IN and OTHER components of the local structure. We also compute the 
portion of the vertices of each set of OUT, IN and OTHER that are not 2-edge-connected 
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with any other vertex, i.e. they form singleton 2-edge-connected blocks, as well as the por-
tion of the pairs that are 2-edge-connected.

In the following four subsections we analyze each set of the 2ECB, OUT, IN and 
OTHER components of local bow-tie structure for the Web and social networks that we 
considered. For each set of the 2ECB, OUT, IN and OTHER components of local bow-
ties we present distributions of the vertices, edges, average PageRank, Outdegree and 
Indegree centralities, as well as distributions of 2− edge − connected pairs and singleton 
2− edge − connected blocks among all of the components of the local structure. In this 
way we can see the differences in the distributions of the mentioned metrics among the 
components of the local structures of the Web and of social networks. We ask the inter-
ested reader to proceed with the following subsections.

Fig. 7 Distribution of the edges among 2ECBs for the Web and social networks that we considered. As we 
can see most of the local bow-ties also occupy a considerably small amount of the edges in Web and social 
networks
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Analysis of 2‑edge‑connected blocks of the local bow-tie structure

In the following in order to show differences in the structure of the Web and of social 
networks we placed the histograms for the Web graphs on a right side of the figures and 
the histograms for the social networks on the left side of the figures. In Figs. 6 and 7 we 
can see the distributions of the vertices and edges among all of the 2ECBs of local bow-
tie structures. We can observe that for both Web and social networks almost 100% the 
2ECBs occupy considerably small amount of both vertices and edges in our structures. 
In these plots there is no difference in the core structure between the Web and the social 
networks.

In Fig. 8 we can see the distributions of the average PageRank values among 2ECBs 
of the local bow-tie structures for considered Web and social networks. As we can see 
the distributions have clear and consistent patterns for both Web and social networks, 

Fig. 8 Distribution of the PageRank values among 2ECBs for the Web and social networks that we considered. 
We can observe uniform distributions separately among Web and social networks, which differ significantly 
between them



Page 12 of 29Perekhodko  Applied Network Science            (2024) 9:34 

which differ significantly between them. More precisely, for more than 50% of the local 
bow-ties the average PageRank value is close to 0 and only a few 2ECBs have higher val-
ues of the average PageRank. The distribution of the average PageRank values among 
2ECBs of the local bow-tie structures for considered social networks is much different. 
More specifically, only a few blocks have the maximum average PageRank value, and the 
rest of the blocks are distributed in decreasing or increasing order.

In Figs. 9 and 10 we can see the distributions of the average Outdegree and Indegree 
values among 2ECBs of the local bow-tie structures for our Web and social networks. As 
we can observe the average Oudegree has a decreasing order for the Web and for social 
networks. The pick of the average Outdegree for the Web networks lies between 5 and 10 
values, while for the social networks, it lies between 2 and 4 values. Similar observation 
could be made for the average Indegree of the Web and of social networks.

Fig. 9 Distribution of the Outdegree values among 2ECBs for the Web and social networks that we 
considered
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Fig. 10 Distribution of the Indegree values among 2ECBs for the Web and social networks that we considered

Analysis of OUT components of the local bow-tie structure

As we can see in Fig. 11 all our Web graphs have very similar distribution of the ver-
tices among OUT components of our local structures. The picture is slightly differ-
ent for the social networks, where for the Epinions social network the majority of 
the OUT components occupy about one third of the vertices in the largest strongly 
connected component of the network. The similar observation could be made for the 
edges among OUT components, shown in Figure  12.

In Fig.  13 we show the distribution of the PageRank values among OUT compo-
nents of the networks that we considered. As we can see the distributions are quite 
uniform for all our Web graphs. The distribution is more skewed comparing to the 
distribution of the average PageRank for the 2ECBs. The distribution is different for 
our social networks, where we can observe that for the less amount of OUT compo-
nents average PageRank values are close to 0.
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In Fig.  14 we present the distribution of Outdegree values for the Web and social 
networks that we considered. As we can see the Web graphs again have a quite uni-
form distribution among our components. For the social networks we can observe 
different pattern of distribution, which remains consistent among our networks. Sim-
ilar observation could be actually made for the distribution of Indegree values for the 
Web and social networks that we considered (Fig. 15).

In Fig.  16 we show the distribution of 2− edge − connected pairs of our Web and 
social networks. As we can see for the Web graphs about 30% of 2-edge-connected 
pairs have the value close to the 0 and the rest 70% have in average the value of 2e−10 . 
Different observation could be made for our social networks. As we can see about 
80% of 2− edge − connected pairs have the value close to 0 for academia and Google+ 
social networks, while for Epinions social network this percentage drops to 45%.

Similar differences between distributions of the singletons appear in Fig. 17.

Fig. 11 Distribution of the vertices among OUT components for the Web and social networks that we 
considered
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Fig. 12 Distribution of the edges among OUT components for the Web and social networks that we 
considered

Analysis of IN components of the local bow-tie structure

In Fig. 18 we show distribution of the vertices among IN components in our local bow-
tie structures. As we can see for our considered Web graphs about 80% of our IN com-
ponents occupy very low amount of vertices. For social networks corresponding value 
is 60, 30 and 50% for Epinions, Academia and Google+ networks, respectively. Similar 
picture could be observed for the distributions of edges in our IN components as shown 
in Fig. 19.

In Fig. 20 we can observe distributions of the average PageRank values among IN com-
ponents of our local bow-tie structures. As it could be seen in Fig. 20 both our Web and 
social networks have quite distinguishable distributions.



Page 16 of 29Perekhodko  Applied Network Science            (2024) 9:34 

In Fig. 21 we can see distributions of average Outdegree values for our Web and social 
networks. We can observe a clear pattern for the social networks. About 30% of IN com-
ponents have very low average outdegree. For the social networks the pattern of distri-
bution is quite different, about 50% of all IN components have outdegree values equal 
to 15 on average. Similar distinguished distributions could be observed for the Indegree 
average values among IN components, as shown in Fig. 22.

In Fig.  23 we can observe the distribution of the 2− edge − connected pairs among 
IN components of our local bow-tie structures. As we can see for the Web graphs about 
80% of IN components have the amount of 2− edge − connected pairs close to zero, 
while for the social networks corresponding value represented by about 50% of the com-
ponents on average. Similar observation could be made for the distribution of the single-
tons among the same components. As we could observe also with the previous metrics 
we can see consistent pictures of the distributions among Web and social networks 
(Fig. 24).

Fig. 13 Distribution of the PageRank values among OUT components for the Web and social networks that 
we considered
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Fig. 14 Distribution of the Outdegree values among OUT components for the Web and social networks that 
we considered

Analysis of OTHER components of the local bow-tie structure

In Figs. 25 and 26 we show the distributions of the vertices and edges over OTHER com-
ponents for our Web and social networks. As in the cases of previous components we 
see clear difference between the same distributions for Web and for social networks. At 
the same time we could observe a surprisingly consistent picture among the distribu-
tions of the same type of the network.

In Fig. 27 we can see the distributions of the average Pagerank values among OTHER 
components in our local bow-tie structures. As we can observe about 70% of the compo-
nents have the value of average Pagerank equal to 1e−6 . Different picture could be seen 
for the social networks where the majority of the components have 0.5e−6 , 4e−6 and 
9e−6 average Pagerank values.
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In Fig. 28 we show the distributions of the average Outdegree values among OTHER 
components of our structures. We can observe very distinguishable distributions for the 
Web and for social networks that we considered. As we can see about 70% of our com-
ponents have the average values 8.5, 5.5 and 11.5 for Stanford, Google and Berkstan Web 
graphs, respectively. That is different for the social networks that we considered, where 
about 50% of the components have the average Outdegree values have the value of 1.5 on 
average.

As we can see in Fig. 29 about 70% of our components have the average Indegree values 
about 3 for social networks. For Web graphs the corresponding value drops to 50–60% 
of the amount of all components.

As we can see in Figs. 30 and 31 the distributions of 2− edge − connected pairs and 
singletons among OTHER components are quite similar for considered Web and social 
networks.

Fig. 15 Distribution of the Indegree values among OUT components for the Web and social networks that we 
considered
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Fig. 16 Distribution of the 2− edge − connected pairs values among OUT components for the Web and 
social networks that we considered

Conclusion
In this paper we extended the notion of local bow-tie structure with respect to 
strong connectivity to the local bow-tie structure with respect to pairwise 2-con-
nectivity among the vertices inside the largest strongly connected component. We 
have conducted our experiments on several Web and social networks and unveiled 
local microscopic bow − tie structure inside the largest strongly connected compo-
nent with the microscopic bow-tie formed around each 2-connected block. Revealed 
local microscopic bow-tie structure demonstrates self − similarity property of the 
largest strongly connected component. In order to investigate structural differences 
between Web and social networks that we considered, we analyzed distributions of 
the vertices, edges, average PageRank, Outdegree, and Indegree centralities, as well as 
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Fig. 17 Distribution of the singletons values among OUT components for the Web and social networks that 
we considered

2− edge − connected pairs and singletons among all the components of their micro-
scopic local bow-tie structures. Our results show how average PageRank, Outdegree, 
and Indegree centralities change in the structure of the Web and of social networks 
and demonstrate the dependency of the centrality measures on the 2-connected 
structure of the Web and of social networks. Our results also show the difference in 
the structures of Web and of social networks, proving the structure being one of the 
fundamental characteristics of the network.

Our study is the first to apply the notions of 2-connectivity to analyze microscopic 
structure of Web graphs and of social networks on the local level. We believe that 
carrying out this analysis on more types of networks such as biological networks will 
shed more light on their structural properties and will help to see structural differ-
ences between different types of networks.
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Fig. 18 Distribution of the vertices among IN components for the Web and social networks that we 
considered

Fig. 19 Distribution of the edges among IN components for the Web and social networks that we considered
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Fig. 20 Distribution of the PageRank values among IN components for the Web and social networks that we 
considered

Fig. 21 Distribution of the Outdegree values among IN components for the Web and social networks that we 
considered
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Fig. 22 Distribution of the Indegree values among IN components for the Web and social networks that we 
considered

Fig. 23 Distribution of the 2− edge − connected pairs among IN components for the Web and social 
networks that we considered
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Fig. 24 Distribution of the singletons among IN components for the Web and social networks that we 
considered

Fig. 25 Distribution of the vertices among OTHER components for the Web and social networks that we 
considered
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Fig. 26 Distribution of the edges among OTHER components for the Web and social networks that we 
considered

Fig. 27 Distribution of the PageRank values among OTHER components for the Web and social networks that 
we considered
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Fig. 28 Distribution of the Outdegree values among OTHER components for the Web and social networks 
that we considered

Fig. 29 Distribution of the Indegree values among OTHER components for the Web and social networks that 
we considered
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Fig. 30 Distribution of the 2− edge − connected pairs among OTHER components for the Web and social 
networks that we considered

Fig. 31 Distribution of the singletons among OTHER components for the Web and social networks that we 
considered
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Finally, in the global bow-tie structure with respect to the strongly connected com-
ponents of a digraph, there exist three additional sets of vertices referred as OUT-TEN-
DRILS, IN-TENDRILS, and TUBES. These are the vertices that have a path to a vertex in 
OUT, a path from a vertex in IN, and both a path from a vertex in OUT and to a vertex 
in IN, respectively. Although these sets can be naturally extended to fit the structure of 
2-connectivity, it is not yet known whether these sets can be computed efficiently (i.e., in 
linear time), which is a crucial bottleneck when dealing with large scale graphs. We leave 
as a last open problem whether these sets can be computed in linear time.

Analysis conducted in our study is valid for any strongly connected component of any 
directed graph.

Abbreviations
G  Directed graph
V  Set of the vertices of a directed graph G
E  Set of the edges of a directed graph G
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2VCB(G)  Two-vertex-connected blocks of a directed graph G
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OUT  OUT component of a macroscopic bow-tie structure of a directed graph G
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G
2ECBs  Two-edge-connected blocks of the largest strongly connected component of a directed graph G
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of a directed graph G
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