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Introduction
Many important applications deal with networks derived from correlations in mul-
tivariate data, such as gene co-expression networks (Wang and Huang 2014; Marbach 
et al. 2012), fMRI scans of brain activity (Bullmore and Sporns 2009) and ecological co-
occurrence networks (Barberán et al. 2012). Correlation networks are dense, and finding 
an appropriate threshold to make the networks sparser and separate signal from noise 
is a critical first step in revealing meaningful structure. Researchers have developed a 
suite of methods to this end, including weighted gene co-expression network analysis 
(WGCNA) (Zhang and Horvath 2005) that imposes soft thresholding to obtain a heu-
ristically motivated scale-free network, hard thresholding (Barberán et al. 2012; de Vries 
et  al. 2018) and consensus approaches (Marbach et  al. 2012), while other researchers 
suggest that thresholding should be avoided (Civier et al. 2019). Methods not tied to a 
particular application include network coarse-graining and filtering techniques (Serrano 
et al. 2009; Tumminello et al. 2005; Dianati 2016), and regularisation methods such as 
the graphical lasso (Friedman et  al. 2008) and neighbourhood selection (Meinshausen 
and Bühlmann 2006), which seek sparse estimates of the precision matrix. While these 
methods have particular advantages, they ignore whether the resulting pruned networks 
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represent robust and informative structures. Since the overall objective when represent-
ing data as networks is often downstream analysis of network structure, existing thresh-
olding approaches can limit our ability to reveal valuable patterns in the data.

Network communities—groups of densely connected nodes—are one of the most rel-
evant network structures. They play a crucial role in the function of disparate complex 
systems, from metabolic networks (Guimera 2005) to ecological communities (Calat-
ayud et al. 2020). When considering the community structure, selecting a threshold in 
a correlation network presents the researcher with a model selection problem with the 
usual pitfalls of overfitting and underfitting. When increasing the threshold of which 
links to include, the network becomes sparser and more communities appear (Fig. 1). If 
only strong links remain, the community structure can be rich and potentially informa-
tive about the modular structure of the underlying data. However, removing too many 
links leads to overfitting since spurious communities appear in the overly sparse net-
work (Smiljanić et  al. 2020). Including too many weak and noisy links, on the other 
hand, leads to underfitting, resulting in a dense network with few or no communities 
(see Fig.  1). The researcher must then find the best balance between underfitting and 
overfitting using standard procedures such as cross-validation. In the present work we 
propose a cross-validation method that focuses on communities, where the model com-
plexity corresponds to the modular structure, in this way integrating thresholding and 
network community structure into a single step.

We use the modular compression as quantified by the community-detection objec-
tive function known as the map equation (Rosvall and Bergstrom 2008) combined with 
cross-validation to find the threshold that gives the best balance between over- and 
underfitting network communities. We illustrate the proposed module-based cross-vali-
dation method using synthetic data and gene co-expression data of the plant Arabidopsis 
thaliana. We also use the code length savings measured by the map equation to assess 
the number of samples needed to discern structure in experimental data. We show that 
the code length savings plateau with a step-like relation to the number of samples. This 
behaviour is essential to the practitioner since the reward for sampling effort varies 
strongly with the number of samples. We also compare our approach to the widely used 
WGCNA method and see that this method underfits the model to the data, possibly fail-
ing to identify relevant network structure.

Fig. 1  Thresholding correlation networks. The researcher must solve a model selection problem when 
thresholding a correlation network, here exemplified by gene co-expression data from the plant Arabidopsis 
thaliana. As the threshold increases, more communities appear, potentially leading to overfitting 
(left). Including too many links (low threshold) can lead to underfitting (middle). Our module-based 
cross-validation method guides the researcher to the most parsimonious model (right)
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Results
A correlation network is constructed from data having the same structure across sci-
entific disciplines. Denoting the data X ∈ R

p×n , we have n nodes or features that vary 
across p experiments, samples or time instances. We construct a correlation network 
G(�̂) from the empirical correlation matrix �̂ whose elements �̂i,j = |ρ(Xi,Xj)| are 
given by the absolute value of the correlation ρ between measurements at node i and 
j. For a threshold τ , the correlation matrix elements are given by

Module‑based cross‑validation

To find the best balance between over- and underfitting in a correlation network, we 
propose a module-based cross-validation procedure. We split the data into a training 
and a test set Xtrain ∈ R

p′×n and Xtest ∈ R
(p−p′)×n , and construct the corresponding 

networks G(�̂τ ,train) and G(�̂τ ,test) using a specific threshold τ . To assess the support 
for a modular structure in the data, we use the map equation framework (Rosvall and 
Bergstrom 2008; Rosvall et al. 2009), which exploits the minimum description length 
principle: the modular structure with the shortest description best explains the data. 
The map equation measures the per-step average code length L required to encode a 
random walk on a network with a given partition M. The greedy optimisation algo-
rithm Infomap (Edler et al. 2017) seeks the partition that minimises the code length 
and reveals the most modular structure of the network with respect to the random-
walk process on the network. Denoting the code length for a given partition M of the 
training network G(�̂τ ,train) with threshold τ as Lτ ,train(M) , Infomap seeks to solve the 
optimisation problem

where Mτ ,train is the optimal partition of the training network with threshold τ . This par-
tition is a model of the modular structure in the training data, and the map equation 
framework can quantify how well this model fits the test data.

If the modular structure in the training network is present in the test network, 
Mτ ,train will also compress the modular description of the test network, decreasing 
the code length when applied to the test network. We quantify this compression by 
evaluating the relative code length savings, which we denote l and define as

for a particular value of the threshold τ . Ltest(1) is the code length of the one-level 
uncompressed partition with all nodes in the same module. If lτ > 0 , the training mod-
ules are present also in the test network. The optimal threshold choice τ ∗ maximises 
the relative code length savings. Equivalently, the optimal threshold minimises the code 
length for the test network when using the optimal partition of the training network,

(1)�̂τ
i,j =

|ρ(Xi,Xj)|, |ρ(Xi,Xj)| ≥ τ

0, |ρ(Xi,Xj)| < τ .

(2)Mτ ,train = argminMLτ ,train(M),

(3)lτ =
Ltest(1)− Ltest(Mτ ,train)

Ltest(1)



Page 4 of 11Neuman et al. Applied Network Science            (2022) 7:75 

The partition Mτ∗,train for the optimal τ ∗ best generalises to the independent test data 
set, balancing over- and underfitting. This module-based cross-validation allows us to 
select the optimal threshold and identify reliable modules.

Synthetic data

To illustrate the method using synthetic data we sample from a multivariate normal dis-
tribution with a planted partition. The covariance matrix elements are

where we use M(ni) to denote the module of node ni . The covariance matrix is block 
diagonal with the blocks corresponding to the planted partition with within-module 
covariance c ∈ (0, 1] , ensuring that the matrix is positive definite. The empirical correla-
tion matrix �̂ can then be calculated from samples X ∼ N (0,�) . In the following we use 
Spearman’s rank correlation, but other correlation measures can be used as well.

The ability to separate signal from noise varies with the parameters in the sampled data. 
We therefore establish a baseline case with 8 modules with 30 nodes in each module, 100 
samples and covariance c = 0.3 , and explore how the distribution of empirical correla-
tions changes when we vary these parameters. With increasing number of samples the 
planted correlations are more easily distinguished from noise-level correlations (Fig.  2). 
The number of modules has an opposite effect, with a clear peak of planted correlations 

(4)τ ∗ = argmax τ l
τ = argmin τL

test(Mτ ,train).

(5)�i,j =







1, i = j
c, M(ni) = M(nj)
0, M(ni) �= M(nj),

Fig. 2  Synthetic data. The distribution of empirical correlations calculated from the planted partitions 
varies with the number of samples (upper left), number of modules (upper right) and planted covariance 
(lower left), but seemingly not with the module size (lower right). More samples, fewer modules and large 
within-module covariance gives a stronger signal of modular structure in the data
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with few modules. This can be explained considering that the fraction of within-module 
links and total links decreases as the inverse of the number of modules, meaning that the 
within-module links cover a larger part of the covariance matrix with fewer modules, thus 
increasing the signal-to-noise ratio. The number of nodes per module has little effect on the 
distribution of empirical correlations, because adding more nodes to a module increases 
the support for the corresponding correlation in the data. And if the support is already suf-
ficient, adding more nodes will not change the distribution. Having only small modules 
can, however, change the distribution, and increases the sensitivity to stochastic varia-
tions. Hence, there is no simple relation between the number of samples and the number 
of nodes, but more nodes does not necessarily require more samples to recover a planted 
partition. Obviously, the planted within-module covariance c affects the distribution, with 
a higher value leading to the planted correlations being farther away from the noise-level. 
This result shows the importance of including varying conditions in experiments.

Among the four variables expected to affect the signal-to-noise ratio, the practitioner can 
often control the number of samples, but there are often economic and other constraints 
that limit the availability of samples. Based on this, and given the analysis above showing 
the importance of the number of samples, we focus on how our proposed method per-
forms when varying the number of samples, and how this affects the possibility to recover a 
planted partition. Figure 3 shows the code length savings l for our baseline case with vary-
ing number of samples. With 90 samples, l peaks for a specific value of the threshold, cor-
responding to the solution τ ∗ of the optimisation problem in Eq. 4. With fewer samples, 
however, the code length savings never exceed zero, irrespective of the threshold. The inter-
vals with zero code length savings correspond to a dense network with no modular struc-
ture. The optimisation problem must therefore be stated as

where mτ denotes the number of modules. The added constraints only allow solutions 
with a modular structure present in both the training and test networks. Given the data 
with 50 and 70 samples in Fig. 3, we do not find a solution: a proper threshold without 

(6)τ ∗ = argmax τ l
τ , s.t. lτ > 0, mτ > 1,

Fig. 3  Code length savings with synthetic data. The code length savings l as a function of the threshold τ for 
different sample sizes and planted covariance c = 0.3 . With enough samples we get a positive code length 
saving in the test network, but with fewer samples there is no signal of the modules in the train network. The 
code length savings are negative when there are spurious modules, or zero when there is only one module. 
Calculations are averaged over ten runs and the shaded areas show the standard deviation
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over- or underfitting is not feasible with this method. These results show the need for 
sufficient sampling to reliably detect structure in the underlying data. More importantly, 
the results also suggest that the proposed method can be used to estimate a sufficient 
number of samples.

To further investigate the role of the number of samples, we calculate the code length 
savings for the optimal threshold τ ∗ when varying the number of samples for different 
values of the within-module covariance c. The code length savings increase rapidly when 
there are enough samples to obtain a signal of the modules in the train network also 
in the test network (Fig.  4). When this increase happens and how sharp the increase 
is depends on the within-module covariance, with a covariance c = 0.1 requiring many 
samples. The code length savings flatten out as the number of samples is increased fur-
ther, indicating that there is less reward, in terms of finding modular structure, after a 
certain point. This means that the method we propose can be used to estimate an opti-
mal sampling effort, defined as the number of samples where the code length savings 
start to plateau. Figure  5 illustrates this effect further: For a large enough number of 
samples we recover the planted partition fairly well, with adjusted mutual information 
(AMI) larger than 0.8. Further increasing the number if samples only gives small gains in 
AMI. These results resemble those of Decelle et al. (2011) that identify a phase transition 
in the detection of partitions planted using the stochastic block model when going from 
a random graph to separated modules, which is their way of increasing the signal-to-
noise ratio. Our results are also based on modular structure and show that the detection 
of planted partitions undergo a process resembling a phase transition when increasing 
the number of samples.

Gene co‑expression data

As an example using real data, we choose gene co-expression data from the plant Arabi-
dopsis thaliana (see Methods for details). The objective in this application is to see how 
genes are co-expressed when the plant is subject to stress such as heat or cold. When 
we apply our proposed method to these data we see that the code length savings in the 

Fig. 4  Code length savings with varying number of samples. The code length savings for different values 
of the planted covariance increase as the number of samples increases. For the larger covariances here, the 
increase is almost step-like and the reward for increased sampling effort varies strongly
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training network for different thresholds τ increase as the threshold increases (Fig. 6). 
This increase is to be expected since the network becomes sparser as the threshold 
increases, resulting in a larger modular compression of the network. Contrary to this, 
the code length savings lτ in the test network increase up to a certain point τ ∗ ≈ 0.75 
and then start to decrease. The optimal partition of the training network maximises the 
modular compression of the test network at τ ∗ . This threshold gives the most parsimoni-
ous model of the data when considering the modular structure. The networks in Fig. 1 
are based on these data, with the right-most one corresponding to τ ∗ = 0.75.

Figure  6 also shows the maximum code length savings as the number of samples 
increases, using these same data but randomly undersampling the number of samples. 
The dependence on samples is non-linear, resembling the behaviour for synthetic data.

Gene co-expression data are often analysed using weighted gene co-expression net-
work analysis (WGCNA) (Zhang and Horvath 2005). WGCNA employs soft thresh-
olding by introducing a parameter β such that the network link weights are |ρ|β for a 
correlation measure ρ . We use WGCNA to assess whether this method over- or 

Fig. 5  AMI with varying number of samples. The adjusted mutual information (AMI) between planted and 
recovered partitions increases rapidly and is large ( > 0.8 ) for a wide range of samples. Further increasing the 
number of samples only gives small gains in AMI

Fig. 6  Gene co-expression data. Applying the proposed method to gene co-expression data from the plant 
Arabidopsis thaliana shows that the code length savings in the test network has a maximum at threshold 
τ ∗ ≈ 0.75 (left). This is the threshold value giving the most parsimonious model of the data. The right figure 
shows that the code length savings at the optimal threshold do not increase linearly with the number of 
samples, indicating in accordance with the results based on synthetic data that the reward for sampling effort 
decreases as the number of samples increases
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underfits the modular structure studied in this work, and find that WGCNA underfits 
the model to the data. For computational reasons, we select the 4000 genes with the 
largest variance and find that β = 8 is a good choice (see Methods for details). Figure 7 
shows an alluvial diagram with network modules obtained using Infomap for networks 
corresponding to different β values and for the network corresponding to the thresh-
old τ ∗ . The threshold τ ∗ that best balances between over- and underfitting gives a more 
modular network than WGCNA, meaning that WGCNA underfits in this sense.

Conclusions
We have suggested a way of solving the common and general problem of thresholding 
correlation networks by integrating modular structure in the model selection process. 
This approach avoids ad-hoc methods to sparsify networks that risk over- or underfit-
ting modular structure. Our method quantifies the partition quality by means of the 
code length in the map equation, which we use to measure how a learned community 
structure fits unseen data. Experiments on synthetic and real data show promising 
results. The applicability of the method depends on the signal-to-noise ratio, which 
we showed depends on a number of factors, including within-module covariance, 
module size and the number of samples. There is no obvious relation between the 
number of nodes and the number of samples, but we showed that more nodes does 
not necessarily require more samples.

Fig. 7  WGCNA underfits modules. The allluvial diagram shows Infomap modules and reveals that the 
networks derived using WGCNA with different β values give less modular structure than the network 
corresponding to threshold τ ∗ = 0.75 . This shows that WGCNA underfits the modular structure in the data
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The reward for sampling effort varies strongly as the number of samples increases, and 
the ability to recover a partition undergoes what resembles a phase transition. Given 
the ubiquity of the problem and the substantial economic cost of sampling, our results 
indicating that increased sampling effort can have little reward could potentially lead to 
reduced spending and better allocation of resources across scientific fields working with 
correlations in multivariate data.

The comparison with WGCNA showed that there is a risk of underfitting when using 
WGCNA, which can lead to meaningful network structure being overlooked.

Methods
Optimization method

The objective function in the optimization problem (4) that we solve is the relative code 
length savings in the test network, Ltest(Mτ ,train) , that depend on the threshold τ . This 
objective function is stochastic for two reasons. The first and main reason is the two-
fold splitting that we use here in the cross-validation. The second reason is the inherent 
randomness in Infomap and the non-convex properties of the map equation (Calatayud 
et al. 2019). To overcome this we do a sample average approximation and average over 
10 runs, such that Ltest(Mτ ,train) = 1

10

∑10
i=1 L

testi(Mτ ,traini ) . In this work we use a simple 
approach to find the optimal τ by testing a set of thresholds, such as τ ∈ [0.1, 0.2, . . . , 0.9] , 
and choosing the one that maximizes the code length savings and thus minimizes 
Ltest(Mτ ,train) . Regarding the two-fold splitting, we believe that this is the current best 
option to build both a training and a test network from a data set. There are however 
recent developments in regularization methods for link prediction (Smiljanić et al. 2020) 
that can potentially provide better options.

Gene expression data and analysis

Gene expression data for the co-expression network were retrieved from the Sequence 
Read Archive (SRA). We searched SRA to identify all available RNA-Seq samples relat-
ing to cold stress in Arabidopsis thaliana ecotype Columbia-0, but limited ourselves to 
leaf tissue and excluded any genetic variants. The selected data sets include both control 
and treated samples and were retrieved in April 2021. A full list of included samples can 
be found in the Additional file 1. The data were quantified using salmon version 1.2.1 
(Patro et al. 2017) against the Araport 11 release of the Arabidopsis thaliana genome. 
Pre-processing and normalization were done in R using the variance stabilizing trans-
form available in DESeq2 (Love et al. 2014). If the expression value is constant across 
samples for a gene, due to the sub sampling of experiments, then the correlation coef-
ficient for this gene and the corresponding network links are undefined, and the gene is 
disconnected from the co-expression network.

In WGCNA the parameter β is chosen such that the co-expression network is approxi-
mately scale-free. This is done through linear regression of the distribution of weighted 
node degree on a log-log scale, where the smallest β such that the coefficient of deter-
mination R2 > 0.8 is chosen. Figure 8 shows the dependence of R2 on β , indicating that 
β = 8 is a good choice for our data.
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