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Introduction
When analyzing geospatial data at the mesoscopic level (e.g. regions, counties, metro-
politan areas), we may struggle to find a breakdown of a wide area into intuitive and 
useful regions of analysis. Official administrative boundaries may not exist at the appro-
priate level and are unlikely to divide the area into natural clusters. Our goal is to use 
micro level geospatial and network data to divide a large area into its organic neigh-
borhoods. The identification of such neighborhoods is valuable for city planning, pric-
ing models, real estate recommendations, and geospatial visualizations among other 
applications.

We define neighborhoods as “collections of localities with similar characteristics sep-
arated by localities with dissimilar characteristics.” Such a description draws an obvi-
ous parallel with network community structure. However, due to physical constraints 
and their transportation purposes, road networks rarely exhibit sufficient density and 
connectivity variation to allow community structure algorithms alone to identify coher-
ent mesoscopic structures. Specifically, community structure typically succeeds in dis-
tinguishing areas separated by rivers, highways, or railways, but fails to consistently 
separate areas with more nuanced differences in road patterns. Our approach is to first 
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generate edge weights for the road network based on the similarity of nodes’ local net-
work features, and then use these edge weights to assist the modularity maximization 
algorithm’s ability to cut the network at natural boundaries

Using this technique, neighborhoods are emergent properties of the road network 
structure. Clearly the incorporation of population, employment, store, building height, 
greenery, water, etc. data would help identify perceptually similar and dissimilar areas. 
However, such data comes in the shape of grids, polygons, or administrative areas that 
are large with respect to the size of natural neighborhoods and would impose unnatu-
ral data gradations at the shape boundaries. Our assumption is that characteristics such 
as building height, floor area, neighborhood age, and zoning (residential, commercial, 
or industrial) are sufficiently correlated with features of the road network (length and 
straightness of edges, proportions of intersection types, etc.) that measures of the road 
network can indirectly distinguish these perceptual characteristics. For these reasons we 
focus on road network features that exist at the level of nodes and edges for discovering 
neighborhoods, with the later integration of rich geospatial data for describing and clas-
sifying them.

This treatment extends the work presented at the Complex Network 2021 conference 
(Bramson 2021) by expanding the list of subgraph attributes, analyzing larger and only 
distance-based subgraphs, changing the measure of feature-space similarity, generating 
neighborhood polygons from node sets, and refining the criteria for evaluating com-
munity detection results. The current approach is superior both in its methods and its 
outcomes. Further extensions, such as integrating additional demographic and environ-
mental data and fuzzy community detection algorithms, are discussed in “Conclusions 
and future work” section.

Data sets
We limit our analysis to the central 23 wards of Tokyo; a region covering 614 km2 (Min-
istry of Land, Infrastructure, Transport and Tourism 2020) of predominantly urban 
land with a population of 9,172,273 (Official Statistics of Japan 2015) and 7,153,658 jobs 
(Official Statistics of Japan 2014). (By comparison, New York City has a population of 
8,804,190 distributed over 778 km2 .) Our current analysis focuses on exploring the abil-
ity to discover neighborhoods using only information from the driving network (as a 
proxy for other features); and as such, the data needed is limited to the network itself and 
additional data necessary for determining the width of roads and presence of sidewalks.

Network data

Our base network data is the road network of selected types for central Tokyo from 
Open Street Map (OSM) (OpenStreetMap 2022). The OSM road network includes 
nodes for all intersections as well as nodes to capture the curvature of the roads with 
straight segments. We simplify the network from OSM by merging edges across nodes 
with degree 2 so that most nodes in the simplified graph correspond to intersections. 
However, our network data is segmented into 1500 m × 1500 m tiles to make it man-
ageable in computer memory, and a road segment is kept unmerged if it crosses a tile 
boundary to facilitate fusing tiles. Nodes of degree 2 are also kept when they occur at a 
road structure change (e.g., surface to tunnel or bridge), but the tile boundary condition 
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accounts for most of the remaining degree-2 nodes seen in the degree distribution in 
Table 1.

Because of how the road network is encoded in OSM, the degree k of a node may not 
match the perceptual k-way intersection. For example, large roads are often separated for 
the different directions, so a 3-way “T” intersection of two large roads actually consists 
of 2 degree-4 nodes and 2 degree-3 nodes (e.g., see the center of Fig. 1c). There exists a 
single intersection where 9 roads (including overhead expressway exits) intersect, but in 
the highly detailed OSM representation the highest degree node at that intersection is 4.

Our driving network for the 23 wards region has 177,924 nodes and 261,254 edges 
in the simplified undirected graph. We buffer the 23 wards region by 400  m to avoid 
boundary effects in our analysis of node-based subgraph attributes. The nodes/edges in 
this buffered region are used to collect attributes for the subgraphs, but are not included 
in the network during community detection.

Cartographic data

In the case of Japan, road widths are rarely input into OSM. Roads are tagged by type in 
the OSM data (e.g. motorway, primary, residential); however, the road attributes (such 
as speed limit and road widths) vary within each category and overlap across categories. 

Table 1  Degree distribution of nodes in Central Tokyo

Degree Count

1 15,629

2 16,213

3 110,741

4 34,923

5 + 723

Fig. 1  Steps needed to process the raw “Kiban” data (Geospatial Information Authority of Japan 2022) into 
usable geospatial information such as road width and sidewalk coverage. Part of the West Shinjuku area 
mapped using keplergl (2020)
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In order to obtain accurate road width values we process cartographic “Kiban” data from 
Geospatial Information Authority of Japan (2022) that provides outlines of road edges, 
road components, and waterlines as well as building polygons (Fig. 1a).

This data is not immediately usable for measuring road widths or sidewalk coverage. 
It comes as just a table of LineString geometry objects and needs to be converted into 
polygons of blocks and sidewalks. Furthermore, the lines are often not well-formed; 
e.g., lines marking the outer edges of sidewalks often fail to connect to the block at the 
endpoints and/or are left open at the inner edge when they span multiple blocks. We 
perform a multi-step image processing analysis to generate polygons for blocks and side-
walks, the result of which can be seen in Fig. 1b.

Although the results are imperfect, we are able to achieve an overall high degree of 
accuracy with respect to road and sidewalk widths in most areas [as confirmed by com-
parison with measurements on Google Maps (2022)]. The generated blocks and side-
walks, along with the included building polygons, are then used to measure road widths 
and the percentage of road lengths that are serviced by sidewalks (as well as building 
spans and mean sidewalk widths not used here; Fig. 1c) (more details in “Road widths 
and sidewalk coverage” section).

Analysis methods
As stated in “Introduction” section, our method weighs edges of the road network by the 
similarity of the nodes’ local network features. We perform our analysis separately for 
four different values of subgraph extent: 100, 200, 300, and 400 meters. For each node 
in the road network, we collect subgraphs containing the nodes and edges within that 
range. Edges are included if (1) both end nodes are within range or (2) the edge directly 
connects to the focal node regardless of its length.

Measures

There is a vast literature on analyzing road networks to estimate/predict movement 
activity using features of the network structure (Omer et  al. 2017; Serra and Hillier 
2019), optimize logistics (Goczyłla and Cielatkowski 1995; Gai et al. 2019), and perform 
structural comparisons (Barthélemy 2011; Austwick et al. 2013). Naturally, these stud-
ies use network measures appropriate for the task at hand (e.g. angular closeness and 
betweeness centralities). Because our goal here is instead capturing features that can dis-
tinguish neighborhoods, a different suite of measures and a novel method to integrate 
them are necessary.

For each ego-centric subgraph we collect the twelve variables listed in Table 2. These 
measures were chosen both because they capture perceivable features of a road network 
that may contribute to a neighborhood’s identity and because they are relatively fast to 
compute (i.e., compared to centrality measures and angularity). Specifically, for each 
subgraph, all measures can be computed in linear time with a single pass through that 
subgraph’s edge list.

We can separate the measures into two categories: (1) measures of the network struc-
ture and (2) measures of the roads. The main distinction being made here is that network 
measures are purely topological and require no geospatial characteristics (measures 
1, 2, 8, 9, 10, and 11 from Table 2), while road measurements require the network be 
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embedded in an a spatial context (measures 3, 4, 5, 6 and 7 from Table 2). We meas-
ure similarity using different combinations of measures in order to assess which kinds of 
measures generate more natural neighborhoods: (1) all measures, (2) uncorrelated meas-
ures (see “Measure analysis” section), (3) network features only, (4) selected network fea-
tures, and (5) road features only. Measure set (4) takes the network-only measures and 
ignores the proportions of degree 3 and 4 nodes because, given the OSM representation, 
they do not correspond to the perceived number of roads at an intersection.

Straightness

Because we have simplified the network, the edge geometries are no longer straight 
lines; they are ‘linestrings’ capturing the concatenated segment lines. In this way, we can 
generate an edge straightness attribute from the ratio of Euclidean endpoint distance 
over the linestring length. This measure is a less rich description of the perceived road 
straightness than a circuity measure across all the subgraph leaf nodes because it meas-
ures the curvature of the roads themselves rather than of the paths across the network, 
but it has the benefit of being computationally simple.

Road widths and sidewalk coverage

The Kiban data, once processed into block and sidewalk polygons, can be used to deter-
mine the widths of roads and presence of sidewalks for an embedded road network. 
Road widths are determined as the sum of the distances on each side of an edge to the 
closest point on a sidewalk, block, or building polygon (minimum road width along that 
edge). Using buffers on each side of each edge, we determine the proportion of the edge 
length that contains sidewalk polygons, and take the greater value of each side.

For small connecting road segments inside intersections, there are no sidewalks 
or blocks on either side. Rather than assigning unrealistic values (e.g., road widths of 
400 m), these edges inherit the values from the roads they connect to and align with. The 
full details of our processing from OSM network and Kiban data into road widths and 
sidewalk coverages is particular to these datasets and the Japanese context, so it is omit-
ted here. However, those interested in this process are invited to contact the author for 
further details.

Table 2  Measures collected for each ego-centric subgraph

1 Number of nodes

2 Number of edges

3 Total edge lengths (measure of density)

4 Mean road segment length

5 Average edge straightness weighted by length

6 Average road width weighted by length

7 Average percent sidewalk coverage weighted by length

8 Proportion of degree 1 nodes

9 Proportion of degree 3 nodes

10 Proportion of degree 4 nodes

11 Square clustering (meshedness)

12 Triangle clustering
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Measure analysis

Increasing the range of the subgraph makes neighboring nodes more similar because 
there is greater overlap in their subgraphs. This creates a smoothing effect that can be 
seen in Fig. 2 as more coherent and larger patches of similar values.

More than just smoothing the attribute values across the nodes, because edge weights 
are calculated as the similarity of their end nodes’ subgraphs, these coherent patches are 
also expected to induce patterns in the edge weights. Specifically, areas that are similar 
across multiple attributes internally, but distinct from surrounding areas with respect to 
those attributes, will form neighborhoods using community detection on the network. 
More smoothing, and hence more coherent patches, should make it easier to identify 
those neighborhoods.

As seen in Fig. 3 for the 300 m subgraph case, the level of correlation among these var-
iables is surprising low overall. The number of nodes, number of edges, and the sum of 
edge lengths are very highly correlated, as one should expect, because they are all meas-
ures of road network density. Square clustering (meshedness) is only moderately (0.48) 
correlated with the proportion of degree-four nodes, and even less correlated (0.11) 
with road straightness—both lower than expected. This can be partially explained by the 
OSM representation of larger roads as split in the two directions, so that (as described 
above) a square is created within a ‘T’ intersection of large roads, and many intuitively 
grid-like areas would not be captured as ‘squares’ in the network. Given the OSM repre-
sentation, a more sophisticated measure is necessary to capture perceptual meshedness 
among large roads.

The overall low level of correlation among these attributes means that, even when the 
individual variables exhibit clear spatial clusters through subgraph size smoothing (as 
seen in Fig.  2), each variable generates a different pattern of spatial clusters. Because 
all variables are aggregated through subgraphs, they are all smoothed, but neighbor-
ing nodes can be highly similar in some attributes and very dissimilar in others. This is 

Fig. 2  The normalized percents of sidewalk coverage for each node’s subgraph at varying subgraph 
sizes (blue is more coverage). Larger subgraphs tend to increase the similarity of neighboring nodes, thus 
smoothing the spatial distribution of attribute values
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especially true for areas with long street segments. End nodes for roads having lengths 
of 200 m or more can have little overlap among their subgraphs, and hence may vary sig-
nificantly in their attributes.

Based on these patterns in measure correlations, we use the following measures 
for our ‘uncorrelated’ measures set: sumOfLengths, meanLength, meanRoadWidth, 
meanSidewalkCoverage, propDeg1, propDeg3, propDeg4, squareClustering, and 
triangleClustering.

Algorithms

The computational methods for this work include the network community detection 
algorithms, the methods to evaluate the performance of the discovered communities, 
and an additional method to convert spatially overlapping collections of nodes in com-
munities into partitioning polygons for neighborhoods.

Network communities

Recall our definition of neighborhoods as “collections of localities with similar character-
istics separated by localities with dissimilar characteristics.” The unweighted version of the 

Fig. 3  Pearson correlation matrix for the local network measures using 300 m subgraphs. Other subgraph 
extents exhibit the same qualitative pattern with greater correlation for larger distances
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greedy modularity communities algorithm, as implemented in NetworkX (Hagberg et  al. 
2008), finds communities wherein there are more internal connections than external con-
nections. As already noted, the degree of nodes in a road network is highly constrained by 
physical limits, and methods appropriate for social networks are rarely useful for such spa-
tially embedded networks. That said, some areas are densely packed with roads and sepa-
rated from other areas by sparse connections imposed by parks, rivers, railways, and large 
expressways; intuitively, modularity does play some role in describing and individuating 
neighborhoods.

The modularity maximization algorithm has a resolution parameter ( γ ) that adjusts the 
tradeoff between internal and external edges so that values less than 1 favor larger com-
munities while values greater than 1 favor smaller communities. After exploring a range 
of values, we find that using a resolution parameter of γ = 4 produces community sizes 
that approximate many intuitive community extents, so all experiments presented here use 
γ = 4.

Edge weights

In order to strengthen the ability of modularity maximization to identify coherent neigh-
borhoods, our idea is to weight edges by the similarity of their end nodes. Modularity 
would therefore reflect stronger similarity within a community and less similarity outside. 
First, for each subgraph extent, we separately standardize the values xi of each measure m 
using the typical method:

where µm is the mean value and σm is the standard deviation for that measure m across 
all nodes for that subgraph size. Now, all the measures are in the same scale space where 
mean values are at zero and the unit is standard deviations. For each measure set M , 
we then create the feature vectors of the standardized variables. From here we experi-
mented with calculating the distance dij between the lists of features of two nodes i and 
j for variable set M using a few different distance metrics (log of Euclidean distance, 
truncated distance, geometric distance, etc.), but achieved the best results with ordinary 
Euclidean distance:

Although these distances are all in terms of standard deviations across multiple dimen-
sions, they can be arbitrarily large, and we need weights based on similarity rather than 
distance. In order to convert pairwise node feature vector distances into similarity 
weights, we use the following two functions:

(1)x̂i =
xi − µm

σm
.

(2)dij =

M

m

im − jm
2

formeasurem in setM.

(3)ω1(ij) =
1

1+ dij
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Both functions yield weights between 0 and 1 (which we multiply by 10,000 so we can 
store them as integers to speed up processing while retaining sufficient resolution), but 
generate different edge weight distributions as can be seen in Fig. 4.

Evaluating detection performance

There is no ground truth for what the “correct” neighborhoods are in an objective sense 
because they are intrinsically perceptual and rely on an implicit consensus and shared 
understanding among a large number of people. However, insofar as there are gener-
ally accepted cohesive neighborhoods, we can evaluate how well each of the parameter 
and dataset combinations reveals those neighborhoods. Using domain knowledge of the 
Tokyo area we have manually created a set of polygons representing 26 known neighbor-
hood cores as shown in Fig. 5.

By “core” we mean a portion of a neighborhood that any reasonable person or algo-
rithm would identify as cohesive. While both intuitive and detected neighborhoods are 
likely to extend beyond their cores, the degree and directions in which they extend may 
depend on one’s perspective and the particular attributes considered. In some cases it 
is ambiguous whether to consider an area as one cohesive neighborhood or two nearby 
distinct but similar neighborhoods; we may accept both clusters in which those two are 
together or separate neighborhoods. In such cases we chose only one of them to act as 
a core so as to keep the evaluation criteria from becoming too complicated. By defining 
neighborhood cores in this way, we can evaluate the performance of community detec-
tion using standard machine learning-style tests.

We use the polygons from Fig. 5 to identify the set of nodes in each core after remov-
ing the nodes for motorways and motorway links (which we consider as not parts of 
communities, even though they are important for identifying communities). This subset 
of 1381 nodes in the systems constitutes our ground truth by placing each relevant node 
in exactly one mutually exclusive community. A successful neighborhood discovery will 

(4)ω2(ij) =
1

1+ d2ij

Fig. 4  Using the same extents and variable set, the ω1 weights are nearly normally distributed with a spike at 
1. ω2 weights, on the other hand, are more even and skewed lower
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(at least) keep all the nodes in the same core together in the same community while sep-
arating the nodes in different cores into different communities. In order for this method 
to effectively evaluate neighborhood discovery performance, it is necessary to identify 
sets of distinct cores that are spatially near each other; however, they needn’t share edges 
because the gaps can capture ambiguous in-between and/or transition zones.

Our approach here parallels the way machine learning algorithms are typically evalu-
ated. We manually define a ground truth (annotated training and test data), and test the 
ability of different attributes and parameter combinations to match that pattern. After 
identifying the combination that performs the best on the test areas, we then explore 
the particular neighborhood boundaries in generates as well as the discovered neighbor-
hoods in areas where we don’t have clear a priori knowledge.

Generating neighborhood polygons

The modularity maximization community detection algorithm will create a ‘crisp’ par-
tition of the network nodes, but because they are spatially embedded, nodes in differ-
ent communities may overlap in physical space. In future work we will address fuzzy 

Fig. 5  The set of neighborhood cores used to evaluate the performance of detected communities. An 
algorithm performs well if all the nodes in each core are in the same community, and nodes in different cores 
are in different communities
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neighborhood boundaries with a non-partitioning community detection algorithm (see 
“Other community detection algorithms” section for more details), but for this work we 
wish to maintain the partitioning feature so that the neighborhoods can be intuitively 
plotted on a map and used for quick visual reference. For these reasons we need to con-
vert collections of nodes assigned to communities into polygons for the neighborhoods.

In order to generate neighborhood polygons from the collections of nodes, we first 
assign a community membership to an edge if both end nodes are in that community, 
then remove edges that do not belong to any community (as well as motorway and 
motorway link edges). We then buffer the community edges by 50 m (so they are now 
100 m wide bars) and merge them into a single object. If the result is a multipolygon, 
then we only keep the largest component polygon. We close any holes in these polygons, 
erode it by 90 meters, and again remove isolated areas by keeping the largest polygon 
for each community. At this stage, the community polygons are not a partition because 
they may overlap and have gaps, so we cut out any overlapping regions from all poly-
gons that overlap and then fill in gaps using the tessellation function from the Momepy 
library (Fleischmann 2019). Figure 6 shows the relationship between nodes from com-
munity detection and the generated polygons for one case. Although we use the node 
sets resulting from community detection in the quantitative analysis in “Clustering accu-
racy comparison” section, we use this technique to create the maps seen in “Discovered 
neighborhoods details” section.

Neighborhood discovery results
First we present the accuracy results of our discovered communities based on stand-
ard clustering performance measures as well as aggregated error rates. We then explore 
the discovered communities beyond the neighborhood cores. Finally, we examine some 

Fig. 6  The nodes belonging to each detected community and the neighborhood polygon generated from 
those nodes using ω1 , 300 m subgraphs, and all variables. Some nodes at the peripheries of communities fall 
into a different neighborhood through the smoothing and tessellation process
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selected areas in order to assess the strengths and weaknesses of the methods for future 
improvements.

Clustering accuracy comparison

As described in “Evaluating detection performance” section, there are no “correct” 
organic neighborhoods to use as ground truth, so we evaluate the performance of our 
models using manually annotated neighborhood cores. For each weighting equation ( ω1 
and ω2 ), each subgraph extent (200, 300, and 400 m), and each of the five variable sets, 
we compare the nodes in clusters found by greedy modularity maximization with our 
defined neighborhood cores. The results are presented in Table 3.

The adjusted mutual information (AMI) and Rand index are common methods for 
comparing the similarity of two partitions, and as such are often applied to clustering 
results. Although we present both values in Table  3, they are 95.7% correlated across 

Table 3  Community detection accuracy results for each parameter combination

*** indicates the best results, ** the second best, and * the third best result

Weight Subgraph 
extent

Variable set AMI Rand Index Proportion missed Extra communities

0 unweighted 0.864 0.662 0.124 0.273**
1 ω1 200 allVars 0.942** 0.885** 0.025*** 0.318

2 ω1 200 unCorr 0.933 0.835 0.027** 0.182***
3 ω1 200 netOnly 0.919 0.785 0.043* 0.318

4 ω1 200 networkSome 0.936* 0.871* 0.059 0.318

5 ω1 200 roadFeatures 0.943*** 0.896*** 0.044 0.273**
6 ω1 300 allVars 0.908 0.805 0.068 0.500

7 ω1 300 unCorr 0.854 0.638 0.079 0.364

8 ω1 300 netOnly 0.862 0.658 0.075 0.409

9 ω1 300 networkSome 0.872 0.748 0.101 0.545

10 ω1 300 roadFeatures 0.927 0.839 0.071 0.318

11 ω1 400 allVars 0.889 0.771 0.088 0.545

12 ω1 400 unCorr 0.898 0.787 0.101 0.636

13 ω1 400 netOnly 0.902 0.802 0.086 0.500

14 ω1 400 networkSome 0.894 0.771 0.106 0.455

15 ω1 400 roadFeatures 0.896 0.761 0.071 0.364

16 ω2 200 allVars 0.927 0.852 0.085 0.545

17 ω2 200 unCorr 0.919 0.838 0.093 0.591

18 ω2 200 netOnly 0.920 0.848 0.098 0.636

19 ω2 200 networkSome 0.929 0.838 0.072 0.455

20 ω2 200 roadFeatures 0.924 0.840 0.078 0.364

21 ω2 300 allVars 0.860 0.671 0.152 0.682

22 ω2 300 unCorr 0.874 0.703 0.186 0.682

23 ω2 300 netOnly 0.865 0.718 0.172 0.682

24 ω2 300 networkSome 0.869 0.736 0.143 0.727

25 ω2 300 roadFeatures 0.883 0.671 0.112 0.545

26 ω2 400 allVars 0.881 0.713 0.167 0.727

27 ω2 400 unCorr 0.886 0.728 0.122 0.727

28 ω2 400 netOnly 0.886 0.749 0.129 0.591

29 ω2 400 networkSome 0.888 0.770 0.120 0.636

30 ω2 400 roadFeatures 0.906 0.811 0.096 0.545
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our 31 clusterings (using Spearman rank correlation), so we focus our discussion on 
AMI. AMI takes the value of 1 when two partitions are identical, and 0 when the over-
lap can be explained fully by chance. This adjustment for chance means that the AMI 
does not exactly track the number of misclassified nodes, it matters how they are dis-
tributed across the communities. The four highest AMI scores were all achieved using ω1 
and 200 m subgraphs. The highest uses only road features, the second uses all measures, 
and the third uses selected network measures; however the ω1|200 m results range from 
0.919 to 0.943 across variable sets, meaning they are all quite high.

Although the AMI and Rand score are common measures of clustering quality, we can 
dig a bit deeper and look at two additional aspects of misclassification. First, the propor-
tion missed column of Table 3 reports the proportion of nodes covered by each ground 
truth polygons that are not in the same community as the community with the most 
nodes in that polygon. The best performing clustering in this respect (Table  3 row 1) 
missed only 2.5% (i.e., 34) of the 1381 nodes covered by neighborhood cores. This row 
achieves the second highest AMI (again, because the AMI depends on the distribution 
of errors in its adjusting for randomness). By contrast, the row with the best AMI and 
Rand scores (Table  3 row 5) missed 4.4% of the nodes across all neighborhood cores. 
Overall, the proportion missed values are − 72.9% correlated with the AMI values using 
Spearman rank correlation.

The extra communities column of Table 3 tells us the degree to which the incorrectly 
assigned nodes fall into few or many discovered neighborhoods. It is calculated as the 
number of discovered communities that intersect the ground truth polygons, minus the 
number of ground truth polygons, then divided by the number of ground truth poly-
gons. A perfect score is 0, and the values for our results range from 0.182 to 0.727. The 
ground truth communities are covered by between 1 and 4 discovered communities; 
some cores were perfectly identified by every clustering, while others were problematic 
(to varying degrees) for most clusterings. The best performing clustering in this respect 
(Table 3 row 2) split just 4 of the cores into just 1 additional community. Overall, the 
extra communities values are − 49.4% correlated with the AMI values using Spearman 
rank correlation.

Unweighted results comparison

The unweighted results (Table 3 row 0) achieve the second best results with respect to 
the number of extra communities, but otherwise the results were among the worst. An 
AMI of 0.864 places it at the 5th worst, while its proportion missed is 7th worst. Its AMI 
is 3rd worst and its proportion missed is worse than all ω1 clusterings. These results 
tell us that while unweighted modularity is indeed capable of distinguishing reasonable 
organic neighborhoods in many cases (an AMI of 0.864 is not terrible), adding weights 
based on similarity generally improves the performance of neighborhood discovery.

Weighting function results comparison

In general, the AMI results are similar but slightly worse for ω2 compared to ω1 across 
subgraph sizes and measure sets. On average, ω1 is only 0.01 better, but being better or 
worse depends on the particular parameters. The Spearman correlation of the AMIs 
between ω1 and ω2 is 0.742 (for the Rand index it is 0.421). The proportions of missed 
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nodes are also similar with a Spearman correlation of 0.63, but ω1 is consistently better 
for every parameter combo.

Subgraph extent comparison

Like with the weight equation differences, it is not the case that one subgraph extent 
is always better than others. The 200  m subgraphs are always better than 300  m and 
400 m results for the same ω and variable set, but there is no consistent pattern when 
comparing 300 m and 400 m results. Larger subgraph extents means more smoothing, 
and although the 100 m results were insufficiently interesting to even be worth present-
ing, using less smoothing fosters a slightly better ability to differentiate neighborhood 
boundaries.

Quantitative analysis summary

In the final analysis, the best results came from using ω1 and a 200 m subgraph extent. 
All of the variable sets performed well, and which ones are considered best depends on 
which metric is used. If minimizing the number of misclassified nodes is the benchmark, 
then using all the variables yields the best results; however, using just the road features is 
better when the overall preservation of neighborhoods is the goal (as measured by AMI 
and the Rand index).

Discovered neighborhoods details

Although the quantitative analysis above can tell us which clusterings capture the clear 
and distinct neighborhood cores we identified, evaluating the naturalness and usefulness 
of the discovered neighborhoods requires examining them on a map. Below we present 
some details of the discovered neighborhoods in order to gain a better understanding of 
where and why they succeed and fail.

Unweighted results

As a baseline, and an example of a lower-accuracy clustering, we first present the results 
of using greedy modularity without edge weights in Fig.  7. As expected, unweighted 
modularity suffices to separate neighborhoods when rivers, large motorways, or train 
tracks act as barriers, but fails to separate areas with very different features. As an exam-
ple, in the upper-left part of Fig. 7 we can see the large blocks west of Shinjuku station 
are split between a small red neighborhood and a large light blue neighborhood around 
Shinjuku station. This comparatively recently built-up area has long, straight roads, 
sparse but large buildings, and exceptionally wide sidewalks, and it really should be its 
own neighborhood. Considering the small sizes of the red neighborhoods to the west 
and south of this area, this is not a problem with the resolution ( γ ) parameter. Because 
the unweighted algorithm has no information on the road widths, sidewalks, etc., it can-
not distinguish this area from its surroundings. In fact, because of the relatively sparse 
roads in this sky scrapper dominated area, it serves as a natural cutting point between 
neighborhoods similar to parks, large stations, the Emperor’s Palace, and bodies of water.



Page 15 of 23Bramson ﻿Applied Network Science            (2022) 7:51 	

Generated edge weights

Augmenting the network with similarity weights is expected to allow the greedy modu-
larity algorithm to find communities with similar features. In order for the edge weights 
to actually help the modularity algorithm, they need to form coherent patterns useful for 

Fig. 7  Close-up map of the communities discovered using the greedy modularity algorithm without edge 
weights. Pictured area is 9.33 km wide by 5.6 km tall and covers the areas around Shinjuku, Shibuya, and 
Tokyo stations

Fig. 8  Close-up map of the edge weights capturing node similarity using ω1 , 200 m subgraphs, and all 
variables (lowest error combination). Dark red indicates minimal similarity, dark blue indicates the maaximum 
similarity, colors diverge at the mean similarity value. Coherent patterns are few and small within this central 
area
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identifying organic neighborhoods. However, as shown in Figs. 8 and 9, the edge weights 
do not in general reveal coherent clusters of similar nodes for much the study area.

Because each node’s features aggregate across (in the case of Fig. 8 200 m) subgraphs, 
we expected a stronger smoothing effect, but in the dense and heterogeneous road net-
work of central Tokyo, swapping a few roads can (and does) make a significant difference 
in the aggregated subgraphs features. However, the degree of edge weight clumpiness 
depends on the weighting function and measures used, and also the area. Figure 9 shows 
the edge weights for the case using ω2 and 400 m subgraphs on the road feature vari-
ables. Here we can clearly see coherent patterns in the high vs low weights that establish 
the expected sets of nodes that are similar within and dissimilar between communities. 
There are still many areas lacking such a pattern, including many of the areas identified 
as neighborhood cores, that result in the relatively low, but not especially poor, perfor-
mance of this parameter combination.

Even without a clear pattern of strong inner and weak outer edge weights, because 
we are using these similarity-based edge weights to augment the modularity maximiza-
tion, we can still rely on modularity to do the heavy lifting in discovering neighborhood 
boundaries, while utilizing these weights to modulate exactly where the separations 
occur. This is because modularity maximization works across all the edges within and 

Fig. 9  Map of the edge weights capturing node similarity among all variables using ω2 , 400 m subgraphs, 
and only road features. Dark red indicates minimal similarity, dark blue indicates the max similarity, colors 
diverge at the mean similarity value. Fairly large collections of similar nodes appear throughout the area
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between proposed communities, and it is relative strengths that matter for where to split 
the nodes. However, these edge weight results imply that additional/different features 
and/or a different method for identifying communities based on these weights may be 
necessary to clearly identify neighborhoods.

Weighted modularity results

As described in Section “Generating neighborhood polygons” we take the nodes within 
each network community found by modularity maximization and generate polygons 
for the neighborhoods so we can more easily assess the shape and process geospatial 
data for those areas. The resulting neighborhoods for row 1 of Table 3 (the least propor-
tion missed and second best AMI by 0.001 point), which come from the edge weights in 
Fig. 8, are shown in Fig. 10 for the downtown region. This is a clear improvement over 
the unweighted results in Fig. 7: the area west of Shinjuku station gets its own (medium 
blue) neighborhood, Shibuya is split between primarily retail and primarily residential 
areas, Roppongi get its own clearly defined area, the two sides of Tokyo Station are sepa-
rate, etc. Only some of these were defined as neighborhood cores, so the results beyond 
that also produce very natural neighborhoods in many areas. On the other hand, the 
Marunouchi area is combined with the Ginza area, part of the government building zone 
is in the Akasaka neighborhood, and the distinct parts of Tsukishima island are grouped 
together. So, although this parameter combination performed well on our tests, and has 
many desirable features, it also leaves room for considerable improvement.

We can compare the results for all variables in Fig. 10 with the results for road features 
in Fig. 11. This is row 5 of Table 3 that achieved the highest AMI and second fewest extra 
communities. This parameter combination achieved similar accuracy on our cores, and 
some neighborhoods are extremely similar in size and shape, but there are also impor-
tant differences. Using only the road features correctly distinguished the Marunouchi 

Fig. 10  Close-up map of the communities discovered using the greedy modularity using ω1 edge weights 
based on all variables for 200 m subgraphs
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area from the nearby Ginza area, and joined Marunouchi with the government zone, 
which is much more natural, although it would be even better if these too were sepa-
rated. They both mistakenly group two of the four Shibuya area cores together, but they 
group together different ones. Subjectively, the neighborhoods discovered using only 
the road features seem slightly more natural than using all variables, but they both have 
strengths and weaknesses.

The revealed communities also conform to other intuitive characteristic neighbor-
hoods in the detailed area as well as across the whole 23 wards (Fig. 12). Figure 12 In 
some of the regions (especially in the suburbs) the neighborhood separations seem arbi-
trary because the community size prescribed by the resolution parameter is smaller 
than the natural neighborhood. However, it is easier to join such communities in post-
processing than to modify the modularity algorithm to accommodate larger community 
size disparities. The shapes of discovered neighborhoods conform well to many unof-
ficial identified regions such as the Roppongi Area, Ginza Area, and Shimbashi Area. 
There are stations and/or administrative areas with these names, but the intuitive neigh-
borhood bearing that name is better captured by these discovered neighborhoods than 
the official boundaries. In this sense, the results are already useful; they offer advantages 
in characterizing, scoring, and associating localities compared to the current next best 
alternative (official administrative areas).

Numbers of communities

For ω1 , all the variable sets and subgraph spans generate a similar, but varying, number 
of communities in the 331 to 402 range, as shown in Table 4. In contrast to that, ω2 gen-
erates a wider range of values (from 408 to 634) that are across-the-board larger than 
the ω1 results. However, the pattern of rankings of the number of communities across 
subgraph span and variable sets is essentially identical between ω1 and ω2 . Considering 

Fig. 11  Close-up map of the communities discovered using the greedy modularity using ω1 edge weights 
based on road features for 200 m subgraphs



Page 19 of 23Bramson ﻿Applied Network Science            (2022) 7:51 	

how greedy modularity maximization works, and that the difference in the weight-
ing schemes alters the values but not the rankings of the edge weights themselves, this 
preserved pattern is unsurprising. However, the result that stretching the distribution 
of weights towards extremes has the effect of generating consistently, and significantly, 
more groups is interesting. Although intuitively we could make more, smaller communi-
ties and merge similar ones in post-processing to generate more heterogeneous neigh-
borhood sizes, this may not be a viable approach because the ω2 results generated more 

Fig. 12  Discovered neighborhoods for the 23 ward region using all variables on 200 m subgraphs

Table 4  Number of communities found for each parameter set

Variable set Number of communities ω1 Number of communities ω2

200 m 300 m 400 m 200 m 300 m 400 m

All variables 402 378 370 634 561 503

Uncorrelated 397 378 366 602 527 461

Network only 393 373 359 582 511 461

Select network 385 375 359 563 512 438

Road features 376 365 331 507 459 408



Page 20 of 23Bramson ﻿Applied Network Science            (2022) 7:51 

communities but performed less well in separating according to our annotated ground 
truth.

Conclusions and future work
We have shown that the standard greedy modularity maximization algorithm can 
already find reasonable neighborhoods in parts of Central Tokyo due to typical divid-
ing/connecting features such as large roads, rivers, and railways. However, that alone 
is insufficient to distinguish dissimilar areas that are nonetheless well-connected. By 
augmenting the network with edge weights based on the similarity of local network 
characteristics, we successfully separate dissimilar areas to discover improved intuitive 
neighborhoods.

Compared to previous results (Bramson 2021), adding accurate road widths and side-
walk coverages based on the Kiban data, as well as changing the function used to con-
vert the Euclidean distances of normalized values in feature-space to similarity weights, 
improved the consistency of edge weights into coherent patterns. This edge-weight 
refinement improved the results enough that it required additional and more stringent 
tests for the quality of the detected communities to evaluate them. In order to facili-
tate the quantitative comparison of results, we manually generated a ground-truth of 
neighborhood cores: areas in which nodes must be considered as the same neighbor-
hood but distinct from other cores. This method allows us to utilize this approach to 
simultaneously ensure that known neighborhoods are distinguished and explore natural 
delineations where domain knowledge and intuitions are lacking. Although the discov-
ered neighborhoods are already useful improvements over using official administrative 
areas, there is still much work to be done to uncover the generally recognized organic 
neighborhoods.

Some aspects of real neighborhoods complicate this research. Although some neigh-
boring neighborhoods exhibit starkly different ambiances, many more blend into each 
other smoothly. This was one motivation for using only neighborhood cores to differen-
tiate them for evaluation: it is actually ambiguous/vague where to draw the line between 
them. There are also gradations in the relative strengths of neighborhood differences: 
Ginza and Shimbashi may feel like distinct neighborhoods when walking from one to 
the other, but they are very similar to each compared to the rest of Tokyo. So, it doesn’t 
feel wrong to lump them together or keep them as separate (but similar) neighborhoods. 
In some cases there are large swaths of land for which there are no differentiating fea-
tures, while in other cases a single street can have its own ambiance that sets it apart 
from the rest of the area, a kind of micro neighborhood. The current methods are a good 
start at identifying neighborhoods with results that are useful for many practical applica-
tions in urban planning and real-estate, but they lack the ability to make some of these 
more nuanced discriminations.

Evaluation criteria

The quantitative results here are clearly dependent on the particular neighborhood 
cores chosen. If one had a preferred method, one could pick and choose neighbor-
hood cores to make that particular method yield the best outcome. Furthermore, the 26 
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neighborhood cores relied upon here represent only a few easy-to-discriminate types of 
neighborhoods; therefore, adding more cores of different types could change the rank-
ing of the best-performing methods. Despite these potential issues, annotating clearly 
distinct neighborhoods and using these to train/test neighborhood discovery methods is 
a powerful approach. It is compatible with all kinds of clustering methods (even beyond 
network community detection), facilitates standard comparison measures, and provides 
concrete goals that simultaneously allows for fuzzy communities, gradual transitions, 
and ambiguous boundaries. Because none of the discovery methods we used here could 
perfectly identify all the neighborhood cores already identified, it suffices for our needs. 
However, expanding the coverage of areas and types of cores, even including smaller 
regions such as single streets, can improve the usefulness of this evaluation approach.

Other community detection algorithms

There are only a few community detection methods available in NetworkX that can han-
dle weighted edges (Hagberg et  al. 2008), and we applied all available methods. How-
ever, both the label propagation algorithm and the Girvan-Newman method (using the 
maximum edge weight as the iterative removal function) yield tens of thousands of com-
munities. This is due to the largely homogeneous and low degree distribution of road 
networks and the fragmented nature of the edge weights noted above (Fig. 8). As such, 
these methods are ill-suited to the problem of detecting communities using similarity 
weights based on our data. However, with changes to the edge weights (e.g., using differ-
ent variables) these methods may become useful in the future.

The greedy modularity communities algorithm we use creates partitions of contigu-
ous nodes into communities. This is a desirable feature for some applications, but we 
acknowledge that some nodes are interstitial and should not be a member of any com-
munity. On the other end, communities may overlap and blend into each other. Using a 
community detection method based on edge-weighted probabilistic walks or other fuzzy 
approaches could achieve both the community gaps and overlaps that intuitively exist 
in neighborhood identifications. We attempted to implement such a fuzzy community 
detection algorithm (e.g. Kundu and Pal (2015)), but were unable to find or adapt Python 
code that could handle large networks with weighted edges. Furthermore, it is unlikely 
that existing methods that are targeted at community detection in social networks 
would perform especially well on road networks for reasons already stated. We have 
plans to develop our own network community detection algorithm specifically designed 
for geospatial transportation networks, but developing and testing such a method is left 
for future work.

Integrate demographic and environmental data

As already noted, the current method does not consider demographic or environmen-
tal information when discovering neighborhoods. One can imagine a predominantly 
residential area of large apartment buildings contiguous to an area of large office build-
ings both with similar road network structures. In this case, the two areas may exhibit 
distinct neighborhood feels that are indiscernible from the road network alone. Incor-
porating population, employment, greenery, zoning, and other data into the analysis is 
targeted for future work, but because this data is typically only available at much larger 



Page 22 of 23Bramson ﻿Applied Network Science            (2022) 7:51 

scales than the micro-subgraphs used here, we expects it to be used in post-processing 
(i.e., identifying similar neighborhoods and measuring the heterogeneity/cohesiveness 
of neighborhoods).

Bottom‑up neighborhood discovery

Although neighborhoods can be described as regions with a coherent ambiance, 
there are naturally variations in the ambiance within them. This leads to the ques-
tion of how much variation to tolerate and still consider the neighborhood coherent. 
Label propagation and Girvan-Newman style community detection methods, as well 
as hierarchical clustering from machine learning, can be implemented to fuse micro 
communities that are similar enough to each other. One plan going forward is to eval-
uate the ambiance using features around individual edges, and then merge edges with 
similar qualities. By applying different thresholds, we can generate neighborhoods of 
different scale to adapt to different purposes.

Recall again our definition of neighborhoods as “collections of localities with similar 
characteristics separated by localities with dissimilar characteristics.” Because we are 
looking for areas that are internally similar and externally distinct from neighboring 
areas, here we tried using modularity with similarity-based edge weights to approxi-
mate maximizing internal similarity, but we can also develop or adapt an algorithm 
that specifically aims to maximize internal similarity and external dissimilarity of sets 
of nodes.

Summary

This approach has been largely successful in its task: the unsupervised learning of 
organic neighborhoods from local road network features. Successful enough to be 
useful for the purposes of identifying and visualizing similar organic neighborhoods 
in Tokyo. Further improvement will likely be achieved through additional data, refine-
ment of the edge weights, and/or different community detection algorithms. Different 
desiderata, different locations, and robustness considerations will drive our efforts 
towards better methods along these lines. We hope to also apply these techniques to 
other major cities with unofficial, but well known and clearly defined, neighborhoods 
such as New York, Boston, and Barcelona through collaborations to both assess its 
generality and expand its usefulness.

Abbreviations
AMI	� Adjusted mutual information
OSM	� Open Street Maps

Acknowledgements
Not applicable.

Author contributions
Single author work. The author read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The road network and Kiban data used are openly and freely available from the references cited. Additional data and/
or plots of data generated (correlation matrices, maps of other experiments, scatter plots of variables, etc.) are available 
upon request.



Page 23 of 23Bramson ﻿Applied Network Science            (2022) 7:51 	

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not Applicable.

Competing interests
This research was performed by employees of GA Technologies and may lead to the development of products or infor-
mation services which may be used by GA Technologies for business operations.

Received: 10 March 2022   Accepted: 13 June 2022

References
Austwick MZ, O’Brien O, Strano E, Viana M (2013) The structure of spatial networks and communities in bicycle sharing 

systems. PLoS One 8(9):74685
Barthélemy M (2011) Spatial networks. Phys Rep 499(1–3):1–101
Bramson A (2021) Neighborhood discovery via network community structure. In: International conference on complex 

networks and their applications. Springer, pp 769–779
Fleischmann M (2019) momepy: urban morphology measuring toolkit. J Open Sour Softw 4(43):1807. https://​doi.​org/​10.​

21105/​joss.​01807
Gai W, Du Y, Deng Y (2019) Multi-objective route planning model and algorithm for emergency management. Decision-

making analysis and optimization modeling of emergency warnings for major accidents. Springer, Singapore, pp 
113–150

Geospatial Information Authority of Japan (2022) Basic map information, basic items download site. https://​fgd.​gsi.​go.​jp/​
downl​oad/​menu.​php

Goczyłla K, Cielatkowski J (1995) Optimal routing in a transportation network. Eur J Oper Res 87(2):214–222
Google (2022) Tokyo Japan. https://​www.​google.​com/​maps/​place/​Tokyo​,+​Japan/@​35.​69220​69,139.​69369​26,20.​25z/​

data=​!4m5!3m4!1s0x6​0188b​85762​8235d:​0xcdd​8aef7​09a2b​520!8m2!3d35.​68039​97!4d139.​76901​74?​hl=​en
Hagberg A, Swart P, S Chult D (2008) Exploring network structure, dynamics, and function using networkx. Technical 

report. Los Alamos National Lab.(LANL), Los Alamos, NM (United States)
keplergl (2020) kepler.gl. https://​github.​com/​keple​rgl/​kepler.​gl
Kundu S, Pal SK (2015) Fuzzy-rough community in social networks. Pattern Recognit Lett 67:145–152
Ministry of Land, Infrastructure, Transport and Tourism (2020) Administrative area data. https://​nlftp.​mlit.​go.​jp/​ksj/​gml/​

datal​ist/​KsjTm​plt-​N03-​v2_4.​html. Accessed 26 Jan 2021
Official Statistics of Japan (2014) Economic census for business frame, tabulation of establishments, results for Japan. 

www.e-​stat.​go.​jp. Accessed 12 Jan 2020
Official Statistics of Japan (2015) Subregional population by age and sex from the 2015 census. www.e-​stat.​go.​jp 

Accessed 11 Nov 2020
Omer I, Kaplan N, Jiang B (2017) Why angular centralities are more suitable for space syntax modeling? In: Proceedings of 

the 11th international space syntax symposium, Lisbon, Portugal, pp 3–7
OpenStreetMap contributors (2022) Planet dump. Retrieved from https://​planet.​osm.​org. www.​opens​treet​map.​org
Serra M, Hillier B (2019) Angular and metric distance in road network analysis: a nationwide correlation study. Comput 

Environ Urban Syst 74:194–207

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.21105/joss.01807
https://doi.org/10.21105/joss.01807
https://fgd.gsi.go.jp/download/menu.php
https://fgd.gsi.go.jp/download/menu.php
https://www.google.com/maps/place/Tokyo,+Japan/%4035.6922069,139.6936926,20.25z/data=%214m5%213m4%211s0x60188b857628235d:0xcdd8aef709a2b520%218m2%213d35.6803997%214d139.7690174?hl=en
https://www.google.com/maps/place/Tokyo,+Japan/%4035.6922069,139.6936926,20.25z/data=%214m5%213m4%211s0x60188b857628235d:0xcdd8aef709a2b520%218m2%213d35.6803997%214d139.7690174?hl=en
https://github.com/keplergl/kepler.gl
https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-N03-v2_4.html
https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-N03-v2_4.html
http://www.e-stat.go.jp
http://www.e-stat.go.jp
https://planet.osm.org
http://www.openstreetmap.org

	Neighborhood discovery via augmented network community structure
	Abstract 
	Introduction
	Data sets
	Network data
	Cartographic data

	Analysis methods
	Measures
	Straightness
	Road widths and sidewalk coverage
	Measure analysis

	Algorithms
	Network communities
	Edge weights
	Evaluating detection performance
	Generating neighborhood polygons


	Neighborhood discovery results
	Clustering accuracy comparison
	Unweighted results comparison
	Weighting function results comparison
	Subgraph extent comparison
	Quantitative analysis summary

	Discovered neighborhoods details
	Unweighted results
	Generated edge weights
	Weighted modularity results
	Numbers of communities


	Conclusions and future work
	Evaluation criteria
	Other community detection algorithms
	Integrate demographic and environmental data
	Bottom-up neighborhood discovery
	Summary

	Acknowledgements
	References


