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Abstract
The voter model has been widely studied due to its simple formulation and attainable
theoretical treatment. The study of the “active links”, edges that connect nodes in
different states, has been a key element in the analysis of the convergence of the
model. Typically, the density of active links, ρ , is used to characterize the system when
approaching to absorbing state. However, more information can be extracted from
how the active links are distributed across the underlying network.
In this paper we study the dynamics of active links in the voter model, from a
perspective of complex networks. This approach allows us to understand how the
dynamics of the model is mapped in topological features of a dynamical network of
active links. We found that certain topological properties of the Active Link Network
show salient features related to the dynamics of the model. The Active Link Network
goes from a state similar to the underlying random network in the initial state to
extremely disassortative graph when the dynamics approaches to absorbing state. In
this state, the active link network is dominated by “star-like” motifs, where different
opinions take different topological roles on the network. Thus, the Active Link Network
shows some properties which are distant from the hypothesis made by the current
theoretical models, which assume there are no correlations among active links.

Introduction
The votermodel is one of themost well-knownmodels with non-equilibrium dynamics. It
has been studied extensively as a paradigmatic opinion dynamics model in the framework
of probability theory (Clifford and Sudbury 1973; Liggett 1999) and statistical physics, and
is one of the few non-equilibrium stochastic processes that can be solved exactly (Redner
2001). Themodel consists ofN agents placed in the nodes of an interacting network. Each
agent is characterized by a single variable s which can take values +1 or −1. The standard
rules of the model establish that at each time step t, a random individual is selected (agent
i) and a random neighbour is selected among his nearest neighbours (agent j). If the states
of agents are different, agent i imitates the state of agent j, otherwise the states remain
unchanged. This imitation dynamics has been proposed as a social influence mechanism
in contexts of great uncertainty (Bikhchandani et al. 1992).
Starting from random initial conditions, these simple rules tend to increase the order

of the system. For instance, in finite systems, this dynamics gives place to the emergence
of the consensus of one of the two states. The time to reach consensus depends on the
size N and dimension d of the system (Cox 1989). An interesting question that appears is
whether full consensus is reached in a system of infinite size.
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The voter model has been solved exactly for hypercubic lattices of arbitrary dimensions
using different approaches. Early studies performed by probabilists (Clifford and Sud-
bury 1973; Holley and Liggett 1975; Liggett 1985; Cox and Griffeath 1986) used the fact
that the model can be exactly mapped on a model of random walkers that coalesce upon
encounter. Another approach based on master equations in order to derive the general
solution on lattices was followed in (Krapivsky 1992; Frachebourg and Krapivsky 1996).
The authors used the master equation for the probability distribution function for the
state S of the system to derive the asymptotic behavior of the density of active links (or
interface), and concluded that the voter model reaches consensus for dimensions d ≤ 2.
For d > 2, instead, it exhibits asymptotically a finite density of links which means that
no consensus is reached. The density of active links is a useful measure to describe the
dynamics of the system towards its asymptotic state and it is a good quantity to use as an
order parameter, given that it is nonzero while the system is not in one of the absorbing
states and zero otherwise.
The original voter model does not include the possibility of spontaneous changes

in the variable s given that the state of a node only changes through interaction with
nearest neighbors. However, the noisy voter model (Scheucher and Spohn 1988; Gra-
novsky and Madras 1995; de Oliveira et al. 1993) incorporates this option producing the
disappearance of long range order (de Oliveira et al. 1993).
Given its simplicity, the voter model has been studied under several modifications. For

instance, (Mobilia 2003; Mobilia et al. 2005; Mobilia et al. 2007) incorporate the pres-
ence of “zealots”, i.e., individuals that does not change the opinions during dynamics. On
the other hand, in (Vázquez et al. 2003; Vázquez and Redner 2004) the constrained voter
model is analyzed. In this work, agents can be in three states (leftists, rightists, or cen-
trists) but interactions involve only centrists. When the change of the state of the agent
requires the agree of several of his neighbors, it is called the q-voter model and has been
analyzed in Timpanaro and Galam (2014); Javarone and Squartini (2015). Several other
modifications can be found in 67 (Castallano et al. 2009).
The collective dynamics can be modified if the underlying topology is not regular

and is represented by complex networks (Castellano et al. 2003; Sood and Redner 2005;
Suchecki et al. 2005a; Castellano 2005; Sood et al. 2008). In these cases, different ways
of defining the voter dynamics, which are perfectly equivalent on regular lattices, give
rise to nonequivalent generalizations of the voter model. The most natural generaliza-
tion is called the direct voter model and consists in picking up a node and making it equal
to one of its neighbors. With this rule the global magnetization is not longer conserved
(Castallano et al. 2009; Suchecki et al. 2005b). The magnetization is conserved if a link
updating rule is implemented (Suchecki et al. 2005b). If a selected node copies its state to
a randomly selected neighbor it is called reverse voter model.
The voter model has been studied on different complex networks (Castellano et al.

2003; Sood and Redner 2005; Suchecki et al. 2005a; Castellano 2005; Sood et al. 2008),
where various variables have been analyzed: mean consensus time in finite networks, the
influence or degree of randomness, among others. The co-evolving voter model, in which
nodes follow rules of the voter model and reorganization of the links takes place through
rewiring dynamics, has been analyzed in (Holme and Newman 2006; Vazquez et al. 2008;
Kimura and Hayakawa 2008; Durrett and et al. 2012; Böhme and Gross 2011; Demirel
et al. 2014). The co-evolving voter model exhibits a fragmentation transition from a
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single connected network to a network with two components (Holme and Newman 2006;
Vazquez et al. 2008).
From previous works we have seen that for an ensemble of finite complex networks,

the density of active links (ρ) follows an exponential decay from ρ � 0.5 for a random
initial state to zero as the dynamics converges to absorbing state (Suchecki et al. 2005a).
However, the study of the active links in terms of networks has not been done yet.
The master equation for ρ(t) was also used to analyze the dynamics towards absorbing

state in complex uncorrelated networks where it was derived using the homogeneous
pair approximation (Vazquez and Eguiluz 2008). An improvement to this analysis could
be found in (Pugliese and Castellano 2009) where a heterogeneous pair approximation is
developed allowing a dependence of the density of active links with the node degree, ρ(k),
generalizing the previous studies.
The above mentioned works provide the solutions in the thermodynamic limit, and

assume that active links are uncorrelated. However, as it was suggested in (Böhme and
Gross 2011), this assumption is not correct. The authors studied the fragmentation tran-
sition (FT) in an adaptive voter model. In this work, the voter model dynamics is analyzed
in the vicinity of the fragmentation zone, where the density of active links (ρ) is low, and
noticed that active links can not be treated as independent because “they all become inert
at once if the focal node reverts to its original opinion” (active links form star-like motifs
in this regime). This correlation underlies the observed inaccuracy in mean field approxi-
mations which are overcame by the authors using a motif-like dynamics of multiple active
links.
These ideas have been further explored in (Demirel et al. 2014), where the authors high-

lighted the importance of the heterogeneity of active links given by star-like motifs, and
developed a theoretical description of fragmentation dynamics in the neighborhood of
the transition.
Given that the distribution and dynamics of active links are crucial in order to

understand the evolution of the model and related topics, we analyze numerically
the sub-graph of the underlying network formed by the active links. In particular,
we study the convergence process of the voter model in some complex networks
by analyzing the evolution and topological properties of the Active Links Network.
We observe that the system evolves from an Active Link Network similar to the
underlying graphs (when ρ � 0.5) to a graph dominated by star-like motifs, when
ρ is close to zero. This little structures are highly dissasortative, and there exist
a strong correlation between the topological role of nodes and the value of their
opinions.

Themodel
We consider the evolution of a direct voter model of N agents immersed in a contact net-
work, G. Here, G is an Erdos-Renyi (ER) random network with mean degree < k >= 12
although results for ERwithmean degree< k >= 6 and a Barabasi-Albert type are shown
in Appendix A. Let us call si the opinion state of i-agent, which can take two possible val-
ues: 1 and −1. Initially, the states of agents are set up randomly with the same probability
for each one.
The active links are edges that connect two agents with different opinion state in a

contact network. The set of active links, changing along the dynamics, is a subset of the set
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of links of G. The Active Links Network, called GAL is defined as the induced sub-graph
of G from the set of active links. Hence, GAL is included in G.
Here is important to make clear the difference between the underlying (contact) net-

work, which remains static during the implemented votermodel dynamics, and the Active
Links Network, which is a dynamical structure reflecting the dynamical state of the whole
system.
In what follows, we analyze the topological properties of the Active Links Network

GAL, resulting from a voter model dynamics, in order to extract the information of the
convergence process encoded in this topology.
As wementioned in the Introduction, given the exponentially monotonic decaying rela-

tionship between the average ensemble of density of active links ρ(t) in complex networks
(Suchecki et al. 2005a), we describe the convergence process in terms of ρ, which makes
it easier to calculate and compare the results with related problems (Böhme and Gross
2011; Demirel et al. 2014).

Results
In order to proceed with the analysis, we select two particular instants of the dynamics
which correspond to different values of the parameter ρ: early times corresponding to
large values of ρ (� 0.5) and times close to convergence which correspond to small values
of ρ (� 0.0).
In order to describe the Active Links Network, GAL, we begin with the analysis of the

connectivity properties of the network, and the comparison between the connectivity
properties of nodes in both networks (the contact one and GAL): the degree k of an agent
on the contact network, themean degree< kk > of his neighbors on the contact network,
the degree of an agent on GAL, kAL, and the mean degree of his neighbors on GAL, <

kk >AL.
In order to visualize the main differences in the GAL at the different stages of the

dynamics, we plot snapshots of GAL as shown in Fig. 1a, c.
In right panels of Fig. 1b, d we plot the degree distribution of the corresponding graph

GAL. We can observe that for large values of ρ, the result looks similar to the underlying
static ER network. It is the expected result given that the dynamics does not alter the
collective state of the system. Empty points correspond to states −1, and filled points to
states 1.
However, if we look at the GAL close to the converged state, we can appreciate that the

degree distribution is completely different from the previous one, and it is dominated by a
high number of nodes with degree one and two.We can also observe a small peak of nodes
with higher degree. This is consistent with the star-like motifs observed in the snapshots.
We can see from the quasi converged snapshot, that the nodes in the dominant state are
all with degree one (standing for the role of leaves of the stars), or degree two (connecting
two stars), and eventually, degree three (connecting three stars).
In order to understand how collective properties of the model are mapped into theGAL,

we plot the degree of nodes in GAL (kAL) versus the degree of nodes in the underlying
static network (k) in left panels of Fig. 2a, c, for the same two values of ρ.
In top panel, we observe that nodes in the active link network take values under the

diagonal for large values of ρ. This comes from the definition of GAL and there is no
different behavior for nodes in different states.
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Fig. 1 Realization of a system with N = 1000 agents, and Erdos-Renyi contact network of < k >= 12.
Figures correspond to two values of the parameter ρ . Up: early times ρ = 0.47; Down: times close to
convergence ρ = 0.026. Left panel a, c: snapshots of GAL . Right panel b, d: degree distribution of the
corresponding graph GAL

Fig. 2 Snapshots and degree distribution of GAL for Erdos-Renyi contact network of < k >= 12 with
N = 1000 agents. Upper panels a and b correspond to ρ = 0.47. Down panels c and d correspond to
ρ = 0.026. Left panels a, c: degree of the nodes in GAL (kAL) versus the degree of the nodes in the underlying
static network (k). Right panels b, d: degree correlation of GAL for each agent of GAL
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Whenwe look at the collective state at small values of ρ we can observe that the dynamic
leads the system to a state close to consensus and it is reflected in the connectivity prop-
erties of the nodes, consistently with the star-like motifs observed in the previous figure:
few nodes with the approximately the same degree in the GAL and G (k � kAL), and most
of the nodes with kAL = 1 or kAL = 2, no matter their degrees in the ER static network.
In right panels of Fig. 2b, d we plot the degree correlation of GAL, i.e., the mean degree

of the neighbors of the nodes of GAL (< kk >AL) vs the degree of the same nodes in the
Active Link Network (kAL). We observe a clear degree correlation among nodes of the
GAL corresponding to the star-like motifs: neighbours of nodes with high degree have low
mean degree and vice-versa. This is consistent with the large peak observed at low kAL
and the small peak at intermediate values of kAL in the degree distribution of Fig. 1d.
From both figures wewould like to point out that when the system is close to the absorb-

ing state (values of ρ close to zero), nodes are separated in accordance with their opinion
state. In the present example, white circles correspond to small degree values while the
mean degree of their neighbors is high. The opposite occurs for black circles. The snap-
shot of the corresponding GAL Fig. 1c reveals that white nodes are playing the role of
leaves of stars, and black nodes the role of centres.
The main result can be summed up as follows: when the system converges, the topo-

logical role of the nodes splits according to their state in the network. The nodes that
correspond to the dominant opinion display low degree in the Active Link Network and
are connected to the nodes expressing the opposite opinion which have high degrees in
star type motifs.
Given the different topological roles of both populations in the network GAL, we found

that it could be more informative to analyze its topological properties according to their
dynamical states, i.e., separating populations by their opinions (1 or −1).
Once we understand that it is informative to observe the properties of the network

GAL for both populations in a separate way, we try to capture to what extent these two
populations could be separate or not from the topological point of view of the network.
The results of Fig. 2 correspond to a single realization of the system, for two different

values of the parameter ρ that display the dynamics at different stages of the evolution.
We can extrapolate these results to the case of several realizations of the system and, at
the same time, for different values of ρ, thus trying to characterize the transition from
large values of ρ to small values.
In Fig. 3a, we plot the mean degree of theGAL (< k >AL) as a function of ρ for each one

of the populations for 100 realizations of the system. For each time every 20 time steps,
we averaged the values of degree for all agents in state s = 1, and the same for agents in
state s = −1. In this way, we obtain two values for each selected step. We can observe
that, when the system evolves decreasing ρ, two branches separate from each other. The
superior branch corresponds to the population which is playing the role of centres of
starts, while the inferior branch is associated with the population that is playing the role of
leaves of the stars. This separation is clear for low values of ρ. In order to clarify different
stages of the evolution, we define colors for given ranges of ρ. In case we consider the two
populations as awhole, both branches disappear and themean degree ofGAL decays from k/2
when ρ � 0.5 to a value near 2 while ρ approaches to zero, as we can observe in Fig. 3b.
In order to understand the effects of the dynamics, we compare the Active LinkNetwork

GAL with a randomized version, Gr
AL. The way in which the random network is built (red
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Fig. 3 Degree and degree correlations between the Erdos-Renyi contact network of < k >= 12 and the GAL
for N = 1000 agents and 100 realizations of the dynamics. Panel a: mean degree of the GAL from each state’s
population vs ρ . Each step of realization contributes with two points to the plot: one for the mean degree of
the population of agents in state 1 and one for agents in state −1. Different colors are used to identify
different ranges of values of ρ . Red points correspond to the case in which the states of the agents are
assigned at random and the GrAL is determined from this random assignation. Panel b:mean degree of the
GAL vs ρ without separating populations

points in Fig. 3a) consists in selecting the same number of agents with state s = +1 and
s = −1 for a given time in the evolution and assigning them randomly to nodes. When
comparing GAL with Gr

AL, the main difference is observed in the upper branch of the
curve in Fig. 3a which is the minority of both populations. On the other hand, the bottom
branch overlaps with Gr

AL, showing almost the same behavior when ρ decreases. This if
what we expect if a node of the majority population is placed at random in the underlying
network: the chances to be alike as in the real Active Link Network are high.
Figure 4 shows the evolution of assortativity of theGAL (< kk >AL vs kAL) for an ensem-

ble of 100 realizations and the whole range of values of ρ, but separating nodes according
to its opinion state as in Fig. 3. Once again, the case of low values of ρ (< 0.1) reflects a
completely separated behavior of the populations (black points), while for large values of
ρ (violet points, corresponding to ρ > 0.4), nodes with different opinions do not differ-
entiate themselves. As in Fig. 3, red points correspond to random assignments of opinion
state to nodes, without following the voter dynamics.
Once again we can observe that separating the populations of nodes by their dynam-

ical state allows us to appreciate how different topological properties clearly emerge. In
order to quantify the relation between the state of the nodes and their topological roles
in the GAL, we calculate their Normalized Mutual Information (NMI) according to the
definition sketched in Appendix B.
Figure 5 showsNMI as a function of ρ. We observe that, for high values of ρ, data about

the state s of the agents in theGAL does not bring information about their topological role
thus NMI is close to zero. On the other hand, when ρ decreases, the fact of knowing one
of the variables brings information about the other makes NMI increases its value. The
extreme scenario is reached when the NormalizedMutual Information has the maximum
value 1: the knowledge of the state of nodes in GAL determines unequivocally their topo-
logical roles and vice-versa. These result are consistent with the observed in Figs. 1c, d
and 2c, d.
As in Figs. 3 and 4, red points of Fig. 5 correspond to random assignment of opinion

state to nodes, without following the voter dynamics.
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Fig. 4 Degree correlations of GAL for each agent of GAL separating nodes according to its opinion state for
different values of ρ . 100 realizations of N = 1000 agents with an underlying network of contacts of
Erdos-Renyi of < k >= 12. Each step of each realization contributes with two points to the plot: one for
< kk >AL of the population of agents in state 1 and one for agents in state −1. Different colors are used to
identify different ranges of values of ρ . Red points correspond to the case in which the states of the agents
are assigned at random and the GAL is determined from this random assignation

Conclusions
The voter model is a non-equilibrium dynamical model which has been widely studied
from different points of view and with multiple variations. One of the most successful
approaches used to describe themacroscopic dynamical evolution of the votermodel is by
describing the time evolution of the density of active links ρ, which goes from ρ � 0.5 for
a random initial condition to ρ = 0 for the system near the absorbing state. This average
magnitude has been used to compare analytical formulation of the model with numerical

Fig. 5 Normalized Mutual Information (NMI) vs ρ for 100 realizations of the systemwith N = 1000 agents with
an underlying network of contacts of Erdos-Renyi of < k >= 12. Red points correspond to the case in which
the states of the agents are assigned at random and the GAL is determined from this random assignation
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calculations, as in (Vazquez and Eguiluz 2008), (Pugliese and Castellano 2009). However,
the distribution of the active links over the contact network among nodes in different
states serves as a map of the dynamical state of the system with much more information
than simply its average value ρ.
In this paper we explore numerically the dynamics of active links in the voter model

from a perspective of complex networks. This approach allows to comprehend how the
dynamics of the model is mapped inside the topological features of a network of active
links and how their dynamical evolution brings amore detailed understanding of the voter
model.
At early times in the dynamics, the Active Links Network is similar to the underlying

contact network, but when the system evolves towards the absorbing state, the graph of
active links becomes highly dissasortative and a degree distribution dominates by a high
peak at low degree values. When we look at the snapshots of Fig. 1, we can appreciate that
it is dominated by star-like motifs and is completely different from the contact networks.
These star-like structures are the signature that the voter model is closer to the consensus
state.
The results displayed for the contact Erdos-Renyi network with mean degree < k >=

12 are similar to those observed for the same kind of underlying network with different
mean degree (ER with < k >= 6), or for Barabasi-Albert scale free distribution, as is
shown in the Appendix A.
An interesting result is that the description of Active Link Network is even more infor-

mative from topological point of view if nodes with state s = +1 and s = −1 are plotted
separately. When the system is close to the consensus state, nodes from the majority pop-
ulation are the leaves of the star-like structures and therefore, they have degrees one or
two in the active link network. If we plot the mean degree in the GAL or the mean degree
of the nearest neighbors, we can observe how populations separate in different states
when the systems evolves toward consensus (as ρ decreases). Finally, Fig. 5 show that for
ρ ≤ 0.3 the state of the nodes determines their topological role in structures of the active
link network, as indicated by the normalized mutual information.
This analytical framework could be used to analyze models with a more complex

dynamics, like for instance the q-voter model (Timpanaro and Galam 2014; Javarone
and Squartini 2015), the multistate voter model (Böhme and Gross 2012) or the Axelrod
model (Axelrod 1997) where each node can see different number of networks and can be
in different states respectively. In these cases, we do not expect that active link networks
evolves towards star-like motifs of two states, because these structures are produced with
two-states nodes only, like the classical voter model. However, these and other models
deserve a careful further analysis.
Finally, we would like to point out that the use of complex networks for mapping the

dynamical state of a complex system has been used in other fields to represent collective
states when the underlying topology was unknown, as for instance in large scale brain
experiments as in (Eguíluz et al. 2005), (Tsonis and Roebber 2004), but not as a tool to
describe the evolution of a system towards asymptotic state, as was shown in this work.

Appendix A
In thisAppendixwepresent the results when the votermodel runs over different underlying
contact networks. Figures A.1 and A.2 show the same results as Figs. 1 and 2 for scale-free
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Fig. A.1 Realization of a system with N = 1000 agents, and Barabasi-Albert contact network of mean degree
< k >= 12. Figures correspond to two values of the parameter ρ . Up: early times ρ = 0.49; Down: times
close to convergence ρ = 0.07. Left panel a, c: snapshots of GAL . Right panel b, d: degree distribution of the
corresponding graph GAL

Fig. A.2 Realization of a system with N = 1000 agents, and Barabasi-Albert contact network of < k >= 12.
Left panels a, c: Degree of the nodes in GAL (kAL) versus the degree of the nodes in the underlying static
network (k). Right panels b, d: degree correlation of GAL for each agent of GAL . Upper panels a and b
correspond to ρ = 0.49. Lower panels c and d correspond to ρ = 0.07
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Fig. A.3 Realization of a system with N = 1000 agents and Erdos-Renyi contact network of mean degree
< k >= 6. Figures correspond to two values of the parameter ρ . Up: early times ρ = 0.49; Down: times close
to convergence ρ = 0.04. Left panel a, c: snapshots of GAL . Right panel b, d: degree distribution of the
corresponding graph GAL

Barabasi-Albert (< k >= 12) contact networks. Upper panels correspond to initial stage
of the evolution (ρ = 0.49), while bottom panels correspond to the almost converged
system (ρ = 0.07). On the other hand, Figures A.3 and A.4 show the same result for
Erdos-Renyi < k >= 6 contact network. Upper panels correspond to ρ = 0.49 value and
bottom panels to ρ = 0.04 value.

Fig. A.4 Realization of a system with N = 1000 agents, and Erdos-Renyi contact network of mean degree
< k >= 6. Left panels a, c: degree of the nodes in GAL (kAL) versus the degree of the nodes in the underlying
static network (k). Right panels b, d: degree correlation of GAL for each agent of GAL . Upper panels a and b
correspond to ρ = 0.49. Lower panels c and d correspond to ρ = 0.04
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We can appreciate that the main conclusions about the behavior of the Active Link
Networks for the Erdos-Renyi < k >= 12 remain qualitatively the same for these two
different contact networks: the system evolves towardsGAL dominated by star-like motifs
where nodes in different states play different topological roles. In the case of Erdos-Renyi,
the differences between GAL and the contact networks are more evident than in the case
of Barabasi-Albert. These differences are better appreciated when the mean degree of the
network is increased. For the Barabasi-Albert case, although it is clear for the snapshot of
the network (Figure A.2(c)) that one of the populations is playing the role of leaves and the
other one the centres of stars, the difference between both networks (GAL and the contact
networks) is appreciated better in the relation between degrees than in the assortativity
of GAL.

Appendix B
In this appendix we provide the definition of Mutual Information used in Fig. 5. The
mutual information of two variables x and y is defined as (Cover and Thomas 2006):

MI(x, y) = H(x) − H(x|y)
where H(x|y) is the conditional entropy of variable x given that y is a known variable and
H(x) is the entropy of variable x. The entropy of a given variable x is defined as the average
of the Shannon Information contained in the possible outcomes of the variables, such as:

H(x) = P(x = 1)h(x = 1) + P(x = 0)h(x = 0)

being P(x = 1) the probability of variable x taking value 1 and h(x = 1) the Shannon
Information contained in the outcome value 1 of variable x, which is defined as h(x =
1) = −log2P(x = 1).
With the purpose of studying the relation between the state of the nodes and their topo-

logical roles, we define two categorical variables: the activity of an agent ai, which takes
the value 1 when belongs to the GAL, and 0 otherwise, and the role of an agent i, ri, which
takes three possible values: ri = 1 if kkAL > kAL (i agent is considered a leaf ), ri = 0 if
kkAL < kAL (i agent is a centre of a star), and ri = 2 if kkAL = kAL (otherwise).
The Normalized Mutual Information (NMI) is defined by MI(r, s|a = 1)/H(r|a = 1),

being H(r|a = 1) the Entropy of r, given that the nodes belong to the GAL, and thus, the
maximum value thatMI(r, s|a = 1) can take.
Therefore, if the opinion states of the nodes determine unambiguously their topological

roles in the GAL, the Mutual Information NMI should be maximum. In the opposite case,
when states of the nodes do not carry any information about the topological role, it should
be zero.
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