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Abstract
In real physical systems the underlying spatial components might not have crisp
boundaries and their interactions might not be instantaneous. To this end, we propose
δ-MAPS; a method that identifies spatially contiguous and possibly overlapping
components referred to as domains, and identifies the lagged functional relationships
between them. Informally, a domain is a spatially contiguous region that somehow
participates in the same dynamic effect or function. The latter will result in highly
correlated temporal activity between grid cells of the same domain. δ-MAPS first
identifies the epicenters of activity of a domain. Next, it identifies a domain as the
maximum possible set of spatially contiguous grid cells that include the detected
epicenters and satisfy a homogeneity constraint. After identifying the domains, δ-MAPS
infers a functional network between them. The proposed network inference method
examines the statistical significance of each lagged correlation between two domains,
applies a multiple-testing process to control the rate of false positives, infers a range of
potential lag values for each edge, and assigns a weight to each edge reflecting the
magnitude of interaction between two domains. δ-MAPS is related to clustering,
multivariate statistical techniques and network community detection. However, as we
discuss and also show with synthetic data, it is also significantly different, avoiding
many of the known limitations of these methods.
We illustrate the application of δ-MAPS on data from two domains: climate science and
neuroscience. First, the sea-surface temperature climate network identifies some
well-known teleconnections (such as the lagged connection between the El Ninõ
Southern Oscillation and the Indian Ocean). Second, the analysis of resting state fMRI
cortical data confirms the presence of known functional resting state networks (default
mode, occipital, motor/somatosensory and auditory), and shows that the cortical
network includes a backbone of relatively few regions that are densely interconnected.

Keywords: Dimensionality reduction, Parcellation, Network inference, Climate
teleconnections, Functional brain networks

Introduction
Spatio-temporal data become increasingly prevalent and important for both science (e.g.,
climate, systems neuroscience, seismology) and enterprises (e.g., the analysis of geotagged
social media activity). The spatial scale of the available data is often determined by an arbi-
trary grid, which is typically larger than the true dimensionality of the underlying system.
One major task is to identify the distinct semi-autonomous components of this system
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and to infer their (potentially lagged and weighted) interconnections from the available
spatio-temporal data. Traditional dimensionality reduction methods, such as principal
component analysis (PCA), independent component analysis (ICA) or clustering, have
been successfully used for many years but they have known limitations when the objective
is to infer the functional network between all spatial components of the system.
We propose δ-MAPS, an inference method that first identifies these spatial

components, referred to as “domains”, and then the connections between them
(“δ-MAPS” section). Informally, a functional domain (or simply domain) is a spatially con-
tiguous region that somehow participates in the same dynamic effect or function. The
exact mechanism that creates this effect or function varies across application domains;
however, the key idea is that the functional relation between the grid cells of domain results
in highly correlated temporal activity. If we accept this premise, it follows that we should
be able to identify the “epicenter” or core of a domain as a point (or subregion) at which
the local homogeneity is maximum across the entire domain. Instead of searching for the
discrete boundary of a domain, which may not exist in reality, we compute a domain as
themaximum possible set of spatially contiguous cells that include the detected core, and
that satisfy a homogeneity constraint, expressed in terms of the average pairwise cross-
correlation across all cells in the domain. Domains may be spatially overlapping. Also,
some cells may not belong to any domain.
After we identify all domains, δ-MAPS infers a functional network between them. Dif-

ferent domains may have correlated activity, potentially at a lag, because of direct or
indirect interactions. The proposed edge inferencemethod examines the statistical signif-
icance of each lagged cross-correlation between two domains, applies a multiple-testing
process to control the rate of false positives, infers a range of potential lag values for each
edge, and assigns a weight to each edge based on the covariance of the corresponding two
domains.

δ-MAPS is related to clustering, parcellation (or regionalization), network community
detection, multivariate statistical methods for dimensionality reduction such as PCA and
ICA, as well as functional network and lag inference methods. However, as we discuss in
“Related Work” section and show with synthetic data experiments in “Illustration - Com-
parisons” section, δ-MAPS is also significantly different than all these methods. δ-MAPS
does not require the number of domains as an input parameter, the resulting domains are
spatially contiguous and potentially overlapping, and the inferred connections between
domains can be lagged and positively or negatively weighted. Further, the distinction
between grid cells that are correlated within the same domain and grid cells that are corre-
lated across two distinct domains allows δ-MAPS to separate between local diffusion (or
dispersion) phenomena and remote interactions that may be due to underlying structural
connections (e.g., a white-matter fiber between two brain regions).
In this paper, we extend (Fountalis et al. 2017) by providing a detailed presentation of

the method (including a formal proof of the NP-completeness of the problem) and aug-
ment the comparison section (“δ-MAPS” section) with more results and methods (e.g.,
k-means). We proceed with illustrating the application of δ-MAPS on data from two
domains: climate science (“Application in Climate Science” section) and neuroscience
(“Applications in fMRI data” section). First, the sea-surface temperature (SST) climate
network identifies some well-known climate “tele-connections” (such as the lagged con-
nection between the El Niño Southern Oscillation and the Indian ocean) but it also
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captures less well-known lagged connections that deserve further investigation by the
domain experts. Second, the analysis of resting-state fMRI cortical data confirms the
presence of three well-known functional brain “networks” (default-mode, occipital, and
motor/somatosensory), and shows that the cortical network includes a backbone of
relatively few regions that are densely interconnected.

RelatedWork
A common approach to reduce the dimensionality of spatio-temporal data is to apply
PCA (standard or rotated) or ICA techniques. For instance, in climate science, PCA
(also known as Empirical Orthogonal Function (EOF) analysis) has been used to identify
teleconnections between distinct climate regions (Storch and Zwiers 2001). The orthog-
onality between PCA components complicates the interpretation of the results making
it difficult to identify the distinct underlying modes of variability and to separate their
effects, as clearly discussed in (Dommenget and Latif 2002). ICA analysis is more com-
mon in the neuroscience literature, aiming to identify independent rather than orthogonal
components (Hyvärinen 1999). However, ICA does not provide a relative significance for
each component, and the number of independent components should be chosen based
on some additional information about the underlying system.
Another broad family of spatio-temporal dimensionality reduction methods is based

on unsupervised clustering. Such algorithms can be grouped into region-growing (e.g.,
(Blumensath et al. 2012; Lu et al. 2003)), spectral (e.g., the NCUT method often applied
in fMRI analysis (Craddock et al. 2012; Heuvel et al. 2008) – but also see a discussion
of their limitations (Baldassano et al. 2015)), hierarchical (e.g., (Blumensath et al. 2013;
Thirion et al. 2014)), probabilistic (e.g., (Baldassano et al. 2015)) or density basedmethods
(Kawale et al. 2013). These groups of algorithms are quite different but they share some
common characteristics: the resulting clusters may not be spatially contiguous (Steinbach
et al. 2003; Heuvel et al. 2008), every grid cell needs to belong to a cluster (potentially
excluding only outliers) (Blumensath et al. 2012; Lu et al. 2003), and the number of clus-
ters is often required as an input parameter (Craddock et al. 2012; Blumensath et al. 2013)
- none of these algorithms account for the fact that clusters may overlap. In particular, the
lack of spatial contiguity makes it hard to distinguish between correlations due to spatial
diffusion (or dispersion) phenomena from correlations that are due to remote (struc-
tural) interactions between distinct effects. The proposed method has similar goals (e.g.,
identification of potentially overlapping spatially contiguous sources of activity) to (Pnev-
matikakis et al. 2016) but that method relies mostly on non-negative matrix factorization.
Additionally, δ-MAPS involves only four hyperparamteters and it is simpler compared to
(Pnevmatikakis et al. 2016).
An approach of increasing popularity is to first construct a correlation-based network

between individual grid cells, after pruning cross-correlations that are not statistically sig-
nificant – see (Kramer et al. 2009). Then, some of these methods analyze the (binary or
weighted) cell-level network directly based on various centrality metrics, k-core decom-
position, spectral analysis, etc. (e.g., (Donges et al. 2009; van den Heuvel and Sporns
2011)) or they first apply a community detection algorithm (potentially able to detect
overlapping communities, e.g., (Ahn et al. 2010; Lancichinetti et al. 2011; Palla et al.
2005)) on the cell-level network and then analyze the resulting communities in terms of
size, density, location, overlap, etc. (e.g., (McGuire and Nguyen 2014; Power et al. 2011;
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Steinhaeuser et al. 2010; 2011)). A community however may group together two regions
that are, first, not spatially contiguous, and second, different in terms of how they are con-
nected to other regions; an instance of this issue is illustrated in Fig. 4c in the context of
climate data analysis.

δ-MAPS
Background and definitions

The input data is generated from a spatial field X(t) sampled on an arbitrary grid G.
This grid can be modeled as a planar graph G(V ,E), where each vertex in V is a grid
cell and each edge in E represents the spatial adjacency between two neighboring cells.
A set of cells A ⊆ V is spatially contiguous, denoted by IG(A)=1, if it forms a connected
component in G.
The K-neighborhood of a cell i, denoted by �K (i), includes i and the set of K nearest

neighbors to i according to an appropriate spatial distance metric (e.g., geodesic distance
for climate data, Euclidean distance for fMRI data). TheK-neighborhood of a cell is always
spatially contiguous.
Each grid cell i is associated with a time series xi(t) of length T (t ∈ {1, . . .T}). We

assume that xi(t) is sampled from a stationary signal and denote by μ̃i and σ̃ 2
i its sample

mean and variance, respectively. The similarity between the activity of two cells i and j is
measured with Pearson’s cross-correlation at zero-lag,

ri,j =
∑T

t=1(xi(t) − μ̃i)(xj(t) − μ̃j)

T σ̃iσ̃j
. (1)

Other similarity metrics could be used instead.
The local homogeneity at cell i is defined as the average pairwise cross-correlation

between the K + 1 cells in �K (i),

r̂K (i) =
∑

m �=n∈�K (i) rm,n

K (K + 1)
. (2)

Similarly, we define the homogeneity of a set of cells A as the average pairwise cross-
correlation between all distinct cells in A,

r̂(A) =
∑

m �=n∈A rm,n

|A| (|A| − 1)
. (3)

Functional domains

Intuitively, a domain A is a spatially contiguous set of cells that somehow participate in the
same dynamic effect or function. The exact mechanism that creates this effect or function
varies across application domains; however, the key premise is that the functional relation
between the cells of domain A results in highly correlated temporal activity (at zero-lag),
and thus high values of the homogeneity metric r̂(A). A given homogeneity threshold δ

examines if the homogeneity of A is sufficiently high, i.e., a domain Amust have r̂(A) > δ.
(the selection of δ is discussed later in this section).
If we accept this premise, it follows that we should be able to identify the “epicenter” or

core of a domain A as a cell i ∈ A at which the local homogeneity r̂K (i) is maximum across
all cells in A (and certainly larger than δ). In general, the core of a domain may not be a
unique cell.



Fountalis et al. Applied Network Science  (2018) 3:21 Page 5 of 24

More formally now, suppose that we know that cell c is in the core of a domain. The
domain A rooted at c has to satisfy the following three properties: it should include cell c,
be spatially contiguous, and have higher homogeneity than δ:

c ∈ A, IG(A) = 1, r̂(A) > δ . (4)

The boundaries of the underlying spatial components of a system are, in practice,
unknown and may gradually “fade” into other regions dominated by noise. Instead of try-
ing to identify such “fuzzy boundaries” however, we prefer for simplicity to compute a
domain as the largest possible set of cells that satisfies the previous three constraints.
Domain identification problem: Given the field X(t) on the spatial grid G, a core

cell c, and the threshold δ, the domain A(c) is a maximum-sized set of cells that sat-
isfies the three constraints of (4). In Appendix-1 we prove that the decision version of
this problem is NP-Hard.
A given spatial field X(t) may include several domains. The number of identified

domains, denoted by N, depends on the threshold δ. Domains may be spatially overlap-
ping; this is the case when the cells of a region are significantly correlated with two or
more distinct domain cores. Also, some cells of the grid may not belong to any domain,
meaning that their signal can be thought of as mostly noise (at least for the given value of
δ). Decreasing δ will typically result in a larger number of detected domain cores. Further,
as δ decreases, the spatial extent of each domain will typically increase, resulting in larger
overlaps between nearby domains.

δ can simply be a user-specified parameter for the minimum required average cross-
correlation within a domain. Another way is to calculate δ based on a statistical test for
the significance of the observed zero-lag cross-correlations as follows.
We start with a random sample of pairs of grid cells and for each pair i, jwe compute the

Pearson correlation ri,j at zero lag. To assess the significance of each correlation we use
Bartlett’s formula (Box et al. 2011). Under the null hypothesis of no coupling ri,j should
have zero mean, and a reasonable estimate of its variance is given by

Var[ ri,j]= 1
T

T∑

τk=−T
ri,i(τk)rj,j(τk) , (5)

here ri,i(τk) is the autocorrelation of the time series of grid cell i at lag τk . The scaled
values zi,j = ri,j√

Var[ri,j]
should approximately follow a standard normal distribution. To

assess the significance of each correlation we perform a one sided z-test for a given level
of significance α (set to 10−2 unless specified otherwise).
The threshold δ is set as the average of all significant correlations. A domain is a set

of spatially contiguous grid cells, thus we require that the mean pairwise correlation for
the cells belonging to the same domain to be higher than the mean pair-wise correlation
of randomly picked pairs of grid cells. δ depends on the choice of the significance level
α, on the autocorrelation structure of the underlying time series and on the correlation
distribution of the field.

Algorithm for domain identification

Given the NP-Hardness of the previous problem, we propose a greedy algorithm that
runs in two phases. In the first phase, we identify a set of cells, referred to as seeds; each
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seed is a candidate core for a domain. In the second phase, each seed is initially consid-
ered as a distinct domain. Then, an iterative and greedy algorithm attempts to identify
the largest possible domains that satisfy the three constraints of (4) through a sequence
of expansion andmerging operations. The two phases are described next, while the com-
plete pseudocode is presented in Appendix-2. The source code (including supporting
documentation) is available online at https://github.com/deltaMAPS/deltaMAPS_fMRI.

Seed selection Recall that the core of a domain is a cell of maximum local homogeneity
across all cells of that domain. So, one way to detect potential core cells, while the domains
are still unknown, is to identify points at which the homogeneity field r̂K (i) is locally
maximum. Specifically, cell i is a seed if r̂K (i) > δ and r̂K (i) ≥ r̂K (j) ∀j ∈ �K (i). Let S be
the set of all identified seeds.
In general, a single domain may produce more than one seed because the local homo-

geneity field can be noisy and so it may include multiple local maxima, greater than δ.
Further, additional seeds can appear in regions where domains overlap. Consequently, it
is necessary to include a merging operation in which two or more seeds are eventually
merged into the same domain.
Note that as K decreases, the local homogeneity field becomes more noisy and so we

may detect more seeds in the same domain. On the other hand, larger values of the neigh-
borhood size K can oversmooth the homogeneity field, removing seeds and potentially
hiding entire domains. The latter is more likely if the spatial extent of a domain is smaller
than K+1 cells. This observation implies that the spatial resolution of the given grid sets
a lower bound on the size of the functional domains that can be detected.

Domain-merging operation Two candidate domains A and B can be merged if they
are spatially contiguous and if the homogeneity of their union is sufficiently high, i.e.,
r̂(A ∪ B) > δ. Whenever there is more than one pair of domains that can be merged, we
greedily choose the pair with the maximum union homogeneity; this greedy choice makes
the merged domain more likely to expand further.
The merging operation is performed initially on the set of seeds S. It is also performed

after each domain-expansion operation, whenever it is possible to do so.

Domain-expansion operation A domain A is expanded by considering all cells that are
adjacent to A, and selecting the cell i that maximizes r̂(A ∪ {i}); again, this greedy choice
makes the expanded domain more likely to expand further.
The expansion operation is repeated in rounds. At the start of each round, domains are

sorted in decreasing order of homogeneity. Then, each domain is expanded by one cell at
a time, as previously described, in that order. After every expansion operation, we check
whether one or more merging operations are possible. A round is complete when we have
attempted to expand each domain once.
A domain can no longer expand if that would violate the homogeneity constraint δ

or if there are no other adjacent cells that can be added into the domain. The domain
identification algorithm terminates when no further expansion or merging operations are
possible.

https://github.com/deltaMAPS/deltaMAPS_fMRI
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The domain network

Given theN identified domains Vδ = {A1, . . .AN }, the next step is to construct a network
Gδ(Vδ ,Eδ) between domains. Different domains may have correlated activity because of
direct or indirect interactions. We refer to Gδ as a functional network to emphasize that
the edges between domains are based on functional activity and correlations instead of
structural or physical connections (“structural network”) or causal interactions (“effective
network”).
We associate a domain-level signal XA(t) with each domain A. The definition of this

signal depends on the specific application field. For instance, when we analyze climate
anomaly time series, the domain-level signal is defined as the cumulative anomaly across
all cells of that domain, where the contribution of each signal is weighted by the relative
size of that cell (it depends on the cell’s latitude). For fMRI data, the domain-level signal
is defined as the average BOLD signal across the cells of that domain.
Two different domains may be located at some distance, and so they may be correlated

at a non-zero lag τ . For this reason, we examine if there is a significant cross-correlation
between different domains over a range of lags (−τmax ≤ τ ≤ τmax). The sample cross-
correlation between domains A and B at a lag τ can be estimated as:

rA,B(τ ) =
∑T−τ

t=1 (XA(t) − μ̃A)(XB(t + τ) − μ̃B)

T σ̃Aσ̃B
, (6)

where μ̃A and σ̃A denote sample mean and standard deviation estimates, respectively.
The selection of τmax should be large enough to include the typical signal propagation
delays in the underlying system but at the same time it should be much lower than T. The
2τmax + 1 cross-correlations for a pair of domains can be represented with a correlogram;
an example based on climate sea-surface temperature data (see “Application in Climate
Science” section) is shown in Fig. 1.
The next step is to examine the statistical significance of themeasured cross-correlation

between two domains A and B. Two uncorrelated signals can still produce a considerable
sample cross-correlation if they have a strong auto-correlation structure. This is captured
by the Bartlett’s formula (Box et al. 2011), which is an estimator for the variance of rA,B(τ ),

Fig. 1 Correlogram between two climate time series for a lag range of ± 12 months. We show the significant
correlations for a false discovery rate q = 10−3 with red. The error bars correspond to ± one standard
deviation, as estimated by Eq. (7)
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for a fixed value of τ and under the assumption that A and B are two jointly stationary sig-
nals with independent, identically distributed normal errors. Under the null-hypothesis
that the domain-level signals of A and B are uncorrelated,

Var[ rA,B(τ )]= 1
T − τ

T∑

τk=−T
rA,A(τk) rB,B(τk) , (7)

where rA,A(τk) is the autocorrelation of the time series of domain A at lag τk .
Under the previous null-hypothesis, the expected value of rA,B(τ ) is zero and the

following statistic approximately follows the standard normal distribution N(0, 1):

zA,B(τ ) = rA,B(τ )
√
Var[ rA,B(τ )]

. (8)

The approximation is due to the fact that rA,B(τ ) is bounded between [−1, 1]. So, we can
now perform hypothesis testing for every pair of domains, computing a corresponding
p-value based on z.
Given that there may be several domains in Gδ , we need to control the number of false

positive edges that may result from the multiple testing problem.We do so using the False
Discovery Rate (FDR) method of Benjamini and Hochberg (1995). Specifically, given N
domains, we need to performM = N(N−1)

2 (2τmax + 1) tests (for each potential edge and
for each possible lag value), and compute the p-value for each test, based on (8). Given a
False Discovery Rate q (the expected value of the fraction of tests that are false positives),
the Benjamini-Hochberg procedure ranks the M p-values (pi becomes the i’th lowest p-
value) and only keeps the firstm < M tests (edges), where pm is the highest p-value such
that pm < qm/M. 1

Lag inference and edge directionality We infer the domain-level networkGδ as follows.
Two domains A,B ∈ Vδ are connected if there is at least one lag value at which the cross-
correlation rA,B(τ ) has passed the FDR test. The standard approach in lag inference is to
consider the lag value τ ∗ that maximizes the absolute cross-correlation,

τ ∗
A,B = argmaxτ=−τmax...τmax {|rA,B(τ )|} . (9)

The corresponding correlation is denoted as r∗A,B. There are two problems with this
approach. First, it is harder to examine the statistical significance of |r∗A,B| because it is the
maximum of a set of random variables.2 Second, it is often the case that there is a range
of lag values that produce “almost maximum” cross-correlations, say within one standard
deviation from each other.
Focusing on τ ∗

A,B and ignoring the rest of the statistically significant and almost equal
cross-correlations is not well justified.
Instead, we follow a more robust approach in which an edge of the domain-level net-

work Gδ may be associated with a range of lag values.3 The lag range that we associate
with the edge between A and B, denoted as Rτ (A,B), is defined as the range of lags
that produce significant cross-correlations, within one standard deviation from |r∗A,B|. If
Rτ (A,B) includes τ=0, the edge is represented as undirected. If Rτ (A,B) includes only
positive lags, the edge is directed from A to Bmeaning that A’s signal precedes B’s by the
given lag range; otherwise, we associate the opposite direction with that edge.We empha-
size that the directionality of the edges does not imply causality; it only refers to temporal
ordering.
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Edge weight and domain strength How to assign a weight to each domain-level edge in
Gδ? A common approach is to consider the (signed) magnitude of the cross-correlation
r∗A,B. This is reasonable if all domain signals have approximately the same signal power.
In addition, we propose a new edge weight that is based on the covariance of the two
domains:

w(A,B) = cov[XA(t),XB(t)]= σ̃A σ̃B r∗A,B . (10)

The cross-correlation is computed at lag τ ∗
A,B but we could use the average of all cross-

correlations in Rτ (A,B) instead. The weight of an edge can be positive or negative
depending on the sign of the corresponding cross-correlation.
Finally, the strength of a network node (domain) is defined as the sum of the absolute

weights of all edges of that node (ignoring edge directionality).

Illustration - Comparisons
The two objectives of this section are to illustrate how the δ-MAPS method works, and to
contrast the results of the latter with commonly used methods such as PCA, ICA, spatial
clustering, and overlapping community detection. We rely on synthetic data so that the
ground-truth is known.

Synthetic data description We construct five domains on a 50×70 spatial grid. Each
domain i is associated with a “mother” time series yi(t), (i=1. . . 5). To make the exper-
iment more realistic in terms of autocorrelation structure and marginal distribution,
each yi(t) is a real fMRI time series with length T=1200 (see “Applications in fMRI
data” section). The five mother time series yi(t) are uncorrelated (absolute cross-
correlation < 0.05 at all lags), and they are normalized to zero-mean, unit-variance. To
create correlations between domains (i.e., domain-level edges), we construct five new
time series xi(t) based on linear combinations of two or more mother time series. For
instance, if we set xi(t) = (1 − α)yi(t) + αyj(t + τ) with 0 < α < 1 and xj(t) = yj(t),
domains i and j become positively correlated at a lag τ ; the correlation increases with
α. The time series xi are again normalized to zero-mean, unit-variance. We then scale
the time series of domain i by a factor √si to control the variance of each domain
(Var[ xi(t)]= si).
For simplicity, each domain is a circle with radius rp. A domain has a “core region”

with the same center and radius rc < rp; the core is supposed to be the epicenter of that
domain. Every point in the core has the same signal xi(t) (before we add random noise).
Outside the core, the signal attenuates at a distance d from the center of the domain as
follows:

xi(t) = √
f (d) xi(t), f (d) = rp − d

rp − rc
, rc ≤ d ≤ rp . (11)

Finally, we superimpose white Gaussian noise of zero-mean, unit-variance on the entire
grid.
The parameters of the five synthetic domains are shown in Table 1. The domains differ

in terms of size and power (variance). The spatial extent of the domains is shown in Fig. 2a;
domains 1 and 3 overlap with domain 2, while domains 4 and 5 also overlap to a smaller
extent. Further, there is a strong and lagged anti-correlation between domains 1 and 3,
a weaker positive correlation at zero-lag between domains 4 and 5, and an ever weaker
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Table 1 Synthetic area generation parameters

ID rc rp si xi(t)

1 2 10 16 x1(t) = 2/3y1(t) − 1/3y3(t + 15)

2 4 14 11 x2(t) = y2(t)

3 2 10 16 x3(t) = y3(t)

4 0.5 5 9 x4(t) = 3/4y4(t) + 1/4y5(t)

5 1 7 6 x5(t) = 4/5y5(t) + 1/5y3(t)

positive correlation at zero-lag between domains 3 and 5. The edges of the domain-level
network are also shown in Fig. 2a.

δ-MAPS results The parameters of δ-MAPS are set as follows: K=4 cells (up-down-left-
right), and δ=0.55 (corresponds to significance level 10−2). In the edge inference step, the
FDR threshold is q=10% and τmax = 20.
Fig. 2b shows the local homogeneity field r̂K (i) as well as the identified seeds (blue dots),

while Fig. 2c shows the five discovered domains. As expected, we often identify more than
one seed in the core of each domain due to noise; those seeds are eventually merged into
the same domain. The local homogeneity field is weaker in domains 4 and 5 (due to their
lower variance) but a seed is still detected in those domains. Seeds also appear at the two
overlapping regions between (1,2) and (2,3) but those seeds gradually merge with one of
the domains in which they appear.
Each domain is a subset of the domain’s true expanse. The reason is that some cells

close to the periphery of each domain have very low signal-to-noise ratio (recall that the
signal decays to zero at the periphery and so the average correlation between those cells
with the rest of their domain does not exceed the δ threshold). More quantitatively, the

a b c d

e f g h

i j k l

Fig. 2 a The five ground-truth domains. Adjacent domains have different colors, overlapping regions shown
in black, and the core of each domain is in blue. The three constructed edges are shown in gray lines. b The
homogeneity field r̂K (i) at each cell. The identified seeds are shown in blue. c The inferred domains: adjacent
domains have different colors and overlaps are shown in black. d The inferred domain-level network: the
color map refers to the edge correlation. The lag associated with each edge is also shown. e, f, g The first
three EOF (PCA) components. The variance explained by each component is shown at the top of each figure.
h, i The two ICA components. j, k K-means clustering. l The second hierarchical level of community structure
as identified by OSLOM: each community has a distinct color and overlaps are shown in black
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inferred domains include about 80%-90% of the ground-truth cells in each domain. In
non-overlapping regions this fraction is higher (85%-95% of the cells), while in overlap-
ping regions it drops to 45%-80%. The extent of overlapping regions is harder to correctly
identify especially when a domain (e.g., domain 2) overlaps with a stronger domain (e.g.,
domains 1 or 3); the stronger domain effectively masks the signal of the weaker domain.
The average pairwise cross-correlation of the cells in each domain varies between 55%-
70% in the ground-truth data, while the inferred domains have slightly higher average
cross-correlation (65%-75%) due to their smaller expanse.
Finally, Fig. 2d shows the inferred domain-level network. δ-MAPS identifies correctly

the three edges and their polarity (positive versus negative correlations). The lag ranges
always include the correct value (e.g., the edge between domains 1 and 3 has a lag range
[14,15]). Also, the three edges are correctly ordered in terms of absolute cross-correlation
magnitude: (1,3) followed by (4,5), followed by (3,5).

PCA/EOF results PCA assumes that the dominant patterns are orthogonal in space and
time (which is not necessarily true, see (Simmons et al. 1983) for a case relevant to cli-
mate). To overcome this problem alternative methods exist (e.g., rotated PCA (Vejmelka
et al. 2015)) but require more user defined parameters and some times split a single
pattern into two different ones (see (Storch and Zwiers 2001; Dommenget and Latif
2002)).
We apply EOF analysis using Matlab’s PCA toolbox. Figure 2e, f, g show the first three

principal components, which collectively account for about 90% of the total variance. A
first observation is that domains 4 and 5 are not even visible in these components – they
only appear in the next two components, which account for about 5% of the variance each.
This is because domains 4 and 5 are smaller and have lower variance. This is a general
limitation of PCA: the variance of the analyzed field can be dominated by a small number
of “modes of variability”, completely masking smaller/weaker regions of interest and their
connections. Second, the first three components do not provide a consistent evidence
that domains 1 and 3 are strongly anti-correlated; this is due to their lagged correlation,
which is missed by PCA. Third, the first component, which accounts for 40% of the total
variance, can be misinterpreted to imply that domain 2 is somehow positively correlated
with domains 1 and 3, even though it is actually generated by an uncorrelated signal. This
is due to the overlap of domain 2 with domains 1 and 3.

ICA results We apply ICA on the synthetic data usingMatlab’s FastICA toolbox. To help
ICA perform better, we specified the right number of independent components, which
is two (domains 1,3,4,5 are indirectly correlated – domain 2 is not correlated with any
other). The two independent components are shown in Fig. 2h, i. Note that only a rough
“shadow” of each domain is visible. Domains 1 and 3 appear in different colors, providing a
hint that they are anti-correlated, while domains 3 and 5 appear in the same color because
they are positively correlated. Overall, however, the components are quite noisy and it
would be hard in practice to discover the functional structure of the underlying system
if we did not know the ground-truth. The results are even harder to interpret when we
request a larger number of components.
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Clustering results We apply the most well-known clustering method, k-means, on
our synthetic data. As commonly done with correlation-based clustering, the distance
between two cells i and j is determined by the maximum absolute correlation across all
considered lags, as 1 − |r∗i,j|. Figure 2j, k shows the resulting clusters for k=5 (the number
of synthetic domains) and 6, respectively. For k=5, domains 1 and 3 form a single clus-
ter because of their strong anti-correlation; the same happens with domains 4 and 5. The
connection between domains 3 and 5 is missed, as well as the overlap between domain 2
with domains 1 and 3. Further, two of the five clusters (green and brown) cover just noise.
The situation changes completely when we request k=6 clusters. In that case, the over-
lapping regions in domain 2 form a single cluster, while domains 1 and 3 are separated
in different clusters. Another clustering algorithm, resulting in spatially contiguous clus-
ters (Fountalis et al. 2014), is illustrated in “Application in Climate Science” section in the
context of climate data analysis (see Fig. 4d).

Community detection results We apply a state-of-the-art overlapping community
detection method, referred to as OSLOM (Lancichinetti et al. 2011), with the default
parameter values. The input to OSLOM is a positively weighted graph: each vertex is
a grid cell and an edge between vertices i and j corresponds to the maximum abso-
lute cross-correlation |r∗i,j| across all lags of interest. Absolute correlations less than 30%
are considered insignificant and the corresponding edges are pruned.4 As most com-
munity detection methods, OSLOM does not distinguish between positive and negative
correlations. OSLOM provides a hierarchy of communities. When applied to our syn-
thetic data, the first level of hierarchy (not shown) simply groups together domains 1,2,3
in one community (even though domain 2 is uncorrelated with domains 1 and 3), and
domains 4,5 in another community. The connection between domains 3 and 5 is missed.
The second level of hierarchy is shown in Fig. 2l. Overall, OSLOM does a better job
than PCA/ICA/clustering in detecting the spatial extent of each domain. A small over-
lap between domains (1,2) and (2,3) is discovered but to a smaller extent than δ-MAPS.
However, a community in OSLOM is not constrained to be spatially contiguous. This is
the reason we see some black dots in regions 4 and 5; these are non-contiguous overlaps
between the communities that correspond to these two domains.

Application in Climate Science
We first apply δ-MAPS in the context of climate science. Climate scientists are inter-
ested in teleconnections between different regions, and they often rely on EOF analysis
to uncover them (Storch and Zwiers 2001). Here, we analyze the monthly Sea-Surface
Temperature (SST) field from the HadISST dataset (Rayner et al. 2003), covering 50 years
(1956-2005) at a spatial resolution of 2.0o × 2.5o, and we focus on the latitudinal range
of [ 60oS; 60oN] to avoid sea-ice covered regions. Following standard practice, we pre-
process the time series to form anomalies, i.e., remove the seasonal cycle, remove any
long-term trend at each grid-point (using the Theil-Sen estimator), and transform the
signal to zero-mean at each grid point.

δ-MAPS is applied as follows. We set the local neighborhood to the K=4 nearest cells
so that we can identify the smallest possible domains at the given spatial resolution. Grid
cells that cover mostly land do not have an SST signal and so they do not participate
in the local neighborhood �K (i) of any sea-covered grid cell i. Second, the homogeneity
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threshold δ is set to 0.37 (corresponds to a significance level of 10−2). In the edge infer-
ence stage, the lag range is τmax=12 months (a reasonable value for large-scale changes in
atmospheric wave patterns), and the FDR threshold is set to q=3% (we identify about 30
edges and so we expect no more than one false positive).
Figure 3a shows the identified domains (the color code will be explained shortly).

The spatial dimensionality has been reduced from about 6000 grid cells to 18 domains.
65% of the sea-covered cells belong to at least one domain; the overlapping regions are
shown in black and they cover 2% of the grid cells that belong to a domain. The largest
domain (domain E) corresponds to the El Niño Southern Oscillation (ENSO), which is
also the most important in terms of node strength (see Fig. 3b). Other strong nodes
are domain F (part of the “horseshoe-pattern” surrounding ENSO), domain J (Indian
ocean) and domain Q (sub-tropical Atlantic). The strength of the edges associated with
ENSO are shown in Fig. 3c. These findings are consistent with known facts in climate
science regarding ENSO and its positive correlation with the Indian ocean and north
tropical Atlantic, and negative correlations with the regions that surround it in the Pacific
(horseshoe-pattern) (Klein et al. 1999).
Figure 3d shows the inferred domain-level network.
The color code represents the (signed) cross-correlation for each edge. The lag range

associated with each edge is shown in Fig. 3e; recall that some edges are not directed
because their lag range includes τ=0. The network consists of five weakly-connected com-
ponents. If we analyze the largest component (which includes ENSO) as a signed network
(i.e., some edges are positive and some negative) we see that it is structurally balanced
(Easley and Kleinberg 2010). A graph is structurally balanced if it does not contain cycles
with an odd number of negative edges.5 A structurally balanced network can be parti-
tioned in a “dipole”, so that positive edges only appear within each pole and negative edges
appear only between the two poles. In Fig. 3a, the nodes of these two poles are colored as
blue and green (the smaller disconnected components are shown in other colors).
Focusing on the lag range of each edge, domain Q seems to play a unique role, as it

temporally precedes all other domains in the inferred network. Specifically, its activity
precedes that of domains D, E and F by about 5-10 months. The lead of south tropical

a d e f

b

c

Fig. 3 a The identified domains. The color of each domain corresponds to the connected component it
belongs to (the blue and green nodes belong to two different poles of the same component). b Color map
for domain strength. The strength of ENSO (domain E) is shown at the top. c Edges to and from ENSO (shown
in black). d The climate network. The color of each edge represents the corresponding cross-correlation. e
The lag range associated with each edge. f Examples of lag-constistent triangles
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Atlantic SSTs (domain Q) on ENSO has recently received significant attention in climate
science (Rodríguez-Fonseca et al. 2009; Bracco et al. 2018).
Our results suggest that SST anomalies in domain Q may impact a large portion of

the climate system. State-of-the-art climate models are generally unable to reproduce the
lead relationship between Q and the other tropical domains (Barimalala et al. 2012). δ-
MAPS could be applied across models and different climate fields to identify the origin
and impact of this bias (Bracco et al. 2018).
As expected, some of the edges we detect in the network of Fig. 3d are due to indirect

correlations. For instance, if A has a causal effect on B and C, at lags τA,B and τA,C respec-
tively (suppose that τA,B > τA,C), we may also see a indirect correlation between B and C
at a lag τA,B − τA,C. Or, it may be that A has a causal effect on B at lag τA,B and B has a
causal effect on C at lag τB,C ; in that case we may observe an indirect correlation between
A and C at lag τA,B + τB,C . Or, it may be of course that the observed correlation between
two nodes A and B is due to more than one causal paths that originate at A and terminate
at B through one or more nodes.
Switching to lag inference, we say that a triangle is lag-consistent if there is at least one

value in the lag range associated with each edge that would place the three nodes in a
consistent temporal distance with respect to each other. For instance, in the case of the
first triangle of Fig. 3f, the triangle is lag-consistent if the edge from Q to F has a lag of
8 months and the edge between E and F has lag -2 months (meaning that the direction
would be from F to E); several other values would make this triangle lag-consistent. We
have verified the lag-consistency of every triangle in the climate network. One exception
is the triangle between domains (C,D,G), shown at the bottom of Fig. 3f. However, the
large lag in the edge from C to G can be explained with the triangle between domains
(C,E,G), which is lag-consistent. We emphasize that the temporal ordering that results
from these lag relations should not be misinterpreted as causality; we expect that several
of the edges we identify are only due to indirect correlations, not associated with a causal
interaction between the corresponding two nodes.
For comparison purposes, Fig. 4 shows the results of EOF analysis, community detec-

tion, and spatial clustering on the same dataset. The first EOF explains only about 19% of

a b

c d

Fig. 4 a, b The first two components of EOF analysis. c Communities identified by OSLOM. Each community
has a unique number and color. d Areas identified by spatial clustering
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the variance, implying that the SST field is too complex to be understood with only one
spatial component. On the other hand, the joint interpretation of multiple EOF compo-
nents is problematic due to their orthogonal relation (Dommenget and Latif 2002). The
anti-correlation between ENSO and the horseshoe-pattern regions is well captured in
the first component but several other important connections, such as the negative and
lagged relation between the south subtropical Atlantic and ENSO (domains Q and E,
respectively), are missed.
Figure 4c shows the results of the overlapping community detection method OSLOM.

Following (Steinhaeuser et al. 2010), the input to OSLOM is a correlation-based cell-level
network. Correlations less than 30% are ignored. The weight of each edge is set to the
maximum absolute correlation between the corresponding two cells, across all consid-
ered lags. OSLOM identifies 22 communities. Community 6 is not spatially contiguous;
it covers ENSO, the Indian ocean, a region in the north tropical Atlantic, and a region in
south Pacific. This is a general problem with community detection methods: they cannot
distinguish high correlations due to a remote connection from correlations due to spa-
tial proximity. In the context of climate, the former may be due to atmospheric waves or
large-scale ocean currents while the latter may be due to local circulations.
Finally, Fig. 4d shows the results of a spatial clustering method (Fountalis et al. 2014),

with the same homogeneity threshold δ we use in δ-MAPS. That method ensures that
every cluster (referred to as “area”) is spatially contiguous but it also requires that there is
no overlap between areas and it attempts to assign each grid cell to an area. Consequently,
it results in more areas (compared to the number of domains), some of which are just arti-
facts of the spatial parcellation process. Further, the spatial expanse of an area constrains
the computation of subsequent areas because no overlaps are allowed.

Applications in fMRI data
Here, we illustrate δ-MAPS on cortical resting-state fMRI data from a single subject
(healthy young male adult, subject-ID: 122620) from the WU-Minn Human Connec-
tome Project (HCP). Our goal is to illustrate that δ-MAPS is able to identify well-known
resting-state networks even from single subject data, without having to rely on group-
level averages. The data acquisition parameters are described in (Smith et al. 2013). The
spatial resolution is 2mm in each voxel6 dimension. The pre-processing of fMRI data
requires several steps; we use the “fix-extended” HCPminimal processing pipeline; please
see (Glasser et al. 2013). We also perform bandpass filtering in the range 0.01-0.08Hz, as
commonly done in resting-state fMRI.
In this paper, we analyze two scanning runs of the same subject (“scan-1” and “scan-2”).

Each scan lasts about 14 minutes and results in a time series of length T=1200 (repetition
time TR=720msec). We emphasize that major differences across different scanning ses-
sions of the same subject are common in fMRI; for this reason, most studies of functional
brain networks often only report group-level averages. The entire cortical volume is pro-
jected to a surface mesh (Conte69 32K) resulting in about 65K gray-ordinate points (as
opposed to volumetric voxels). Each point of this mesh is adjacent to six other points; for
this reason, we set K=6. The homogeneity threshold is set to δ=0.37 (inferred using the
heuristic proposed in (Fountalis et al. 2014)). The maximum lag range τmax is set to ± 3,
i.e., 2.2 seconds, and the FDR threshold is set to q=10−4 (i.e., we expect on average one
out of 10K edges to be a false positive).
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The application of δ-MAPS results in a network with about 850 domains in scan-1 (1120
domains in scan-2). 80% of the domains are smaller than 30-40 voxels (depending on the
scan) and 5% of the domains are larger than 250 voxels (Fig. 6a, b shows the identified
domains) . The number of edges is 4285 in scan-1 (4200 in scan-2). The absolute value of
the cross-correlation associated with each edge is typically larger than 0.5. The fraction
of negative edge correlations is about 5% in scan-1 and 20% in scan-2 suggesting that the
polarity of some network edges may be time-varying. The lag τ ∗ that corresponds to the
maximum cross-correlation is 0 in 70% of the edges and± 1 in almost all other cases. 13%
of the edges are directed, meaning that lag-0 does not produce a significant correlation
for that pair of domains. There is a positive correlation between the degree of a domain
and its physical size (the correlation coefficient between degree and log10(size) is 0.70
for scan-1 and 0.66 for scan-2). Further, the network is assortative meaning that domains
tend to connect to other domains of similar degree (assortativity coefficient about 0.7 in
both scans).
An important question is whether the δ-MAPS networks are consistent with what

neuroscientists currently know about resting-state activity in the brain. During rest,
certain cortical regions that are collectively referred to as the Default-Mode Net-
work (or DMN) are persistently active across age and gender (Yeo et al. 2011). Other
known Resting-State Networks (RSNs) are the occipital (part of the visual system) and
the motor/somatosensory (associated with planning and execution of voluntary body
motion). With the terminology of network theory, the previous “networks” would be
referred to as communities within the larger functional brain network. To identify com-
munities in the δ-MAPS network, we appliedOSLOM (Lancichinetti et al. 2011). OSLOM
identifies two hierarchical levels in both scans. The first level consists of highly overlap-
ping communities that cover almost the entire cortex. The second hierarchical level is
more interesting, resulting in eight communities for scan-1 (nine for scan-2). Figure 6e, f
shows the three communities (C.1, C.2, C.3) for each scan that have the highest resem-
blance to the three previously mentioned resting-state networks: C.1 corresponds to the
DMN, C.2 corresponds to the occipital resting-state network, and C.3 corresponds to the
motor/somatosensory network. C.1 is quite similar across the two scanning sessions and
it clearly captures the DMN. In C.2, the extent of the network is smaller in scan-2, which
is not too surprising giving the known inter-scan variability of resting-state fMRI. C.3
is also quite similar across the two scans and consistent with the motor/somatosensory
network.
To further investigate the structure of those higher degree (and typically larger)

domains, we perform k-core decomposition (Alvarez-Hamelin et al. 2006). The k-core
decomposition process starts with the original network (k=0), and it removes iteratively
all nodes of degree k or less in each round so that after the extraction of the k’th core
all remaining nodes have degree larger than k. The density of the remaining network, as
shown in Fig. 5, after the extraction of k=14 cores from the scan-1 network (k=16 cores
in scan-2) shows a sudden increase by a factor of two. This suggests that the network
includes a densely inter-connected backbone. The size of this backbone is small relative to
the entire network: 130 domains in scan-1 (90 in scan-2).
Similar observations about resting-state functional brain networks have been previ-

ously reported based on a rich-club network analysis method (van den Heuvel and
Sporns 2011). Fig. 6c, d shows the location of the backbone domains for each hemisphere
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Fig. 5 Network density as a function of the kth core for scan-1 (left panel) and scan-2 (right panel)

and for each scan. The regions that are usually associated with the DMN domi-
nate the backbone of both sessions. Interestingly though, scan-1 includes the regions
of the motor/somatosensory network, while the backbone of scan-2 is missing those
regions.
We conclude the analysis comparing our results to those obtained by ICA. ICA, in con-

trast to the proposedmethod, aims to identify temporally coherent components (ignoring
the need for spatial contiguity). Here, we useMELODIC ICA (Beckmann and Smith 2004)
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c d
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Fig. 6 Results for scan-1 (left panel) and scan-2 (right panel). (a, b) The identified domains, each domain is
assigned a color randomly, overlaps are shown in green. (c, d) The domains of the backbone network, each
domain is assigned a color randomly, overlaps are shown in black. (e, f) Three domain-level network
communities for each scan. The first corresponds to the default-mode network, the second to the occipital
network, and the third to the motor/somatosensory network. (g, h) Three independent components
(corresponding to the domain level communities in (e, f)) as identified by MELODIC ICA
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to identify 7 independent components (ICs) for each scan7; here we only show the compo-
nents that are more similar to the RNNs presented in Fig. 6e, f. The three ICs correspond
to the DMN (I.C. 1), occipital (I.C. 2), and motor/somatosensory (I.C. 3) network. We
also observe differences in terms of activation strength between the two scans. Interest-
ingly, these differences are “reflected” in both methods. Compare for example the size of
the identified communities in the occipital network to the strength of the activations in
the corresponding IC. The similarity of results from two qualitatively different methods,
encourages us to believe that δ-MAPS can identify meaningful functional components
and infer their connectivity.

Discussion
In climate science future possible applications of δ-MAPS range from quantifying uncer-
tainties in climate projections to diagnosing changes in teleconnections in response to
anthropogenic perturbations. Furthermore δ-MAPS can be successfully applied towards
quantifying differences across datasets and models, evaluating model performances, and
investigating model biases and their propagation across different fields of the climate sys-
tem. Amore in-depth discussion of these aspects and applications can be found in (Bracco
et al. 2018).

δ-MAPS results in a correlation-based functional network. A next step would be to
infer a causal, or effective network, leveraging the framework of probabilistic graphical
models. For example, in (Ebert-Uphoff and Deng 2014) the authors leverage probabilistic
graphical models to construct a causal climate network using pre-defined climate indices.
Instead of attempting to construct a graph in which the nodes are arbitrarily defined,
one could leverage δ-MAPS to identify the underlying structure and then apply condi-
tional independence tests to remove non-causal edges. Further, probabilistic graphical
models always result in a directed acyclic graph (DAG). However, in many cases (e.g., cli-
mate) feedback loops exist, thus such a framework is not a realistic model for the system’s
dynamics. Alternative approaches to establish causal inference could be based onGranger
causality or controlled interventions (Hlinka et al. 2013; Holland et al. 1985).
Additionally, in many real systems the underlying temporal dynamics are non-

stationary. Instead of relying on sliding window-based approaches, which are often
sensitive to the duration of the window, an important extension of δ-MAPS will be to
construct dynamic networks by detecting automatically the time periods during which
the network remains constant. It would also be interesting to combine the inferred func-
tional network with a structural network that shows the physical connectivity between
the identified domains. This is not hard in the case of communication networks but it
becomes also feasible for brain networks using diffusion-weighted MRI. The projection
of the observed dynamics on the underlying structure can help to characterize the actual
function and delay of each system component. Finally, here we assume that a universal
threshold δ can be applied across the spatial extent of the spatio-temporal field. How-
ever, an alternative would be to apply different thresholds for different regions of the
field.

Conclusions
In this paper we present δ-MAPS, a method suitable for the analysis of spatio-temporal
data. At a first step, δ maps identifies “domains”; the functional components of a spatio-
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temporal system. δ-MAPS is based on the premise that the functional relation between
the grid cells of a domain results in highly correlated temporal activity. To this end it
first identifies the “epicenter” or “core” of a domain as a point (or set of points) where
the local homogeneity is maximum across the entire domain. Instead of searching for the
discrete boundary of a domain, which may not exist in reality, we compute a domain as
themaximum possible set of spatially contiguous cells that include the detected core, and
that satisfy a homogeneity constraint δ.
At a second step, δ-MAPS infers a functional network between domains. Different

domains may have correlated activity, potentially at a lag, because of direct or indirect
interactions. The proposed network inference method examines the statistical signifi-
cance of each lagged cross-correlation between two domains, applies a multiple-testing
process to control the rate of false positives, infers a range of potential lag values for each
edge, and assigns a weight to each edge based on the covariance of the corresponding two
domains.
Using δ-MAPS we analyzed the temporal relationships between different functional

components of the climate system in the sea surface temperature field. We found
that the proposed method successfully uncovered many well-known climate telecon-
nections and the lag associated with them. In the context of neuroscience, we per-
formed a single subject analysis focusing on resting state fMRI data. We found that
the proposed method was able to uncover many of the well-known resting state net-
works. We also show how the method identifies a small number of strongly inter-
connected areas forming the backbone of the resting state network. Finally, using
synthetic data we also show how δ-MAPS overcomes limitations of traditional dimen-
sionality reduction techniques such as PCA/ICA, clustering and overlapping community
detection.

Endnotes
1 This formula assumes that the p-values are independent (which is often not

true in practice). The case of correlated p-values can be handled replacing q qith
q/

∑m
i=1 1/i, but that approach is very conservative, resulting in many false negatives

(Reiner et al. 2003).
2An analytic approach based on extreme-value statistics was proposed in (Kramer et al.

2009) but it relies on several approximations. Numerical approaches based on frequency-
domain bootstrapping, on the other hand, are computationally expensive (Kramer et al.
2009; Martin and Davidsen 2014; Rummel et al. 2010).

3 In principle, it may be a set of lag values. In practice though, significant correlations
result for a continuous range of lag values.

4We have experimented with other pruning thresholds between 20%-50% and the
results are very similar at the first two hierarchy levels.

5 For instance, if two friends are both enemies with a third person, they form a balanced
social triangle.

6Grid cells are referred to as voxels in the fMRI literature.
7MELODIC ICA has an option to automatically estimate the number of ICs to return.

Choosing this option yielded approximately 200 − 250 components in each scan. Acti-
vations were much lower than the ones shown in Fig. 6g, h both in strength and spatial
extent. We could not identify RSNs similar to those shown here.
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Appendix 1: Identifying the largest domain is NP-complete
We are given a spatio-temporal fieldX(t) on a gridG, a pairwise similarity metric between
pairs of grid cells and a threshold δ. Starting from a grid cell c, the goal is to find the largest
subset of grid cells that form a single spatially connected component, and whose average
similarity exceeds the threshold δ. The spatial grid can be represented as a planar graph
G(V ,E) where each grid cell is a node and edges connect adjacent grid cells. Formally we
have the following graph optimization problem:
Definition 1. Rooted Largest Connected δ-Dense Subgraph Problem (rooted LCδDS).

Given a regular (grid) graphG(V ,E), a weight functionw : V×V → R (wherew(v, v) = 0
and symmetric), a threshold δ, and a node c ∈ V , find a maximum cardinality set of
nodes A ⊆ V such that c ∈ A, the induced subgraph is connected (IG(A) = 1) and∑

v,u∈A w(v,u)

|A|(|A|−1) > δ (i.e., r̂(A) > δ).
To show that rooted LCδDS is NP-hard we first consider a variant of the problem in

which the induced subgraph A has to satisfy two conditions; it has to be a connected
subgraph of G, and the average weight of the edges in A has to exceed δ. More formally:
Definition 2. Largest Connected δ-Dense Subgraph Problem (LCδDS). Given a regular

(grid) graph G(V ,E), a weight function w : V × V → R (where w(v, v) = 0 and sym-
metric), and a threshold δ, find a maximum cardinality set of nodes A ⊆ V such that
IG(A) = 1 and r̂(A) > δ.
To show that LCδDS is NP-hard we use a reduction of the densest connected k subgraph

problem.
Definition 3. Densest Connected k-Subgraph Problem

(DCkS). Decision version: Given a graphG(V ,E), and positive integers k and j, does there
exist an induced subgraph on k vertices such that this subgraph has at least j edges and is
connected?
DCkS (also referred to as the connected h-clustering problem) has been shown to be

NP-complete on general graphs (Corneil and Perl 1984), as well as on planar graphs
(Keil and Brecht 1991). DCkS is polynomially time solvable for subclasses of pla-
nar graphs of bounded tree width (Arnborg and Seese 1991). Grid graphs, which are
the type of graphs that arise in our application domains, are planar bipartite graphs,
with non-fixed tree width, and no positive results are known for this subclass of pla-
nar graphs. The work on approximating densest/heaviest connected k-subgraphs is
relatively very limited (see recent theoretical result (Chen et al. 2015)). It is easy to
show that the DCkS problem can be easily reduced to an instance of the decision
version of the LCδDS problem, and hence it is also NP-complete even on planar
graphs.
LEMMA 1. The decision version of the LCδDS problem is NP-complete on planar

graphs.
PROOF. This can be shown via a reduction from the DCkS. We reduce an instance

< G, k, j > of the DCkS to an LCδDS instance by using the same graphG, settingw(u, v) =
I(u, v) ∈ E (w(u, v) is 1 if and only if the pair of nodes is connected by an edge), and
δ = j/k(k − 1).
Now it is easy to show that rooted LCδDS is also NP-hard. If a poly-time algo-

rithm existed for the rooted LCδDS, then by calling it |V | times with each of
the nodes of the graph, we would obtain in poly-time a solution to the NP-hard
LCδDS.
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Appendix 2: δ-MAPS pseudocode
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