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Abstract
Heart rate variability (HRV) considered as an indicator of the autonomic activity, shows differences between NREM and 
REM sleep. However, when evaluating during NREM sleep, some authors evaluate without considering the different stages, 
while others do it. There are discrepancies between values obtained from stages N2 and N3. Our objective was to evaluate 
whether differences exist between stages N2 and N3 based on several metrics of HRV that reflect the autonomic activity. 
Additionally, we analyzed the structure of these metrics through principal component analysis (PCA) at each sleep stage. 
Polysomnograms were recorded in 24 healthy subjects. We found significant differences in the LF and THM metrics with 
higher values in stage N2. The relative power of HF metric showed a significant difference with higher value in stage N3, 
however, this metric showed inconsistencies related to other HF representations. Two factors were extracted with PCA and 
their structure was stable across sleep stages. One factor accounted for 92% of the variance during stage N2 with moder-
ate to high loadings for metrics most strongly associated with the parasympathetic activity. A second factor accounted for 
91% of the variance during stage N3 with moderate to high loadings for metrics associated with parasympathetic and blood 
pressure control. Physiological mechanisms regulated by central commands that may involve neurons in the hypothalamus, 
pons, and midbrain may explain the differences in LF and THM metrics. The combination of stages N2 and N3 as NREM 
should be done according to the type of HRV metrics used.
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Introduction

Heart rate variability (HRV) is the physiological phenom-
enon associated with variation among the intervals between 
heartbeats, and these variations can be analyzed by differ-
ent methods, some of these provide indirect measures of 
the autonomic regulation of cardiac activity, mainly for the 
parasympathetic nervous system (PNS) [1]. During non-
rapid eye movement (NREM) sleep, a predominance of 
PNS activity and a decrease in sympathetic nervous system 
(SNS) activity have been proposed to occur, whereas during 
rapid eye movement (REM) sleep, a predominance of SNS 
activity and fluctuations in PNS activity occur [2]. Studies 
in which HRV analysis has been implemented during sleep 

have confirmed the existence of differences in the pattern 
of autonomic activity between NREM and REM sleep [3].

The separation of the NREM sleep into different stages 
is based only on electroencephalographic activity, as in the 
case of sleep stages S1 to S4 [4] or N1, N2, and N3 [5]. 
Stage S1 or N1 presents acute vertex waves, while stage 
S2 or N2 exhibits the presence of sleep spindles and K 
complexes. Stages S3, S4, and N3 are characterized by pre-
dominant delta activity, S3 and S4 are often known as slow-
wave sleep (SWS). In some studies, the HRV analysis was 
performed considering the separation of NREM sleep into 
stages [6–8], while in others not [9–11], even in the same 
study the HRV analysis was performed in NREM sleep with 
and without separation into stages [12].

In considering the High-frequency (HF) component 
of HRV (this component reflects PNS activity) there are 
discrepancies in the literature with respect to differences 
between stages N2 and N3, in some studies, the highest 
value was observed during stage N3 [13–16], while in others 
in stage N2 [17, 18], showing significant differences between 
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these two stages [13, 16, 17]. The discrepancies would be 
related to the absolute and relative representation of HF 
Power that were compared [19]. There are also inconsisten-
cies between different metrics that reflect PNS activity such 
as HF and root mean square of successive of RR interval 
differences (RMSSD), with higher HF power in stage N3 
and higher RMSSD in stage N2 [20, 21].

Considering the previously mentioned studies, the rela-
tionship between the NREM sleep stage and HRV is not 
clear. Therefore, the objective of this study was to determine 
whether differences exist between stages N2 and N3 based 
on several HRV metrics that reflect the autonomic activ-
ity. Additionally, we realized an empirical evaluation of the 
structure of these metrics at each sleep stage.

Materials and methods

Participants

Thirty healthy volunteers participated in the study. Six sub-
jects did not complete the 5-min duration of cardiac activity 
in the N2 stage of the first sleep cycle; therefore, the final 
sample included 24 participants (14 women and 10 men) 
with an average age of 25 (standard deviation (SD) = 5.1) 
years.

The inclusion criteria were that participants did not 
smoke, only consumed alcohol occasionally, and did not use 
illegal drugs. In addition, participants did not have problems 
falling or staying asleep. Based on an interview, subjects 
with medical diagnoses of chronic illness or psychiatric dis-
orders were excluded. All participants were provided with 
information about the investigation procedure and subse-
quently signed an informed consent letter. Besides, the eval-
uation procedures were conducted in accordance with the 
basic principles established in the Declaration of Helsinki.

Procedure

Two 8  h polysomnogram (PSG) were recorded during 
consecutive nights at the Neurosciences Laboratory of 
the Psychology Department of the UNAM, Mexico. PSGs 
were conducted using a Cadwell Easy II equipment (Ken-
newick, Washington, USA). The first PSG was considered 
as habituation to recording conditions and served to detect 
the presence of any indicators of sleep disorders. In the sec-
ond PSG, the EEG leads F3-M2, F4-M1, C3-M2, C4-M1, 
O1-M2 and, O2-M1 were recorded, as well as the electrooc-
ulogram, the surface electromyogram and, the electrocar-
diogram. The beginning of the PSG recording was adjusted 
for each participant according to their usual time to go to 
sleep. Sleep stages were scored according to AASM rules 
[5]. For this study, only the data obtained from the second 

PSG of participants who did not present indications of sleep 
disorders on the adaptation night were considered.

HRV metrics

Five-minute segments of cardiac activity of stages N2 and 
N3 corresponding to the first and second NREM-REM 
cycles were analyzed. These stages were stable without 
any type of interruptions due to arousal or movements. 
Periods of cardiac activity were omitted two minutes 
before and after phase transitions. The inter-beat intervals 
(IBI) were obtained using the QRSTool software version 
1.2.2 [22]. Subsequently, HRV metrics were calculated 
using the CardioBatch (Brain-Body Center, University of 
Illinois, 2007) and Kubios HRV [23].

In addition to the interbeat interval (IBI) or heart period 
(HP) the following HRV metrics were calculated:

High-frequency (HF) band (0.15–0.4 Hz), calculated 
by mean of the fast Fourier Transform (FFT) using the 
Welch’s Periodogram method. Expressed as absolute 
power with natural logarithm  (HFAP), relative power 
 (HFRP), and with the coefficient of variation transforma-
tion  (HFCV) which is obtained as follows:

Respiratory sinus arrhythmia (RSA) (0.12–0.4 Hz), cal-
culated by the Porges–Bohrer method [24]. Expressed as 
natural logarithm  (RSAln) and with the coefficient of varia-
tion transformation  (RSACV) which is obtained as follows:

Root mean square of successive of RR interval differ-
ences (RMSSD), expressed in milliseconds (RMSSD) 
and with the coefficient of variation transformation 
 (RMSSDCV) which is obtained as follows:

Low-frequency (LF) band (0.04–0.15 Hz), calculated 
by using the FFT using the Welch´s Periodogram method. 
Expressed as absolute power with natural logarithm  (LFAP), 
relative power  (LFRP), and with the coefficient of variation 
transformation  (LFCV) which is obtained as follows:

Traube–Hering–Mayer wave (THM) (0.06–0.1 Hz), 
calculated by the Porges–Bohrer method. Expressed as 

HF
cv
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natural logarithm  (THMln) and with the coefficient of vari-
ation transformation  (THMCV) which has the form:

The coefficient of variation transformation is based on De 
Geus et al., recommendation [25].

Data analysis

The Shapiro–Wilk test was used to corroborate a normal 
distribution of all HRV measurements; therefore, Student’s 
t test for related samples was used to compare stages N2 
and N3. To examine the structure of HF, RSA, RMSSD, 
LF, and THM at each stage, we conducted principal com-
ponent analysis (PCA) with varimax rotation (with Kaiser 
normalization).

Results

Participants displayed the normal sleep patterns organized 
into cycles integrated by the different phases that repeated 
across the night. The quantitative characteristics of the sleep 
parameters were as follows: the average sleep efficiency was 
95% (SD = 2); while the percentages of each sleep phase 
were 8% (SD = 4) for N1, 50% (SD = 9) for N2, 20% (SD = 8) 
for N3, and 21% (SD = 4) for REM sleep.

A total of 435 5-min segments of cardiac activity were 
selected from the polysomnographic recordings; 162 seg-
ments corresponded to the stage N2, and 273 segments to 
the stage N3. Except for HP and  HFRP the remaining metrics 
exhibited the highest values in the stage N2 (Table 1). In 
the comparison between the sleep stages using Student’s t 
test, significant differences were found in  HFRP and all the 
representations of LF and THM metrics (Table 1).

For PCA, Kaiser–Meyer–Olkin (KMO) measure was 
0.71 for stage N2 and 0.74 for stage N3. Significance level 
of Bartlett’s test of sphericity was less than 0.001 for both 
stages. Factor structure was highly stable across sleep stages 
(Table 2). Two factors accounted for 92% of the variance 
during stage N2 and 91% of the variance during stage N3.

In stage N2, factor 1 included moderate to high loadings 
for all representations of HF, RSA, and RMSSD, this factor 
includes negative high loading for  LFRP. Conversely, factor 
2 included high loadings for  LFAP,  LFCV, and all representa-
tions of THM.

In stage N3, factor 1 included moderate for  HFCV and 
high loadings for  HFAP and all representations of RSA and 
RMSSD. Conversely, factor 2 included moderate to high 
loadings for all representations of LF and THM, this factor 
includes negative moderate loading for  HFRP.

THM
cv
= 100 ∗

THM

(IBI)
2

For factor 1 the relative power of HF and LF showed 
reduced loadings from N2 to N3 sleep stages, the loadings 
for these metrics were low only for the factor 2 of the stage 
N2. Moreover, in stage N3, these metrics showed an inverse 
relationship between both factors.

Discussion

Stage N1 was not considered in this analysis because it usu-
ally lasts only a few minutes [26] and can be interrupted by 
awakenings and arousals; thus, it is difficult to obtain 5-min 
segments for analysis. The LF and THM metrics mainly 
provide information about PNS and blood pressure (BP) 
control mechanisms, such as the modulation of vasomotor 
tone [27] and baroreceptor activity [28], while the HF and 
RSA metrics are strongly associated with the relationship 
between cardiorespiratory coupling and PNS cardiac con-
trol [1]. RMSSD is a time-domain metric sensitive to PNS 
activity but less affected by respiration patterns although it 
is highly correlated with HF [25].

For all metrics with higher values in stage N2, there were 
significant differences in the LF and THM metrics, and these 
results coincide with those reported by other authors [8, 13, 

Table 1  Comparison of the HRV metrics between sleep stages N2 
and N3

Mean (SD), ns not significant, HP  heart period, HFAP  absolute power 
of high frequency, HFRP  relative power of high frequency, HFCV  coef-
ficient of variation of high frequency, RSAln  respiratory sinus arrhyth-
mia expressed as natural logarithm, RSACV  coefficient of variation of 
respiratory sinus arrhythmia, RMSSD  root mean square of successive 
of RR interval differences expressed in milliseconds, RMSSDCV  coef-
ficient of variation of the root mean square of successive of RR inter-
val differences, LFAP  absolute power of low frequency, LFRP  rela-
tive power of low frequency, LFCV  coefficient of variation of low 
frequency, THMln  Traube–Hering–Mayer wave expressed as natural 
logarithm, THMCV  coefficient of variation of Traube–Hering–Mayer 
wave

Metrics Stage N2 Stage N3 t p

HP 969.5 (140) 970.9 (137) − 0.261 ns
HFAP 7.1 (1) 7 (0.8) 0.359 ns
HFRP 58.1 (18.4) 67 (15.5) − 3.46 0.002
HFCV 0.19 (0.17) 0.16 (0.11) 1.545 ns
RSAln 7.1 (1) 6.9 (0.8) 1.777 ns
RSACV 0.15 (0.13) 0.12 (0.8) 1.851 ns
RMSSD 64.8 (30) 60.4 (22.2) 1.665 ns
RMSSDCV 6.6 (2.8) 6.2 (2.1) 1.692 ns
LFAP 6.6 (0.7) 6.2 (0.8) 3.919 0.001
LFRP 35.9 (15.5) 29.1 (14.2) 3.206 0.004
LFCV 0.1 (0.09) 0.07 (0.06) 2.328 0.029
THMln 6.1 (0.8) 5.7 (0.7) 3.912 0.001
THMCV 0.07 (0.06) 0.04 (0.03) 2.704 0.013
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14]. As stated previously, there are discrepancies in the lit-
erature with respect to HF differences between stages N2 and 
N3. We found inconsistency with the  HFRP metric, which 
showed a significant difference with a higher value in stage 
N3; the rest of the metrics (HF, RSA, and RMSSD) showed 
higher values in stage N2, but these changes did not reach 
statistical significance. This discrepancy could be explained 
by the reciprocity or redundancy between LF and HF com-
ponents expressed as normalized units or relative to total 
power [27, 29] so that the significant difference found in 
 HFRP was due to the  LFRP metric.

As stated by de Geus et al., there is a model in which 
cardiac chronotropic state (mean HP) has a direct effect on 
HRV that is independent of PNS activity, which would com-
plicate the use of HRV metrics as indexes of PNS activity. 
Adjusting for HP avoids overestimation of the influence of 
PNS on HRV, but if the proposed model is false, adjusting 
HRV for HP would lead to an underestimation of PNS activ-
ity. Until the determination of the veracity of the model, it 
is recommended to include an adjustment method for the 
prevailing levels of cardiac chronotropic state [25]. We 
included the coefficient of variation (CV) as the adjustment 
method. With the exception of the  HFRP metric, the CV did 
not alter the differences found between stages N2 and N3 for 
the other HRV metrics. The above results suggest that these 

differences could not be explained by an error in estimating 
PNS activity.

It has been proposed that cardiac PNS activity is influ-
enced by the circadian system rather than by the sleep sys-
tem [8, 30]. Circadian influence has been shown with the 
HF metric [19], which would explain the lack of significant 
differences between stages N2 and N3 in the HF, RSA, and 
RMSSD metrics. However, we found that the LF and THM 
metrics, which are also related to PNS activity, differed at 
stages N2 and N3, which suggests that they are more influ-
enced by the sleep system than by the circadian system.

PCA provides a method to assess the degree to which 
HRV metrics share a similar structure. This method has 
been used previously to analyze the factor structure of some 
HRV metrics at rest and during a stressor task [22]. In the 
PCA, two factors were extracted, and their structure was sta-
ble across sleep stages. In both sleep stages, the first factor 
included all HF metrics and  LFRP only, the latter with nega-
tive loading, which would confirm the reciprocity between 
the relative power of LF and HF. By omitting these recipro-
cal metrics, factor 1 would consist of HF, RSA, and RMSSD, 
and factor 2 would consist of LF and THM. Although all the 
metrics relate to PNS control [1, 25, 27], the separation into 
two different factors coincides with the type of physiological 
control mechanisms: one factor is related to cardiorespira-
tory coupling mainly, the other factor is associated with the 
interaction between PNS and BP control mechanisms. Fur-
thermore, this factor structure coincides with empirical data, 
and only factor 2 metrics differed between stages N2 and N3.

In agreement with the significantly lower values of LF 
and THM we observed in stage N3, it has been reported 
that the lowest levels of arterial BP were reached in stage 
N3 [31]. Some physiological mechanisms could explain the 
lower activity of THM and LF in stage N3. In general, the 
reduction in BP during NREM is mainly caused by barore-
flex resetting and generalized cardiovascular deactivation 
regulated by central commands that may involve neurons in 
the hypothalamus, pons, and midbrain [32]. For instance, 
noradrenergic neurons in the locus coeruleus, dopaminergic 
neurons in the ventral tegmental area, or hypothalamic orex-
inergic neurons are less active during SWS (N3 in humans) 
and participate in BP regulation.

Additionally, some central neural circuits could be 
involved, such as a circuit through which GABAergic neu-
rons from the parafacial area of the medulla oblongata can 
trigger SWS [33]. These neurons of the parafacial zone 
inhibit the parabrachial nucleus (PBN) [34]. The lateral 
parabrachial nucleus (LPBN) plays a role in the regulation 
of cardiovascular function since its stimulation causes an 
increase in blood pressure, sympathetic nervous activity, 
and tachycardia [35]. Another circuit involves neurons in 
the ventrolateral preoptic area (VLPO) that participate in 
the induction and maintenance of SWS. The VLPO sends 

Table 2  Factor loadings for metrics at stages N2 and N3

Loadings greater in magnitude than 0.6 are shown. HFAP  absolute 
power of high frequency, HFRP  relative power of high frequency, 
HFCV  coefficient of variation of high frequency, RSAln  respiratory 
sinus arrhythmia expressed as natural logarithm, RSACV  coefficient of 
variation of respiratory sinus arrhythmia, RMSSD  root mean square 
of successive of RR interval differences expressed in milliseconds, 
RMSSDCV  coefficient of variation of the root mean square of suc-
cessive of RR interval differences, LFAP  absolute power of low fre-
quency, LFRP  relative power of low frequency, LFCV  coefficient of 
variation of low frequency, THMln  Traube–Hering–Mayer wave 
expressed as natural logarithm, THMCV  coefficient of variation of 
Traube–Hering–Mayer wave

Stage N2 Stage N3

Factor 1 Factor 2 Factor 1 Factor 2

HFAP 0.90 – 0.95 –
HFRP 0.93 – 0.65 − 0.75
HFCV 0.77 – 0.88 –
RSAln 0.90 – 0.93 –
RSACV 0.80 – 0.92 –
RMSSD 0.81 – 0.91 –
RMSSDCV 0.80 – 0.90 –
LFAP – 0.95 – 0.91
LFRP − 0.90 − 0.61 0.78
LFCV – 0.92 – 0.90
THMln – 0.92 – 0.88
THMCV – 0.92 – 0.87
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GABAergic projections to the LPBN, and it has been pro-
posed that reduced activity of PBN neurons may disinhibit 
the baroreflex at the level of the nucleus of the tractus soli-
tarius. The VLPO also projects to the hypothalamic paraven-
tricular nucleus (PVN) which contains neurons that regulate 
sympathetic outflow and BP [32].

Thus, NREM sleep is not a uniform state regarding LF 
and THM metrics, so the combination of stages N2 and N3 
should be done according to the type of HRV metrics used. 
Among the limitations of this study is the small sample size, 
so future studies with increased samples sizes should be per-
formed that also include measures of BP and other measures 
associated with baroreceptor activity to better characterize 
stages N2 and N3.
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