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Abstract
Maximizing water productivity amid agricultural water scarcity demands accurate crop evapotranspiration  (ETc) estimation. 
While the Penman–Monteith method is standard, its dependence on extensive meteorological data restricts use in data-scarce 
regions. Eddy covariance offers precise  ETc estimation but is resource-intensive. Satellite remote sensing, like MOD16, offers 
a promising alternative for ET estimation. Several empirical models are also available, out of which suitable alternatives can 
also be identified for the regions with limited weather data availability, where eddy covariance and remote sensing techniques 
become limitations. Consequently, a study was undertaken to investigate the performance of eddy covariance method (Eddy 
Tower based), empirical models, and a remote sensing technique for computing crop evapotranspiration under rice–wheat 
cropping system at Naraingarh Seed Farm of Punjab Agricultural University, Ludhiana, for the years 2022–2023. The per-
formance evaluation of all the methods was performed using statistical indicators, including mean absolute error, mean bias 
error, root mean squared error, coefficient of determination, and index of agreement. The eddy covariance method, selected 
empirical models, and remote sensing technique demonstrated a good correlation with FAO Penman–Monteith ET, with 
coefficient of determination values greater than 0.85. The eddy covariance tower gives precise  ETc estimates, with MOD-16 
satellite data closely trailing. When Eddy Tower data is inaccessible, MODIS products provide a reliable alternative on a 
broader scale. In the absence of MODIS data, such as during cloud cover, empirical models offer effective  ETo and hence 
 ETc estimation. Moreover, for regions lacking weather data, models like Hargreaves and Samani (1985) or Priestley and 
Taylor (1972) stand out as optimal choices for accurate  ETo and thereafter  ETc estimation.
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Introduction

Earth’s demand for finite water resources has escalated due 
to population growth, industrialization, and water-intensive 
agriculture practices. Water is essential for human sur-
vival and is used for domestic, drinking, agricultural, and 

industrial purposes [1]. The agriculture sector is the largest 
consumer of freshwater, followed by industry and domes-
tic usage [2]. This demand is expected to continue rising, 
with projections indicating that approximately 6 billion 
people may suffer from food and water scarcity by 2050 
[3, 4]. The imbalance between water supply and demand 
is a growing concern, and there is an urgent necessity for 
more efficient water management strategies. Thus, there 
is a need to enhance the efficiency of water utilization in 
food production [5, 6]. Numerous studies have concentrated 
on water management [7], water delivery scheduling [8], 
groundwater level monitoring [9], the effective allocation of 
water resources [10], and the resolution of conflicts among 
water consumers [7, 11]. Irrigation agriculture emerges as 
a significant water consumer in arid and semi-arid regions, 
and its allocation directly influences yield production, food 
security, and system efficiency [12–14].
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Evapotranspiration (ET) is a crucial indicator for assess-
ing crop water requirements, consisting of the vaporized 
movement of water from the land to the atmosphere through 
soil evaporation and plant transpiration [15–17]. It is essen-
tial to accurately assess evapotranspiration to avoid exces-
sive and insufficient irrigation, ensuring the sustainable 
utilization of water resources while meeting agricultural 
demands. Achieving this goal involves employing models for 
measuring and predicting evapotranspiration rates or utiliz-
ing advanced instruments for direct measurements. However, 
the complex nature and high costs associated with direct 
measurement have led to the development of estimation 
models designed for versatile applications across different 
contexts [18–21].

Numerous models have been proposed for evapotran-
spiration estimation utilizing diverse meteorological data. 
Broadly, ET estimation methods fall into five primary cat-
egories: pan evaporation-based, temperature-based, mass-
transfer-based, radiation-based, and combined methods [22, 
23]. Nevertheless, these models differ in assumptions, data 
requirements, complexity, and reliability. The FAO Pen-
man–Monteith method, endorsed by the Food and Agri-
culture Organization of the United Nations (FAO) and the 
World Meteorological Organization, is recommended as 
a standard model for calculating evapotranspiration and 
evaluating other models’ accuracy [24, 25]. This standard-
ized approach involves intricate mathematical calculations 
with various meteorological variables, often challenging to 
obtain from local weather stations in developing countries. 
Consequently, simpler alternative methods based on empiri-
cal equations are being explored for ET computation with 
limited data [26]. Due to the complex relationships between 
meteorological factors, time, and predictability, these alter-
native models must undergo scrutiny against the standard 
FAO Penman–Monteith method before practical application. 
It is emphasized that a site-specific assessment is essential to 
ascertain the predictive performance of alternative methods 
for a given region [27, 28].

Eddy covariance (EC) method stands out as a state-
of-the-art, scientifically grounded micrometeorological 
approach for assessing evapotranspiration (ET) exchanges 
in cropping systems [29–31]. This method involves esti-
mating net ecosystem exchanges of  CO2 (Net Ecosystem 
Exchange) and water vapor (ET) by monitoring and meas-
uring the turbulent transport of eddies carrying  CO2 and 
water vapor within the plant canopy boundary layer of the 
atmosphere [32–34]. Although the EC approach proves to be 
a scientifically robust, easy-to-install, and maintainable tech-
nology for accurately quantifying ET in cropping systems, 
it does not account for the spatial variability and provides 
field-scale evapotranspiration values [34]. To understand 
this element of ET, remote sensing models are important. 
Several models are currently available to estimate ET using 

remote sensing data, ranging from local and regional scales 
such as Surface Energy Balance System (SEBS) [35, 36], 
Mapping Evapotranspiration at high Resolution with Inter-
nalized Calibration (METRIC) [37], and Atmosphere Land 
Exchange (ALEXI) [38] to continental and global scales 
such as MOD16 [39], disaggregated Atmosphere-Land 
Exchange (ALEXI/DisALEXI) [38], Jet Propulsion Labo-
ratory Priestley-Taylor (JPL-PT) [40], and Global Land 
Evaporation Amsterdam Model  (GLEAM), spanning a 
wide range of temporal scales. MODIS Global Terrestrial 
evapotranspiration Product is a frequently used technique to 
calculate ET at both a continental and global scale. The tech-
nique is based on the Penman–Monteith equation to com-
pute ET's temporal and spatial variations over the world’s 
land surface areas. ET data obtained through satellite remote 
sensing observations on regional or global scales is integral 
to hydrology and ecology studies due to its spatial coverage 
advantages [41–43].

This research focuses on estimating evapotranspiration 
(ET) in rice–wheat rotations using alternative approaches. It 
determines the most suitable empirical model for the study 
area, especially under conditions of limited meteorologi-
cal data. Additionally, it evaluates the effectiveness of the 
eddy covariance (EC) method for in situ ET determination 
and explores the applicability of remote sensing models for 
estimating ET in the region. This approach not only fills a 
critical gap in understanding ET dynamics in agricultural 
systems but also offers practical solutions for water manage-
ment in areas with resource constraints. By combining tra-
ditional empirical models, micrometeorological techniques, 
and remote sensing technology, the study provides a compre-
hensive framework for improving water resource manage-
ment in agriculture, addressing a pressing global challenge.

Materials and Methods

Site Description

The eddy covariance flux tower is situated in Naraingarh 
village, in the Amloh tehsil of Fatehgarh Sahib district 
in Punjab, India. The site’s geographical coordinates are 
between latitude  30◦60’N and longitude  76◦19’E, and it has 
an elevation of 268 m above mean sea level, as illustrated 
in Fig. 1. The predominant crops in this region are rice and 
wheat. Notably, June emerges as the hottest month, charac-
terized by an average temperature of 31.4 °C, while January 
is the coldest month with an average temperature of 12.6 °C. 
The annual mean temperature in Naraingarh is recorded at 
23.2 °C. The area experiences an annual rainfall of approxi-
mately 769 mm. The study covers the period from December 
2021 to April 2023 for rice–wheat rotation.
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Selection of the Crop

The experimental crop chosen for investigation within the 
designated study area comprised wheat (varieties: Punjab 
Wheat Chapati 1) during winter (Rabi) season and rice 
(varieties: Punjab Rice 121 and Pusa Basmati 1509) dur-
ing monsoon (Kharif) season. The cultivated land spanned 
2.5 hectares. Wheat sowing occurred on the fourth night of 
November whereas the rice crops, including Punjab Rice, in 
late June and Pusa Basmati on the fourth night of July. The 
study period included two wheat crops (November to April) 
and one rice crop (June to October) in rotation. Conventional 
flood-based irrigation and fertigation methodologies were 
uniformly applied to both crops. Wheat harvest transpired 
in April for both Rabi seasons, while rice harvesting took 
place at the beginning of November. The research period 
also consisted of a fallow period, during which no crop was 
cultivated. The eddy covariance flux tower is situated in the 
study region.

ETo Methods

Different methods have been analyzed for the calculation 
of evapotranspiration. These are described below with their 
corresponding equation.

Eddy Covariance
The eddy covariance (EC) method is widely recognized as 
a key technique for estimating evapotranspiration (ET) [44]. 
This method determines the latent heat of evapotranspira-
tion (LE) by analyzing the covariance between vertical wind 
velocity and specific humidity. The accuracy of the LE flux 
estimate is assessed through the energy flux balance equa-
tion at the land surface, denoted as follows:

where Rn is net radiation, H is sensible heat flux, and G 
is ground heat flux. All components are denoted in W/m2. 
In Eq. (1), minor flux terms such as energy storage in the 

(1)Rn = LE + H + G

Fig. 1  Map of the study area
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canopy or energy conversion by photosynthesis are not 
considered. The Energy Balance Closure (EBC) calcula-
tion utilized all available filtered half-hourly flux data about 
the four terms in Eq. (1). Three criteria were employed to 
assess the EBC. Firstly, we computed the slope and intercept 
using ordinary linear regression (OLR) for turbulent fluxes 
(H + LE) against available energy (Rn − G). In an ideal situ-
ation where the energy balance is fully closed, the slope and 
intercept of the linear regression should ideally be 1 and 0, 
respectively [45]. The EBC is calculated as follows:

Latent and Sensible Heat

Employing the eddy covariance (EC) measurement, we esti-
mate latent heat (LE) and sensible heat (H) within a foot-
print extending over hundreds of meters. We apply the fetch 
area thumb rule of 100:1 m in our case. The local surface 
layer grows at approximately one vertical meter per hundred 
horizontal meters. The fetch area covers 30 m by keeping 
sensors at a 3-m height. Each EC system comprises a fast-
response 3D sonic anemometer, a rapid open-path infrared 
gas analyzer measuring  H2O and  CO2 concentrations, a fine-
wire thermocouple, an air temperature/humidity sensor, and a 
micro logger. The calculation of flow terms includes constant 
air density measurements. The EC system measures turbulent 
flows at a frequency of 20 Hz, and 30-min mean LE and H 
fluxes are subsequently computed and corrected. The correc-
tion, referred to as the Webb, Pearman, and Leuning (WPL) 
correction, as outlined by EK [46] and detailed by Leuning 
[47], plays a crucial role, potentially rectifying scalar fluxes 
by up to 50%, as highlighted by Mauder and Foken [48]. The 
significance of WPL correction is underscored by its capac-
ity to address significant differences in flux measurements. 
Coordinate rotation corrections, recommended by Moore 
[49], when nearly correct pickup separation is achieved. The 
30-min LE fluxes are further converted to evapotranspiration 
by the eddy covariance (ET EC) in millimeters per day, as 
determined by the following:

where ρw (kg/m3) is the density of water. The heat of vapor-
ization λ (MJ/kg) is a function of the temperature T (◦C) 
described by the equation given by Ding et al. [50]:

(2)EBCratio =
LE + H

Rn − G

(3)ECET =
1

�w

48
∑

i=0

LE30min

�(T)

(4)� = (2.501 − 0.00236T)

Empirical Approaches

FAO‑56 Penman–Monteith

This is a combination of the Penman [51] method and is 
based on the principle of the Bowen ratio (includes radia-
tion, wind, and humidity factors) and Monteith [52], a 
method that takes into account resistance factors (includ-
ing surface drag and aerodynamic drag). The equation was 
used by Allen [37] on an hourly basis, while the resistance 
term has a constant value of 70 s/m all day and night and 
recommended FAO-56 Penman–Monteith equation as the 
only standard method of determining reference evapotran-
spiration in all climates, especially if it was available data. 
The equation is given as follows:

where PET is the potential evapotranspiration (mm/day),  Rn 
is the net radiation at the crop surface (MJ/m2/day), G is the 
soil heat flux (MJ/m2/day), T is the daily mean temperature 
at 2 m height (○C),  U2 is the wind speed at 2 m height (m/s), 
 es is the saturation vapor pressure (kPa),  ea is the actual 
vapor pressure (kPa),  (es-ea) is the saturated vapor pressure 
deficit (kPa/°C), Δ slope vapor pressure curve (kPa/°C), and 
ϒ is the psychrometric constant (kPa/°C).

Papadakis

The Papadakis [53] method is based on saturated vapor pres-
sure corresponding to monthly temperatures for ETo estima-
tion (mm/month). The equation is presented as follows:

where  eaTmax is the water pressure corresponding to the aver-
age maximum temperature (kPa) and  ed is the saturation 
water pressure corresponding to the dewpoint temperature 
(kPa).

Priestly and Taylor

Priestly and Taylor (PT) [54] approach has proved to be a 
good alternative in many climatic regions. According to 
Priestly and Taylor, the equation is defined as follows:

where,

(5)PET =
0.408Δ(Rn − G) + Υ(

900

T+273
U2)(es − ea)

Δ + Υ(1 + 0.34U2)

(6)PET = 0.5625(eaTmax − ed)

(7)PET = � ∗
(

Δ

Δ + Υ

)

∗
(

Rn

�

)
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(8)Δ =
4098 ∗ (0.6108 ∗ exp(

17.27∗Tmean

Tmean+237.3
)

(Tmean + 237.3)2
and Υ =

Cp ∗ Patm

∈∗ �
= 0.665 ∗ 103 ∗ Patm

where α is the Priestley-Taylor parameter (1.26), Rn is the 
net radiation at the crop surface (MJ/m2/day), Tmean is the 
mean air temperature (○C), λ is the latent heat of vaporiza-
tion of water (λ = 2.501 MJ/kg), and Patm is the atmospheric 
pressure (kPa).

Hargreaves and Samani

Hargreaves and Samani [55] proposed a method where only 
daily mean maximum, mean minimum temperature, and 
extra-terrestrial solar radiation are required. The Hargreaves-
Samani (HS) method has been widely used for its simplicity 
in evaluating and calibrating its parameters.

where  Ra is the extra-terrestrial radiation (MJ/m2/day), λ 
is the latent heat of vaporization of water (λ = 2.501 MJ/
kg),  Tmax is the maximum air temperature (○C),  Tmin is the 
minimum air temperature (○C), and  Tmean is the mean air 
temperature (○C).

(9)
PET = 0.0135 ∗ 0.16 ∗

�

Ra

�

�

∗ (Tmean + 17.8) ∗
√

(Tmax − Tmin)

Jensen and Haise

Jensen and Haise [56] estimated evapotranspiration from 
solar radiation. The equation is given as follows [57]:

where  Ta is the average daily air temperature (○C) and  Rs is 
incident solar radiation (MJ/m2/day).

Calculation of Actual Evapotranspiration

Actual evapotranspiration or evapotranspiration (ET) is cal-
culated using the crop coefficient (Kc) calculated for differ-
ent crops at different growth stages [37]. The ET is calcu-
lated as follows [58]:

where ET = actual evapotranspiration (mm/day) and 
Kc = crop coefficient PET = potential evapotranspiration 
(mm/day).

(10)PET = (0.014Ta − 0.37)(Rs ∗ 0.000673) ∗ 25.4

(11)ET = Kc ∗ PET

Fig. 2  Flowchart of the MOD16 
ET algorithm
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MOD 16

The MOD16 model, proposed by Mu et al. [39, 59], cal-
culated potential evaporation [60] by estimating ET using 
the Penman–Monteith equation. It distributes the avail-
able energy across surface soil and vegetation constituents 
through fractional total vegetation cover. The evaporation 
from the wet and saturated soil surfaces is thus included in 
the soil evaporation. Moreover, canopy water loss includes 
transpiration from the dry surface and evaporation from 
the wet canopy surface. Finally, it uses meteorological and 
physiological aspects related to vegetation to reduce poten-
tial ET to actual ET (Fig. 2). In MOD16, the total of wet 
canopy evaporation  (Ewet mm/day), bare soil evaporation 
 (Es, mm/day), and vegetation transpiration  (ET, mm/day) 
throughout the day and night is equal to evapotranspira-
tion (E, mm/day). The equations in their model are given 
below [61]:

The MOD16 evapotranspiration (ET) dataset utilized in 
this study was an 8-day composite dataset with a 500-m 

(12)Ewet =

(

Δ ∗ Rnc + � ∗ Cp ∗ fc ∗
VPD

rhrc

)

∗
fwet

�

Δ +
Pa∗Cp∗rcv

�∗�∗rhrc

(13)

Es =
(Δ ∗ Rns + � ∗ Cp ∗ (1 − fc) ∗

VPD

ras
)∕�

Δ + Υ ∗ rtot∕ras
∗ [fwet + (1 − fwet) ∗ fsm]

(14)

ET =

(

Δ ∗ Rnc + � ∗ Cp ∗ (1 − fc) ∗
VPD

ra

)

∗ (1 − fwet)∕�

Δ + � ∗ (1 + rs)∕ra

(15)E = Ewet + Es + ET

(m) pixel resolution spanning from December 2021 to April 
2023.

Statistical Analysis

The various statistical performance indicators, namely root 
mean squared error (RMSE), Willmott index of agree-
ment (d), coefficient of determination (R2), mean absolute 
error (MAE), mean bias error (MBE), and Nash Sutcliffe 
model Efficiency coefficient (NSE) were used, keeping Pen-
man–Monteith evapotranspiration as observed (Table 1).

Results and Discussion

Energy Balance Closure (EBC)

The energy balance closure (EBC) was assessed for the 
study period from December 2021 to April 2023, represent-
ing the rice–wheat cropping cycle in the study area (Fig. 3). 
The analysis revealed a maximum EBC of 2.84 and a mini-
mum of − 2.64, resulting in an average EBC of 0.30. Despite 
its prominence, the EC method often fails to achieve energy 
balance closure. Several authors reported the same results 
[68–70]. Typically, the available energy, represented by the 
difference between incoming Rn and outgoing G, exceeds 
the sum of the outgoing turbulent fluxes of H and LE [71]. 
The relative energy balance closure ratio (Eq. 2) reflects the 
imbalance in the in- and outgoing energy fluxes. Depending 
on the surface type,  EBCratio values between 70 and 90% 
are frequently reported [69, 72]. Energy balance closure in 
rice fields presents unique challenges due to various factors. 
The multi-layered canopy, including the water surface, rice 
plants, and underlying soil, poses difficulties in accurately 

Table 1  Parameters of statistical analysis

ETObs observed evapotranspiration, ETCal evapotranspiration calculated using selected methods

S. No Analysis Equation Range References

1 Mean absolute error
MAE =

1

n

N
∑

i=1

�(ETobs − ETcal)�
0 to ∞ [62]

2 Mean bias error
MBE =

1

N

N
∑

i=1

(ETCal − ETObs

)

 − ∞ to ∞ [63]

3 Root mean square error
RMSE =

�

1

N

∑N

i=1
(ETObs − ETCal)2

0 to ∞ [64]

4 Coefficient of determination
R2 = 1 −

∑N

i=1
(ETObs−ETCal)2

∑N

i=1

�

ETObs−ETCal
�2

0 to 1 [65]

5 Nash–Sutcliffe efficiency coefficient
NSE = 1 −

∑N

i=1
(ETobs−ETcal)2

∑n

i=1
(ETobs−ETobs)2

 − ∞ to 1 [66]

7 Index of agreement
d = 1 −

∑N

i=1
(ETObs−ETCal)2

∑n

i=1

�

�

�

�

ETCal−ETObs
�

�

�

+�ETObs−
−

ETObs�

�2

0 to 1 [67]
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measuring energy fluxes. The changing growth stages and 
flooded nature of rice fields further complicate the energy 
balance, affecting energy absorption, reflection, and emis-
sion. The fluctuating water depth and high humidity con-
tribute to inconsistencies in energy balance measurements. 
Additionally, the heterogeneous surface created by water, 
vegetation, and bare soil patches leads to spatial variability 
in energy fluxes—a challenge for accurate measurement. 
Some researchers also suggest that undetected vertical 
transport of LE and H at large spatial and temporal scales 
could contribute to the energy balance issue [71, 72], par-
ticularly with the involvement of large-scale eddies related 
to landscape heterogeneity [73]. All this implies an incom-
plete understanding of the system’s physics, leading to an 
underestimation of actual ET.

Comparison of MOD 16 ET with Eddy Covariance ET

The comparative analysis involved the MOD16-derived ET 
with in situ ET calculated from latent heat flux measured 
via eddy covariance. To align with the temporal resolution 
of MOD16, the available eddy covariance measurements 
were processed to derive 8-day averages. The bias correc-
tion is further done to adjust systematic errors or biases in 
a dataset. The assessment revealed consistent underestima-
tion by the MOD16 model compared with eddy covariance 
ET throughout most of the temporal domain. Statistical 
indicators, including a mean absolute error (MAE) of 1.15, 
mean bias error (MBE) of 1.13, and root mean square error 
(RMSE) of 1.27, underscore significant differences between 
the modelled and observed ET values.

Fig. 3  Energy balance closure 
of wheat rice cycle
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Furthermore, the Nash Sutcliffe efficiency coefficient 
of − 0.39 indicates a pronounced deficiency in the MOD16 
model’s ability to capture the observed ET variability. The 
index of agreement (Willmott index), registering a value of 
0.63, reinforces the substantial lack of similarity between the 
two datasets. The coefficient of determination, 0.67, indi-
cates a positive linear relationship, highlighting the differ-
ences between modelled and observed ET (Fig. 4).

Several factors lead to the uncertainties of ET obtained 
from MOD 16. One of the reasons is spatial and tempo-
ral resolution. Since MOD16 ET operates at a relatively 
coarse spatial resolution of 500 m, compared to the point 
measurements obtained by eddy covariance systems, this 
inconsistency may lead to difficulty accurately capturing 
the heterogeneity of land surface characteristics, such as 
vegetation type, topography, and land use, which can sig-
nificantly influence evapotranspiration [74]. Similar uncer-
tainties in MOD16 ET were also found compared to EC 
ET due to spatial scale mismatch between the fine vegeta-
tion data and coarse meteorological forcing data. MOD16 
ET relies on a specific model/calculation that incorporates 
various assumptions about the land surface, vegetation 
properties, and meteorological inputs. These assumptions 
may not perfectly align with the specific conditions of the 
study area, introducing uncertainties in the estimation pro-
cess. Differences in the parameterization of the underly-
ing physical processes, such as stomatal conductance, soil 
moisture dynamics, and canopy interception, can contribute 
to the underestimation. Mu et al. [39], Chi et al. [75], and 
Aguilar et al. [76] also reported a similar underestimation 
of MOD 16 ET. EC measurements directly capture these 
processes at a specific location, while the model relies on 
generalized parameterizations. Eddy covariance systems are 
susceptible to local variations in land surface characteris-
tics, whereas MOD16 ET may smooth out these variations 

due to its coarser resolution. This can lead to differences 
in the evapotranspiration in regions with significant spatial 
heterogeneity.

Eddy covariance measurements are not without uncer-
tainties, and local site conditions, instrument calibration, and 
data processing can introduce errors. When not accounted 
for in the comparison, these uncertainties may contribute to 
anticipated underestimations by MOD16. Several authors 
[75, 76] also reported underestimation due to calibration 
errors. Also, an underestimation of MOD16 ET when com-
pared to EC ET was observed. Wang et al. [77] compared 
MOD16 ET with EC ET observed that MOD16 ET showed 
relatively significant differences when compared with EC ET 
datasets in cold seasons and barely vegetated regions making 
it difficult to use them for making country-wide estimates. Li 
et al. [78], also found uncertainties in remote sensing models 
compared with in situ flux methods. All of these results sug-
gest that the MOD16 model might not accurately reflect the 
actual evapotranspiration in the studied area; hence, using 
MOD16 ET estimates should not be solely dependent.

Comparison of Eddy Covariance with Penman ET

Evapotranspiration, as determined through different empiri-
cal models and eddy covariance, has been systematically 
compared with the PM model as standard due to its wide 
acceptance and incorporation of physical and physiologi-
cal factors (Fig. 5). Notably, the evapotranspiration values 
derived from the eddy covariance overestimated with those 
obtained from Penman–Monteith (Table 2). These differ-
ences can be attributed to the enhanced complexity of the 
Penman–Monteith model, which operates on a more com-
prehensive and physically grounded framework, incorpo-
rating various meteorological parameters such as tempera-
ture, humidity, wind speed, and solar radiation. The model 

Fig. 5  Comparison of daily 
evapotranspiration of the 
selected methods
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suitably addresses both aerodynamic and radiative compo-
nents of evapotranspiration. In contrast, eddy covariance 
directly measures actual fluxes but relies on the assump-
tion of horizontal homogeneity and stationarity, conditions 
that may only be sometimes upheld. The sensitivity of eddy 
covariance systems to the representativeness of the measured 
area contributes to the observed disparities.

Inconsistencies arising from distinctions in spatial and 
temporal scales, particularly under dynamic environmental 
conditions, align with findings from prior studies by Har-
greaves & Samani [55], Migliaccio and Barclay Shoemaker 
[79], and Priestly and Taylor [54]. Also, the differences are 
due to the intensive sensitivity of Penman–Monteith evapo-
transpiration estimates to surface conductance. An over-
estimation of surface conductance can lead to concurrent 
overestimates of evapotranspiration, as verified by studies 
conducted by Hughes et al. [80]. Noteworthy inconsistency 
in daily evapotranspiration estimates between Penman–Mon-
teith and eddy covariance is observed due to increased vapor 
pressure deficit (VPD), particularly during the June to 
August period, where the rice crop is dominant. The energy 

imbalance can influence the accuracy of evapotranspiration 
estimates and potentially lead to overestimations. Further-
more, aerodynamic limitations may also play a significant 
role. The eddy-covariance relies on the assumption that the 
atmosphere above the canopy is well-mixed, which may 
not hold in fields due to stagnant air pockets near the water 
surface. These air pockets obstruct water vapor exchange 
between the canopy and the atmosphere, resulting in an 
overestimation of evapotranspiration. This observation has 
been corroborated by Wilson et al. [50], Sun et al. [81], and 
Denager et al. [73].

Evapotranspiration in Fellow Period

Evapotranspiration (ET) calculations were conducted 
using eddy covariance, MOD-16, and various empirical 
models during the fallow period, from mid-April after the 
wheat crop harvest to the rice transplanting phase. The 
outcomes are presented in Fig. 6. Differences in ET were 
noted among MOD-16, Penman ET, and the empirical 
models, primarily attributed to the unaccountability of 

Table 2  Statistical analysis Models/parameters EC ET Hargreaves 
and Samani

Priestley 
and Taylor

Jensen and Haise Papadakis MODIS

MAE 0.94 1.98 3.49 2.03 5.86 1.29
MBE 0.60  − 1.98 3.26  − 2.03 5.86 0.56
RMSE 1.40 2.27 4.88 2.33 6.65 1.48
R2 0.85 0.85 0.87 0.70 0.87 0.86
NSE 0.30  − 0.85  − 7.55  − 0.94  − 14.86 0.14
Willmott index 0.75 0.44 0.57 0.44 0.31 0.50

Fig. 6  ET comparison from 
different models of the fellow 
period
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soil evaporation in MOD-16, which tends to over-estimate 
soil evaporation under conditions of elevated soil wet-
ness (MAE 0.47; MBE 0.47; RMSE 0.98). The MODIS 
approach relies on satellite-based observations of land 
surface properties and exhibits sensitivity to variations 
in soil moisture content and land surface temperature. In 
contrast, eddy covariance (MAE 0.15; MBE 0.02; RMSE 
0.37) persists in capturing residual fluxes associated with 
lingering vegetation or soil processes even in the absence 
of an active crop during the fallow period. These findings 
highlight the essential factors influencing ET variations 
and emphasize the importance of accounting for vegeta-
tion dynamics in ET estimation methodologies.

Evapotranspiration from Different Empirical 
Methods

While comparing the evapotranspiration of Penman–Mon-
teith with other empirical models, it was observed that the 
Hargreaves-Samani (HS) and Jensen-Haise methods have 
consistently underestimated evapotranspiration compared 
to the Penman–Monteith (PM) reference equation (Allen, 
1998), with the mean bias error (MBE) of − 1.98 and − 2.03 
respectively. This underestimation has also been documented 
by several authors [82–84]. Both HS and Jensen-Haise mod-
els, based on a reduced set of meteorological parameters 
primarily relying on air temperature, exhibit limitations 
compared to the more comprehensive Penman–Monteith 
equation. These methods incorporate empirical coefficients 
derived from historical weather data, introducing potential 
biases in estimating evapotranspiration due to their inability 
to represent site-specific conditions accurately.

In contrast, an overestimation of evapotranspiration (ET) 
was noted with the Priestley and Taylor (PT) ET and Papada-
kis ET models, making them unsuitable for application in the 
current study area, as indicated in Table 2. Previous studies 
conducted by Bottazzi et al. [85], Vishwakarma et al. [86], 
and Proutsos et al. [87] have also reported uncertainties asso-
ciated with both models in the determination of evapotranspi-
ration. This overestimation can be attributed to the Priestley 
and Taylor model’s assumption of a constant ratio between 
latent heat flux and net radiation under non-limiting condi-
tions, implying an equal energy partitioning between sensible 
and latent heat fluxes. However, this simplification neglects 
the impact of aerodynamic resistance and stomatal regulation, 
which can constrain actual evapotranspiration. On the other 
hand, Papadakis incorporates temperature as an additional 
factor, but the temperature dependence may not accurately 
capture plant physiological responses under diverse environ-
mental conditions. Moreover, both PT and Papadakis mod-
els need to explicitly consider the influence of wind speed 
on controlling the transfer of sensible heat from the surface 
to the atmosphere, potentially leading to an overestimation 

of evapotranspiration, particularly under calm atmospheric 
conditions.

Figure 7 illustrates the coefficient of determination by com-
paring various models with Penman–Monteith evapotranspi-
ration (ET). The highest coefficient of determination was dis-
tinguished for Priestley and Taylor and Eddy covariance (R2 
0.87), succeeded by Hargreaves-Samani (R2 0.85) and Jensen 
and Haise (R2 0.70). This ranking highlights the suitability of 
the Priestley and Taylor model and Eddy covariance ET, fol-
lowed closely by Hargreaves-Samani and Jensen and Haise, 
as alternatives in the absence of Penman–Monteith within 
the current study area. Singh et al. [88] examined multiple 
empirical models for different seasons. They also observed 
that Hargreaves and Samani are the best substitutes for FAO 
Penman–Monteith, particularly during winter.

Conclusions

The study identified suitable alternatives to the Eddy covari-
ance (EC) method for estimating evapotranspiration (ET) 
within the study area, focusing on five empirical models 
and one remote sensing model across a rice–wheat crop 
cycle. The Penman–Monteith (PM) method, recognized as 
the most physically sound and reliable approach, requires 
extensive meteorological data. Due to data limitations, alter-
native methods with less demanding data requirements were 
explored. The MOD-16 ET model exhibited a coefficient 
of determination  (R2) of 0.86 compared to the PM method 
(primary method), establishing its suitability as a remote 
sensing model for the study area. However, cloud cover often 
hinders the utility of remote sensing data, necessitating the 
disaggregation of spatial and temporal resolutions. The 
Priestley-Taylor and Hargreaves-Samani methods emerged 
as the most promising empirical alternatives, with R2 values 
of 0.82 and 0.78, respectively. These methods require only 
temperature data, which is readily available in many regions. 
The study highlights the potential of Priestley-Taylor and 
Hargreaves-Samani methods as cost-effective substitutes for 
EC in data-scarce regions. Further validation across diverse 
climatic zones and crop types is recommended. The explora-
tion of additional remote sensing models, such as Surface 
Energy Balance for Land (SEBAL), Mapping Evapotran-
spiration at High Resolution with Internalized Calibration 
(METRIC), and Simplified Surface Energy Balance Index 
(SSEBI), alongside machine learning models, is also sug-
gested. Enhanced crop diversification is needed to develop 
models capable of determining evapotranspiration more 
accurately under varying conditions.
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