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Abstract
The resistance of green microalga Chlorella sorokiniana to the effect of certain toxicants (sodium dodecyl sulfate, formal-
dehyde, metribuzin) in the presence of activated sludge and the fungus Penicillium ochrochloron Biourge was studied using 
chlorophyll fluorescence methods. Detoxification of these substances increased under combined application of microalgae 
and activated sludge. Addition of activated sludge increased the photosynthetic activity of microalgae in the presence of 
sodium dodecyl sulfate (50 mg/L) and the herbicide metribuzin (0.01 and 0.05 mg/L). This was manifested in high values of 
the maximum quantum yield of photosystem II  (FV/FM). Addition of the fungus P. ochrochloron revealed a decreasing toxic 
effect of the herbicide metribuzin at concentrations of 0.01 and 0.05 mg/L on the microalgae activity. Thus, the addition 
of activated sludge and the fungus P. ochrochloron to C. sorokiniana culture can be recommended in wastewater treatment 
technologies using microalgae, and chlorophyll fluorescence parameters  (FV/FM) can be effectively used as indicators of the 
physiological state of microalgae in bioreactors under industrial conditions.
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Introduction

Wastewater treatment using microalgae in photobioreactors 
(PBR) has been known since the 1960s. Currently, such 
photobioreactors for urban wastewater treatment operate 
as modern systems with various technical solutions at all 
stages of biomass production [1, 2]. Since then, various PBR 
systems of both open and closed type have been developed. 
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However, both types of reactors cannot be considered mono-
culture reactors with constant quality of influent substrate.

Despite obvious advantages of using microalgae in waste-
water treatment technologies, microalgae are very sensitive 
to the composition of influent wastewater, and their growth 
can be inhibited by various pollutants. At the same time, 
wastewater treatment efficiency depends on the microalgae 
growth rate and the amount of algal biomass.

Composition of domestic wastewater may alter due to 
new organic pollutants, and microalgae systems must be able 
to reduce the concentrations of toxicants in the photobio-
reactor [1]. It has been shown that microalgae can remove 
not only mineral nitrogen and phosphorus, but also some 
organic pollutants [3]. While microalgae can be highly effec-
tive in removing certain contaminants, the unexpected influx 
of new toxicants into wastewater can damage microalgae 
cells and reduce the effectiveness of treatment. Therefore, 
it is necessary to control the potential impact of individual 
contaminants (e.g., organic compounds from household 
products, pesticides, antibiotics) on the activity of micro-
algae in the treatment process [1, 4]. To solve this problem, 
some researchers studied the effect of typical pollutants in 
model experiments with microalgae cultures and determined 
the maximum acceptable toxicant concentrations that affect 
microalgae performance in bioreactors [5–8]. The methods 
of modeling microalgae growth in both types of reactors 
are similar, since “microcosms” in the volume of laboratory 
flasks under constant stirring create conditions similar to 
those in industrial reactors.

A single species system is rarely capable of completely 
degrading organic xenobiotic contaminants. Therefore, the 
combination of microalgae and other suitable microorgan-
isms can increase the efficiency in removing contaminants 
from wastewater [9]. Microbial communities consisting of 
photoautotrophs and heterotrophs can be useful in sustain-
able biological wastewater treatment. The effective use of 
these microbial communities depends on the selection of 
their constituent species for artificial biocenosis [10]. A sig-
nificant aspect of the functioning of these mixed communi-
ties is the discrepancy in the growth rate of microalgae and 
bacteria, as well as microalgae and fungi. It is established 
that the doubling time of heterotrophic bacteria and fungi 
is approximately 2 h, while the doubling time of diverse 
microalgal species is 1.5 days on average [11, 12]. Conse-
quently, during the initial 24-h period of a mixed culture, 
bacteria, and fungi can markedly outpace microalgae in 
terms of growth. Additionally, bacteria can rapidly adapt 
their metabolism to the pollutants present in the substrate.

Recently, a new technological process has been devel-
oped to improve wastewater treatment including the addi-
tion of activated sludge to the culture of microalgae [13]. 
This process is known as the microalgae-based activated 
sludge (MAAS) process. It provides high organic matter 

removal (75–90% of chemical organic demand (COD) 
removal) and high total nitrogen removal (40–50%). The 
photobioreactor with the MAAS process functions as a 
symbiotic algae-bacteria system with bacterial oxidation 
of organic matter, nitrification, and removal of nitrogen 
and phosphorus by algae [13].

It is known that bacteria, fungi, and microalgae always 
coexist in wastewater reactors for effective treatment. At 
the same time, fungi can neutralize the most dangerous 
organic toxicants. It was previously shown that Penicillium 
ochrochloron contributes to the treatment of textile waste-
waters degrading synthetic diamino triphenylmethane 
dye—malachite green to the non-phytotoxic compounds 
para-benzyl-N,N-dimethylaniline and N,N-dimethylani-
line hydrochloride with the participation of peroxidase 
[14]. The most active strains of this species were able 
to decompose a maximum of 75% of 50 mg/L pyrene at 
22 °C within 28 days of incubation and use it as a carbon 
source [15]. Penicillium ochrochloron showed resistance 
to extremely high concentrations of heavy metals such as 
copper, zinc, manganese, and cadmium. Its copper uptake 
reached a constant level of about 1000 μg/kg dry myce-
lium [16].

One of the technical issues in wastewater treatment plants 
is continuous monitoring of microalgae activity, which 
determines the intensity and quality of treatment. Photosyn-
thesis as the main process in the algal cell provides oxygen 
release, thereby ensuring the oxidation of pollutants in the 
medium by microalgae. The most promising way to solve 
this issue in photobioreactors is using modern methods of 
chlorophyll fluorescence to monitor photosynthetic pro-
cesses in microalgae [2, 17, 18]. Chlorophyll fluorescence 
methods are non-invasive, rapid, highly sensitive, and a reli-
able tool to diagnose the state of microalgae cells in the pres-
ence of toxicants directly in bioreactors in real time [19, 20].

The choice of these toxicants in this study is due to the 
fact that they are frequently found in various concentra-
tions in municipal and agricultural wastewaters. Sodium 
dodecyl sulfate (SDS) is the sodium salt of lauryl sulfuric 
acid, an anionic surfactant with bactericidal action. SDS 
is found in detergents and hygiene products, and therefore 
frequently occurs in domestic wastewater. SDS is able to 
inhibit growth rate and reduce the content of chlorophyll-a 
and carotenoids in microalgae [21, 22]. Formaldehyde is 
a naturally occurring organic compound. Its occurrence in 
domestic wastewater is mainly due to the transformation of 
other xenobiotics, viz. pharmaceuticals. Formaldehyde has 
a bactericidal effect; therefore, it can cause serious dam-
age to biological water treatment systems. The mechanism 
of action on microalgae is based on the formation of cova-
lent chemical bonds between proteins [23, 24]. Metribuzin 
is a widely used herbicide frequently found in agricultural 
runoff. This highly mobile herbicide has high solubility in 
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water. The mechanism of its action on photoautotrophs is 
based on the inhibition of PSII activity [25].

In this work, we studied the resistance of the microalga C. 
sorokiniana to common wastewater contaminants (sodium 
dodecyl sulfate, formaldehyde, and metribuzin) in a pure 
culture of microalgae and in the presence of other hydrobi-
onts (activated sludge and the fungus P. ochrochloron) using 
chlorophyll fluorescence methods Our findings demonstrate 
that activated sludge organisms and the fungus P. ochro-
chloron play a detoxifying role in the presence of contami-
nants in a photobioreactor with microalgae. The significance 
of this study lies in the demonstration that cultivation of 
microalgae with the addition of bacterial or fungal cultures 
(with absolute predominance of microalgae biomass in the 
created community) can be more resistant to changes in the 
composition of influent wastewater. In this case, the resulting 
biomass will have the properties of microalgae biomass and 
can be utilized by the same technological methods as micro-
algae biomass (biogas production, animal feed, production 
of organic fertilizers, etc.).

Materials and Methods

A strain of Chlorella sp. (Chlorophyta) isolated from the 
White Sea (Russia) and identified as C. sorokiniana (Gen-
Bank ID: KC678067) [20] was used in this work. The green 
microalga C. sorokiniana was cultured in a modified Tamiya 
medium with 70 mg N/L and 5 mg P/L at 25 °C and constant 
shaking (120 rpm) under 31 W  m−2 fluorescent illumina-
tion and a photoperiod of 16/8 h (light/dark) in a KBW 400 
growth chamber (Binder GmbH, Germany).

Toxicants

Sodium dodecyl sulfate (SDS)  (C12H25NaSO4), formalde-
hyde  (CH2O), and metribuzin  (C8H14N4OS) were purchased 
in the Laboratory of the Government Chemist (LGC Ltd., 
UK).

Activated sludge was obtained from municipal wastewa-
ter treatment plants (Podolsk, Moscow region). The Podolsk 
treatment facilities carry out the treatment using nitri-den-
itrification. This type of technological scheme was chosen 
as having the greatest functional diversity of bacteria [26].

The following phyla are consistently represented in 
activated sludge: Acidobacteriota, Actinobacteriota, Bac-
teroidota, Bdellovibrionota, Campylobacterota, Chloro-
flexi, Cyanobacteria, Desulfobacterota, Elusimicrobiota, 
Firmicutes, Fusobacteriota, Myxococcota, Patescibac-
teria, Planctomycetota, Proteobacteria, Spirochaetota, 
Verrucomicrobiota. Activated sludge contains functional 
groups: nitrifiers, denitrifiers, dephosphorators and other 

groups responsible for the transformation of nutrients 
under conditions of simultaneous nitri-denitrification [27].

A sample of activated sludge was collected from the 
aerobic zone with a dose of sludge 3 g/L and added in a 
volume of 1 mL at a concentration corresponding to this 
dose of sludge.

Fungus strain №. 38 (Thailand), belonging to the spe-
cies Penicillium ochrochloron Biourge, was obtained from 
the collection of pure cultures of microscopic fungi of 
the Department of Mycology, Moscow State University. 
This strain was chosen due to the fact that this species 
was regularly isolated from samples collected at different 
stages in wastewater treatment plants in Thailand and the 
Netherlands [28]. It is probably quite typical of wastewa-
ter from various regions. Furthermore, P. ochrochloron is 
quite resistant to various pollutants and is able to degrade 
some of them. It grows quite quickly and forms abundant 
small homogeneous conidia, from which it is convenient 
to prepare a uniform spore suspension for introduction into 
the photobioreactor.

The fungus culture was grown on Czapek’s agar medium 
in 90-mm diameter petri dishes for 10 days in a thermostat at 
25 °C [29]. The spore suspension was prepared in sterilized 
distilled water and the concentration was adjusted to  106/mL, 
controlled in the Goryaev chamber.

Chlorophyll fluorescence was measured using an Aqua-
pen-C 100 fluorometer (Photon System Instruments, Czech 
Republic). The dark-adapted samples were illuminated 
with blue light (λ = 455 nm) at a photosynthetic photon 
flux density (PPFD) of 3000 μmol photons  m−2  s−1 for 2 s. 
The  FO and  FV/FM parameters were obtained from the 
chlorophyll fluorescence induction curves. Photosynthetic 
activity was estimated by the maximum quantum yield in 
photosystem II (PSII) as (FM

−F
O)

F
M

=
F
V

F
M

 [30].
The content of chlorophyll was measured spectrophoto-

metrically in 90% acetone extracts according to [31] using 
a spectrophotometer based on a USB 2000 portable spec-
trometer (Ocean Optics, Inc., USA).

The growth rate of algae was estimated by the fluo-
rescence signal Fo. The  FO fluorescence level correlates 
with the content of chlorophyll-a in the cell [32]. Before 
measurements, the fluorometer was calibrated for Fo signal 
intensity and chlorophyll-a content using C. sorokiniana 
with different densities. Chlorophyll-a (mg/L) was con-
verted to dry biomass (mg/L) according to [33].

The content of SDS was measured by the extraction-
photometric method on a [34] Cintra 6 UV–Visible spec-
trophotometer (GBC Scientific Equipment Ltd., USA).

The content of formaldehyde was measured photo-
metrically with acetylacetone reagent [35] on a Cintra 6 
UV–Visible spectrophotometer (GBC Scientific Equip-
ment Ltd., USA).
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Metribuzin content was measured by gas chromatography 
(Agilent J&W Intuvo column) [36].

The mass content of nitrite ions (with Griess reagent) 
was measured on a Cintra 6 UV–Visible spectrophotom-
eter (GBC Scientific Equipment Ltd., USA). The content 
of nitrate ions was measured using a Dionex ICS-2000 ion 
chromatography system (Dionex, USA).

Experimental Design

Aliquots of C. sorokiniana were used for experiments when 
the algal batch culture was in the exponential growth phase. 
Algal samples (of 0.5-L Erlenmeyer flasks) having 0.2 mg/L 
DW were exposed to 50 and 500 mg/L of SDS, 50 mg/L of 
formaldehyde, and 0.01 and 0.05 mg/L of metribuzin for 
10 days under growth condition as described above. Acti-
vated sludge and fungus were added separately to algal sam-
ples with toxicants according to the scheme (Fig. 1). Algal 
samples without toxicants, activated sludge, and fungus were 
used as controls.

Data Processing and Statistics

Three biological replicates and three technical repetitions 
were used throughout the experiment. OriginPro 2018 soft-
ware (OriginLab, USA) was used for data processing and 
analysis. All experiments were conducted in triplicate and 
error bars show standard deviations of three parallel sam-
ples. One-way analysis of variance (ANOVA) with post hoc 
Dunnett test for multiple comparisons was performed to ana-
lyze significant differences using Statistica 10. Statistical 
significance was accepted at a probability of p < 0.05.

Results

Figure 2 shows the growth rate and photosynthetic activity 
of C. sorokiniana under control conditions and in the pres-
ence of SDS and activated sludge. The growth rate in the 
control samples had a normal pattern. The growth curve 
demonstrates a lag phase in the first 3 days after placing in 
the photobioreactor, followed by an increase in the growth 
rate of microalgae in the following days. As we showed 
earlier, the transition of the photosynthetic apparatus of 
microalgae into an active state (increase in  FV/FM) caused 
a sharp increase in the growth rate [37]. Photosynthetic 
activity of microalgae according to  FV/FM increased on 
the 3rd day and then slightly decreased. Decreased photo-
synthetic activity is usually associated with the depletion 
of nutrients in the medium [38]. In the presence of SDS 
(50 mg/L), a decrease in  FV/FM parameter was observed 
on day 3; however, this quantity was recovered on day 
5. The growth of C. sorokiniana in the presence of SDS 
(50 mg/L) was relatively slow. In the presence of activated 
sludge, a significant increase in the  FV/FM parameter  (FV/
FM = 0.72) was observed in the culture of C. sorokiniana 
with SDS on the 3rd day compared to the control. This 
was also accompanied by an increase in the growth rate of 
microalgae. This indicates a favorable effect of activated 
sludge on the photosynthetic apparatus of microalgae in 
the presence of low concentrations of SDS. The addition 
of activated sludge to the photobioreactor also increased 
the SDS removal rate in the microalgae medium (Fig. 2A).

High SDS concentrations of 500 mg/L, which might 
occur in case of accidents at wastewater treatment plants 
[39], inhibited the activity and growth rate of microalgae 
(Fig. 3). The addition of activated sludge did not restore 

Fig. 1  Schematic of the experi-
ment, where AS, activated 
sludge; Fmld, formaldehyde; 
M, metribuzin; SDS, sodium 
dodecyl sulfate
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these parameters at high SDS concentrations. However, 
the addition of activated sludge under these conditions 
stimulated SDS decomposition (Fig. 3B). A decrease in 
SDS concentration occurred in the first days of the experi-
ment, the concentration of SDS decreased from 500 mg/L 
to values less than 0.2 mg/L.

Formaldehyde at 50 mg/L, added as an additional con-
taminant, led to inhibition of growth and activity of the 
microalgae culture (Fig.  4). The addition of activated 
sludge did not restore the activity and viability of microal-
gae. Meanwhile, the decomposition of formaldehyde in the 
mixed culture (microalgae with activated sludge) occurred 
much faster, on the third day, than in the pure culture of 
microalgae (Fig. 3C).

Metribuzin at 0.1 mg/L resulted in complete inhibition 
of microalgae C. sorokiniana, which was manifested in zero 
values of photosynthetic activity  (FV/FM) and cell growth 
rate (Fig. 5). This herbicide at 0.01 and 0.05 mg/L did not 
lead to the cell death of the microalgae. Figure 5 shows the 

growth rate and  FV/FM of C. sorokiniana in the presence of 
the herbicide at 0.01 and 0.05 mg/L in combination with 
activated sludge or the fungus P. ochrochloron. Under con-
trol conditions, high photosynthetic activity was reached on 
day 2, whereas a slight decrease in  FV/FM was observed on 
day 4 of cultivation due to nutrient depletion in the medium.

In the presence of metribuzin at 0.01 and 0.05 mg/L, 
 FV/FM values decreased (Fig. 5), which is consistent with 
the effect of this herbicide on photosynthetic processes 
[40, 41]. Moreover, a significant decrease in the growth 
rate was observed under these conditions. The addition of 
activated sludge partly neutralized the effect of the her-
bicide at 0.01 mg/L. In this case, positive culture growth 
was observed with sufficiently high photosynthetic activity, 
indicated by  FV/FM. In the case of metribuzin at 0.05 mg/L, 
the addition of activated sludge also caused the recovery of 
microalgae activity, although to a lesser extent.

Our experiments revealed that it is also possible to 
reduce herbicide toxicity to microalgae by adding the 

Fig. 2  Biomass (A, mg/L) and 
photosynthetic activity (B,  FV/
FM) of C. sorokiniana in the 
presence of SDS at 50 mg/L 
(SDS_50) and activated sludge 
(SDS_50_AS)

Fig. 3  Changes in the con-
centration of toxicants in the 
medium with microalgae C. 
sorokiniana and activated 
sludge during cultivation. 1 – in 
the presence of microalgae; 
2 – in the presence of micro-
algae and activated sludge. A 
and B are SDS at 50 mg/L and 
500 mg/L, respectively; C is 
formaldehyde at 50 mg/L
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fungus Penicillium ochrochloron Biourge to the pho-
tobioreactors. An increase in the  FV/FM parameter was 
noted in the sample with the fungus P. ochrochloron and 
metribuzin at 0.01 and 0.05 mg/L (Fig. 5). Data on the 
decrease in metribuzin concentration in the experiments 
with microalgae and in combination with activated sludge 

or the fungus P. ochrochloron are given in the table. In all 
cases with microalgae, the decrease in metribuzin concen-
tration ranged from 10 to 29% over 11 days. Significant 
decreases were observed with metribuzin at 0.01 mg/L in 
the presence of activated sludge (27%) or with the fungus 
P. ochrochloron (29%) (Table 1).

Fig. 4  Biomass (A, mg/L) and 
photosynthetic activity (B,  FV/
FM) of C. sorokiniana in the 
presence of activated sludge 
(AS), formaldehyde at 50 mg/L 
(Frmld), SDS at 500 mg/L 
(SDS_500_AS), and formalde-
hyde at 50 mg/L with addition 
of activated sludge (Frmld_AS)

Fig. 5  Biomass (A, C, mg/L) 
and photosynthetic activity (B, 
D,  FV/FM) of C. sorokiniana in 
the presence of metribuzin (M) 
at 0.01 mg/L (A, B) and 0.05 
(C, D) mg/L with addition of 
activated sludge (M_0.01_AS; 
M_0.05_AS) and P. ochrochlo-
ron (M_0.01_Fungus; M_0.05_
Fungus)
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Discussion

Microalgae are capable of mixotrophic growth and are often 
used for wastewater treatment since organic matter can be 
removed with simultaneous biomass production [42]. In this 
work, we used a culture of the mixotrophic green alga C. 
sorokiniana, isolated previously from the White Sea (Rus-
sia). This strain was successfully tested in distillery waste-
water treatment experiments, indicating virtually complete 
deodorizationand removal of most inorganic nutrients and 
organic matter, as well as algae biomass production [20].

In the current study, we investigated the resistance of the 
green microalga C. sorokiniana to some toxicants (sodium 
dodecyl sulfate, formaldehyde, metribuzin) in the presence 
of activated sludge and the fungus P. ochrochloron using 
chlorophyll fluorescence methods.

Photosynthetic activity of microalgae was determined 
by the fluorescence parameter  FV/FM, which indicates the 
maximum quantum yield of PSII operation associated with 
water photolysis and oxygen release [30].

In our experiments, the microalga C. sorokiniana demon-
strated high photosynthetic activity in the bioreactor, which 
is important for the process of wastewater treatment since 
oxygen released by photosynthesis is essential for the oxida-
tion of pollutants [43]. The experiments showed that SDS at 
concentration of 50 mg/L, which often occurs in municipal 
wastewater, inhibits the photosynthetic activity of micro-
algae. Addition of activated sludge to microalgae culture 
restores the  FV/FM and increases the biomass growth.

It was previously shown that activated sludge does not 
change its bacterial structure in the presence of SDS at 
concentrations less than 100 mg/L [44]. Our experiments 
also showed that a mixed community in the presence of low 
concentrations of SDS can function even more intensively 
than without toxicants. Moreover, activated sludge in the 
presence of microalgae accelerates SDS detoxification at low 
concentrations.

High concentrations of SDS (500 mg/L) irreversibly 
inhibited the photosynthetic activity and growth rate of 
microalgae. The negative effect of SDS at concentra-
tions higher than 100 mg/L on pure cultures of micro-
algae was noted earlier [39]. Experiments with SDS at 
500 mg/L revealed that activated sludge does not recover 

the activity of microalgae since at such concentrations 
activated sludge does not retain its own bacterial structure 
[44]. The structure of activated sludge at such concen-
trations changes drastically, the most common groups of 
bacteria in activated sludge are eliminated and replaced 
by dominant genera, for example, the genus Aeromonas 
[44]. New dominants are resistant to high concentrations 
of the pollutant and are able to use it as a substrate. In this 
experiment, the addition of activated sludge accelerated 
SDS detoxification even at high concentrations. Moreo-
ver, in this case, we recorded denitrification activity in the 
photobioreactor, confirmed by our data on the recording of 
nitrate and total nitrogen. We showed a decrease in nitrate 
and total nitrogen in the photobioreactor (Appendix). The 
application of SDS as a substrate for denitrifying bacteria 
was also reported earlier [45].

Inhibition of microalgae activity was also revealed for 
formaldehyde, which is another common pollutant in munic-
ipal wastewater. This toxicant at 50 mg/L led to irreversible 
inhibition of growth and photosynthetic activity even in the 
presence of activated sludge. Meanwhile, in the absence of 
algae growth, formaldehyde detoxification was observed in 
both photobioreactors; however, it was more noticeable in 
the presence of activated sludge. A similar detoxification 
of formaldehyde was also previously observed [46]. The 
mechanisms of such detoxification, most likely related to 
bacterial processes, require further research.

The water-soluble herbicide metribuzin is frequently 
found in agricultural wastewater. Metribuzin is known to 
inhibit PSII by preventing plastoquinone binding and block-
ing electron transport in the Hill reaction [25]. Moreover, 
metribuzin is believed to cause chlorophyll photodamage 
[47]. Metribuzin at 0.1 mg/L led to complete inhibition 
of photosynthetic activity and growth rate of microalgae. 
Apparently, the 0.1 mg/L concentration of this herbicide 
can be considered the maximum allowable for reactors 
with microalgae. In the presence of metribuzin at 0.01 and 
0.05 mg/L, the activity of microalgae decreased, which is 
consistent with the effect of this herbicide on photosynthe-
sis [25]. The addition of activated sludge made it possible 
to neutralize the effect of this herbicide on microalgae at 
0.01 mg/L. At a concentration of 0.05 mg/L, the addition 
of activated sludge also led to the restoration of microalgae 
activity, although to a lesser extent. Herbicide detoxification 
also increased in the presence of activated sludge.

It is known that P. ochrochloron Biourge no. 38 (Thai-
land) is widely used for wastewater treatment facilities in 
various regions [14]. According to the literature, P. ochro-
chloron is quite resistant to various pollutants and is able to 
degrade some of them [14–16]. Our experiments showed 
that toxicity of the herbicide for microalgae can be reduced 
by adding the fungus P. ochrochloron. In our case, the 
efficiency of herbicide removal in the reactors (Table 1) 

Table 1  Decrease in metribuzin concentration (% from initial concen-
tration) on the 10th day of C. sorokiniana cultivation in the pure cul-
ture and with addition of activated sludge or P. ochrochloron 

Sample/metribuzin concentration 0.01 mg/L 0.05 mg/L

C. sorokiniana 20% 10%
C. sorokiniana + activated sludge 27% 17%
C. sorokiniana + P. ochrochloron 29% 18%
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increased significantly after adding both activated sludge 
and fungus to the microalgae culture.

The technological process of microalgae cultivation in 
a photobioreactor requires systems to monitor the state of 
microalgae [48] and control the cultivation process [19]. Our 
data showed that the maximum quantum yield of PSII  (FV/
FM) can be effectively employed in systems for monitoring 
microalgae condition and controlling the cultivation process 
in a photobioreactor. This is consistent with the studies by 
other authors [19, 48]. Registration of photosynthetic activ-
ity by chlorophyll fluorescence parameters allows non-inva-
sive monitoring of microalgae viability during water treat-
ment in the cultivation process. In particular, many works 
note that the quantum yield of PSII  (FV/FM) depends on the 
concentration of nutrients in the medium [38]. Depletion of 
nutrients, such as nitrogen or phosphorus, leads to suppres-
sion of PSII functioning, which is manifested by changes in 
chlorophyll fluorescence parameters and growth processes 
[49]. This means that the depletion of nitrogen- and phos-
phorus-containing substances in the photobioreactor can be 
controlled by chlorophyll fluorescence methods. Currently, 
there are small-sized fluorometric devices that not only pro-
vide continuous monitoring of the content and condition of 
microalgae for a long time, but also transmit the obtained 
information in a user-friendly form [18].

Conclusion

This study showed that the toxicants we tested at selected 
concentrations have deleterious effects on the growth rate 
and photosynthetic activity of microalgae. Toxicants such as 
formaldehyde at 50 mg/L and SDS at 500 mg/L resulted in a 
dramatic decrease in biomass and photosynthesis. Addition 
of activated sludge increased (p biomass and photosynthetic 
activity of microalgae in the presence of SDS (50 mg/L) and 
the herbicide metribuzin (0.01 and 0.05 mg/L). Application 
of another detoxifying agent such as fungus P. ochrochloron 
in microalgae culture revealed a decreasing toxic effect of 
the herbicide metribuzin at 0.01 and 0.05 mg/L on micro-
algae activity.

The biomass ratio in all experimental reactors was signifi-
cantly in favor of microalgae biomass. Given the difference 
in growth rate and the difficulty of directly accounting for 
the biomass of bacteria and fungi during the experiment, it 
is difficult to estimate the resulting ratio by the end of the 
experiment. However, observation of photosynthetic activ-
ity and the appearance of the experimental reactors clearly 
indicate that this predominance of microalgae biomass was 
maintained. This implies that the quality of the resulting 
and total biomass growth corresponds to the microalgae 
biomass, while the resistance to pollutants has significantly 
increased.

The results obtained are relevant for practitioners who 
manage wastewater treatment and post-treatment using pho-
tobioreactors with microalgae.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s41101- 024- 00295-3.
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