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Abstract
In India, a majority of the populace relies on groundwater for drinking. For this, the determination of groundwater quality 
(GWQ) is of great importance. The water quality index (WQI) is an effective technique that determines the suitability of water 
for drinking. In the present study, 54 groundwater samples consisting of eight physicochemical parameters were evaluated 
to assess water quality using four indexing methods: Numerow’s pollution index (NPI), Weighted Arithmetic Water Quality 
Index (WA WQI), Groundwater Quality Index (GWQI), and the Canadian Council of Ministers of the Environment Water 
Quality Index (CCME WQI). A Geographic Information System (GIS) was employed to outline the spatial distribution maps 
of eight physicochemical parameters and WQI maps using the Inverse Distance Weighted (IDW) technique. Multivariate 
statistical analysis such as correlation analysis, principal component analysis (PCA), and cluster analysis (CA) were used 
for the evaluation of large and complicated groundwater quality data sets in the study. The results of the WQI indicate that 
43% (NPI), 96% (WAWQI), 74% (GWQI), and 94% (CCME WQI) of groundwater samples had poor to unsuitable drinking 
water quality. Using Karl Pearson’s correlation matrix, correlation analysis reveals a strong positive correlation of 0.9996 
between EC and TDS. The application of PCA resulted in three major factors with a total variance of 72.5%, explaining the 
causes of water quality degradation. With the help of dendrogram plots, CA classifies eight groundwater parameters and 54 
sampling locations into three major clusters with similar groundwater characteristics. According to the integrated approach 
of different water quality indexes with GIS, it is concluded that samples from wards 20, 44, and 47 are the most common and 
in the excellent-to-good category, and samples from wards 17, 34, and 43 are the most common and in the poor-to-very poor 
category. In view of the above, it is recommended to monitor the physicochemical parameters on a regular basis in order to 
safeguard groundwater resources and to prioritize management strategies in order to maintain the drinking quality of water.
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Introduction

Water is the elixir of life and is among the most precious 
resources. Water makes up over 70% of the body weight of 
practically all living things. Without water, life on this planet 
is impossible. About 97.2% of the water on the planet is 
saline, with only 2.8% being fresh water, of which about 20% 
is groundwater. Because it has qualities that surface water 
does not, groundwater is held in high esteem [1]. Ground-
water is the most significant supply of drinking water in the 
country, and it is essential for the country’s development. 
It also helps people meet their numerous needs. The unre-
stricted use of groundwater, urbanization, industrialization, 
and agricultural activities all result in a massive amount of 
contaminated water [2]. Also inappropriate use of chemical 
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fertilizers, particularly nitrogen fertilizers, to boost crop 
yields, as well as the transport of urban and industrial efflu-
ent are believed to be factors that raise nitrate concentrations 
in groundwater [3]. The purity of replenished water, atmos-
pheric showers, inland surface water, and underground geo-
chemical activities all have an effect on groundwater quality 
[4]. However, the nature and quantity of contaminants is 
determined by the geology of the river’s course and the qual-
ity of the water it supplies [5].

Groundwater quality (GWQ) assessment is of utmost 
importance due to the fact that consumption of polluted 
water is detrimental to people’s health, corporate growth, 
and societal welfare [4]. The quality of groundwater is deter-
mined using the water quality index (WQI). Horton [6] was 
the first to develop the WQI on the basis of a weighted arith-
metic approach. The WQI is a simple and effective approach 
for determining water quality [7]. It is a one-dimensional 
number that ranges from 0 to 100. It is a numeric rating 
system that shows the quality status of water (excellent, 
good, bad, etc.) at a specific location based on a variety of 
water quality factors. As a result, the WQI is being used as 
a crucial tool for comparing groundwater quality [8]. Many 
researchers have conducted studies over the last two dec-
ades using WQI to assess groundwater quality [9–11]. In 
the past, various indexing methods, such as Prati’s Index 
of Pollution, Bhargava’s Index, Oregon WQI, Dinius’ Sec-
ond Index, Weighted Arithmetic Water Quality Index (WA 
WQI), Canadian Council of Ministers of the Environment 
Water Quality Index (CCME WQI), and National Sanita-
tion Foundation (NSF), were adopted for the evaluation of 
groundwater quality [12]. However, in this study, based on 
the physico-chemical parameters available, four different 
indexing methods were adopted to determine the ground-
water quality of the study area, viz., Numerow’s pollution 
index (NPI), WA WQI, Groundwater Quality Index (GWQI), 
and CCME WQI.

In recent years, GIS technique has been used to monitor 
and evaluate groundwater quality frequently [13]. Ground-
water assessment has traditionally relied on laboratory test-
ing, but GIS have made it much easier to connect multiple 
databases [14]. The IDW interpolation method, along with 
the (GIS) technology, has been shown to be an effective 
approach for interpreting and analyzing spatial information 
of groundwater. It is an economical and time-saving method 
for converting large data sets into different spatial distribu-
tion maps and projections that indicate patterns, correla-
tions, and sources of pollutants [15]. In this study, the spa-
tial evaluation of all eight groundwater quality parameters 
was done with the help of the GIS technique. Also, spatial 
distribution maps based on different WQIs were prepared. 
Several studies have been conducted to assess groundwater 
quality using WQI within the context of a GIS framework 
[13, 15–17].

Multivariate statistical analysis (MSA) is an efficient tool 
for analyzing the properties of physico-chemical parameters 
in groundwater and determining the relationship between 
them [18]. These techniques could be used to find correla-
tions between parameters and sample locations, highlight 
relevant variables and sources that influence groundwater 
quality, and offer effective tools for both water resource man-
agement and groundwater quality monitoring [19]. In this 
study, MSA such as correlation analysis, principal compo-
nent analysis (PCA), and cluster analysis (CA) were adopted 
to elucidate the relationships between water quality variables 
and possible factors, as well as their effects on water quality. 
Sadat-Noori et al. [20] used correlation analysis to determine 
the correlation coefficient (r), which depicts the correlation 
between variables. PCA is a useful tool for elucidating mas-
sive data sets in complicated forms and reducing distortion 
in processes. It also encourages us to be aware of potential 
pollution sources or variables that affect water quality [21]. 
CA is used to examine the spatial groupings of the sampling 
locations. It is a widely used approach for grouping vari-
ables into clusters [22]. Various researchers have used this 
concept.

In the past, GWQ assessment was done with the help of 
different water quality index. Hamlat et al. [23] have adopted 
10 such WQIs to evaluate the water quality of the Tafna 
basin. The results from the study reveal that CCME WQI 
and BC WQI were the best indices to describe the water 
quality of the basin. Also, numerous studies have been car-
ried out using MSA to determine the GWQ. Acikel et al. 
[24] employed various MSA techniques such as FA, CA, 
and correlation analysis to determine the quality of water in 
the Azmak spring zone, Turkey. The study reveals that MSA 
is an important technique for describing the groundwater 
flow mechanism. However, with the recent advancement in 
technology such as GIS, much work has been done under the 
framework of GIS to evaluate the water quality. Ram et al. 
[25] used GIS and WQI for the assessment of groundwater 
quality in Mahoba district, Uttar Pradesh, India. The study 
concluded, with the help of WQI map, that the overall qual-
ity of water in the area is suitable for drinking. Recently, 
many combined approaches have been adopted for evaluat-
ing the GWQ. Roy et al. [26] suggested combined applica-
tion of WQI and MSA for evaluation of GWQ West Tripura, 
India.

In the present study area, groundwater is the primary 
source of drinking water. However, minimal work has been 
performed on GWQ assessment of Ujjain City [e.g., 27, 28]; 
not even a single research has been done with an integration 
of WQI, GIS, and MSA to assess the GWQ of this region. 
Thus, there is a research gap here, and more discussion is 
needed to have a better understanding of the extent and 
causes of GWQ degradation. In light of these considerations, 
the city of Ujjain in Madhya Pradesh, India, has been chosen 
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for the purpose of an exhaustive study using the integrated 
approaches of different water quality indexes with GIS and 
multivariate statistical analysis. The purpose of this study 
was to accomplish the aforementioned objectives: (1) to use 
different indexing methods and GIS techniques to analyze 
the groundwater quality for its suitability for drinking as per 
BIS 10500:2012; (2) to categorize all 54 samples as excel-
lent, good, or poor based on ratings from various indexing 
methods such as NPI, WA WQI, GWQI, and CCME WQI; 
(3) to develop thematic maps for individual physicochemical 
parameters and also WQI maps based on indexing methods 
using GIS; (4) to evaluate the disparities and clarification 
of a huge and complicated GWQ data set using MSA tech-
niques such as correlation analysis, PCA, and CA; and (5) to 
find the wards that are most common in all indexing methods 
that are unfit for the consumption of drinking water.

Study Area

Ujjain is a historic city in Madhya Pradesh, India, that sits 
on the banks of the Shipra River. During ancient times, the 
city was known as Ujjayini. It is one of the most populous 
cities in Madhya Pradesh. It serves as the administrative 
hub of the Ujjain district. The Ujjain Municipal Corpora-
tion comprises a total of 54 wards. The latitude and longi-
tude of the city are 23°10′58″N and 75°46′38″E, respec-
tively. The city of Ujjain covers a total area of 93  km2. 
According to Census India’s provisional reports, the popu-
lation of Ujjain City was 515,215 (5.15 lakhs) in 2011, and 
the forecasted population of Ujjain in 2022 is 5.70 lakhs, 
with a population growth rate of 10% over the decade. The 
city of Ujjain is segmented into pedeplains (shallow, deep, 
and moderate), residual hills, valley fills, flood plains, 
and other geomorphological features, a few of which have 
good groundwater potential, such as pedeplains (deep) 
and valley fills [28]. It has a pleasant monsoon climate. 

However, winter begins in mid-November and is comfort-
ing and cool, with a daytime temperature of 20 °C, while 
the night-time temperature can drop dramatically. The 
annual rainfall of Ujjain city is 892.9 mm. On average, 
the elevation is 491 m. The temperature ranges between 
8 and 40 °C.

Materials and Methodology

Sampling and Analysis

In this study, eight physicochemical properties such as pH, 
turbidity, electrical conductivity (EC), total dissolved solids 
(TDS), alkalinity, hardness, chloride  (Cl−), and fluoride  (F−) 
were selected from 54 groundwater samples that were col-
lected from dug wells, bore wells, and hand pumps, which 
were assessed and compared with BIS 10500:2012 for drink-
ing purposes. The samples were collected at distances with 
reference to other locations to provide a broad investigation 
of the study area’s water quality. The samples were gath-
ered in clean and dry plastic bottles from different sources 
after draining the water for a few minutes. All 54 samples 
were examined for the eight parameters using the proce-
dures outlined by the American Public Health Association 
(APHA 2017). Table 1 summarizes the methodology, which 
comprises the analytical techniques, software, and instru-
ments used to complete the work. The overall evaluation 
of GWQ was done using four different indexing methods, 
such as NPI, WA WQI, GWQI, and CCME WQI. Moreover, 
ArcGIS 10.8 was used to prepare the digitized base map of 
the study area as shown in Fig. 1. Using the spatial analyst 
tool from the tool box, Inverse Distance Weighted (IDW) 
technique was selected for preparing interpolated maps. The 
MSA techniques such as correlation analysis, PCA, and CA 
were executed using Minitab statistical software.

Table 1  Analytical techniques 
adopted for analysis

Parameters Methods

pH Electrometric using digital pH meter
EC (µmho/cm) Electrometric using digital conductivity meter
Hardness (mg/l) Titration by EDTA
TDS (mg/l) Electrometric using TDS Meter Hanna instruments
Alkalinity (mg/l) Titration by  H2SO4

Chloride (mg/l) Titration by  AgNO3

Fluoride (mg/l) Spectrophotometric using UV–Vis spectrophotometer
Turbidity (NTU) Turbidimetric using digital nephaloturbidometer
Statistical analysis Minitab statistical software
Karl Pearson’s correlation analysis MS Excel 2016
WQI method calculation Drinking standards of BIS 10500:2012
Spatial distribution maps Inverse Distance Weighted (IDW) interpolation technique
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Methodology

The methodological flowchart illustrating the details of 
various steps involved in evaluating the GWQ is shown 
in Fig. 2. The methodological details for GIS analysis and 
mapping of groundwater parameters, GWQ modeling, and 
GWQ analysis have been presented in the flowchart.

GIS Analysis and Mapping of Groundwater 
Parameters

GIS aids in the interpolation of various experimental data 
in order to create thematic and spatial maps. It allows for 
the statistical development of a relationship in order to sum-
marize the GWQ of the area in a simplified visual form. 

Fig. 1  Index map of study area
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The most commonly used and acknowledged methods for 
generating spatial distribution maps are Inverse Distance 
Weighted (IDW), kriging, and cokriging. However, in this 
study, the (IDW) interpolation method in ArcGIS-10.8 soft-
ware has been utilized to create spatial distribution maps of 
all parameters. The IDW interpolation method calculates 
undetermined values in relation to a distance, with the clos-
est point receiving more weightage and decreasing as the 
distance increases. Furthermore, numerous researchers [25, 
29] had employed this technique to create spatial distribu-
tion maps for different parameters. Table 2 shows statistical 
analysis of analyzed physicochemical properties. Table 3 
shows NPI calculation for ward 1. Table 4 shows classifica-
tion of 54 groundwater samples for drinking based on WQI 
values obtained using different indexing methods.

Groundwater Quality Modeling

In this study, the GWQ of all 54 samples were modeled 
using four indexing methods: NPI, WA WQI, GWQI, and 
CCME WQI [30–33]. All these methods are discussed in 
detail in the following sections.

NPI

The NPI was created to measure the impact of each indi-
vidual particle and is used to calculate the total harm 
caused by pollution. It is an overall pollutant indicator 
that takes into account the combined influence of several 
pollutants for a given application. For the establishment 
of an index for any given function, such as drinking and 

Fig. 2  Methodological flow-
chart

Table 2  Statistical analysis of analyzed physicochemical properties

Parameter Minimum Maximum Mean Standard 
deviation

pH 6.8 8.2 7.335 0.349
EC (µmho/cm) 195 8673 1288.407 1332.390
Hardness (mg/l) 148 990 395.22 203.352
TDS (mg/l) 125 5604 831.907 854.581
Alkalinity (mg/l) 200 532 307.019 73.229
Chloride (mg/l) 38 1320 270.519 291.621
Fluoride (mg/l) 0.4 1.7 0.77 0.256
Turbidity (NTU) 0.1 5.9 0.549 0.775

Table 3  Calculation of NPI for Ward No. 1

Param-
eters

Standard 
value 
(Sn)

Observed 
value (Cn)

Pollu-
tion index 
 (PIn = Cn/Sn)

NPI = ∑ 
 PIn

Status

pH 8.5 7.12 0.84
Turbidity 5 0.2 0.04
EC 300 1081 3.6
TDS 500 690 1.38 12.82 Good
Alkalinity 200 532 2.66
Chloride 250 310 1.24
Hardness 300 660 2.2
Fluoride 1 0.86 0.86
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irrigation, the index value includes relevant particles 
[30]. Based on NPI the water quality is classified into five 
classes [Excellent (< 10), Good (10–20), Poor (20–30), 
Very Poor (30–40), Unsuitable (> 40)]. Gauns et al. [34] 
have adopted this approach to determine the quality of 
drinking water. NPI is calculated with the help of the fol-
lowing equation:

where  PIn is the nth parameter’s pollution index, Cn is the nth 
parameter’s observed value, Sn is the nth parameter’s permis-
sible value, and NPI is the Nemerow’s pollution index.

WA WQI

WA WQI is used to determine the quality of water for 
drinking by using the selected physicochemical param-
eters. In this study, eight parameters were taken into 
consideration to compute the WA WQI. The quantitative 
assessment of GWQ using WA WQI was carried out using 
Brown’s method [31]. Based on WA WQI the water qual-
ity is classified into five classes [Excellent (0–25), Good 

(1)PIn = Cn∕Sn

(2)NPI =
∑

PIn

(26–50), Poor (51–75), Very Poor (76–100), Unsuitable 
(> 100)]. This approach has been widely adopted in the 
past by many researchers [35, 36]. The following steps 
were used to calculate the WA WQI:

1. Unit weight (Wn): To calculate Wn, a quantity which 
is inversely proportional to Sn of the suitable param-
eter was utilized. The Wn of each parameter is given in 
Table 5.

where Wn is the nth parameter’s unit weight, Sn is the nth 
parameter’s standard value, and K is the proportionality 
constant.

2. Subindex (qn): Subindex is calculated by the following 
equation:

where Vn is the mean value of nth parameter, Sn is the 
standard value of the nth parameter, and Vo is the actual 
value of parameter.

3. By linearly combining the qn and Wn, the overall water 
quality index is calculated.

(3)Wn = K∕Sn

(4)qn =

(

Vn − Vo

)

(

Sn − Vo

) × 100

Table 4  Classification of 54 groundwater samples for drinking based on WQI values obtained using different indexing methods [30–33]

Method Classes (rating) Ward no No. of 
samples

% of  
samples

NPI Excellent (< 10) 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 35, 36, 
40, 44, 45, 47, 49, 50, 51, 54

31 57

Good (10–20) 1, 2, 6, 7, 10, 16, 18, 24, 25, 26, 27, 38, 39, 41, 42, 46, 48 19 35
Poor (20–30) 37, 43 2 4
Very Poor (30–40) 34 1 2
Unsuitable (> 40) 17 1 2

WA WQI Excellent (0–25) 44, 51 2 4
Good (26–50) 1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 15, 16, 18, 20, 23, 24, 26, 28, 29, 32, 35, 37, 38, 46, 

47, 48, 49, 50, 53
29 53

Poor (51–75) 7, 9, 11, 14, 17, 19, 22, 21, 25, 27, 30, 31, 33, 34, 36, 40, 41, 42, 43, 52, 54 21 39
Very Poor (76–100) 39, 45 2 4
Unsuitable (> 100) - - -

GWQI Excellent (< 50) - - -
Good (50–100) 5, 13, 20, 21, 22, 23, 29, 31, 33, 44, 47, 50, 51, 54 14 26
Poor (100–200) 1, 2, 3, 4, 8, 9, 10, 11, 12, 14, 15, 19, 24, 26, 28, 30, 32, 35, 36, 38, 40, 45, 48, 49, 

53
25 46

Very Poor (200–300) 6, 7, 25, 27, 39, 41, 42, 46, 52 9 17
Unsuitable (> 300) 16, 17, 18, 34, 37, 43 6 11

CCME WQI Excellent (95–100) - - -
Good (80–94) 20, 44, 47 3 6
Fair (65–79) 5, 8, 11, 13, 14, 21, 22, 23, 28, 29, 30, 31, 32, 33, 36, 45, 50, 51, 54 19 35
Marginal (45–64) 2, 3, 4, 5, 9, 10, 12, 15, 19, 24, 25, 26, 35, 38, 40, 41, 42, 46, 48, 49, 53 21 39
Poor (0–44) 1, 7, 16, 17, 18, 27, 34, 37, 39, 43, 52 11 20
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GWQI

This method of determining the WQI is easy and trustwor-
thy. GWQI is among the most extensively employed index 
to assess GWQ for drinking purposes throughout the world 
[33]. GWQI classify the water quality into five classes 
[Excellent (< 50), Good (50–100), Poor (100–200), Very 
Poor (200–300), Unsuitable (> 300)]. It is one of the most 
widely adopted approach; Agarwal et al. [37] have employed 
GWQI for evaluating quality of water. The following five 
steps were carried out to find GWQI:

1. Assigning weightage (wi): To calculate the GWQI, eight 
parameters were selected: pH, EC, TH, TDS, alkalin-
ity,  Cl−,  F−, and turbidity. As stated in Table 5, param-
eters were assigned a weightage (wi) on a scale of 1 to 5 
depending on their relative significance to GWQ.

2. Calculation of relative weights (Wi): The following 
expression was used to calculate Wi for each parameter. 
The Wi of each parameter is given in Tables 6, 7 and 

(5)WQI =
Σqn

ΣWn

8 as Tables illustrating/showing calculation of WA WQI, 
GWQI, and CCME WQI for ward 1 respectively.

3. Calculating quality rating scale (Qi): It represents the per-
centage of the parameter’s actual value to its standard value.

where Ci is the ith parameter’s actual value and Si is the 
ith parameter’s standard value.

4. Subindex  (SIi): It is calculated for an individual param-
eter and is given by the following equation:

5. Calculation of GWQI: By combining all of the subin-
dices for each parameter, an overall groundwater quality 
index was calculated.

(6)Wi =
wi

∑n

i=1
wi

(7)Qi =
Ci

Si
× 100

(8)SIi = Wi × Qi

(9)GWQI =
∑

SIi

Table 5  Unit weights assigned to each parameter

Parameter Unit weights (Wi)

NPI WA WQI GWQI CCME WQI

pH No weights are assigned 0.0882 0.0455 Each variable is given the same amount of weight
Turbidity 0.15 0.2273
EC 0.0025 0.1818
TDS 0.0015 0.1364
Alkalinity 0.00375 0.0909
Chloride 0.003 0.1364
Hardness 0.0025 0.0909
Fluoride 0.75 0.0909

Table 6  Calculation of WA 
WQI for Ward No. 1

Parameters Standard value (Sn) Observed 
value (Vo)

Quality 
rating 
(qn)

Unit weight (wn) ∑ qn.wn WA WQI Status

pH 6.5–8.5 7.12 8 0.0882 0.080
Turbidity 5 0.2 4 0.15 0.090
EC 300 1081 360 0.00225 0.00639
TDS 500 690 138 0.0015 0.00321 44.85 Good
Alkalinity 200 532 266 0.00375 0.0091
Chloride 250 310 220 0.0025 0.0059
Hardness 300 660 124 0.003 0.0063
Fluoride 1 0.86 86 0.75 1.451
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The CCME WQI

The CCME WQI is centered upon several water uses, such 
as drinking, leisure, agriculture, animals, and sea species. 
The CCME WQI is a standardized approach for assessing 
water quality that was developed by Canadian authorities. A 
committee constituted inside the CCME designed the WQI. 
The index value is graded on a scale of 0 to 100, with 0 
being the lowest and 100 representing the finest water qual-
ity. CCME WQI divides the quality of water into five classes 
[Excellent (95–100), Good (80–94), Fair (65–79), Marginal 
(45–64), Poor (0–44)]. Wagh et al. [38] have adopted CCME 
WQI to determine the quality status of water. The CCME 
WQI mathematical formula is shown below [32].

where F1 is the number of variables with unmet aims (failed 
variables), F2 is the fraction of individual tests with failed 
tests, and F3 is the percentage of failed test values with 
unmet objectives.

1. Calculating scope value (F1):where

(10)CCMEWQI = 100 −

�
√

F12 + F22 + F32

1.732

�

2. Calculating frequency value (F2):where

3. Calculating amplitude value (F3):where

GWQ Analysis Using MSA

MSA

Simeonov et al. [39] suggest that MSA is the most effective 
method for avoiding misinterpretation of large amounts of 

(11)F
1
=

No. of failed variables

No. of variables
× 100

(12)F
2
=

No. of failed test

No. of test
× 100

(13)F
3
=

nse

0.01 nse + 0.01

(14)nse =

∑n

i=1
excursion

Total no. of test

(15)Excursion =
Failed test value

Objective

Table 7  Calculation of GWQI 
for Ward No. 1

Parameters Standard value (Si) Observed 
value (Ci)

Quality rating 
(Qi) = Ci/Si × 100

Relative 
weight 
(Wi)

Subindex 
 SIi = Wi × Qi

GWQI Status

pH 6.5–8.5 7.12 83.7647 0.0455 3.81
Turbidity 5 0.2 4 0.0909 0.36
EC 300 1081 360.3333 0.2273 81.89
TDS 500 690 138 0.1364 18.82 193.81 Poor
Alkalinity 200 532 266 0.0909 24.18
Chloride 250 310 124 0.1364 16.91
Hardness 300 660 220 0.1818 40.00
Fluoride 1 0.86 86 0.0909 7.82

Table 8  Calculation of CCME 
WQI for Ward No. 1

Parameters Observed 
value (Vo)

Standard 
value 
(Sn)

Scope 
value 
(F1)

Frequency 
value (F2)

Amplitude value (F3) CCME WQI Status

pH 6.5–8.5 7.12
Turbidity 5 0.2
EC 300 1081
TDS 500 690 62.5 62.5 43.19529 43.19 Marginal
Alkalinity 200 532
Chloride 250 310
Hardness 300 660
Fluoride 1 0.86
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complex pollution monitoring data. Correlation analysis, 
PCA, and CA were performed to evaluate spatial variability 
and discover pollution sources. In this study, these methods 
were used on 54 samples for eight variables. To eliminate 
misclassification due to dimensionality differences, all 8 
variables were standardized by computing their standard 
scores (z-scores) as follows:

where Zi is the standard score of ith variables, Xi is the actual 
value of ith variable, X is the mean value of variable, and SD 
is the standard deviation of variable [40].

Correlation Analysis

Correlation analysis is a popular and helpful statistical tech-
nique for evaluating the strength of a relationship between 
two variables. In this study, the correlation coefficients (r) 
of the variables were employed to determine the correla-
tion between them. The correlation coefficients of all the 
8 variables were determined using Karl Pearson’s correla-
tion matrix and are presented in Table 9. Its value (r) can 
be positive or negative, ranging from − 1 to 1 [41]. A few 
correlation coefficients are positive, expressing similarity in 
the same direction, and a few are negative, expressing dis-
similarity, as seen in Table 10, where + 1 denotes a perfect 

(16)Zi =
Xi − X

SD

positive relationship and 0 shows no relationship between 
the correlated variables.

PCA

PCA describes the variation of a vast data set of variables 
by compressing them into a reduced data set of independent 
variables [42]. PCA decreases the dimensionality of data 
by creating new hidden variables that are perpendicular and 
uncorrelated to each other by combining original data in a 
linear manner [43]. From the covariance matrix of given 
variables, it derives the eigenvalues and eigenvectors [44]. 
The PCs’ eigenvalues represent their associated variance, 
whereas the loadings represent the given variable contribu-
tions to the PCs [45]. The correlation matrix determines how 
well each constituent’s variance may be described by their 
relation with one another [46].

CA

CA is a renowned classification tool that aims to determine 
either the distance or similarity between the variables to be 
grouped. It is commonly shown with the help of a dendro-
gram, which is a two-dimensional graph that displays a clear 
pictorial description of the process [47]. The distance between 
the parameters of samples is studied using hierarchical clus-
ter analysis (HCA). The points that are the most similar are 

Table 9  Karl Pearson’s 
correlation matrix between the 
parameters

The significance of “bold” emphasis that values are showing strong correlation between the corressponding 
parameters. For example 0.9996 is showing strong correlation between EC and TDS

Parameter pH Turbidity EC TDS Alkalinity Chloride Hardness Fluoride

pH 1
Turbidity  − 0.1754 1
EC  − 0.2236 0.4181 1
TDS  − 0.2244 0.4059 0.9996 1
Alkalinity  − 0.1538  − 0.0290 0.1093 0.1081 1
Chloride  − 0.2784 0.4605 0.7067 0.7028 0.2083 1
Hardness  − 0.0853 0.1421 0.4856 0.4826 0.6015 0.4470 1
Fluoride 0.0599  − 0.0457 0.0457 0.0455 0.0562  − 0.1095  − 0.1372 1

Table 10  Summary of 
parameters based on the BIS 
10500:2012 permissible limit 
[34, 53]

Parameter Permissible limit for 
drinking
BIS 10500:2012

No. of samples 
under permissible 
limit (%)

No. of samples 
over permissible 
limit (%)

Undesired effect

pH 6.5–8.5 100 0 Taste
EC 300 µmho/cm 1.85 98.15 Gastrointestinal irritation
Hardness 300 mg/l 16.67 83.33 Corrosion tendency and scaling
TDS 500 mg/l 37.04 62.96 Taste, discoloration of water
Alkalinity 200 mg/l 1.85 98.15 Taste
Chloride 250 mg/l 74.08 25.92 Taste, corrosion in pipes
Fluoride 1 mg/l 90.75 9.25 Skeletal fluorosis
Turbidity 5 NTU 98.15 1.85 Cloudiness
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Fig. 3  Spatial distribution map 
of water quality parameters. (a) 
pH. (b) EC. (c) Hardness. (d) 
TDS. (e) Alkalinity. (f) Chlo-
ride. (g) Fluoride. (h) Turbidity

336 Water Conservation Science and Engineering (2022) 7:327–349



1 3

joined together to form a cluster, and this is continued till all 
the points fit into the same cluster [48]. In this study, Ward’s 
method, using squared Euclidean distances, is employed.

Results

Groundwater Quality Parameters

As shown in Fig. 3a–h, groundwater quality mapping was 
implemented using IDW in ArcGIS 10.8 for the eight phys-
icochemical parameters. The several parameters taken into 
account in the study are explained in the following lines:

pH The amount of hydrogen ions in water is indicated by the 
pH, which is neutral. It represents the acidic or basic nature 
of water. For drinking purposes, the pH must be between 6.5 
and 8.5 (BIS, 2012). The pH of pure water is neutral, indicat-
ing that hydrogen ions are present. However, the pH in the 
collected groundwater sample varies from 6.8 (minimum) to 
8.2 (maximum), indicating that it is well within the permis-
sible range (6.5 to 8.5) as shown in Fig. 3a.

EC The amount of dissolved material in a medium deter-
mines the EC; the more dissolved material in a medium, the 
higher the EC. High EC values can be caused by a variety 
of geochemical processes, such as reverse and direct ion 
exchange, significant evaporation, silicate degradation, and 
rock–water interaction [49]. However, for drinking purposes, 

EC should not exceed 300 µmho/cm. The EC in this study 
ranges from 8673 to 195 µmho/cm as shown in Fig. 3b.

Hardness It refers to the quantity of calcium and magnesium 
ion dissolved in the water. The total hardness of water is a 
vital parameter in the household sector. It occurs as a result 
of the existence of calcium and magnesium in the body. The 
maximum hardness that can be tolerated is 300 mg/l. Range 
of hardness is from 148 to 990 mg/l as shown in Fig. 3c.

TDS The majority of TDS is made up of inorganic salts and 
a little quantity of organic molecules dissolved in water. 
High TDS levels in water can alter the taste and hardness of 
the water. On the other hand, water with exceptionally low 
TDS has a bland taste [8]. The acceptable TDS for drinking 
water, according to the BIS, is less than 500 mg/l. It lies in 
the range of 125 to 5604 mg/l as shown in Fig. 3d.

Alkalinity It is caused by the presence of carbonate, bicar-
bonate, and hydroxide ions in the water. Water has a better 
capacity to neutralize acids when it has a higher alkalinity, 
and vice versa. Alkalinity and bicarbonate are associated in 
neutral water [50]. It should not exceed 200 mg/l. The taste 
of water becomes harsher further than this point. For the 
study area, alkalinity ranges from 200 to 532 mg/l which 
can be seen in Fig. 3e.

Chloride The higher the chloride concentration in water, 
the more dangerous it is to human health. The associated 

Fig. 4  Plot showing NPI for 
each ward
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cation influences the taste threshold of the chloride ion in 
water. Geogenic or anthropogenic processes seems to be to 
responsible for the increasing Cl concentrations in ground-
water [51]. Chloride levels should not exceed 250 mg/l. The 
amount of chloride in this study varies from 38 to 1320 mg/l 
as shown in Fig. 3f.

Fluoride It is primarily found in water as a result of geologi-
cal processes. Fluoride in high concentrations (> 1.0 mg/l) 
can cause skeletal fluorosis. The concentration of fluoride in 
the study ranges from 0.4 to 1.7 mg/l, as shown in Fig. 3g.

Turbidity It describes the foggy appearance of water caused 
by particles, often known as “suspended matter.” Drinkable 
water that is turbid loses its aesthetic appeal. Turbidity can 
have a variety of appearances and colors [52]. For drink-
ing water, the maximum turbidity allowed is 5 NTU. The 
turbidity in this study area ranges from 0.1 to 5.9 NTU as 
shown in Fig. 3h.

Integrated Approach of Different Water Quality 
Indices with GIS

NPI

NPI was determined for the 54 samples for the provided 
water quality parameters. It also takes into account the 
effects of a number of variables that influence water quality. 
A pollution index for individual parameters was determined 
for each ward. The summation of the pollution indexes of 
all parameters in each ward gives the NPI value (Fig. 4). 
Table 3 shows the NPI calculation for Ward 1. The obtained 
NPI range is 4.88 to 49.91, i.e., from excellent to unsuitable. 
Figure 4 depicts the variation of NPI throughout the wards. 
The categorization of water quality was divided into five 
categories depending on the water quality rating given in 
Table 4. As per the NPI ratings, out of the 54 samples, 31 fall 
into the excellent category, 19 fall into the good category, 2 
fall into the poor category, 1 in the very poor category, and 1 

Fig. 5  NPI map for Ujjain City
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in the unsuitable category. The percentage wise distribution 
of samples shows that “Excellent Water” is found in 57% of 
samples, “Good Water” is 35%, “Poor Water” is 4%, “Very 
Poor Water” is 2%, and “Unsuitable Water” is 2%, which can 
be seen in Fig. 6a. To create a water quality index map in 
ArcGIS, NPI values were interpolated over the entire study 
region. The developed map can be seen in Fig. 5. The map 
clearly indicates that wards 34 and 17 lie in very poor to 
unsuitable categories.

The WA WQI

According to WA WQI, the readings show that numerous 
parameters have a greater impact on water quality than a sin-
gle one (Fig. 7). The unit weights (Wi) of all parameters are 
given in Table 5. The WQI calculation for Ward 1 is shown 

in Table 6. The obtained WQI range is 23.7 to 90, i.e., from 
excellent to very poor categories. Figure 7 depicts the vari-
ation of WA WQI throughout the wards. The water quality 
ratings in Table 4 for WA WQI were used to classify the 
entire area. According to the results of the weighted arithme-
tic method, 2 samples fall into the excellent category, 29 fall 
into the good category, 21 fall into the poor category, and 2 
into the very poor category. The percentage wise distribution 
of samples reveals that 4% of samples are Excellent Water, 
53% are Good Water, 39% are Poor Water, and the remain-
ing 4% are Very Poor Water, which can be seen in Fig. 6b. 
The IDW tool in ArcGIS was used to interpolate spatial data 
based on location coordinates and quality parameters. Fig-
ure 8 depicts the WA WQI map interpolation across the study 
area. The map clearly indicates that wards 39 and 45 lie in 
the very poor category.

Fig. 6  Percentage wise status of water quality based on (a) NPI, (b) WA WQI, (c) GWQI, and (d) CCME WQI
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GWQI

GWQI was determined for the 54 samples for the provided 
water quality parameters. An overall GWQI was calcu-
lated by combining all of the subindices for each param-
eter. The Wi of all individual parameters is specified in 
Table 5. Table 7 shows the GWQI calculation for Ward 1. 
The obtained GWQI range is 60.04 to 934.08, i.e., from 
good to unsuitable categories. Figure 9 depicts the varia-
tion of GWQI throughout the wards. The water quality rat-
ings in Table 4 for GWQI were used to classify the entire 
area. According to the results, 14 samples are in the good 
category, 25 are in the poor category, 9 fall into the very 
poor category, and 6 fall into the unsuitable category. The 
percentage wise distribution of samples shows that 26% of 
samples are Good water, 46% are Poor water, 17% are Very 
poor water, and the remaining 11% are Unsuitable water, 
which can be seen in Fig. 6c. The IDW tool in ArcGIS was 
used to interpolate spatial data based on location coordi-
nates and quality parameters. Figure 10 depicts the GWQI 
map interpolation across the study area. The map clearly 
indicates that wards 16, 17, 18, 34, 37, and 43 lie in the 
unsuitable category.

The CCME WQI

The CCME WQI was calculated for all samples gathered 
from 54 wards of Ujjain City. Table 8 shows the CCME WQI 

calculation for Ward 1. The obtained CCME WQI range 
is 8.52 to 89.43, i.e., from good to poor categories. Fig-
ure 11 depicts the variation of CCME WQI throughout the 
wards. The categorization of CCME WQI was done into five 
categories as per the rating given in Table 4. CCME WQI 
revealed that out of 54 samples, 3 samples fall into the good 
category, 19 fall into the fair category, 21 fall into the mar-
ginal category, and 11 into the poor category. The percent-
age wise distribution reveals that just 6% of samples were in 
the good category. Thirty-five percent of the samples were of 
fair quality. Similarly, 39% of samples were marginal, while 
20% of samples were found to be poor, which can be seen 
in Fig. 6d. To create a water quality index map in ArcGIS, 
CCME WQI values were interpolated over the entire study 
region. The developed map can be seen in Fig. 12. The map 
clearly indicates that wards 1, 7, 16, 17, 18, 27, 34, 37, 39, 
43, and 52 lie in the poor category.

MSA

MSA such as correlation analysis, PCA, and CA were used 
to evaluate variations and interpret a large complicated 
GWQ data set. MSA allows for the extraction of hidden 
information from a data set concerning the environment’s 
potential effects on water quality. In this study, these meth-
ods were used on 54 samples for 8 variables. MSA was per-
formed on a physicochemical data matrix. Minitab statistical 
software was used to accomplish the statistical analysis.

Fig. 7  Plot showing WQI for 
each ward
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Correlation Analysis

Table 9 shows the developed Karl Pearson’s correlation 
matrix using MS Excel 2016 for the eight analyzed physico-
chemical parameters. Among these, the most positive cor-
relation (0.9996) was found between EC and TDS of water 
samples, which supports the fact that conductivity measure-
ment is commonly used to estimate TDS, while the most 
negative correlation (− 0.2784) was found between pH and 
chloride. According to the results, strong positive correla-
tions are observed between EC, TDS, and chloride; TDS and 
chloride; and alkalinity and hardness. Except for fluoride, 
pH is negatively correlated to all the parameters. Apart from 
alkalinity and fluoride, turbidity has a positive relationship 
with all other parameters. Chloride is positively correlated 
to hardness and negatively correlated to fluoride. Hardness is 
negatively correlated with fluoride. EC, TDS, and alkalinity 
are the parameters that are positively correlated with other 
parameters. The most significant correlation is between EC, 

TDS, and alkalinity, which has a greater impact on the total 
assessment of groundwater quality than any other parameter.

In Table 10, the parameter’s standard permissible limit 
as per BIS 10500:2012 is stated. The pH value of drinking 
water is the concentration of  H+ ions, which defines the 
water as acidic or basic. It is observed that all of the sam-
ples were found to be in the BIS range of 6.5 to 8.5, and 
the majority of them were somewhat alkaline in nature. 
The turbidity ranged from 0.1 to 5.9 NTU. The turbidity 
of all samples is below the BIS permissible level of 10 
NTU. From an aesthetic standpoint, turbid water is unap-
pealing. The TDS is calculated using the EC of water. 
When the EC of water is high, the TDS value is similarly 
high. It is seen that the permissible limit is exceeded in 
98.15% of EC samples and 62.96% of TDS samples. At 
ward number 17, the highest concentration of TDS was 
reported to be 5604 mg/l. Total alkalinity lies between 
200 mg/l and 532 mg/l. Alkalinity is limited to 200 mg/l 
by the BIS. The permissible limit is exceeded by 98.15% 

Fig. 8  WA WQI map for Ujjain 
City
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of alkalinity samples. The main source of alkalinity is dis-
solved carbon dioxide, which is found in large concen-
trations in most water sources. The permissible limit is 
exceeded by 83.33% of the hardness sample from the study 
area. At ward number 37, the maximum concentration of 
total hardness was reported to be 990 mg/l. The permissi-
ble limit for chloride and fluoride was exceeded in 25.92% 
and 9.25% of the samples, respectively.

PCA

In the present study, PCA was conducted on the correlation 
matrix of a water sample consisting of 8 physico-chemical 
parameters. It is used to identify individual loadings of eight 
variables in water quality. Eigenvalues are commonly used 
to obtain principal components (PCs). The eigenvalue of a 
significant variable defines its maximum value. The most 
significant eigenvalues are those greater than 1. PCs with 
eigenvalues of less than 1 were excluded due to their low 
essentiality [54]. As seen in a scree plot diagram (Fig. 13), 
the first three factors have eigenvalues greater than 1. After 
the third eigenvalue, the slope begins to decline slightly. As 
a result, only the first three components have been decided, 
with a total variance of 72.5%. Table 11 shows the percent-
age variance, eigenvalues, and loadings of three PCs. In 
addition, these loadings were classified as strong (> 0.75), 
moderate (0.75–0.50), and weak (0.50–0.30) [55]. PC1 fea-
tured positive loadings for turbidity, EC, TDS, alkalinity, 

chloride, and hardness and negative loadings for pH and flu-
oride, accounting for 42.2% of the overall variance. This also 
suggests that these factors were tightly associated with one 
another, as evidenced by the correlation matrix, which signi-
fies complete dominance in terms of water quality influence. 
Because of the dominance of solids in the groundwater, the 
first principal component, PC1, is referred to as the “solid 
component.” Water quality was influenced the most by EC, 
TDS, and chloride in PC1. PC2 explicates about 17% of the 
total variance. Except pH and hardness, all other variables 
are positively loaded, with turbidity playing a significant 
role. PC3 had positive coefficients for turbidity, chloride, 
and hardness but was negatively loaded with pH, EC, TDS, 
alkalinity, and fluoride, accounting for only 13.3% of the 
total variation. It could be attributed to the dissolving of 
solids, which results in water turbidity and contamination 
due to soluble salts of chloride.

Cluster Analysis

Water samples were grouped using cluster analysis at each 
sampling location based on chemical and physical charac-
teristics. All variables were standardized for hierarchical 
cluster analysis (HCA), and dendrograms were generated 
using Ward’s technique with Euclidean distances. Using 
eight variables (pH, EC, TH, TDS, alkalinity,  Cl−,  F−, 
and turbidity), HCA was applied to the 54 sampling loca-
tions. The results are depicted in Fig. 14 as dendrograms. 

Fig. 9  Plot showing GWQI for 
each ward
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Figure 14a shows a dendrogram depiction of parameter 
cluster analysis. Here, cluster 1 includes two parameters: 
pH and fluoride. Turbidity, EC, TDS, and chloride are the 
four parameters covered by Cluster 2. Cluster 3 includes 
alkalinity and hardness.

Figure 14b shows a dendrogram view of the cluster anal-
ysis of sampling locations. CA creates three clusters from 
54 sampling locations. Cluster 1 consists of 23 sampling 
locations, which are grouped into two subgroups (1, 4, 6, 
8, 10, 16, 2, 3, 5, 12, 13, 15, 18) and (7, 9, 11, 14, 17, 20, 
19, 22, 23, 26). Because 7 samples are of poor quality and 
16 are of good quality, this cluster is classified as a mod-
erately polluted zone. Cluster 2 is made up of 14 sampling 
locations that are divided into two subgroups (21, 25, 27, 
30, 31, 33, 36, 41, 40, 42) and (34, 43, 39, 45). Because 12 
samples are of poor quality and two samples are of very 
poor quality, this cluster is referred to as a highly polluted 
zone. Cluster 3 is formed of 17 sampling stations divided 
into two subgroups (24, 28, 29, 32, 35, 37, and 38) and (44, 
51, 46, 47, 48, 49, 50, 52, 54, 53). This cluster is known 

as a “low-pollution zone.” There are 13 stations with good 
quality (24, 28, 29, 32, 35, 37, 38, 46, 47, 48, 49, 50), two 
stations with excellent quality (44, 51), and two stations 
with poor quality (52, 54).

Discussion

The results revealed that the quality of groundwater varies 
considerably depending on the location. After evaluating 
NPI, WA WQI, GWQI, and CCME WQI, it was deter-
mined that majority of the water samples were found to 
be safe for drinking. Because numerous physicochemical 
properties of the samples are below acceptable limits as 
per BIS 10500:2012, the WQI value is likewise lower, 
indicating that the water is fit for human consumption. 
Also, a spatial distribution map of the WQI were devel-
oped with the help of ArcGIS 10.8 software which can be 
seen in Figs. 5, 8, 10, and 12, demonstrating which parts 
of the groundwater are fit for drinking. However, all four 

Fig. 10  GWQI map for Ujjain 
City
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indexing methods and WQI maps reveal that samples from 
wards 20, 44, and 47 are in the excellent-to-good category, 
and samples from wards 17, 34, and 43 are in the poor-to-
very poor category. As a result, the groundwater samples 
collected from these three wards are unfit for direct human 
consumption and must be treated before being consumed. 
This is despite the fact that numerous researchers have 
attempted to apply and compare various WQI methods. 
The findings of this study when it comes to the relative 
responses of these four WQI methods are in good accord-
ance with some other publications [47, 56, 57].

As shown in Fig. 3a–h, thematic maps of all groundwater 
quality parameters have been created. The pH distribution 
pattern shows the presence of alkaline groundwater except 
for the central part (Fig. 3a). The EC is at 8673 mmhos/cm, 
with tiny spots in the central east (Fig. 3b). Due to inad-
equate fluxing and severely worn rock formations, a tiny 
patch in the city’s central east exhibits TDS of 5604 mg/l in 
groundwater (Fig. 3d). This is in accordance with the higher 
EC (strong positive relation between EC and TDS). The 
alkalinity map clearly shows that it is largely in the middle 
portion of the city, with a few higher values in the northern 
and southern parts (Fig. 3e). The alkalinity of groundwater 
and hardness are found to have a strong positive correlation. 
This is reflected in the hardness map (Fig. 3c), which shows 
that the study area has hard groundwater. Chloride levels 
are highest in the central east, at 1320 mg/l, and it is clearly 
visible as a small patch (Fig. 3f). The correlation matrix 

clearly shows that EC, TDS, and chloride have a high posi-
tive correlation, which is evident in their spatial distribution 
maps.  F− is an essential parameter that is found in isolated 
patches. The maximum concentration of 1.7 mg/l is found 
in the central part of the area (Fig. 3g). Keshavarzi et al. 
[58] state that fluoride in high concentrations (> 3.0 mg/l) 
can cause skeletal fluorosis. The turbidity map illustrates 
that the highest values are found in the eastern portion of 
the city, while the lowest values are seen in the western and 
central parts (Fig. 3h).

Positive values of the correlation coefficient indicate a 
strong and direct relationship between variables, whereas 
negative values indicate inverse relationship. As per Tir-
key et al. [59] correlation analysis, 0.9 ≤ R2 ≤ 1 is consid-
ered to be strong, 0.9 ≤ R2 ≥ 0.5 is moderate, and R2 < 0.5 
is poor. The obtained results show a strong correlation 
of 0.9996 between EC and TDS, a moderate correla-
tion between EC and chloride 0.7067, TDS and chloride 
0.7028, and alkalinity and hardness (0.6015). The key 
contributors to water quality degradation are EC, alka-
linity, hardness, and TDS as per Table 10, which reveals 
the summary of parameters based on the BIS 10500:2012 
permissible limits. The high concentration of TDS is due 
to an increase in salts containing carbonates, bicarbonates, 
sulfates, calcium, chloride, sodium, potassium, and other 
ions [60]. Because these parameters can reduce water clar-
ity, decrease photosynthesis, and induce gastrointestinal 
irritation in people, it is necessary to treat the water before 

Fig. 11  Plot showing CCME 
WQI for each ward
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Fig. 12  CCME WQI map for 
Ujjain City

Fig. 13  Scree plot of principal 
component analysis
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it is consumed. However, pH that has a direct impact on 
water taste was found to be within acceptable limits. 
Drinking water with a high chloride concentration has a 
salty taste to it, making it unfit for consumption. Infants 
and children may be harmed if they drink chloride-rich 
water [20]. Fluorosis in the teeth and bones can be caused 
by an overabundance of fluoride in the water. However, 
the concentrations of  Cl−,  F−, and turbidity are all found 
to be within acceptable limits, indicating that they have 
little impact on human consumption.

According to the PCA, the variables were correlated to 
three PCs that were reported to account for 72.5% of the 
overall variation in groundwater samples. Positive loadings 
for EC, TDS, hardness, and  Cl− were found in the first com-
ponent (PC1), which contributed 42.2% of the total varia-
tion. This can be attributed to the natural water source and is 
referred to as “water hardness salinity” [39]. Water quality is 
positively influenced by dissolved chloride salts in PC1. PC2 
explains about 17% of the total variance, with turbidity, EC, 
TDS, chloride, and fluoride all having a positive influence. 
Turbidity shows the most significant loading on PC2. The 
physical characteristics of water, such as cloudiness, could 
be represented by PC2 [52]. PC3 displayed substantial posi-
tive coefficients (turbidity, chloride, and hardness) but was 
negatively loaded with pH, EC, TDS, alkalinity, and fluoride, 
accounting for just 13.3% of the total variance. This factor 
PC3 may be attributed to chloride solids dissolving, which 
causes water to become more turbid. Figure 13a shows the 
dendrogram view of the cluster analysis of 8 physicochemical 
parameters that are clustered into three groups of the same 
water quality characteristics. The CA allowed three clusters 
to be established between the sampling locations, indicating 
variances in water quality at various locations. According 
to the dendrograms, the study area was classified into three 
main groups: low, moderate, and high polluted zones based 

on correlation between physicochemical parameters and sam-
pling locations. CA supports the results of the correlation 
matrix.

In the present study, only four indexing methods were 
used to access the GWQI. This is owing to the availability 
of only eight physicochemical parameters. If more param-
eters are available, more indexing methods can be used. 
Furthermore, the current work is done for the summer of 
2020. Future work can be done for the monsoon and post-
monsoon periods to give a comparative result. The assess-
ment of groundwater quality is of utmost importance as it 
is the primary source of drinking water in the study area. 
Therefore, a competent management plan must be enacted 
before its quality deteriorates.

Conclusion

The study used 54 groundwater samples taken during the 
summer of 2020 from 54 wards of Ujjain City, Madhya 
Pradesh, India, for water quality assessment using an inte-
grated approach of different water quality indexes with GIS 
and multivariate statistical analysis. WQI categorizes water 
based on various parameters, culminating in a composite 
unit that may be used to determine the quality of water with 
a single numeric value. The results of different indexing 
methods, such as NPI, reveal 92% of samples to be in the 
excellent to good category, WA WQI shows that 57% of 
samples are in the excellent to good category, GWQI illus-
trates 72% of samples to be in the good to poor category, 
and CCME WQI reveals 80% of samples to be in the good 
to marginal category. According to the outcome of all the 
indexing methods, it is clear that the majority of the water 
is in good condition and thus suitable for drinking, with the 
exception of a few locations that require treatment. Table 4 
reveals the classification of WQI values for each ward, cal-
culated using different indexing methods. GIS aids in the 
conversion of point data into special data, allowing for the 
classification of areas with excellent and poor water qual-
ity. Groundwater quality mapping was implemented using 
IDW in ARCGIS 10.8 for the eight physicochemical param-
eters shown in Fig. 3a–h. The WQI spatial distribution 
map (Figs. 5, 8, 10, and 12) clearly depicts the area’s finest 
drinking locations. According to BIS 10500:2012 standards, 
physicochemical parameters such as EC, TDS, and TH are 
above permissible limits. Within the study area, correlation 
analysis reveals strong and positive correlations between 
EC and TDS. PCA was used to determine three compo-
nents in the water quality data set generated in this study. 
The first component appears to be associated with the pres-
ence of solid components, the second component appears 
to be related to the impact of water cloudiness due to tur-
bidity, and the third component appears to be associated 

Table 11  Component loading and eigenvalues from PCA

The bold values signifies the highest loading value for the respective 
principal component

Parameters PC1 PC2 PC3

pH  − 0.195  − 0.019  − 0.304
Turbidity 0.296 0.366 0.132
EC 0.498 0.174  − 0.166
TDS 0.496 0.173  − 0.168
Alkalinity 0.186  − 0.727  − 0.081
Chloride 0.461 0.085 0.097
Hardness 0.363  − 0.516 0.031
Fluoride  − 0.029 0.052  − 0.904
Eigenvalue 3.3774 1.3575 1.0652
% of variance 42.2 17 13.3
Cumulative % 42.2 59.2 72.5
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with the changes in water quality due to the presence of 
soluble chloride salts. CA groups 54 sampling locations 
into 3 clusters of similar water quality characteristics as 
seen in Fig. 14a, and 3 clusters of low, medium, and high 
polluted zones as per sampling locations in Fig. 14b. The 
PCA and CA supported the results of the correlation matrix. 
The study confirms that multivariate statistical analysis 
techniques, including correlation analysis, PCA, and CA, 
are effective in evaluating spatial variability and identifying 

contamination sources in the studied area. Moreover, an 
integrated approach of different water quality indexes using 
GIS reveals the most common wards that are fit or unfit 
for human consumption according to all indexing methods. 
According to the findings, samples from wards 20, 44, and 
47 are the most common and in the excellent to good cat-
egory, whereas samples from wards 17, 34, and 43 are the 
most common and in the poor to very poor category. It is 
therefore recommended that monitoring and management 

Fig. 14  (a) Cluster analysis of 8 
physicochemical parameters. (b) 
Cluster analysis of 54 sampling 
locations
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should be prioritized in order to safeguard the groundwater 
resource from pollution and to provide technologies to make 
groundwater suitable for drinking purposes.
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