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Abstract
A semi-martingale reflecting Brownian motion is a popular process for diffusion 
approximations of queueing models including their networks. In this paper, we are 
concerned with the case that it lives on the nonnegative half-line, but the drift and 
variance of its Brownian component discontinuously change at its finitely many 
states. This reflecting diffusion process naturally arises from a state-dependent sin-
gle server queue, studied by the Miyazawa (Diffusion approximation of the station-
ary distribution of a two-level single server queue, 2024. https:// arxiv. org/ abs/ 2312. 
11284). Our main interest is in its stationary distribution, which is important for 
application. We define this reflecting diffusion process as the solution of a stochas-
tic integral equation, and show that it uniquely exists in the weak sense. This result 
is also proved in a different way by Atar et  al. (Parallel server systems under an 
extended heavy traffic condition: A lower bound, 2022. https:// arxiv. org/ pdf/ 2201. 
07855). In this paper, we consider its Harris irreducibility and stability, that is, posi-
tive recurrence, and derive its stationary distribution under this stability condition. 
The stationary distribution has a simple analytic expression, likely extendable to a 
more general state-dependent SRBM. Our proofs rely on the generalized Ito formula 
for a convex function and local time.
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1 Introduction

We are concerned with a semi-martingale reflecting Brownian motion (SRBM for 
short) on the nonnegative half-line in which the drift and variance of its Brown-
ian component discontinuously change at its finitely many states. The partitions 
of its state space which is separated by these states are called levels. This reflect-
ing SRBM is denoted by Z(⋅) ≡ {Z(t);t ≥ 0} , and will be called a one-dimensional 
multi-level SRBM (see Definition 2.1). In particular, if the number of the levels 
is k, then it is called a one-dimensional k-level SRBM. Note that the one-dimen-
sional 1-level SRBM is just the standard SRBM on the half line.

Let Z(⋅) be a one-dimesional k-level SRBM. This reflecting process for k = 2 
arises in the recent study of Miyazawa (2024) for asymptotic analysis of a state 
dependent single server queue, called 2-level GI/G/1 queue, in heavy traffic. This 
queueing model was motivated by an energy saving problem on servers for internet.

In Miyazawa (2024), it is conjectured that the reflecting process Z(⋅) for k = 2 
is the weak solution of a stochastic integral equation (see (2.1) in Sect. 2) and, 
if its stationary distribution exists, then this distribution agrees with the limit of 
the scaled stationary distribution of the 2-level GI/G/1 queue under heavy traf-
fic, which is obtained under some extra conditions in Theorem 3.1 of Miyazawa 
(2024). While writing this paper, we have known that the weak existence of the 
solution is shown by Atar et  al. (2022) for a more general model than we have 
studied here, and its uniqueness is proved in (Atar et  al. (2023),  Lemma 4.1) 
under one of the conditions of this paper.

We refer to these results of Atar et al. (2022, 2023) as Lemma 2.1. However, 
we here prove a slightly different lemma, Lemma 2.2, which is restrictive for the 
existence but less restrictive for the uniqueness. Lemma 2.2 includes some fur-
ther results which will be used. Furthermore, its proof is sample path based and 
different from that of Lemma 2.1. We then show in Lemma 2.3 that Z(⋅) is Har-
ris irreducible, and give a necessary and sufficient condition for it to be positive 
recurrent in Lemma 2.4. These three lemmas are bases for our stochastic analysis.

The main results of this paper are Theorem 3.2 and Corollary 3.1 for the k-level 
SRBM, which derive the stationary distribution of Z(⋅) without any extra condition 
under the stability condition obtained in Lemma 2.4. However, we first focus on the 
case for k = 2 in Theorem 3.1, then consider the case for general k in Theorem 3.2. 
This is because the presentation and proof for general k are notationally complicated 
while the proof for k = 2 can be used with minor modifications for general k. The sta-
tionary distribution for k = 2 is rather simple, it is composed of two mutually singular 
measures, one is truncated exponential or uniform on the interval [0,�1] , and the other 
is exponential on [�1,∞) , where �1 is the right endpoint of the first level at which the 
variance of the Brownian component and drift of the Z(⋅) discontinuously change. One 
may easily guess these measures, but it is not easy to compute their weights by which 
the stationary distribution is uniquely determined (see (Miyazawa 2024)). We resolve 
this computation problem using the local time of the semi-martingale Z(⋅) at �1.

The key tools for the proofs of the lemmas and theorems are the generalized 
Ito formula for a convex function and local time due to Tanaka (1963). We also 
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use the notion of a weak solution of a stochastic integral equation. These formu-
las and notions are standard in stochastic analysis nowadays (e.g, see (Chung and 
Williams 1990; Cohen and Elliott 2015; Harrison 2013; Kallenberg 2001; Karat-
zas and Shreve 1998)), but they are briefly supplemented in the appendix because 
they play major roles in our proofs.

This paper is made up by five sections. In Sect. 2, we formally introduce a one-
dimensional reflecting SRBM with state-dependent Brownian component which 
includes the one-dimensional multi-level SRBM as a special case, and present pre-
liminary results including Lemmas 2.2, 2.3 and 2.4, which are proved in Sect.  4. 
Theorems 3.1 and 3.2 are presented and proved in Sect. 3. Finally, a related prob-
lems and a generalization of Theorem 3.2 are discussed in Sect. 5. In the appendix, 
the definitions of a weak solution for a stochastic integral equation and local time of 
a semi-martingale are briefly discussed in Sect.  A.1 and A.2, respectively.

2  Problem and Preliminary Lemmas

Let �(x) and b(x) be measurable positive and real valued functions, respectively, 
of x ∈ ℝ , where ℝ is the set of all real numbers. We are interested in the solution 
Z(⋅) ≡ {Z(t);t ≥ 0} of the following stochastic integral equation, SIE for short.

where W(⋅) is the standard Brownian motion, and Y(⋅) ≡ {Y(t);t ≥ 0} is a non-
deceasing process satisfying that ∫ t

0
1(Z(u) > 0)dY(u) = 0 for t ≥ 0 . We refer 

to this Y(⋅) as a regulator. The state space of Z(⋅) is denoted by S ≡ ℝ+ , where 
ℝ+ = {x ∈ ℝ;x ≥ 0}.

As usual, we assume that all continuous-time processes are defined on stochas-
tic basis (Ω,F, 𝔽 ,ℙ) , and right-continuous with left-limits and �-adapted, where 
� ≡ {Ft;t ≥ 0} is a right-continuous filtration. Note that there are two kinds of solu-
tions, strong and weak ones, for the SIE (2.1). See Appendix A.1 for their defini-
tions. In this paper, we call weak solution simply by solution unless stated otherwise.

If functions �(x) and b(x) are Lipschitz continuous and their squares are bounded 
by K(1 + x2) for some constant K > 0 , then the SIE (2.1) has a unique solution 
even for the multidimensional SRBM which lives on a convex region (see (Tanaka 
(1979),  Theorem  4.1)). However, we are interested in the case that �(x) and b(x) 
discontinuously change. In this case, the solution Z(⋅) may not exist in general, so 
we need a condition. As we discussed in Sect. 1, we are particularly interested when 
they satisfy the following conditions. Let ℝ = ℝ ∪ {−∞,+∞}.

Condition 2.1 There are an integer k ≥ 2 and a strictly increasing sequence 
{�j ∈ ℝ;j = 0, 1,… , k} satisfying �0 = −∞ , �j > 0 for j = 1, 2,… , k − 1 and 
�k = ∞ such that functions 𝜎(x) > 0 and b(x) ∈ ℝ for x ∈ ℝ are given by

(2.1)Z(t) = Z(0) +

t

�
0

�(Z(u))dW(u) +

t

�
0

b(Z(u))du + Y(t) ≥ 0, t ≥ 0,
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where 1(⋅) is the indicator function of proposition “ ⋅ ”, and 𝜎j > 0 , bj ∈ ℝ for 
j = 1, 2,… , k are constants.

Since Z(t) of Eq. (2.1) is nonnegative, �(x) and b(x) are only used for x ≥ 0 in 
Eq. (2.1). Taking this into account, we partition the state space S ≡ ℝ+ of Z(⋅) by 
�1,�2,… ,�k−1 under Condition 2.1 as follows.

We call these Sj ’s levels. Note that �(x) and b(x) are constants in x on each level, 
and they may discontinuously change at state �j for j = 1, 2,… , k − 1 under 
Condition 2.1.

We start with the existence of the solution Z(⋅) of Eq.  (2.1), which will be 
implied by the existence of the solution X(⋅) ≡ {X(t);t ≥ 0} of the following sto-
chastic integral equation in the weak sense (see Remark 4.1).

Taking this into account, we will also consider the condition below, which is suffi-
cient for the existence of the weak solution (X(⋅),W(⋅)).

Condition 2.2 The functions �(x) and b(x) are measurable functions satisfying that

For the unique existence of the weak solution (X(⋅),W(⋅)) , Condition 2.2 is fur-
ther weakened to Condition 5.1 by Theorem 5.15 of Karatzas and Shreve (1998) 
(see Sect. 5.2 for its details). However, the latter condition is quite complicated. 
So, we take the simpler condition (2.5), which is sufficient for our arguments.

Definition 2.1 The solutions Z(⋅) of Eq. (2.1) under Condition 2.1 is called a one-
dimensional multi-level SRBM, in particular, called one-dimensional k-level SRBM 
if it has k levels, namely, the total number of partitions of Eq.  (2.3) is k, while it 
under Condition  2.2 is called a one-dimensional state-dependent SRBM with 
bounded drifts.

Using the weak solution (X(⋅),W(⋅)) of Eq.  (2.4), Atar et  al. (2022, 2023) 
proves:

Lemma 2.1 (Lemma 4.3 of Atar et al. (2022) and Lemma 4.1 of Atar et al. (2023)) 
(i) Under Condition 2.2, the stochastic integral equation (2.1) has a weak solution 

(2.2)𝜎(x) =

k∑
j=1

𝜎j1
(
�j−1 ≤ x < �j

)
, b(x) =

k∑
j=1

bj1
(
�j−1 ≤ x < �j

)
,

(2.3)S1 = [0,�1), Sj = [�j−1,�j), j = 2, 3,… , k − 1, Sk = [�k−1,+∞).

(2.4)X(t) = X(0) +

t

�
0

�(X(u))dW(u) +

t

�
0

b(X(u))du, t ≥ 0.

(2.5)inf
x∈ℝ

𝜎(x) > 0, sup
x∈ℝ

|b(x)| < ∞.
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such that Y(t) is continuous in t ≥ 0 . (ii) Under Condition 2.1, the solution is weakly 
unique.

The proof of (i) is easy (see Remark 4.1) while the proof of (ii) is quite techni-
cal. Instead of this lemma, we will use the following lemma, in which (i) and (ii) 
of Lemma  2.1 are proved under more restrictive and less restrictive conditions, 
respectively.

Lemma 2.2 Under Condition 2.2, if there are constants 𝜎1,�1 > 0 and b1 ∈ ℝ such 
that

then the stochastic integral equation (2.1) has a unique weak solution such that Y(t) 
is continuous in t ≥ 0 and Z(⋅) is a strong Markov process.

We prove this lemma in Sect. 4.1, which is different from the proof of Lemma 2.1 
by Atar et al. (2022, 2023).

The main interest of this paper is to derive the stationary distribution of the Z(⋅) 
for the one-dimensional multi-level SRBM under an appropriate stability condition. 
Since this reflecting diffusion process satisfies the conditions of Lemma 2.2, Z(⋅) is 
a strong Markov process. Hence, our first task for deriving its stationary distribution 
is to consider its irreducibility and positive recurrence. To this end, we introduce 
Harris irreducibility and recurrence following (Meyn and Tweedie 1993). Let B(ℝ+) 
be the Borel field, that is, the minimal �-algebra on ℝ+ which contains all open sets 
of ℝ+ . Then, a real valued process X(⋅) which is right-continuous with left-limits is 
called Harris irreducible if there is a non-trivial �-finite measure � on (ℝ+,B(ℝ+)) 
such that, for B ∈ B(ℝ+) , 𝜓(B) > 0 implies

while it is called Harris recurrent if Eq. (2.7) can be replaced by

where ℙx(A) = ℙ(A|X(0) = x) for A ∈ F  , and �x[H|X(0) = x] for a random variable 
H.

Harris conditions (2.7) and (2.8) are related to hitting times. Define the hitting 
time at a subset of the state space S as

(2.6)𝜎(x) = 𝜎1 > 0, b(x) = b1, ∀x < �1,

(2.7)𝔼x

⎡⎢⎢⎣

∞

∫
0

1(X(u) ∈ B)du

⎤⎥⎥⎦
> 0, ∀x ∈ ℝ+,

(2.8)ℙx

⎡⎢⎢⎣

∞

∫
0

1(X(u) ∈ B)du = ∞

⎤⎥⎥⎦
= 1, ∀x ∈ ℝ+,

(2.9)�B = inf{t ≥ 0;X(t) ∈ B}, B ∈ B(ℝ+),
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where �B = ∞ if X(t) ∉ B for all t ≥ 0 . We denote �B simply by �a for B = {a} . Then, 
it is known that Harris recurrent condition (2.8) is equivalent to

See Theorem  1 of Kaspi and Mandelbaum (1994) (see also (Meyn and Tweedie 
1993)) for the proof of this equivalence. However, Harris irreducible condition (2.7) 
may not be equivalent to ℙx[𝜏B < ∞] > 0 . In what follows, �B is defined for the pro-
cess to be discussed unless stated otherwise.

Using those notions and notations, we present the following basic facts for the 
one-dimensional state-dependent SRBM Z(⋅) with bounded drifts, where Z(⋅) is 
strong Markov by Lemma 2.2.

Lemma 2.3 For the one-dimensional state-dependent SRBM with bounded drifts, if 
the condition (2.6) of Lemma  2.2 is satisfied, (i) it is Harris irreducible, and (ii) 
�x[𝜏a] < ∞ for 0 ≤ x < a.

Remark 2.1 (ii) is not surprising because we can intuitively see that the drift is 
pushed to the upward direction by reflection at the origin and the positive-valued 
variances.

Lemma 2.4 For the one-dimensional state-dependent SRBM with bounded drifts, if 
the condition (2.6) of Lemma 2.2 is satisfied and if there are constants �∗, b∗ and �∗ 
such that

then Z(⋅) has a stationary distribution if and only if b∗ < 0 . In particular, the one-
dimensional k-level SRBM has a stationary distribution if and only if bk < 0.

These lemmas may be intuitively clear, but their proofs may have own interests 
because they are not immediate and we observe that the Ito formula nicely work. So 
we prove Lemmas 2.3 and 2.4 in Sects. 4.2 and 4.3, respectively. We are now ready 
to study the stationary distribution of Z(⋅).

3  Stationary Distribution of Multi‑level SRBM

We are concerned with the multi-level SRBM. Denote the number of its levels by k. 
We first introduce basic notations. Let Nk = {1, 2,… , k} , and define

In this section, we derive the stationary distribution of the one-dimensional k-level 
SRBM for arbitrary k ≥ 2 . We first focus on the case for k = 2 because this is the 
simplest case but its proof contains all ideas will be used for general k.

(2.10)ℙx[𝜏B < ∞] = 1, ∀x ≥ 0,

(2.11)𝜎(x) = 𝜎∗ > 0, b(x) = b∗, ∀x ≥ �∗ > �1,

�j = 2bj∕�
2

j
, j ∈ Nk.



Journal of the Indian Society for Probability and Statistics 

3.1  Stationary Distribution for k = 2

Throughout Sect. 3.1, we assumed that k = 2.

Theorem  3.1 (The case for k = 2 ) The Z(⋅) of the one-dimensional 2-level SRBM 
has a stationary distribution if and only if b2 < 0 , equivalently, 𝛽2 < 0 . Assume that 
b2 < 0 , and let � be the stationary distribution of Z(t), then � is unique and has a 
probability density function h which is given below. (i) If b1 ≠ 0 , then

where h11 and h2 are probability density functions defined as

and d1j for j = 1, 2 are positive constants defined by

(ii) If b1 = 0 , then

where h2 is defined in Eq. (3.2), and

Remark 3.1 

(a) Equations (3.5) and (3.6) are obtained from Eqs. (3.2) and (3.3) by letting b1 → 0.
(b) Assume that Z(⋅) is a stationary process, and define the moment generating func-

tions (mgf for short): 

Here, �(�) and �2(�) are finite for � ≤ 0 , and �1(�) does so for � ∈ ℝ . However, all 
of them are uniquely identified for � ≤ 0 as Laplace transforms. So, in what follows, 
we always assume that � ≤ 0 unless stated otherwise.

For i = 0, 1 , let ĥi1 and ĥ2 be the moment generating functions of hi1 and h2 , 
respectively, then

(3.1)h(x) = d11h11(x) + d12h2(x), x ≥ 0,

(3.2)h11(x) =
e𝛽1(x−�1)𝛽1

e𝛽1�1 − 1
1(0 ≤ x < �1), h2(x) = −𝛽2e

𝛽2(x−�1)1(x ≥ �1),

(3.3)d11 =
b2(e

−�1�1 − 1)

b1 + b2(e
−�1�1 − 1)

, d12 = 1 − d11 =
b1

b1 + b2(e
−�1�1 − 1)

.

(3.4)h(x) = d01h01(x) + d02h2(x),

(3.5)h01(x) =
1

�1

1(0 ≤ x < �1),

(3.6)d01 =
−2b2�1

�2
1
− 2b2�1

, d02 = 1 − d01 =
�2
1

�2
1
− 2b2�1

.

𝜑(𝜃) = �
[
e𝜃Z(1)

]
,

𝜑1(𝜃) = �
[
e𝜃Z(1)1

(
0 ≤ Z(1) < �1

)]
, 𝜑2(𝜃) = �

[
e𝜃Z(1)1

(
Z(1) ≥ �1

)]
.
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where the singular points � = −�1, 0 in Eq. (3.7) are negligible to determine hi1 , so 
we take the convention that ĥi1(�) exists for these �.

Hence, Eq. (3.1) for b1 ≠ 0 and Eq. (3.4) for b1 = 0 are equivalent to

Thus, Theorem 3.1 is proved by showing these equalities.

Remark 3.2 Miyazawa (2024) conjectures that the diffusion scaled process limit of 
the queue length of the 2-level GI/G/1 queue in heavy traffic is the solution of the 
stochastic integral equation of (5.2) in Miyazawa (2024). This stochastic equation 
corresponds to Eq. (2.1), but �1 , bi and �i of the present paper needs to replace by 
�0 , −bi , 

√
ci�i for i = 1, 2 , respectively. Under these replacements, �i also needs to 

replace by −2bi∕(ci�2
i
) . Then, it follows from Eqs.  (3.3), (3.6), (3.10) and (3.11) 

that, under the setting of Miyazawa (2024), for b1 ≠ 0,

and, for b1 = 0,

Hence, the limiting distributions in (ii) of Theorem  3.1 of Miyazawa (2024) are 
identical with the stationary distributions in Theorem 3.1 here. Note that the limiting 
distributions in Miyazawa (2024) are obtained under some extra conditions, which 
are not needed for Theorem 3.1.

(3.7)ĥi1(�) =

⎧
⎪⎨⎪⎩

e��1−e−�1�1

�1+�

�1
1−e−�1�1

1(� ≠ −�1), i = 1,

e��1−1

�1�
1(� ≠ 0), i = 0,

(3.8)ĥ2(�) = e��1
�2

�2 + �
, � ≤ 0,

(3.9)�1(�)∕�1(0) =

{
ĥ11(�), b1 ≠ 0,

ĥ01(�), b1 = 0,
, �2(�)∕�2(0) = ĥ2(�),

(3.10)�1(0) = d11, �2(0) = d12, for b1 ≠ 0,

(3.11)�1(0) = d01, �2(0) = d02, for b1 = 0.

�1(0) = d11 =
c1b2(e

�1�1 − 1)

c2b1 + c1b2(e
�1�1 − 1)

, �2(0) = d12 =
c2b1

c2b1 + c1b2(e
�1�1 − 1)

,

�1(0) = d01 =
2b2�1

c2�
2
1
+ 2b2�1

, �2(0) = d02 =
c2�

2
1

c2�
2
1
+ 2b2�1

.
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3.2  Proof of Theorem 3.1

By Remark 3.1, it is sufficient to show Eqs. (3.9), (3.10) and (3.11) for the proof of 
Theorem 3.1. We will do it in three steps.

3.2.1  1st Step of the Proof

In this subsection, we derive two stochastic equations from Eq.  (2.1). For this, we 
use the generalized Ito formulas for a continuous semi-martingale X(⋅) with finite 
quadratic variations [X]t for all t ≥ 0 . For a convex test function f, this Ito formula is 
given by

where Lx(t) is the local time of X(⋅) which is right-continuous in x ∈ ℝ , and �f  on 
(ℝ+,B(ℝ+)) is a measure on (ℝ,B(ℝ) , defined by

where f �(x−) is the left derivative of f at x. See Appendix A.2 for the definition of 
local time and more about its connection to the generalized Ito formula (3.12).

Furthermore, if f(x) is twice differentiable, then Eq. (3.12) can be written as

which is well known Ito formula.
In our application of the generalized Ito formula, we first take the following con-

vex function f with parameter � ≤ 0 as a test function.

Since f �(�1+) = 0 and f �(�1−) = �e��1 , it follows from Eq. (3.13) that

On the other hand, f ��(x) = �2e�x for x < �1 . Hence,

Then, applying local time characterization (A.1) to this formula, we have

(3.12)

f (X(t)) = f (X(0)) +

t

�
0

f �(X(u)−)dX(u) +
1

2

∞

�
0

Lx(t)�f (dx), t ≥ 0,

(3.13)𝜇f ([x, y)) = f �(y−) − f �(x−), x < y in ℝ,

(3.14)

f (X(t)) = f (X(0)) +

t

�
0

f �(X(u))dX(u) +
1

2

∞

�
0

f ��(X(u))d[X]u, t ≥ 0,

(3.15)f (x) = e𝜃x1(x < �1) + e𝜃�11(x ≥ �1). x ∈ ℝ.

�f ({�1}) = lim
�↓0

f �((�1 + �)−) − f �(�1−) = f �(�1+) − f �(�1−) = −�e��1 .

∞

∫
0

Lx(t)𝜇f (dx) =

∞

∫
0

Lx(t)f
��(x−)1(x < �1)dx + L

�1
(t)𝜇f ({�1}).
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We next compute the quadratic variation 
[
Z
]
t
 of Z(⋅) . Define M(⋅) ≡ {M(t);t ≥ 0} by

then M(⋅) is a martingale. Denote the quadratic variations of Z(⋅) and M(⋅) , respec-
tively, by 

[
Z
]
t
 and 

[
M
]
t
 . Since Z(t) and Y(t) are continuous in t, it follows from 

Eq. (2.1) that

Hence, from f �(𝜃) = 𝜃e𝜃x1(x < �1), Eqs. (3.16) and (3.17), the generalized Ito for-
mula (3.12) becomes

We next applying Ito formula for the test function f (x) = e�x to Eq.  (2.1). In this 
case, we use Ito formula (3.14) because f(x) is twice continuously differentiable. 
Then, we have, for � ≤ 0,

(3.16)

∞

�
0

Lx(t)𝜇f (dx) = 𝜃2

t

�
0

e𝜃Z(u)1(0 ≤ Z(u) < �1)d[Z]u − 𝜃e𝜃�1L
�1
(t).

(3.17)M(t) ≡
t

�
0

�(Z(u))dW(u), t ≥ 0,

(3.18)

[
Z
]
t
=
[
M
]
t
=

t

�
0

𝜎2(Z(u))du

=

t

�
0

𝜎2
1
1(0 ≤ Z(u) < �1) + 𝜎2

2
1(Z(u) ≥ �1)]du, t ≥ 0.

(3.19)

f (Z(t)) = f (Z(0)) +

t

�
0

𝜃e𝜃Z(u)1(0 ≤ Z(u) < �1)𝜎1dW(u)

+

t

�
0

(
b1𝜃 +

1

2
𝜎2

1
𝜃2
)
e𝜃Z(u)1(0 ≤ Z(u) < �1)du + 𝜃Y(t)

−
1

2
𝜃e𝜃�1L

�1
(t), t ≥ 0, 𝜃 ≤ 0.

(3.20)

f (Z(t)) = f (Z(0)) +

t

∫
0

�e�Z(u)�(u)dW(u)

+

t

∫
0

(
b(Z(u))� +

1

2
�2(Z(u))�2

)
e�Z(u)du + �Y(t).
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3.2.2  2nd Step of the Proof

The first statement of Theorem  3.1 is immediate from Lemma  2.4. Hence, under 
b2 < 0 , we can assume that Z(⋅) is a stationary process by taking its stationary distribu-
tion for the distribution of Z(0). In what follows, this is always assumed.

Recall the moment generating functions �,�1 and �2 , which are defined in 
Remark 3.1. We first consider the stochastic integral Eq. (3.19) to compute �1 . Since 
�[L

�1
(1)] is finite by Lemma A.1, taking the expectation of Eq. (3.19) for t = 1 and 

� ≤ 0 yields

because �1�2
1
= 2b1 . Note that this equation implies that �[Y(1)] is also finite.

Using Eq.  (3.21), we consider �1(�) separately for b1 ≠ 0 and b1 = 0 . First, 
assume that b1 ≠ 0 . Then, from Eq. (3.21) and 𝛽1 > 0 , we have

This equation can be written as

Observe that the first term in the right-hand side of Eq. (3.23) is proportional to the 
moment generating function (mgf) of the signed measure on [0,∞) whose density 
function is exponential while its second term is the mgf of a measure on [0,�1] , but 
the left-hand side of Eq. (3.23) is the mgf of a probability measure on [0,�1) . Hence, 
we must have

and therefore Eq. (3.23) yields

where ĥ11(�) is defined in Eq. (3.7), but also exists for � = −�1 by our convention.
We next assume that b1 = 0 . In this case, �1 = 0 , and it follows from Eq. (3.22) 

that

(3.21)
1

2
�2
1
(�1 + �)�1(�) −

1

2
e��1�

[
L
�1
(1)

]
+ �[Y(1)] = 0,

(3.22)�1(�) =
e��1�

[
L
�1
(1)

]
− 2�[Y(1)]

�2
1

(
�1 + �

) , � ≠ �1.

(3.23)�1(�) =
e−�1�1�

[
L
�1
(1)

]
− 2�[Y(1)]

�2
1

(
�1 + �

) +
(e��1 − e−�1�1 )�

[
L
�1
(1)

]

�2
1
(�1 + �)

.

(3.24)2�[Y(1)] = e−�1�1�
[
L
�1
(1)

]
,

(3.25)�1(�) = ĥ11(�)

(
1 − e−�1�1

)
�
[
L
�1
(1)

]

�1�
2
1

, � ≤ 0,

(3.26)�1(�) =
e��1 − 1

�1�
×
�1�

[
L
�1
(1)

]

�2
1

+
�
[
L
�1
(1)

]
− 2�[Y(1)]

�2
1
�

, � ≤ 0.
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Since e
��1−1

�1�
 is the mgf of the uniform distribution on [0,�1) , by the same reason as in 

the case for b1 ≠ 0 , we must have

Note that this equation is identical with Eq.  (3.24) for b1 = 0 . Furthermore, 
lim�↑0

e��1−1

�1�
= 1 and lim�↑0 �1(�) = �1(0) . Hence, Eq. (3.26) implies that

by our convention for ĥ01(0) similar to ĥ11(−�1) . Thus, we have the following 
lemma.

Lemma 3.1 The mgf �1 is obtained as

We next consider the stochastic integral Eq. (3.20) to derive �2(�) . In this case, 
we use (3.20). Note that �1(�) and �2(�) are finite for � ≤ 0 . Hence, taking the 
expectations of both sides of Eq.  (3.20) for t = 1 and � ≤ 0 yields

Substituting 1
2
�2
1

(
�1 + �

)
 of Eq. (3.21) and �[Y(1)] of Eq. (3.24) into this equation, 

we have

The following lemma is immediate from this equation since 𝛽2 < 0.

Lemma 3.2 The mgf �2 is obtained as

where recall that ĥ2 is defined by Eq. (3.8).

2�[Y(1)] = �[L
�1
(1)].

(3.27)�1(�) = ĥ01(�)
�1�[L�1

(1)]

�2
1

, � ≤ 0,

(3.28)�1(�) =

⎧
⎪⎪⎨⎪⎪⎩

ĥ11(�)

�
1 − e�1�1

�
�
�
L
�1
(1)

�

�1�
2
1

, b1 ≠ 0,

ĥ01(�)
�1�

�
L
�1
(1)

�

�2
1

, b1 = 0,

� ≤ 0.

(3.29)
1

2

∑
i=1,2

�2
i

(
�i + �

)
�i(�) + �[Y(1)] = 0, � ≤ 0.

(3.30)�2
2

(
�2 + �

)
�2(�) + e��1�

[
L
�1
(1)

]
= 0, � ≤ 0.

(3.31)�2(�) = ĥ2(�)
�
[
L
�1
(1)

]

−�2�
2
2

, � ≤ 0,
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3.2.3  3rd Step of the Proof

We now prove (3.9), (3.10) and (3.11). Since ĥ11(0) = ĥ01(0) = ĥ2(0) = 1 , Eq. (3.9) 
is immediate from Lemmas 3.1 and 3.2. To prove (3.10), assumed that b1 ≠ 0 . In 
this case, from Eqs. (3.25) and (3.31), we have

Taking the ratios of both sides, we have

Since �1(0) + �2(0) = 1 , this and �i�2
i
= 2bi yield

This proves (3.10). We next assume that b1 = 0 , then it follows from Eqs. (3.27) and 
(3.31) that

Similarly to the case for b1 ≠ 0 , this yields

This proves (3.11). Thus, the proof of Theorem 3.1 is completed.

3.3  Stationary Distribution for General k

We now derive the stationary distribution of the one-dimensional k-level SRBM for 
a general positive integer k. Recall the definition of �j , and define �j as

�1(0) =

(
1 − e−�1�1

)

�1�
2
1

�
[
L
�1
(1)

]
, �2(0) =

�
[
L
�1
(1)

]

−�2�
2
2

.

�1(0)

�2(0)
=

−�2�
2
2

(
1 − e−�1�1

)

�1�
2
1

.

�1(0) =
�2�

2
2

(
e−�1�1 − 1

)

�1�
2
1
+ �2�

2
2

(
e−�1�1 − 1

) =
b2
(
e−�1�1 − 1

)

b1 + b2
(
e−�1�1 − 1

) = d11,

�2(0) =
�1�

2
1

�1�
2
1
+ �2�

2
2

(
e−�1�1 − 1

) =
b1

b1 + b2
(
e−�1�1 − 1

) = d12.

�1(0)

�2(0)
=

−�2�
2
2
�1

�2
1

.

(3.32)�1(0) =
−�2�

2
2
�1

�2
1
− �2�

2
2
�1

=
−2b2�1

�2
1
− 2b2�1

= d01,

(3.33)�2(0) =
�2
1

�2
1
− �2�

2
2
�1

=
�2
1

�2
1
− 2b2�1

= d02,
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where x+ = 0 ∨ x ≡ max(0, x) for x ∈ ℝ . Also recall that the state space S is parti-
tioned to Sj defined in Eq.  (2.3) for j ∈ Nk.

Theorem 3.2 (The case for general k ≥ 2 ) The Z(⋅) of the one-dimensional k-level 
SRBM has a stationary distribution if and only if bk < 0 , equivalently, 𝛽k < 0 . Let 
J = {i ∈ Nk;bi = 0} , and assume that bk < 0 , then denote the stationary distribution 
of Z(t) by � , then � is unique and has a probability density function hJ for which is 
given below.

(i) If J = � , that is, bj ≠ 0 for all j ∈ Nk , then

where hj for j ∈ Nk are probability density functions defined as

and dj for j ∈ Nk are positive constants defined as

(ii) If J ≠ ∅ , that is, bi = 0 for some i ∈ J , then

where hJ
j
(x) = lim

bi→0,i∈J
hj(x) and dJ

j
= lim

bi→0,i∈J
dj for j ∈ Nk.

Before proving this theorem in Section 3.4, we note that the density h∅ has a 
simple expression, which is further discussed in Sect. 5.2.

Corollary 3.1 Under the assumptions of Theorem 3.2, the density function h∅ of the 
stationary distribution of the k-level SRBM when b(x) ≠ 0 for all x ≧ 0 is given by

�j = 2bj∕�
2
j
, j ∈ Nk, �0 = 1, �j =

j∏
i=1

e�i(�i−�
+
i−1

), j ∈ Nk−1, �k = 0,

(3.34)h�(x) = h(x) ≡
k∑

j=1

djhj(x), x ≥ 0,

(3.35)hj(x) =

⎧
⎪⎨⎪⎩

�je
�j

�
x−�+

j−1

�

e
�j

�
�j−�

+
j−1

�
− 1

1
�
x ∈ Sj

�
, j ∈ Nk−1,

−�ke
�k(x−�k−1)1

�
x ∈ Sk

�
, j = k,

(3.36)dj =
b−1
j

�
�j − �j−1

�
∑k−1

i=1
b−1
i

�
�i − �i−1

�
− b−1

k
�k−1

, j ∈ Nk.

(3.37)hJ(x) =

k∑
j=1

dJ
j
hJ
j
(x), x ≥ 0,
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where

Proof Let C =
∑k−1

i=1
b−1
i

�
�i − �i−1

�
− b−1

k
�k−1 , and write �j for j ∈ Nk−1 as

Then, from (i) of Theorem 3.2, we have, for x ∈ [�+
j−1

,�j) with j ≤ k − 1.

because �j∕bj = 2∕�2
j
= 2∕�2(x) for x ∈

[
�j−1,�j

)
 . Similarly, for x ≥ �k−1,

Hence, putting Ck = C/2, we have Eq. (3.38).   ◻

Remark 3.3 dj defined by Eq. (3.36) must be positive, which is easily checked. Nev-
ertheless, it is interesting that their positivity is visible through Eqs.  (3.40) and 
(3.41) of this corollary.

3.4  Proof of Theorem 3.2

Similar to the proof of Theorem 3.1, the first statement is immediate from Lemma 2.4, 
and we can assume that Z(⋅) is a stationary process since bk < 0 . We also always 
assume that � ≤ 0 . Define moment generating functions (mgf):

(3.38)h�(x) =
1

Ck�
2(x)

exp

⎛
⎜⎜⎝

x

�
0

2b(y)

�2(y)
dy

⎞
⎟⎟⎠
, x ≥ 0.

(3.39)Ck =

∞

∫
0

1

�2(x)
exp

⎛
⎜⎜⎝

x

∫
0

2b(y)

�2(y)
dy

⎞
⎟⎟⎠
dx.

�j = exp

�
j�

i=1

�i
�
�i − �

+
i−1

��
= exp

⎛
⎜⎜⎜⎝

�j

∫
0

2b(y)

�2(y)
dy

⎞
⎟⎟⎟⎠
,

(3.40)

djhj(x) =
1

Cbj

�
�j − �j−1

� �je
�j

�
x−�+

j−1

�

e
�j

�
�j−�

+
j−1

�
− 1

=
1

Cbj

�
�j − �j−1

�e�j
�
x−�+

j−1

�
�j−1

�j − �j−1
�j =

2

C�2(x)
exp

⎛⎜⎜⎝

x

∫
0

2b(y)

�2(y)
dy

⎞⎟⎟⎠
,

(3.41)dkhk(x) =
�k−1
Cbk

�
−�k

�
e�k(x−�k−1) =

2

C�2(x)
exp

⎛⎜⎜⎝

x

∫
0

2b(y)

�2(y)
dy

⎞⎟⎟⎠
.

�j(�) = �
[
e�Z(0)1(Z(0) ∈ Sj)

]
, j ∈ Nk,
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which are obviously finite because � ≤ 0 . Then, the mgf �(�) of Z(0) is expressed as

and dj = �j(0) for j ∈ Nk.
We first prove (i). In this case, let ĥj be the mgf of hj for j ∈ Nk , then

Hence, Eq. (3.34) is obtained if we show that, for j ∈ Nk,

To prove (3.43) and (3.44), we use the following convex function fj with parameter 
� ≤ 0 as a test function for the generalized Ito formula similar to Eq. (3.15).

Since f �
j

(
�j−

)
= �e��j and f �

j

(
�1+

)
= 0 , it follows from Eq. (3.13) that

and, f ��(x) = �2e�x for x < �j . Hence, similarly to Eq. (3.19), the generalized Ito for-
mula (3.12) for f = fj becomes

Similarly to the proof of Theorem 3.1, we next apply Ito formula for test function 
f (x) = e�x to Eq. (2.1), then we have Eq.  (3.20) for b(x) and �(x) which are defined 

�(�) =

k∑
j=1

�j(�), � ≤ 0,

(3.42)ĥj(�) =

⎧
⎪⎪⎨⎪⎪⎩

�j

�j + �

e
(�+�j)

�
�j−�

+
j−1

�
− 1

e
�j

�
�j−�

+
j−1

�
− 1

e�j�j , j ∈ Nk−1

�k
�k + �

e��k−1 , j = k.

(3.43)�j(�)∕�j(0) = ĥj(�),

(3.44)�j(0) = dj.

(3.45)fj(x) = e𝜃x1
(
x ≤ �j

)
+ e𝜃�j1

(
x > �j

)
. x ∈ ℝ, j ∈ Nk−1.

�f

(
{�j}

)
= lim

�↓0
f �
((
�j + �

)
−
)
− f �

(
�j−

)
= f �

(
�j+

)
− f �

(
�j−

)
= −�e��j ,

(3.46)

fj(Z(t)) = fj(Z(0)) +

t

�
0

𝜃e𝜃Z(u)1
(
0 ≤ Z(u) < �j

)
𝜎(Z(u))dW(u)

+

t

�
0

(
b(Z(u))𝜃 +

1

2
𝜎2(Z(u))𝜃2

)
e𝜃Z(u)1(0 ≤ Z(u) < �j)du

−
1

2
𝜃e𝜃�jL

�j
(t) + 𝜃Y(t), t ≥ 0, 𝜃 ≤ 0, j ∈ Nk−1.
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by Eq.  (2.2). From Eqs. (3.46) and (3.20), we will compute the stationary distribu-
tion of Z(t).

We first consider this equation for j = 1 . In this case, Eq. (3.46) becomes

Then, by the same arguments in the proof of Theorem 3.1, we have Eqs.  (3.21) and 
(3.24), which imply

Hence, we have

Thus, Eq. (3.43) is proved for j = 1 . We prove (3.44) after (3.43) is proved for all 
j ∈ Nk.

We next prove (3.43) for j ∈ {2, 3,… , k − 1} . In this case, we use fj(Z(1) of 
Eq.  (3.46). Take the difference fj(Z(1)) − fj−1(Z(1)) for each fixed j and take the 
expectation under which Z(⋅) is stationary, then we have

because �j = 2bj∕�
2
j
 . This yields

Since �j is the mgf of a measure on [�j−1,�j) , we must have

(3.47)

f1(Z(t)) = f1(Z(0)) +

t

�
0

𝜃e𝜃Z(u)1
(
0 ≤ Z(u) < �1

)
𝜎1dW(u)

+

t

�
0

(
b1𝜃 +

1

2
𝜎2

1
𝜃2
)
e𝜃Z(u)1

(
0 ≤ Z(u) < �1

)
du

−
1

2
𝜃e𝜃�1L

�1
(t) + 𝜃Y(t), t ≥ 0, 𝜃 ≤ 0.

(3.48)

�1(�) =
e��1 − e−�1�1

�1 + �

1

�2
1

�
[
L
�1
(1)

]
, �1(0) =

1 − e−�1�1

�2
1
�1

�
[
L
�1
(1)

]
.

(3.49)�1(�)∕�1(0) =
e��1 − e−�1�1

�1 + �

�1

1 − e−�1�1

= ĥ1(�), � ≤ 0.

�2
j

(
�j + �

)
�j(�) − e��j�

[
L
�j
(1)

]
+ e��j−1�

[
L
�j−1

(1)
]
= 0, � ≤ 0,

(3.50)

�j(�) =
1

�2
j
(�j + �)

(
e(�+�j)�j − e(�+�j)�j−1

)
e−�j�j�

[
L
�j
(1)

]

+
e��j−1

�2
j
(�j + �)

(
e−�j(�j−�j−1)�

[
L
�j
(1)

]
− �

[
L
�j−1

(1)
])

.
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Hence, Eq. (3.50) becomes, for j ∈ {2, 3,… , k − 1},

Hence, we have (3.43) for j = 2, 3,… , k − 1.
We finally prove (3.43) for j = k . Similarly to the case for k = 2 in the proof of 

Theorem 3.1, it follows from Eq. (3.20) that

Similarly, from Eq. (3.46) for j = k − 1 , we have

Taking the difference of Eqs. (3.54) and (3.55), we have

which yields

Hence, we have (3.43) for j = k . Namely,

It remains to prove (3.44) for j ∈ Nk . For this, we note that Eq. (3.24) is still valid, 
which is

Hence, recalling that �j =
∏j

i=1
e�i(�i−�

+
i−1) , Eq. (3.51) yields

(3.51)�

[
L
�j−1

(1)
]
= e−�j(�j−�j−1)�

[
L
�j
(1)

]
, 2 ≤ j ≤ k − 1.

(3.52)�j(�) =
e(�+�j)�j − e(�+�j)�j−1

�2
j

(
�j + �

) e−�j�j�

[
L
�j
(1)

]
,

(3.53)�j(0) =
1 − e−�j(�j−�j−1)

�2
j
�j

�

[
L
�j
(1)

]
.

(3.54)1

2

k∑
i=1

�2
i

(
�i + �

)
�i(�) + �[Y(1)] = 0, � ≤ 0.

(3.55)

1

2

k−1∑
i=1

�2
i

(
�i + �

)
�i(�) + �[Y(1)] −

1

2
e��k−1�

[
L
�k−1

(1)
]
= 0, � ≤ 0.

�2
k

(
�k + �

)
�k(�) = −e��k−1�

[
L
�k−1

(1)
]
,

(3.56)�k(�) =
−1

�2
k

(
�k + �

)e��k−1�
[
L
�k−1

(1)
]
, �k(0) =

−1

�2
k
�k
�
[
L
�k−1

(1)
]
.

�k(�)∕�k(0) =
�k

�k + �
e��k−1 = ĥk(�).

2�[Y(1)] = e−�1�1�
[
L
�1
(1)

]
= e−�1(�1−�

+
0 )�

[
L
�1
(1)

]
.

(3.57)�

[
L
�j
(1)

]
= e

�j

(
�j−�

+
j−1

)
�

[
L
�j−1

(1)
]
= 2�[Y(1)]�j, j ∈ Nk−1.
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From Eqs. (3.53), (3.56), (3.57) and the fact that 
(
e
�j

(
�j−�

+
j−1

)
− 1

)
�j−1 = �j − �j−1 , 

we have

Since 
∑k

j=1
�j(0) = 1 , it follows from Eq.  (3.58) that

 because  ηk = 0.  Substituting this into Eq.  (3.58) and using �2
i
�i = 2bi , we have 

Eq. (3.44) for j ∈ Nk because dj is defined by Eq. (3.36).
(ii) is proved for k = 2 from (i) and (a) of Remark 3.1. It is not hard to see that 

this observation (a) is also valid for any bj for j ∈ Nk . Hence, (ii) can be proved 
also for k ≥ 2 from (i).

4  Proofs of Preliminary Lemmas

4.1  Proof of Lemma 2.2

Recall that Lemma 2.2 assumes the conditions of Eq. (2.6) and of the one-dimen-
sional state-dependent SRBM with bounded drifts. Since �1 > 0 , there are con-
stants c, d > 0 such that 0 < c < d < �1 . Using these constants, we construct the 
weak solution of (Z(⋅),W(⋅)) of Eq. (2.1). The basic idea is to construct the sample 
path of Z(⋅) separately for disjoint time intervals, where, for the first interval, if 
Z(0) < d , then Z(⋅) stays there until it hits d or, if Z(0) ≥ d , then it stays there 
until it hits c, and, for the subsequent intervals, Z(⋅) starts below c until hits d > c , 
which is called an up-crossing period, and those in which Z(⋅) starts start at d or 
above it until hits c < d , which is called a down-crossing period. Namely, except 
for the first interval, the up-crossing period always starts at c, and the down-
crossing period always starts at d (see Fig. 1). In this construction, we also con-
struct the filtration for which (Z(⋅),W(⋅)) is adapted.

Define X1(⋅) ≡ {X1(t);t ≥ 0} as

and let X2(⋅) ≡ {X2(t);t ≥ 0} be the solution of the following stochastic integral 
equation:

(3.58)�j(0) =

⎧
⎪⎨⎪⎩

2�[Y(1)]
�j − �j−1

�2
j
�j

, j ∈ Nk−1,

2�[Y(1)]
−1

�2
k
�k
�k−1, j = k.

(3.59)
1

2�[Y(1)]
=

k∑
i=1

�i − �i−1

�2

i
�i

,

(4.1)X1(t) = X1(0) +

t

�
0

(
�1dW1(u) + b1du

)
, t ≥ 0,
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Note that the SIE (4.14) is stochastically identical with the SIE (4.2). Hence, as 
we discussed below (4.14), the SIE (4.2) has a unique weak solution under Con-
dition  2.2. Thus, the solution X2(⋅) weakly exists because the assumptions of 
Lemma  2.2 imply Condition  2.2. For this weak solution, we use the same nota-
tions for X2(⋅) , W2(⋅) and stochastic basics (Ω,F, 𝔽 ,ℙ) for convenience, where 
� = {Ft;t ≥ 0} . Without loss of generality, we expand this stochastic basic which 
accommodates X1(⋅) , and have countable independent copies of Wi(⋅) and Xi(⋅) for 
i = 1, 2 , which are denoted by Wn,i(⋅) ≡ {Wn,i(t);t ≥ 0} and Xn,i(⋅) ≡ {Xn,i(t);t ≥ 0} 
for n = 1, 2,….

We first construct the weak solution Z(⋅) of Eq. (2.1) when Z(0) = x < d , using 
Wn,i(⋅) and Xn,i(⋅) . For this construction, we introduce up and down crossing times 
for a given real-valued semi-martingale V(⋅) ≡ {V(t);t ≥ 0} . Denote the n-th up-
crossing time at d from below by � (+)

d,n
(V) , and denote the down-crossing time at 

c (< d) from above by � (−)
c,n

(V) . Namely, for n ≥ 1 and 0 < c < d < �1,

where � (−)
c,0

(V) = 0 . Note that � (+)
d,n

(Z) and � (−)
c,n

(Z) may be infinite with positive proba-
bilities. In this case, there is no further splitting, which causes no problem in con-
structing the sample path of Z(⋅) because such a sample path is already defined for 
all t ≥ 0 . After the weak solution is obtained, we will see that ℙy

[
𝜏
(+)

d,n
(Z) < ∞

]
= 1 

for y ∈ [0, d) by Lemma 2.3, but � (−)
c,n

(Z) may be infinite with a positive probability.
We now inductively construct Zn(t) ≡ {Zn(t);t ≥ 0} for n = 1, 2,… , where the 

construction below is stopped when � (−)
c,n

(Zn) diverges. For n = 1 , we denote the 

(4.2)X2(t) = X2(0) +

t

�
0

�(X2(u))dW2(u) +

t

�
0

b(X2(u))du, t ≥ 0.

𝜏
(+)

d,n
(V) = inf{u > 𝜏

(−)

c,n−1
(V);V(u) ≥ d}, 𝜏 (−)

c,n
(V) = inf{u > 𝜏

(+)

d,n
(V);V(u) < c},

Fig. 1  Up and down level-crossing periods
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independent copy of X1(⋅) with X1(0) = x < d by X11(⋅) ≡ {X11(t);t ≥ 0} , and 
define Z11(t) as

then it is well known that Z11(⋅) is the unique solution of the stochastic integral 
equation:

where Y11(t) is nondecreasing and ∫ t

0
1(Z11(u) > 0)dY11(u) = 0 for t ≥ 0 . Further-

more, for X11(0) = Z11(0) , Y11(t) = supu∈[0,t](−X11(u))
+ (e.g., see (Kruk et al. 2007)). 

Since Z11(0) = X11(0) = x < d and X11(t) ≤ Z11(t) ≤ d < �1 for t ∈ [0, �
(+)

d,1
(Z11)] , 

Eq. (4.4) can be written as

We next denote the independent copy of X2(⋅) with X2(0) = d by 
X12(⋅) ≡ {X12(t);t ≥ 0} , and define

then we have, for t ∈
[
�
(+)

d,1
(Z11), �

(−)

c,1
(Z12)

)
,

where recall that X12(0) = d . Define

then Z11(t) is stochastically identical with Z12(t) for 

t ∈
[
�
(+)

d,1
(Z11), �

(+)

�1,1
(Z11) ∧ �

(+)

�1,1
(Z12)

)
 . Hence, it follows from Eqs.   (4.5) and (4.7) 

that, for t ∈
[
0, �

(−)

c,1
(Z1)

)
,

(4.3)Z11(t) = X11(t) + sup
u∈[0,t]

(
−X11(u)

)+
, t ≥ 0,

(4.4)Z11(t) = Z11(0) +

t

�
0

dX11(u) + Y11(t), t ≥ 0,

(4.5)

Z11(t) = Z11(0)

+

t

∫
0

(
�(Z11(u))dW11(u) + b(Z11(u))du

)
+ Y11(t), t ∈ [0, �

(+)

d,1
(Z11)).

(4.6)Z12(t) = X12

(
t − �

(+)

d,1
(Z11)

)
, t ≥ �

(+)

d,1
(Z11),

(4.7)Z12(t) = d +

t

∫
�
(+)

d,1
(Z11)

(
�(Z12(u)

)
dW12(u) + b

(
Z12(u))du

)
,

Z1(t) = Z11

(
𝜏
(+)

d,1
(Z11) ∧ t

)
+ (Z12(t) − d)1

(
𝜏
(+)

d,1
(Z11) < t

)
, t ≥ 0.

(4.8)Z1(t) = Z1(0) +

t

∫
0

(
�(Z1(u)

)
dW̃1(u) + b

(
Z1(u))du

)
+ Y1(t),
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where Y1(t) = Y11

(
�
(+)

d,1
(Z11) ∧ t

)
 and

We repeat the same procedure to inductively define Xn,i(t) with 
Xn,i(0) = c 1(i = 1) + d 1(i = 2) and Zn,i(t) for i = 1, 2 together with � (+)

d,n
(Zn1) and 

� (−)
c,n

(Zn2) for n ≥ 2 by

as long as 𝜏 (−)
c,n−1

(Zn−1) < ∞ , and define

then we have, for t ∈
[
0, �(−)

c,n
(Zn2)

)
,

where

From Eq. (4.10), we can see that Zn(⋅) ≡ {Zn(t);0 ≤ t < 𝜏(−)
c,n

(Zn2)} is the solution of 
Eq. (2.1) for t < 𝜏(−)

c,n
(Zn2) . Furthermore, Zn(t) = Zn+1(t) for 0 ≤ t < 𝜏(−)

c,n
(Zn2) . From 

this observation, we define Z(⋅) by Z(0) = x and

(4.9)�W1(t) = W11(t)1
(
t < 𝜏

(+)

d,1
(Z11)

)
+W12(t)1

(
t ≥ 𝜏

(+)

d,1
(Z11)

)
.

Xn1(t) = c +

t

�
𝜏
(−)

c,n−1
(Zn−1)

(
𝜎1dWn1(u) + b1du

)
, t ≥ 𝜏

(−)

c,n−1
(Zn−1)

Zn1(t) = Xn1(t) + sup

u∈
[
𝜏
(−)

c,n−1
(Zn−1),t

](−Xn1(u))
+, t ≥ 𝜏

(−)

c,n−1
(Zn−1)

Zn2(t) = Xn2

(
t − 𝜏

(+)

d,n
(Zn1)

)
, t > 𝜏

(+)

d,n
(Zn1), Xn2(0) = d,

Zn(t) = Zn−1

(
𝜏
(−)

c,n−1
(Zn−1) ∧ t

)
+
(
Zn1(𝜏

(+)

d,n
(Zn1) ∧ t) − c

)
1
(
𝜏
(−)

c,n−1
(Zn−1) < t

)

+
(
Zn2(t) − d

)
1
(
𝜏
(+)

d,n
(Zn1) < t

)
,

(4.10)Zn(t) = Zn(0) +

t

∫
0

(
�(Zn(u))dW̃n(u) + b(Zn(u))du

)
+ Yn(t),

Yn(t) = Yn−1

(
𝜏
(−)

c,n−1
(Zn−1) ∧ t

)
+ sup

u∈
[
𝜏
(−)

c,n−1
(Zn−1),𝜏

(+)

d,n
(Zn1)∧t

](−Xn(u))
+,

�Wn(t) = �Wn−1(t)1
(
t ≤ 𝜏

(+)

d,n−1
(Z(n−1)1

)
+ �W(n−1)2(t)1

(
t > 𝜏

(+)

d,1
(Z(n−1)1)

)
.

(4.11)Z(t) = Z(0) +

∞∑
n=1

Zn(t)1
(
𝜏
(−)

c,n−1
(Zn−1) ≤ t < 𝜏(−)

c,n
(Zn)

)
,
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where � (−)
c,0

(Z0) = 0 , then Z(⋅) is the solution of Eq.  (2.1) for t < 𝜏(−)
c,n

(Zn2) 
if 𝜏

(−)

c,n−1
(Zn−1) < ∞ . Otherwise, if �

(−)

c,n−1
(Zn−1) = ∞ and 𝜏 (−)

c,m
(Zn−1) < ∞ for 

m = 1, 2,… , n − 2 , then we stop the procedure by the (n − 1)-th step.
Up to now, we have assumed that Z(0) = Z1(0) = Z11(0) = x < d . If this x is net 

less than d, then we start with Z12(⋅) of Eq. (4.6) with Z12(0) = X12(0) = x ≥ d , and 
replace Z11(⋅) of Eq. (4.3) by

Then, define Z1(⋅) as

where 𝜏 (−)
c,1

(Z12) < 𝜏
(+)

d,1
(Z11) because the order of Z11(⋅) and Z12(⋅) is swapped. Simi-

larly to the previous case that x < d , we repeat this procedure to inductively define 
Zn(⋅) for n ≥ 2 , then we can defined Z(⋅) and Y(⋅) similarly to Eqs. (4.11) and (4.12).

Hence, Z(⋅) of Eq.  (4.11) is the solution of Eq.  (2.1) if we show that there 
is some n ≥ 1 for each t > 0 such that t < 𝜏(−)

c,n
(Z) . This condition is equivalent to 

supn≥1 � (−)c,n
(Z) = ∞ almost surely. To see this, assume that 𝜏 (−)

c,n
(Z) < ∞ for all n ≥ 1 , 

then let Jn = �(−)
c,n

(Z) − �
(−)

c,n−1
(Z) for n ≥ 1 , then {Jn;n ≥ 2} is a sequence of i.i.d. pos-

itive valued random variables. Hence, we have

and therefore Z(t) is well defined for all t ≥ 0 . Otherwise, if � (−)
c,n

(Z) = ∞ for some 
n ≥ 1 , then we stop the procedure by the n-th step.

Thus, we have constructed the solution Z(⋅) of Eq. (2.1). Note that the probabil-
ity distribution of this solution does not depend on the choice of c,  d as long as 
0 < c < d < �1 because of the independent increment property of the Brownian 
motion. Furthermore, this Z(⋅) is a strong Markov process because Zn,1(⋅) and Zn,2(⋅) 
are strong Markov processes (e.g. see (8.12) of Chung and Williams (1990), Theo-
rem 21.11 of Kallenberg (2001), Theorem 17.23 and Remark 17.2.4 of Cohen and 
Elliott (2015)) and Z(⋅) is obtained by continuously connecting their sample paths 
using stopping times. Thus, the Z(⋅) is the weak solution of Eq. (2.1) which is strong 
Markov.

(4.12)Y(t) =

∞∑
n=1

Yn(t)1
(
𝜏
(−)

c,n−1
(Zn−1) ≤ t < 𝜏(−)

c,n
(Zn)

)
,

(4.13)W(t) =

∞∑
n=1

�Wn(t)1
(
𝜏
(−)

c,n−1
(Zn−1) ≤ t < 𝜏(−)

c,n
(Zn)

)
, t ≥ 0,

Z11(t) = X11(t) + sup
𝜏
(−)

c,1
(Z12)<u≤t

(
−X11(u)

)+
, t ≥ 0.

Z1(t) = Z12

(
�
(−)

c,1
(Z12) ∧ t

)
+
(
Z11(t) − c

)
1
(
�
(−)

c,1
(Z12) ≤ t

)
, t ≥ 0,

lim
n→∞

� (−)
c,n

(Z) ≥ lim
n→∞

n∑
m=2

Jm = ∞, a.s.,
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It remains to prove the weak uniqueness of the solution Z(⋅) . This is imme-
diate from the construction of Z(⋅) . Namely, suppose that Z̃(⋅) is the solution of 
Eq.  (2.1) with Z̃(0) = x for given x ≥ 0 . Assume that x < d , then the process 
{�Z(t);0 ≤ t < 𝜏

(+)

d,1
(�Z)} with �Z(0) = x < d < �1 is stochastically identical with 

{Z11(t);0 ≤ t < 𝜏
(+)

d,1
(Z)} with Z11(0) = x , which is the unique solution of Eq.  (4.4), 

while the process {�Z(t);𝜏 (+)
d,1

(�Z) < t ≤ 𝜏
(−)

c,1
(�Z)} must be stochastically identical with 

{X12(t);0 ≤ t < 𝜏
(−)

c,1
(Z)} with X12(0) = d , which is the unique weak solution of 

Eq.  (4.2). Similarly, we can see such stochastic equivalences in the subsequent peri-
ods for �Z(0) = x < d . On the other hand, if Z̃(0) = x ≥ d , then similar equivalences 
are obtained. Hence, Z̃(⋅) and Z(⋅) have the same distribution for each fixed initial 
state x ≥ 0 . Thus, the Z(⋅) is a unique weak solution, and the proof of Lemma 2.2 is 
completed.

Remark 4.1 From an analogy to the reflecting Brownian motion on the half line 
[0,∞) , it may be questioned whether the solution Z(⋅) of Eq.  (2.1) can be directly 
obtained from the weak solution X(⋅) of Eq. (4.14) by its absolute value, that is by 
|X|(⋅) ≡ {|X(t)|;t ≥ 0} . This question is affirmatively answered under Condition 2.2 
by Atar et al. (2022). It may be interesting to see how they prove (i) of Lemma 2.1, 
so we explain it below.

Recall that the solution X(⋅) of the SIE (4.14) weakly exists under Condition 2.2. 
If |X|(⋅) is the solution Z(⋅) of the stochastic integral Eq. (2.1), then we must have

On the other hand, from Tanaka formula (A.6) for a = 0 , we have

Hence, letting Y(⋅) = L0(⋅) , Eq. (4.14) is stochastically identical with Eq. (4.15) if

and if W(⋅) is replaced by W̃(⋅) ≡ {sgn(X(t))W(t);t ≥ 0} . Since the stochastic integral 
in Eq.  (2.1) does not depend on �(x) and b(x) for x < 0 , Eq.  (4.16) does not cause 
any problem for Eq. (2.1).

(4.14)

|X|(t) = |X|(0) +
t

�
0

(�(|X|(u))dW(u) + b(|X|(u))du) + Y(t), t ≥ 0.

(4.15)

|X|(t) − |X|(0) =
t

�
0

sgn(X(u))dX(u) + L0(t)

=

t

�
0

sgn(X(u))(�(X(u))dW(u) + b(X(u))du) + L0(t), t ≥ 0.

(4.16)�(x) = �(|x|), b(x) = sgn(x)b(|x|), x ∈ ℝ,
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4.2  Proof of Lemma 2.3

Recall the definition of �a = �B for B = {a} (see (2.9)). We first prove that

Since Z
(
�a ∧ t

) ≤ a , �x

[
e𝜃Z(𝜏a∧t)

]
< ∞ for � ∈ ℝ . Hence, substituting the stopping 

time �a ∧ t into t of the generalize Ito formula (3.20) for test function f (x) = e�x and 
taking the expectation under ℙx , we have, for x < a and � ∈ ℝ,

where �(x, �) = b(x)� +
1

2
�2(x)�2 . Note that f, for each 𝜀 > 0 , �(x, �) ≥ � if

Recall that �i = 2bi∕�
2
i
 , and introduce the following notations.

Then, |𝛽|max < ∞ , 𝜎2
max

< ∞ and 𝜎2
min

> 0 by Condition  2.2, which is assumed in 
Lemma  2.3. Hence, for each 𝜀 > 0 , �(x, �) ≥ � for 

� ≥ 1

2

(
|�|max +

√
|�|2

max
+ 8�∕�2

min

)
 and x ≥ 0 . For this � , it follows from 

Eq. (4.19) that

because 𝜃 > 0 and e�Z(u) ≥ 1 for u ∈ [0, �a ∧ t] . This proves (4.17) because we have

We next consider the case for x > a > 0 . Similarly to the previous case but for 𝜃 < 0 , 
from Eq. (4.20), we have 𝛾(x, 𝜃) > 𝜀 for x > a and 𝜀 > 0 if � satisfies

Since Y(t) = 0 for t ≤ �a because Z(0) = x > a , we have, from Eq. (4.19), for � satis-
fying (4.22),

(4.17)�x

[
𝜏a
]
< ∞, 0 ≤ x < a,

(4.18)ℙx[𝜏a < ∞] > 0, 0 ≤ a < x,

(4.19)�x

�
e�Z(�a∧t)

�
= e�x + �x

⎡
⎢⎢⎣

�a∧t

∫
0

�(Z(u), �)e�Z(u)du

⎤
⎥⎥⎦
+ ��x

�
Y(�a ∧ t)

�
,

(4.20)

� ≥ −b(x)

�2(x)
+

√(
b(x)

�2(x)

)2

+
2�

�2(x)
or � ≤ −b(x)

�2(x)
−

√(
b(x)

�2(x)

)2

+
2�

�2(x)
.

|�|max = max
i∈Nk

|�i|, |�|min = min
i∈Nk

|�i|, �2
max

= max
i∈Nk

�2
i
, �2

min
= min

i∈Nk

�2
i
.

e�a − e�x ≥ ��x

⎡⎢⎢⎣

�a∧t

�
0

e�Z(u)du

⎤⎥⎥⎦
≥ �e�x�x[�a ∧ t], t ≥ 0,

(4.21)�x[𝜏a ∧ t] ≤ (
e𝜃a − e𝜃x

)
∕𝜀 < ∞, x < a.

(4.22)𝜃 ≤ −
1

2

(
|𝛽|max +

√
|𝛽|2

max
+ 8𝜀∕𝜎2

min

)
< 0.
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Assume that ℙx(�a = ∞) = 1 , then ℙx[t > 𝜏a] = 0 , so we have, from Eq. (4.23),

Denote �x

[
e�Z(u)1(u ≤ �a)

]
 by g(u). Then, after elementary manipulation, this yields

and therefore, by integrating both sides of this inequality, we have

because g(u) = �x

[
e�Z(u)1(t ≤ �a)

] ≤ e�a for 𝜃 < 0 . Letting t → ∞ in this inequal-
ity, we have a contradiction because its right-handside diverges. Hence, we have 
Eq.  (4.18). We finally consider the case 0 = a < x . If ℙx

[
Y(�0) = 0

]
= 1 , then 

(4.23) holds, and the arguments below it works, which proves (4.18). Otherwise, if 
ℙx(Y(𝜏0) = 0) < 1 , that is, ℙx(Y(𝜏0) > 0) > 0 , then ℙx[𝜏0 < ∞] > 0 because of the 
definition of Y(⋅) . Hence, we again have Eq. (4.18) for a = 0.

We finally check Harris irreducible condition (see (2.7)). For this, let � = �0 ∧ �
�0

 , 
then {Z(t);t ∈ (0, �)} is stochastically identical with {X(t);t ∈ (0, �)} , where 
X(t) ≡ X(0) + b1t + �1W(t) . Then, from Tanaka’s formula (A.4) for Z(⋅) , if 
Z(0) = y ∈ (x,�1),

Hence, if b1 ≥ 0 , then

Similarly, from Eq. (A.4) for X(⋅) = Z(⋅) , if b1 < 0 , then, for y ∈ (0, x) ⊂ (0,�1),

(4.23)�x

[
e�Z(�a∧t)

] ≥ e�x + �

t

�
0

�x

[
e�Z(u)1(u ≤ �a)

]
du, t ≥ 0.

�x

[
e�Z(t)1(t ≤ �a)

]
= �x

[
e�Z(�a∧t)

] ≥ e�x + �

t

�
0

�x

[
e�Z(u)1(u ≤ �a)

]
du, t ≥ 0.

d

dt

⎛
⎜⎜⎝
e−�t

t

�
0

g(u)du

⎞
⎟⎟⎠
≥ e�xe−�t,

e�a ≥ 1

t

t

�
0

g(u)du ≥ e�x
e�t − 1

�t
,

1

2
Lx(� ∧ t) = (Z(� ∧ t) − x)−

+ b1

�∧t

�
0

1(Z(u) ≤ x)du + �1

�∧t

�
0

1(Z(u) ≤ x)dW(u).

(4.24)�y[Lx(t)] ≥ 2�y[(x − Z(𝜏 ∧ t)1(x > Z(𝜏 ∧ t)] > 0, t > 0.
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Assume that b1 ≥ 0 , then we choose y ∈ (x,�1) and the Lebesque measure on [0, y] 
for � . Then, it follows from Eqs.   (4.24) and (A.1) with g = 1B that 𝜓(B) > 0 for 
B ∈ B(ℝ+) implies

Since Z(⋅) hits state y ∈ (0,�1) from any state in S with positive probability, this ine-
quality implies the Harris irreducibility condition (2.7). Similarly, this condition is 
proved for b1 < 0 using Eq. (4.25) and the Lebesgue measure on [y,�1] for � . Thus, 
the proof of Lemma 2.3 is completed.

4.3  Proof of Lemma 2.4

Obviously, b∗ < 0 is necessary for Z(⋅) to have a stationary distribution because Z(t) 
a.s. diverges if b∗ > 0 by the strong law of large numbers and Lemma 2.3 while Z(⋅) 
is null recurrent if b∗ = 0.

Conversely, assume that b∗ < 0 . We note the following fact which is partially a 
counter part of Eq. (4.17).

Lemma 4.1 If b∗ < 0 , then

Proof Assume that �∗ ≤ a < x , and let X(t) ≡ x + b∗t + �∗W(t) for t ≥ 0 . Since 
�∗ < x , {Z(t);0 ≤ t ≤ �X

�∗
} under ℙx has the same distribution as {X(t);0 ≤ t ≤ �X

�∗
} , 

where �X
y
= inf{u ≥ 0;X(u) = y} for y ≥ �∗ . Hence, applying the optional sampling 

theorem to the martingale X(t) − x − b∗t for stopping time �X
a
∧ t , we have

Since X(t) → −∞ as t → ∞ w.p.1 by strong law of large numbers, letting t → ∞ in 
this equation yields b∗�x

[
�X
a

]
= a − x . Hence, we have

This proves (4.26).   ◻

(4.25)

�y[Lx(t)] ≥ �y

�
Lx(𝜏 ∧ t)

�

≥ 2�y

�
(Z(𝜏 ∧ t) − x)+

�
− 2b1�y

⎡
⎢⎢⎣

𝜏∧t

�
0

1(Z(u) > x)du

⎤
⎥⎥⎦
> 0.

�y

⎡
⎢⎢⎣

t

�
0

1B(Z(u))𝜎
2

1
du

⎤
⎥⎥⎦
≥ �y

⎡
⎢⎢⎣

∞

�
0

1B(x)Lx(t)𝜓(dx)

⎤
⎥⎥⎦
> 0.

(4.26)�x[𝜏a] < ∞, �∗ ≤ a < x.

�x

[
X(�X

a
∧ t) − x − b∗(�

X
a
∧ t)

]
= 0, t ≥ 0.

(4.27)�x[𝜏a] = �x

[
𝜏X
a

]
=

−1

b∗
(x − a), �∗ ≤ a < x,
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We return to the proof of Lemma 2.4. For n ≥ 1 and x, y > �∗ such that x < y , 
inductively define Sn, Tn as

where T0 = 0 . Because �∗ < x < y , we have, from Eqs.  (4.17) and (4.26),

Hence, Z(⋅) is a regenerative process with regeneration cycles {Tn;n ≥ 1} because 
the sequence of {Z(t);Tn−1 ≤ t < Tn} for n ≥ 1 is i.i.d. by its strong Markov property. 
Hence, Z(⋅) has the stationary probability measure � given by

Thus, Z(⋅) is positive recurrent.

5  Concluding Remarks

We discuss two topics here.

5.1  Process limit

It is conjectured in Miyazawa (2024) that a process limit of the diffusion scaled 
queue length in the 2-level GI/G/1 queue in heavy traffic is the solution Z(⋅) of sto-
chastic integral Eq.  (2.1) for the 2-level SRBM. As we discussed in Remark 3.2, the 
stationary distribution of Z(⋅) is identical with the limit of the stationary distribution 
of the scaled queue length in the 2-level GI/G/1 queue in heavy traffic, obtained in 
Miyazawa (2024). This strongly supports this conjecture on the process limit.

We believe that the conjecture is true. However, the standard proof for diffusion 
approximation based on functional central limit theorem may not work because of 
the state dependent arrivals and service speed in the 2-level GI/G/1 queue. We are 
now working on this problem by formulating the queue length process for the 2-level 
GI/G/1 queue as a semi-martingale. However, we have not yet completed its proof, 
so this is an open problem.

5.2  Stationary Distribution Under Weaker Conditions

In this paper, we derived the stationary distribution for a one-dimensional multi-
level SRBM under the stability condition. In the view of Corollary 3.1, it is naturally 
questioned whether a similar stationary distribution is obtained under more general 
conditions than Condition 2.1.

Sn = inf{t > Tn−1;Z(t) = y}, Tn = inf{t > Sn;Z(t) = x},

0 < �x[𝜏y] < �x[T1] ≤ �x[𝜏y] + �y[𝜏x] < ∞.

(4.28)�(B) =
1

𝔼x(T1)
𝔼x

⎡
⎢⎢⎣

T1

∫
0

1(Z(u) ∈ B)du

⎤
⎥⎥⎦
, B ∈ B(ℝ+).
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To consider this problem, we first need the existence of the solution Z(⋅) of 
Eq. (2.1), for which the existence of the solution X(⋅) of Eq. (4.14) is sufficient as 
discussed in Remark 4.1. For the latter existence, Condition 2.2 is weaker than Con-
dition 2.1, but Theorem 5.15 of Karatzas and Shreve (1998) and Theorem 23.1 of 
Kallenberg (2001) show that it can be further weakened to

Condition 5.1 

It is easy to see that Condition 5.1 is indeed implied by Condition 2.2. Note that 
the local integrability condition (5.2) implies that

which is equivalent to S� = � , where

This condition S� = � is needed for X(t) to exist for all t ≥ 0 in the weak sense as 
shown by Theorem 23.1 of Kallenberg (2001) and its subsequent discussions.

Assume Condition  5.1 for general �(x) and b(x). If these functions are well 
approximated by simple functions (e.g., the discontinuity points of �(x) and b(x) 
is finite for x in each finite interval) and if b(x) ≠ 0 for all x ≥ 0 , then Corol-
lary  3.1 suggests that the stationary density is given by Eq.   (3.38) under the 
condition that

To legitimize this suggestion, we need to carefully consider the approximation, but 
we have not yet done it. So, we leave it as a conjecture.

(5.1)𝜎2(x) > 0, ∀x ∈ ℝ,

(5.2)

x2

∫
x1

1

𝜎2(y)
dy < ∞, ∀(x1, x2) ∈ ℝ

2 satisfying x1 < x2,

(5.3)

x+𝜀

∫
x−𝜀

|b(y)|
𝜎2(y)

dy < ∞, ∀x ∈ ℝ,∃𝜀 > 0.

lim
𝜀↓0

x+𝜀

∫
x−𝜀

1

𝜎2(y)
dy < ∞, ∀x ∈ ℝ,

S� =

⎧⎪⎨⎪⎩
x ∈ ℝ; lim

�↓0

x+�

∫
x−�

1

�2(y)
dy = ∞

⎫⎪⎬⎪⎭
.

(5.4)

∞

∫
0

1

𝜎2(x)
exp

⎛⎜⎜⎝

x

∫
0

2b(y)

𝜎2(y)
dy

⎞⎟⎟⎠
dx < ∞.
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Appendix

Weak Solution of a Stochastic Integral Equation

There are two kinds of solutions for a stochastic integral equation such as Eq. (2.1). 
We here only consider them for the SIE (2.1). Recall that this equation is defined 
on stochastic basis (Ω,F, 𝔽 ,ℙ) . On this stochastic basis, if Eq.   (2.1) holds almost 
surely on this stochastic basis, then the SIE (2.1) is said to have a strong solution. In 
this case, the standard Brownian motion W(⋅) is defined on (Ω,F, 𝔽 ,ℙ) . On the other 
hand, the SIE (2.1) is said to have a weak solution if there are some stochastic basis 
(Ω̃, F̃, 𝔽 , ℙ̃) and some �̃ -adapted process (Z(⋅),W(⋅), Y(⋅)) on it such that Eq.  (2.1) 
holds almost surely and W(⋅) is the standard Brownian motion under ℙ̃x for each 
x ≥ 0 , where ℙ̃x is the conditional distribution of ℙ̃ given Z(0) = x (e.g., see (Karat-
zas and Shreve (1998), Section 5.3)).

It may be better to use a different notation for the weak solution, e.g., 
(Z̃(⋅), W̃(⋅), Ỹ(⋅)) . However, we have used the same notation not only for this process 
but also stochastic basis for notational convenience. Thus, when we discuss about 
the weak solution, the stochastic basis (Ω,F, 𝔽 ,ℙ) is considered to be appropriately 
replaced.

Local Time and Generalized Ito Formula

We briefly discuss about local time for a generalized Ito formula (3.12). This Ito for-
mula is also called Ito–Meyer–Tanaka formula (e.g., see Theorem 6.22 of Karatzas and 
Shreve (1998) and Theorem 22.5 of Kallenberg (2001)). Let X(⋅) be a continuous semi-
martingale with finite quadratic variations [X]t for all t ≥ 0 . For this X(⋅) , local time 
Lx(t) for x ∈ ℝ and t ≥ 0 is defined through

See Theorem 7.1 of Karatzas and Shreve (1998) for details about the definition of 
local time. Note that the local time of Karatzas and Shreve (1998) is half of the local 
time in this paper. Applying g(y) = 1(x−�,x+�)(y) for 𝜀 > 0 to Eq.  (A.1), we can see 
that

This can be used as the definition of the local time.
There are two versions of the local time since Lx(t) is continuous in t, but may not be 

continuous in x. So, usually, the local time Lx(t) is assumed to be right-continuous for 
the generalized Ito formula (3.12). However, if the finite variation component of X(⋅) 

(A.1)

∞

∫
−∞

Lx(t)g(x)dx =

t

∫
0

g(X(u))d[X]u for any measurable function g.

(A.2)Lx(t) = lim
�↓0

1

2�

t

�
0

1(x−�,x+�)(X(u))d[X]u, a.s. x ∈ ℝ, t ≥ 0
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is not atomic, then Lx(t) is continuous in x (see Theorem 22.4 of Kallenberg (2001)). 
In particular, the finite variation component of Z(⋅) is continuous by Lemma 2.2, so we 
have the following lemma.

Lemma A.1 For the Z(⋅) of an 1-dimensional state-dependent SRBM with bounded 
drifts, its local time Lx(t) is continuous in x for each t ≥ 0 . Furthermore, �[Lx(t)] is 
finite by Eq.  (A.1) for X(⋅) = Z(⋅).

Let f be a concave test function from ℝ to ℝ , then −f  is a convex function, where 
(−f )(x) = −f (x) , so the generalized Ito formula (3.12) becomes

For constant a ∈ ℝ , let f (x) = (x − a)+ ≡ max(0, x − a) for Eq.  (3.12), then 
f �(x−) = 1(x > a) and �f (B) = 1(a ∈ B) . Hence, it follows from Eq. (3.12) that

Similarly, applying f (x) = (x − a)− ≡ max(0,−(x − a)) and f (x) = |x − a| , we have, 
by Eqs. (A.3) and (3.12),

where sgn(x) = 1(x > 0) − 1(x ≤ 0) . Note that either one of these three formulas can 
be used to define local time La(t) . In particular, Eq. (A.6) is called a Tanaka formula 
because it is originally studied for Brownian motion by Tanaka (1963).
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(A.3)

f (X(t)) = f (X(0)) +

t

�
0

f �(X(u)−)dX(u) −
1

2

∞

�
0

Lx(t)�−f (dx), t ≥ 0,

(A.4)(X(t) − a)+ = (X(0) − a)+ +

t

∫
0

1(X(u) > a)dX(u) +
1

2
La(t).

(A.5)(X(t) − a)− = (X(0) − a)− −

t

�
0

1(X(u) ≤ a)dX(u) +
1

2
La(t),

(A.6)|X(t) − a| = |X(0) − a| +
t

�
0

sgn(X(u) − a)dX(u) + La(t), t ≥ 0,
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