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Abstract
This article introduces and investigates the Marshall-Olkin Topp-Leone log-normal 
(MOTLLN) distribution, a novel extension of the log-normal distribution. It can 
be presented as a new four-parameter continuous distribution designed to analyze 
a wide range of versatile positive-valued data. In a brief first part, we explore its 
main aspects, including the quantile function and the hazard rate function. We then 
focus on its applied aspect from a statistical perspective. Parameter estimation is 
performed using both maximum likelihood and Bayesian methods. Furthermore, 
we employ the MOTLLN distribution to develop a parametric regression model 
and a Bayesian regression model, demonstrating its versatility. A simulation study 
supports the practical performance of the maximum likelihood estimation procedure. 
Real datasets are used to demonstrate the applicability of our methodology. The 
effectiveness of the additional parameter in the MOTLLN model is assessed by a 
likelihood ratio test. In addition, the parametric bootstrap method is used to evaluate 
the suitability of the MOTLLN model for the datasets. All the results obtained 
confirm the great potential of the proposed model in all aspects.

Keywords Marshall-Olkin family · Topp-Leone family · Bayesian estimation · 
Infrared astronomy data · Strength of glass fiber data · Cancer data

1 Introduction

Various fields of lifetime data analysis, including survival analysis, astronomical 
observations, financial modelling, risk assessment, insurance, rare event analysis 
and biology, require the introduction of novel distributions with different hazard rate 
characteristics. In fact, the effectiveness of statistical analysis depends largely on the 
selection of an appropriate distribution adapted to the dataset under consideration, 
highlighting the importance of model adaptability. However, traditional distributions 

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s41096-024-00203-x&domain=pdf


 Journal of the Indian Society for Probability and Statistics

often prove inadequate to accurately capture the complexity of real-world datasets 
arising from concrete scenarios. For this reason, there has been a notable resurgence 
of interest in refining established distributions through the addition of parameter(s), 
resulting in a number of hazard rate functions (hrfs) suitable for the analysis of 
skewed data with varying kurtosis. A review of some of these extended models is 
given in Pham and Lai (2007).

As a fundamental concept, the log-normal (LN) distribution describes the 
distribution of a continuous random variable whose logarithm follows a normal 
distribution. It has significant implications for the analysis of lifetime data, 
particularly when dealing with asymmetric datasets. This is the case in many 
disciplines within the life sciences, such as biology, geology, ecology and 
meteorology, as well as economics, finance and risk analysis (see Jobe et al. (1989)). 
It is also gaining attention in environmental sciences, physics, astrophysics and 
cosmology (see Bernardeau and Kofman (1994), Blasi et al. (1999), Parravano et al. 
(2012)). As a key mathematical point, the probability density function (pdf) of the 
LN distribution is given by

where x > 0 , � ∈ ℝ and 𝜎 > 0 . The generalizations of the LN distribution have 
been extensively explored in the statistical literature by various authors, enhancing 
flexibility (see Chen (1995), Singh et  al. (2012), Gui (2013), Kleiber (2014), and 
Toulias and Kitsos (2013)). In this article, we propose a new generalized version of 
the LN distribution, achieved through a flexible generalization technique.

The subsequent sections of this article are organized as follows: Sect.  2 
elucidates the construction method of this generalization. Section  3 presents its 
main mathematical definition. Section  4 provides the quantile function (qf) and 
related measures. Section 5 explores the hrf and its graphical point of view via some 
examples of plots. Section 6 introduces the maximum likelihood (ML) and Bayesian 
methods for estimating the unknown parameters of the model. In addition, Sect. 7 
outlines a parametric bootstrap method using the ML estimation in a simulation 
context. Section 8 defines a parametric regression model associated with the new 
distribution, while Sect.  9 introduces a Bayesian regression method. Section  10 
presents a simulation study evaluating the performance of the ML estimates of the 
parameters involved. Finally, to demonstrate the effectiveness of the new distribution 
compared to other distributions, Sect. 11 analyzes three univariate uncensored real 
datasets and one censored real dataset for regression analysis. Section 12 provides 
concluding remarks.

2  Construction

To understand the construction of the new distribution, a retrospective analysis of 
various distributions and generator distribution schemes is essential. The Topp-
Leone (TL) distribution, first introduced by Topp and Leone (1955), provides 

(1.1)q(x) =
1√
2��x

exp

�
−
(log(x) − �)2

2�2

�
,
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a precisely bounded J-shaped distribution that serves as an alternative to the 
uniform(0,1) and beta distributions. It has gained particular attention among 
statisticians in recent years. The cumulative distribution function (cdf) of the TL 
distribution is

where 0 < x < 1 and 𝛼 > 0 . From this simple expression we can immediately derive 
the corresponding pdf and hrf. It is important to note that the TL distribution has 
a bathtub shaped hrf for all 𝛼 < 1 . A notable study in the literature using the TL 
distribution as a generator was the TL generalized exponential (TLGE) distribution 
introduced by Sangsanit and Bodhisuwan (2016). Convincing applications to 
datasets in materials science and engineering have been obtained.

On the other hand, Marshall and Olkin (1997) proposed a new scheme for 
generalizing distributions by introducing an additional parameter to a family of 
distributions called the Marshall-Olkin-G family. The authors demonstrate its 
applicability by comparing it with the famous exponential and Weibull families. 
Later, Al-Shomrani et  al. (2016) developed another family of distributions, the 
so-called TL-G family, and discussed the inferential aspects of certain important 
members. By combining the Marshall-Olkin-G and TL-G families, Khaleel et  al. 
(2020) established the Marshall-Olkin TL-G (MOTL-G) family and studied some of 
its general properties. The cdf of the MOTL-G family is given by

which is defined for any fixed baseline cdf F(x) and 𝛽 > 0.
The usefulness of the proposed family is also emphasised by an important 

member of this family, the so-called Marshall-Olkin TL Weibull (MOTLWe) 
distribution. The flexibility of the corresponding model compared to various 
competitors is very convincing and inspires more work in this direction. It is to 
be hoped that other members of this family will also perform well relative to their 
respective sub-models. So far, there hasn’t been much work done on other members 
of this family in the literature, which can be seen as a research gap.

Therefore, in this article, we consider an important member of this family by 
selecting the LN distribution as the baseline distribution, motivated in part by a 
high potential for applicability. We call the resulting distribution the Marshall-Olkin 
TL log-normal (MOTLLN) distribution. Our aim is to uncover various statistical 
properties of this distribution and to use them in reliability analysis. Our motivations 
are as follows:

 (i) To introduce a novel and versatile continuous distribution capable of effectively 
modelling lifetime data across a wider range of reliability challenges.

 (ii) To extend both LN and TL distributions.
 (iii) To include additional forms of hrfs.

(2.1)FTL(x) = {x(2 − x)}� ,

(2.2)FMOTL−G(x) =
{F(x)[2 − F(x)]}�

� + (1 − �){F(x)[2 − F(x)]}�
,
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3  Definition

This part introduces the definition and key features of the MOTLLN distribution.

Definition 3.1 Let X be a continuous random variable. Then we say that X follows 
the MOTLLN distribution with parameters � , � , � and � , if its cdf is expressed as 
follows:

where x > 0 , � ∈ ℝ , � , � , 𝜎 > 0 , and Φ(x) and �(x) are the cdf and pdf of the 
standard normal distribution, respectively.

Under this setting, the corresponding pdf is indicated as

To get a visual idea of the functional possibilities of the MOTLLN distribution, 
Figs. 1 and 2 show some examples of plots of the corresponding cdf and pdf, respec-
tively. The pdf may show a decreasing trend or a single peak characterising unimo-
dality. Some flexibility is observed both in the mode and in the tails. However, it 
tends to be right-skewed or nearly symmetric.

Remark 3.1 For � = 1 , the cdf of the MOTLLN distribution in Eq. (3.1) reduces to 
the cdf of the Topp-Leone log-normal (TLLN) distribution, which was developed by 
Chesneau et al. (2022).

(3.1)F(x) =

{
Φ
(

log(x)−�

�

)[
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Fig. 1  Examples of plots of the cdf of the MOTLLN distribution
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Remark 3.2 The cdf of the MOTLLN distribution reduces to that of the LN distribu-
tion if x is fixed, � = 1 and

The proof is straightforward and omitted for the sake of brevity.

4  Quantile Function and Measures

In this part, we develop an explicit equation for the qf of the MOTLLN 
distribution, as well as several of its associated measures.

Theorem 4.1 Let p ∈ (0, 1) . The pth quantile of the MOTLLN distribution is given by

where F(x) is cdf specified in Eq. (3.1) and Φ−1(x) is the qf associated with the 
standard normal distribution.

Proof By the definition, the pth quantile Qp is the solution of the equation F(Qp) = p , 
so

� =
log

[
Φ
(

log(x)−�

�

)]

log
{
Φ
(

log(x)−�

�

)[
2 − Φ

(
log(x)−�

�

)]} .

(4.1)Qp = F−1(p) = exp

⎡⎢⎢⎢⎣
� + � Φ−1

⎧⎪⎨⎪⎩
1 −

�
1 −

�
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Fig. 2  Examples of plots of the pdf of the MOTLLN distribution
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Let us solve it with a step-by-step approach. On simplification, Eq. (4.2) reduces to

The desired expression is obtained, ending the proof.   ◻

The comprehensive analytical expression of the qf is an advantage of the 
MOTLLN distribution.

Remark 4.1 An alternative expression of Qp in Eq. (4.1) is

where erf−1(x) is the standard inverse error function.

The median of the MOTLLN distribution is calculated as

Similarly, we derive the first and third quartiles of the distribution by taking p = 1∕4 
and p = 3∕4 into Qp , respectively.

(4.2)
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5  Hazard Rate Function

The hrf of the MOTLLN distribution is given by the following ratio:

where S(x) = 1 − F(x) is the survival function (sf) of the MOTLLN distribution. 
Since

the desired hrf gets the form

We examine this from a graphical point of view with some sample plots in Fig. 3.
We can also see from this figure that the MOTLLN distribution has increasing, 

decreasing, bathtub and upside-down bathtub shapes for its hrf. It is therefore 
complete in terms of hrf modelling.

6  Parametric Estimation

In this part, we examine the MOTLLN distribution from a statistical perspective, 
focusing on the estimation of its parameters. We explore two famous methods 
known for their efficiency: ML and Bayesian methods.

6.1  Maximum Likelihood Estimation

First, we consider the ML estimation for the parameters � , � , � , and � . Let n be a 
positive integer, X1,X2,… ,Xn denote a random sample drawn from the MOTLLN 
distribution with these unknown parameters, and x1, x2,… , xn represent the 
corresponding observed values, constituting the data. The log-likelihood function 
is then be formulated as follows:

h(x) =
f (x)

S(x)
,

S(x) =
�
[
1 −

{
Φ
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log(x)−�
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log(x)−�
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Fig. 3  Examples of plots of the hrf of the MOTLLN distribution
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Ideally, we obtain the ML estimates (MLEs) ( ̂�, �̂, �̂, �̂ ) of ( �, �,�, � ) by maximizing 
this function. From a mathematical point of view, a differentiation can be made. For 
this purpose, the score function associated with the log-likelihood function is

We now investigate the nonlinear equations �Ln∕�� = 0 , �Ln∕�� = 0 , �Ln∕�� = 0 , 
and �Ln∕�� = 0 , which are equivalent to

and

(6.1)

Ln = n log(2) + n log(�) + n log(�) − n log(�)

−
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respectively. Solving the nonlinear equations given in Eqs. (6.2), (6.3), (6.4) and 
(6.5) synergistically, we obtain the MLEs �̂ , �̂  , �̂  and �̂ . Let us notice that, for 
known � and � , the MLE of � is simply calculated as

Asymptotic confidence intervals (CIs) for the parameters can be determined. By 
computing the second partial derivatives of Ln , we can obtain the Hessian matrix for 
the MOTLLN distribution, which is expressed as

where Θ = (�, �,�, �) . The observed Fisher’s information matrix is given by 
J(Θ) = −H(Θ) . The inverse of this matrix yields the variance-covariance matrix of 
the MLEs. We define it via general matrix coefficients as

(6.5)
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and Σij = Σji for i ≠ j = 1, 2, 3, 4 . Furthermore, it is widely acknowledged that the 
MLEs exhibit asymptotic normality. That is, 

√
n(Θ − Θ̂) ∼ N4(0,Σ) , where n is the 

sample size, ∼ means distribution approximation, and Θ̂ = (�̂, �̂, �̂, �̂) is the ML vec-
tor estimate of Θ.

For a fixed � ∈ (0, 1) , we determine 100 × (1 − �)% asymptotic CIs of the 
parameters by

where u� is the upper �th percentile of the standard normal distribution.

6.2  Bayesian Estimation

We now perform a Bayesian analysis on the parameters involved in the 
MOTLLN model. To do this, we need to adopt a prior distribution for each 
parameter. For this purpose, we use two types of priors, the half-Cauchy (HC) 
prior and the normal (N) prior. Specifically, the pdf of the HC distribution with 
scale parameter a is defined as

where x∗ > 0 and a > 0 . As is well known, the HC distribution lacks a defined mean 
and variance, while its mode is 0. Although its pdf is almost flat, with a = 25 , it 
provides sufficient information for the numerical approximation algorithm to 
continue exploring the target posterior pdf. The HC distribution thus configured is 
recommended as a non-informative prior. We also refer to the study by Gelman and 
Hill (2006), where the HC distribution is shown to be a superior alternative to the 
uniform distribution and other informative priors. With this in mind, we specify the 
prior distributions of the parameters as follows:

Now, using Eqs (6.7), the joint posterior pdf is obtained as

where �n = exp(Ln) is the likelihood function of the MOTLLN distribution and ∝ 
means "directly proportional to". From Eq. (6.8), it is clear that the Bayesian esti-
mates have no analytical expression. Therefore, we employ the Metropolis-Hastings 
algorithm, a notable simulation method within the framework of Markov Chain 

� ∈
�
�̂ ∓ u�∕2

√
Σ11

�
, � ∈

�
�̂ ∓ u�∕2

√
Σ22

�
,

� ∈
�
�̂ ∓ u�∕2

√
Σ33

�
and � ∈

�
�̂ ∓ u�∕2

√
Σ44

�
,

(6.6)fHC(x∗) =
2a

�(x2
∗
+ a2)

,

(6.7)
� is assumed to follow the distribution ∶ N(0, 1000),

and �, �, � are assumed to follow the distribution ∶ HC(25).

(6.8)d(�, �, �, �) ∝ �nd(�)d(�)d(�)d(�),
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Monte Carlo (MCMC) techniques. The detailed description of the MCMC method 
can be found in Upadhyay et al. (2001).

7  Bootstrap CIs

In this part, we apply the parametric bootstrap method to approximate the 
distribution of the MLEs for the parameters of the MOTLLN model. We then 
use the bootstrap distribution to estimate the CIs for each parameter of the fitted 
MOTLLN distribution. Let �̂  be an ML estimate of � ∈ {�, �,�, �} using data, say 
x1, x2,… , xn . In short, the bootstrap is a method of estimating the distribution of the 
underlying distribution of �̂  by taking a random sample for � based on B random 
samples �∗

1
, �∗

2
,… , �∗

B
 , which are drawn with replacement from the original data. 

Further details can be found in Wasserman (2006). The resulting bootstrap sample 
�∗
1
, �∗

2
,… , �∗

B
 can then be used to construct bootstrap CIs for �.

Thus, we obtain 100 × (1 − �)% bootstrap CIs of the parameters using the 
following formulas:

where v� denotes the �th percentile of the bootstrap sample and, for � ∈ {�, �,�, �},

8  MOTLLN Regression Model

This part develops a regression model based on the MOTLLN distribution. To do 
this, let X be a random variable following the MOTLLN distribution. We recall that 
the corresponding pdf is specified in Eq. (3.2). Then the random variable Y = log(X) 
has the following pdf:

where y ∈ ℝ , � , 𝛽 > 0 are the shape parameters, � ∈ ℝ is the location parameter, 
and 𝜎 > 0 is the scale parameter. We refer to the distribution defined by the pdf in 
Eq. (8.1) as the log-MOTLLN distribution. In this setting, the standardized random 
variable Z = (Y − �)∕� has the pdf indicated as

� ∈
[
�̂ ∓ v�∕2 ŝe�,boot

]
, � ∈

[
�̂ ∓ v�∕2 ŝe�,boot

]
,

� ∈
[
�̂ ∓ v�∕2 ŝe�,boot

]
and � ∈

[
�̂ ∓ v�∕2 ŝe�,boot

]
,

ŝe�,boot =

√√√√√ 1

B

B∑
b=1

(
�∗
b
−

1

B

B∑
b=1

�∗
b

)2

.

(8.1)fY (y) =
2�� �
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(
y−�

�

)]{
Φ
(

y−�

�

)[
2 − Φ
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where z ∈ ℝ . Now, from n independent observations, for any i = 1,… , n , the linear 
location-scale regression model linking the ith value of the response variable Y, say 
yi , and the explanatory variable vector vT

i
= (vi1, vi2,… , vip) is given by

where zi is the random error component that has the pdf in Eq. (8.2), �i = vT
i
� is 

the location parameter of yi , where � = (�1, �2,… , �p)
T , and �, � and � are unknown 

parameters. Thus, the location parameter vector � = (�1,�2,… ,�n)
T is represented 

by a linear model � = V� , where V = (V1,V2,… ,Vn)
T is a known model matrix.

In this setting, we propose the MOTLLN regression model from Eq. (8.3). It is 
governed by the following formula:

Let us consider a sample (x1, v1), (x2, v2),… , (xn, vn) of n independent observations 
and the vector of parameters � = (�T , �, �, �)T from model Eq. (8.4). Then the total 
log-likelihood function for right censored data has the form

where, for i = 1,… , n , �i = 1 if survival (uncensored), and �i = 0 otherwise 
(censored), and f(x) and S(x) are the pdf and sf of the MOTLLN distribution, 
respectively.

9  Bayesian Regression Model

The Bayesian analysis technique is known to be efficient for analyzing survival 
patterns in various real-world scenarios. In this study, we investigate its usefulness 
for fitting a regression model based on the MOTLLN distribution while 
incorporating information on prior parameters. We then use a simulation approach 
to facilitate Bayesian analysis of the model.

To perform a Bayesian analysis, it is essential to specify prior probability 
distributions for the model parameters. In this context, similarly to Subsection 6.2, 
we use two different priors: HC and N priors. We recall that the pdf of the HC 
distribution with scale parameter a is described in Eq. (6.6). Now, we can write the 
likelihood function for right censored data as

(8.2)fZ(z) =
2�� �(z)[1 − Φ(z)]{Φ(z)[2 − Φ(z)]}�−1(

� + (1 − �){Φ(z)[2 − Φ(z)]}�
)2 ,

(8.3)yi = �i + �zi,

(8.4)xi = exp(yi) = exp(�i + �zi), i = 1, 2,… , n.

(8.5)

l(�) = log

{
n∏
i=1

[
f (xi)

]�i[S(xi)
]1−�i

}

=

n∑
i=1

�i log
[
f (xi)

]
+

n∑
i=1

(1 − �i)
[
log[S(xi)]

]
,
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where, for i = 1,… , n , �i = 1 , if survival (uncensored) and �i = 0 otherwise 
(censored), and f(x) and S(x) are the pdf and sf of the MOTLLN distribution, 
respectively. We use the following link function:

which operates a linear combination of explanatory variables. Here,

Now, using Equations (9.1), (9.2) and (9.3), the joint posterior pdf is obtained as

From Equation (9.4), it is evident that obtaining analytical solutions for the 
Bayesian estimates is not feasible. Hence, we employ the simulation approach, 
specifically the Metropolis Hastings algorithm of the MCMC method, as discussed 
in Subsection 6.2.

10  Performance of the Estimates Using Simulation Study

This part presents simulation experiments aimed at evaluating the performance 
of the MLEs for the parameters of the MOTLLN distribution across various 
finite sample sizes. We have simulated datasets of sizes n = 50, 250, 500, 
and 1000 from the MOTLLN distribution for the parameter values 
� = 0.5, � = 5.5,� = 0.9, � = 0.6 and iterated each sample 500 times. The 
average absolute biases, mean squared errors (MSEs), coverage probabilities 
(CPs) and average lengths (ALs) are then calculated over all replications within 
the respective sample sizes. The analysis computes their values using the 
following formulas:

• Average absolute bias of the simulated estimates = 1

500

500∑
i=1

��̂i − ��,

• Average MSE of the simulated estimates = 1

500

500∑
i=1

(�̂i − �)2,

where �̂ ∈ {�̂, �̂, �̂, �̂} is the estimate of the corresponding parameter 
� ∈ {�, �,�, �} . Table  1 contains the results. We draw the conclusion that as 
sample size increases, the MSE and AL of each estimate decrease. Also, the 
average absolute bias often appears to decrease as sample size increases. Also, 
the CPs of the confidence intervals (CIs) for each parameter are relatively close 

(9.1)L =

n∏
i=1

[
f (xi)

]�i[S(xi)
]1−�i ,

(9.2)� = V�,

(9.3)

�j is assumed to follow the distribution ∶ N(0, 1000); j = 1, 2,… , J

and �, �, � are assumed to follow the distribution ∶ HC(25).

(9.4)d(�, �, �, �) ∝ L(V , �, �, �, �)d(�)d(�)d(�)d(�).
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to the nominal 95 percent level. This demonstrates how consistent the subjacent 
estimators are.

11  Applications and Empirical Study

In this part, we illustrate the empirical relevance of the MOTLLN distribution. In 
order to highlight its data modelling ability over several competing distributions, 
we study four real datasets. The first is a dataset related to astronomy, while the 
second and third are datasets based on the strength of glass fibers of two different 
lengths. In the fourth, we use a real censored dataset based on the prognosis of 
women with breast cancer for the regression study. To analyze these datasets 
numerically, we use the R software.

11.1  Real Illustration on Univariate Real Datasets

The astronomy dataset (Dataset 1) consists of the near-infrared K-band magnitudes 
of the 360 globular clusters in Messier  31  (M31), our neighbouring Andromeda 
galaxy, taken from Nantais et al. (2006). It is given in Appendix C.3 of Feigelson 
and Babu (2012), as well as in the R   package astrodatR. A first statistical 
analysis of this dataset, focusing on a specific distribution, was carried out by 
Chesneau et al. (2022). The K-band represents a crucial atmospheric transmission 
window in infrared astronomy, indicating a region within the infrared spectrum 

Table 1  The MLE simulation 
results

Parameters n MLE Absolute bias MSE CP AL

� 50 0.5569 0.0569 0.0926 0.940 3.4074
250 0.5799 0.0799 0.0588 0.968 1.7770
500 0.5658 0.0658 0.0444 0.976 1.2498
1000 0.5448 0.0448 0.0264 0.970 0.8418

� 50 6.1530 0.6530 0.7804 0.944 38.4724
250 6.2569 0.7569 0.6037 0.996 22.3307
500 6.1219 0.6219 0.4844 0.999 16.0512
1000 6.0575 0.5575 0.3557 0.999 11.6241

� 50 0.8753 0.0247 0.0447 0.932 3.3381
250 0.8356 0.0644 0.0312 0.990 1.9255
500 0.8451 0.0549 0.0252 0.994 1.4052
1000 0.8571 0.0429 0.0189 0.998 1.0092

� 50 0.5908 0.0092 0.0150 0.940 1.3215
250 0.6186 0.0186 0.0074 0.984 0.7465
500 0.6169 0.0169 0.0053 0.994 0.5458
1000 0.6147 0.0147 0.0037 0.996 0.3959
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where terrestrial heat radiation is minimally absorbed by atmospheric gases. 
Globular clusters, characterized by densely packed groups of old stars ranging from 
104 to 106 , have a distinctly dense, roughly spherical structure that sets them apart 
from the wider stellar population. Astronomers use these clusters to deduce the age 
of the Universe or to pinpoint the Galactic Centre through meticulous study.

In addition, the second and third datasets (Datasets 2 and 3) represent the 
experimental data on the strength of glass fibers of two lengths, 1.5 cm and 
15  cm, from the National Physical Laboratory in England. Both of them are 
available in Smith and Naylor (1987).

By using standard measures, the descriptive statistics of these three datasets 
are given in Table 2.

We also investigate the corresponding empirical hrf using the idea of a total 
time on test (TTT) plot. This plot is a graph formed by the points (i∕n,wi,n) , 
i = 1, 2,… , n , where

where xr∶n , r = 1, 2,… , n are the data ordered in an increasing order. It is used as a 
visual indicator to distinguish between several types of ageing as displayed by the 
hrf shapes. For more about the construction and interpretation of the TTT plot, see 
Aarset (1987).

Thus, based on the TTT plot approach, Fig. 4 indicates that the datasets have 
an increasing shape for their empirical hrf. Therefore, the MOTLLN distribution 
provides a credible model for analyzing these data.

The following distributions are taken into consideration for comparison 
purposes and highlight the tangible benefits of the MOTLLN distribution.

• The two-parameter log-normal (LN) distribution with the pdf indicated as 

 where x > 0 , � ∈ ℝ and 𝜎 > 0.
• The TLLN distribution already mentioned with the pdf given by 

wi,n =

(n − i)xi∶n +
i∑

r=1

xr∶n

n∑
r=1

xr∶n

,

f (x) =
1√
2� �x

exp

�
−
(log(x) − �)2

2�2

�
,

Table 2  Descriptive statistics of the three datasets

n M Md Var Sk Ku min max

Dataset 1 360 14.458 14.54 1.427 −0.395 0.344 10.749 18.052
Dataset 2 63 1.507 1.59 0.105 −0.899 0.924 0.55 2.24
Dataset 3 46 1.129 1.16 0.073 −0.802 0.599 0.37 1.6
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 where x > 0 , � ∈ ℝ and � , 𝛼 > 0 . See Chesneau et al. (2022).
• The exponentiated log-normal distribution (ELN) with the pdf specified by 

 where x > 0 , � ∈ ℝ and � , 𝜎 > 0.
• The odd log-logistic log-normal (OLL-LN) distribution with the pdf indicated 

by 

f (x) =
2�

�x
�

(
log(x) − �

�

)[
1 − Φ

(
log(x) − �

�

)]
×

{
Φ

(
log(x) − �

�

)[
2 − Φ

(
log(x) − �

�

)]}�−1

,

f (x) =
�

x�
�

(
log(x) − �

�
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(
log(x) − �

�

)]�−1
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Fig. 4  The TTT plots of the three data sets
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 where x > 0 , � ∈ ℝ , and � , 𝜎 > 0 . See Ozel Kadilar et al. (2018).
• The beta log-normal distribution (BLN) with the pdf given by 

 where x > 0 , � ∈ ℝ , � , 𝛽, 𝜎 > 0 and B(�, �) is the standard beta function. See 
Castellares et al. (2011).

• The exponentiated exponential (EE) distribution with the pdf indicated as 

 where x, � , 𝜎 > 0.
• The standard gamma distribution with the pdf specified by 

 where x, � , 𝜎 > 0 and Γ(�) is the standard gamma function.
We use a variety of statistical techniques to assess the goodness-of-fit of 
distributions to real datasets, including the log-likelihood (LL), Kolmogorov-
Smirnov (KS), Cramér-von Mises (W∗ ), Anderson-Darling (A∗ ) statistics, 
alongside the Akaike information criterion (AIC) and Bayesian information 
criterion (BIC) values.

Furthermore, Tables 3, 4, and 5 provide the MLEs and goodness-of-fit statistics 
for the corresponding three datasets, respectively. Notably, the values of KS, W∗ , A∗ , 
AIC, and BIC associated with the MOTLLN distribution are consistently smaller 
compared to other distributions. Addition, we present essential graphical representa-
tions, including empirical pdf plots, empirical cdf plots, quantile-quantile (Q-Q) and 
probability-probability (P-P) plots for the three datasets in Figs. 5, 6, and 7, respec-
tively. These plots show superimposed curves of the fitted and empirical functions. 
Thus, based on these comprehensive analyses, we assert that the MOTLLN distribu-
tion emerges as the most appropriate choice for all three given datasets when com-
pared to alternative distributions.

To consolidate the previous analyses, we utilize the likelihood ratio (LR) test to 
compare the adequacy of the MOTLLN distribution with that of the TLLN, LN, 
and ELN distributions. Thus, we test the null hypotheses H0  : TLLN distribution, 
H0 : LN distribution and H0 : ELN distribution against H1 : MOTLLN distribution.

Tables  6, 7, and 8 show the LR statistics and corresponding p-values for 
all three datasets, respectively. Given the values of the test statistics and their 
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associated p-values, we reject the null hypotheses in all cases. Therefore, we con-
clude that the MOTLLN distribution provides a significantly better representation 
than the compared distributions.

Now, the Hessian matrix corresponding to Datasets 1, 2, and 3 are, 
respectively, obtained as

and

H1(Θ) =

⎛
⎜⎜⎜⎝

240.1912 22.0588 3419.8414 441.0525

22.0588 2.2954 363.4472 125.6094

3419.8414 363.4472 63104.8204 36568.9384

441.0525 125.6094 36568.9384 69063.4630

⎞
⎟⎟⎟⎠
,

H2(Θ) =

⎛
⎜⎜⎜⎝

3241.6238 22.8931 2627.8527 − 2301.7318

22.8931 0.1841 19.8020 − 12.2441

2627.8527 19.8020 158784.2252 − 92225.4781

−2301.7318 − 12.2441 − 92225.4781 325745.0176

⎞⎟⎟⎟⎠
,

Table 3  Dataset 1: MLEs and goodness-of-fit statistics results

Model ML estimates -logL AIC BIC KS W∗ A∗

MOTLLN �̂ = 0.8343 567.2737 1142.547 1158.092 0.0347 0.0611 0.3902

�̂  = 7.2339
�̂ = 2.6445
�̂ = 0.1086

TLLN �̂ = 0.2694 571.7256 1149.451 1161.110 0.0621 0.2083 1.2120
�̂ = 2.7796
�̂ = 0.0601

BLN �̂ = 0.6271 569.6364 1147.273 1162.817 0.0507 0.1184 0.7092

�̂  = 13.7742
�̂ = 2.9161
�̂ = 0.1221

OLL-LN �̂ = 4.1863 578.3391 1162.678 1174.337 0.0467 0.1809 1.9124
�̂ = 2.6731
�̂ = 0.3147

ELN �̂ = 0.1070 573.2549 1152.510 1164.168 0.0657 0.2517 1.4640
�̂ = 2.7826
�̂ = 0.0371

LN �̂ = 2.6677 582.5224 1169.045 1176.817 0.0774 0.5396 3.2814
�̂ = 0.0847

EE �̂ = 44847.58 624.776 1253.552 1261.324 0.1293 1.7963 10.8203
�̂ = 0.7740

Gamma �̂ = 142.2090 579.3487 1162.697 1170.470 0.0722 0.4406 2.7088
�̂ = 9.8355
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The 95% asymptotic CIs of the unknown parameters of the MOTLLN distribution 
for the three datasets are given in Table 9.

We then focus on the application of the Bayesian procedure to estimate the 
parameters of the MOTLLN distribution. The analysis was carried out using the 
Metropolis-Hastings algorithm of the MCMC method with 1000 iterations in the 
context of Bayesian estimation. Table 10 shows the MLEs and Bayes estimates 
of the parameters of the MOTLLN model for each of the three datasets. The 
Bayesian estimation calculations were also performed in the R software.

We now calculate the 95% bootstrap CIs for the parameters � , � , � , and 
� using the obtained MLEs. Based on the MOTLLN distribution, we simulate 
1001 samples of the corresponding sizes found in Datasets 1, 2, and 3. The true 

H3(Θ) =

⎛⎜⎜⎜⎝

3211.0658 22.4359 1772.6019 − 1893.3673

22.4359 0.1917 13.2660 − 11.1864

1772.6019 13.2660 163236.1780 − 303.3624

−1893.3673 − 11.1864 − 303.3624 263621.1053

⎞⎟⎟⎟⎠
.

Table 4  Dataset 2: MLEs and goodness-of-fit statistics results

Model ML estimates -logL   AIC BIC   KS   W∗ A∗

MOTLLN �̂ = 0.0934 11.5938 31.1876 39.7602 0.1044 0.0901 0.6015

�̂  = 10.8277
�̂ = 0.5538
�̂ = 0.1411

TLLN �̂ = 0.0733 -20.6278 47.2555 53.6849 0.2196 0.5605 2.8067
�̂ = 0.7507
�̂ = 0.0916

BLN �̂ = 0.3258 15.8890 39.7780 48.3504 0.1743 0.2999 1.5543

�̂  = 101.8488
�̂ = 1.2917
�̂ = 0.2808

OLL-LN �̂ = 34.4571 22.7971 51.5942 58.0236 0.1539 0.3066 2.3773
�̂ = 0.4227
�̂ = 6.9423

ELN �̂ = 0.0111 20.6062 47.2124 53.6418 0.2175 0.5531 2.7723
�̂ = 0.7944
�̂ = 0.0371

LN �̂ = 0.3811 28.0049 60.0099 64.2961 0.2313 0.6918 3.7736
�̂ = 0.2578

EE �̂ = 31.3533 31.3835 66.7669 71.0532 0.2291 0.7985 4.3372
�̂ = 2.6117

Gamma �̂ = 17.4410 23.9515 51.9031 56.1894 0.2164 0.5658 3.0870
�̂ = 11.5746
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values of the parameters are assumed to be the MLEs of the parameters. The 
MLEs �̂∗

b
 , �̂∗

b
 , �̂∗

b
 , and �̂∗

b
 were estimated for each sample that was obtained, with 

b ∈ {1, 2,… , 1001} . Table 11 displays the median and 95% bootstrap CIs for the 
parameters � , � , � , and � for the three datasets.

11.2  Real Illustration on Censored Dataset Using Regression

In this part, we use an actual censored dataset derived from the prognosis of breast 
cancer patients in women. As described by Collett (2015) and documented in 
Leathem and Brooks (1987), it contains the number of months that women who 
underwent either a simple or radical mastectomy to treat a grade II, III or IV tumour 
between January 1969 and December 1971 survived.

The MOTLLN regression model summary resulting from the censored dataset 
is shown in Table 12. It includes the estimates of all parameters, the negative log-
likelihood, and the value of the AIC.

Table 5  Dataset 3: MLEs and goodness-of-fit statistics results

Model ML estimates -logL AIC BIC KS W∗ A∗

MOTLLN �̂ = 0.0814 1.8334 11.6668 18.9814 0.0639 0.0209 0.1863

�̂  = 9.1544
�̂ = 0.3140
�̂ = 0.1603

TLLN �̂ = 0.0111 6.7521 19.5042 24.9901 0.1487 0.2311 1.3159
�̂ = 0.5356
�̂ = 0.0408

BLN �̂ = 0.1230 4.7707 17.5413 24.8559 0.1209 0.1309 0.8077

�̂  = 11.0099
�̂ = 0.6514
�̂ = 0.1535

OLL-LN �̂ = 173.6657 9.0974 24.1947 29.6806 0.1053 0.0911 0.9267
�̂ = 0.1256
�̂ = 40.6434

ELN �̂ = 0.0115 7.1653 20.3306 25.8165 0.1549 0.2719 1.5147
�̂ = 0.5135
�̂ = 0.0402

LN �̂ = 0.0849 13.2199 30.4399 34.0973 0.1598 0.2773 1.8512
�̂ = 0.2963

EE �̂ = 20.4425 14.5772 33.1545 36.8117 0.1603 0.3358 2.2139
�̂ = 3.1153

Gamma �̂ = 13.6452 9.6319 23.2637 26.9210 0.1391 0.1916 1.3027
�̂ = 12.0778
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When using the Metropolis-Hastings algorithm of the MCMC method to solve 
the Bayesian regression problem, Table 13 provides a summary of 1000 times the 
iterated simulated results due to the censored dataset. This summary includes the 
posterior mean, standard deviation (SD), Monte Carlo standard error (MCSE), 95% 
CIs, and posterior median.

12  Concluding Remarks

We propose a new distribution that is a generalization of the LN distribution, 
which we call the Marshall-Olkin Topp-Leone log-normal (MOTLLN) distribu-
tion. In the first part, we study its mathematical and statistical aspects. In par-
ticular, the associated quantile function and the hazard rate function are given as 
explicit formulations. In terms of applicability, maximum likelihood and Bayesian 
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Fig. 5  Various empirical plots of Dataset 1
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estimation are used to estimate the model parameters. The parametric bootstrap 
technique is applied to obtain confidence intervals for the model parameters. More 
importantly, based on the new distribution, we offer a parametric regression model 
and a Bayesian regression approach. In this study, four applications of the new 
model to real datasets using goodness-of-fit tests demonstrate its utility. In par-
ticular, it consistently outperforms previous models in the literature on valuable 
goodness-of-fit criteria. We expect that the proposed model will be used to analyze 
positive real datasets in a variety of fields, including physics, astronomy, engineer-
ing, survival analysis, hydrology, economics, and others.
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Table 6  The LR test results for 
Dataset 1 ( ∼ means “follows the 
distribution”)

Null hypothesis LR p-value

MOTLLN versus TLLN H
0
 : X ∼ TLLN 8.9038 0.002846

MOTLLN versus LN H
0
 : X ∼ LN 30.497 2.385e−07

MOTLLN versus ELN H
0
 : X ∼ ELN 11.962 0.0005428

Table 7  The LR test results for 
Dataset 2

Null hypothesis LR p-value

MOTLLN versus TLLN H
0
 : X ∼ TLLN 17.856 2.383e−05

MOTLLN versus LN H
0
 : X ∼ LN 32.822 0.0075e−05

MOTLLN versus ELN H
0
 : X ∼ ELN 18.025 0.0022e−02
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Table 8  The LR test results for 
Dataset 3

Null hypothesis LR p-value

MOTLLN versus TLLN H
0
 : X ∼ TLLN 9.8374 0.00171

MOTLLN versus LN H
0
 : X ∼ LN 22.773 1.135e-05

MOTLLN versus ELN H
0
 : X ∼ ELN 10.664 0.001093

Table 9  The 95% asymptotic CIs of the parameters of the MOTLLN distribution for the three datasets

Dataset 1 Dataset 2 Dataset 3

Parameter Lower Upper Lower Upper Lower Upper

� −0.3930 2.0615 −0.0054 0.1922 0.00019 0.1625
� −5.2171 19.6848 −2.2783 23.9337 −1.3393 19.6482
� 2.4830 2.8060 0.5484 0.5592 0.3091 0.3188
� 0.0504 0.1668 0.1374 0.1449 0.1565 0.1641

Table 10  MLEs and Bayes 
estimates of the parameters of 
the MOTLLN distribution for 
the three datasets

Dataset 1 Dataset 2 Dataset 3

Parameter ML Bayes ML Bayes ML Bayes

� 0.8343 0.7004 0.0934 0.1042 0.0814 0.0793
� 7.2339 9.8815 10.8277 12.4572 9.1544 7.0191
� 2.6445 2.6445 0.5538 0.5323 0.3140 0.3645
� 0.1086 0.1089 0.1411 0.1564 0.1603 0.1859

Table 11  The median and 95% 
bootstrap CIs for the parameters 
of the MOTLLN distribution for 
the three datasets

Parameter Median Bootstrap CI

Dataset 1 � 0.9443 (0.3138, 3.4431)
� 7.2339 (3.0246, 51.0255)
� 2.6334 (2.4840, 2.7236)
� 0.1158 (0.0771, 0.1624)

Dataset 2 � 0.1131 (0.0476, 1.3003)
� 10.2651 (1.5259, 65.6214)
� 0.5562 (0.1136, 0.6591)
� 0.1375 (0.0927, 0.3071)

Dataset 3 � 0.0968 (0.0404, 1.9244)
� 8.7691 (1.0524, 54.7217)
� 0.3191 (-0.2333, 0.4401)
� 0.1517 (0.0993, 0.4059)



 Journal of the Indian Society for Probability and Statistics

Funding This research received no external funding.

Conflict of interest The authors declare no conflict of interest.

References

Aarset MV (1987) How to identify a bathtub hazard rate. IEEE Trans Reliab 36(1):106–108
Al-Shomrani A, Arif O, Ibrahim S, Hanif S, Shahbaz M (2016) Topp-Leone family of distributions: some 

properties and application. Pak J Stat Oper Res 12:443
Bernardeau F, Kofman L (1994) Properties of the cosmological density distribution function. Astrophys 

J 443:479
Blasi P, Burles S, Olinto A (1999) Cosmological magnetic field limits in an inhomogeneous universe. 

Astrophys J Lett 514:L79–L82
Castellares F, Montenegro L, Cordeiro G (2011) The beta log-normal distribution. J Stat Comput Simul 

83:203–228
Chen G (1995) Generalized log-normal distributions with reliability application. Comput Stat Data Anal 

19:309–319
Chesneau C, Irshad MR, Shibu DS, Nitin SL, Maya R (2022) On the Topp-Leone log-normal distribu-

tion: properties, modeling and applications in astronomical and cancer data. Chil J Stat 13(1):67–90. 
https:// doi. org/ 10. 32372/ chjs. 13- 01- 04

Collett D (2015) Modelling survival data in medical research. Chapman Hall CRC texts in statistical sci-
ence. CRC Press, New York

Feigelson E, Babu GJ (2012) In modern statistical methods for astronomy: with R applications, Cam-
bridge University Press

Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models (Analytical 
methods for social research). Cambridge University Press, Cambridge

Gui W (2013) A Marshall-Olkin power log-normal distribution and its applications to survival data. Int J 
Stat Probab 2:63

Jobe J, Crow E, Shimizu K (1989) Lognormal distributions: theory and applications. Technometrics 
31:392

Khaleel MA, Oguntunde PE, Abbasi JNA, Ibrahim NA, AbuJarad MH (2020) The Marshall-Olkin Topp 
Leone-G family of distributions: a family for generalizing probability models. Sci Afr 8:e00470

Kleiber C (2014) The generalized lognormal distribution and the Stieltjes moment problem. J Theor Prob 
27:1167–1177

Leathem A, Brooks S (1987) Predictive value of lectin binding on breast-cancer recurrence and survival. 
The Lancet 329(8541):1054–1056

Table 12  Summaries for the MOTLLN regression model for the breast cancer dataset

Parameter �0 �1 � � � −l(�) AIC

Estimates 5.6335 −1.2242 5.8946 0.1942 3.6718 154.3322 318.6644

Table 13  Summaries for the MOTLLN Bayesian regression model for the breast cancer dataset

Parameter Mean SD MCSE 95% CI Median

�
0

5.6860 0.8617 0.5257 (3.7324, 6.8760) 5.8141
�
1

−1.3559 0.5937 0.2304 (−2.7898, −0.4668) −1.1944
� 5.8497 1.1934 0.5045 (3.2849, 7.8314) 6.2198
� 0.4406 0.6036 0.3287 (0.0469, 2.1098) 0.1931
� 3.8589 0.7689 0.2764 (2.2360, 5.1247) 3.9895

https://doi.org/10.32372/chjs.13-01-04


Journal of the Indian Society for Probability and Statistics 

Marshall AW, Olkin I (1997) A new method for adding a parameter to a family of distributions with 
application to the exponential and Weibull families. Biometrika 84(3):641–652

Nantais JB, Huchra JP, Barmby P, Olsen KAG, Jarrett TH (2006) Nearby spiral globular cluster systems. 
I. Luminosity functions. Astronomical J 131(3):1416–1425

Ozel Kadilar G, Altun E, Alizadeh M, Mozafari M (2018) The odd log-logistic log-normal distribution 
with theory and applications. Adv Data Sci Adapt Anal 10:1850009

Parravano A, Sánchez N, Alfaro EJ (2012) The dependence of Prestellar core mass distributions on the 
structure of the parental cloud. Astrophys J 754:150

Pham A, Lai C-D (2007) On recent generalizations of the Weibull distribution. IEEE Trans Reliab 
56:454–458

Sangsanit Y, Bodhisuwan W (2016) The Topp-Leone generator of distributions: properties and infer-
ences. Songklanakarin J Sci Technol 38:537–548

Singh B, Sharma K, Rathi S, Singh G (2012) A generalized log-normal distribution and its goodness of 
fit to censored data. Comput Stat 27:51–67

Smith RL, Naylor JC (1987) A comparison of maximum likelihood and Bayesian estimators for the three- 
parameter Weibull distribution. J R Stat Soc Ser C Appl Stat 36(3):358–369

Topp C, Leone F (1955) A family of J-shaped frequency functions. J Am Stat Assoc 50:209–219
Toulias T, Kitsos C (2013) On the generalized lognormal distribution. J Prob Stat 1–15(07):2013
Upadhyay SK, Vasishta N, Smith AFM (2001) Bayes inference in life testing and reliability via Markov 

chain monte Carlo simulation. Sankhya Indian J Stat Ser A 63(1):15–40
Wasserman L (2006) All of nonparametric statistics. Springer texts in statistics. Springer, New York

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

Authors and Affiliations

Soman Latha Nitin1 · Damodaran Santhamani Shibu1 · Radhakumari Maya1 · 
Christophe Chesneau2 · Muhammed Rasheed Irshad3 · 
Naushad Mamode Khan4

 * Christophe Chesneau 
 christophe.chesneau@unicaen.fr

 Soman Latha Nitin 
 nitinstat24@gmail.com

 Damodaran Santhamani Shibu 
 statshibu@gmail.com

 Radhakumari Maya 
 publicationsofmaya@gmail.com

 Muhammed Rasheed Irshad 
 irshadmr@cusat.ac.in

 Naushad Mamode Khan 
 n.mamodekhan@uom.ac.mu

1 Department of Statistics, University College, Thiruvananthapuram, Kerala 695 034, India



 Journal of the Indian Society for Probability and Statistics

2 Department of Mathematics, Université de Caen Basse-Normandie, UFR de Sciences, 
14032 Caen, France

3 Department of Statistics, Cochin University of Science and Technology, Cochin, 
Kerala 682 022, India

4 Department of Economics and Statistics, University of Mauritius, Moka, Mauritius


	On A New Extended Log-Normal Distribution: Properties, Regression, Bayesian Regression, and Data Analysis
	Abstract
	1 Introduction
	2 Construction
	3 Definition
	4 Quantile Function and Measures
	5 Hazard Rate Function
	6 Parametric Estimation
	6.1 Maximum Likelihood Estimation
	6.2 Bayesian Estimation

	7 Bootstrap CIs
	8 MOTLLN Regression Model
	9 Bayesian Regression Model
	10 Performance of the Estimates Using Simulation Study
	11 Applications and Empirical Study
	11.1 Real Illustration on Univariate Real Datasets
	11.2 Real Illustration on Censored Dataset Using Regression

	12 Concluding Remarks
	References


