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Abstract

In contemporary times, high-dimensional datasets have become increasingly
prevalent, owing to the expansion and complexity of data collection facilitated by
advancements in computer science, biology, and related fields. Analyzing such
high-dimensional data poses distinct challenges compared to traditional data anal-
ysis, particularly in the realm of variable selection. Structural Equation Modeling
(SEM) serves as a pivotal tool for scrutinizing the relationships between observable
(manifest) variables and underlying (latent) variables. Traditionally, SEM primarily
focuses on elucidating these relationships among latent variables. This paper pro-
poses an extension of semiparametric structural equation modeling, which employs
natural cubic splines to approximate nonlinear functional relationships. Moreover,
we introduce priors based on Fused Lasso and Elastic Net to address correlations
within both covariates and spline expansions. Through comprehensive simulation
studies and real-world data analyses, we validate the efficacy of our approach. Our
semiparametric structural equation models, enhanced with Bayesian fused Lasso
and Bayesian elastic-net priors, consistently outperform conventional Bayesian
Lasso models in both simulated and real-world datasets.

Keywords Bayesian variable selection - Elastic net - Fused Lasso - Markov chain
Monte Carlo - Natural cubic spline - Structural equation model

1 Introduction

Structural Equation Models (SEMs) represent a sophisticated statistical tool particularly

suited for datasets featuring latent variables, which are not directly observable but
are inferred from observed variables. Comprising two integral components, SEMs
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include a measurement equation and a structural equation. The measurement equation
explores the connections between unobserved latent variables and observable manifest
variables, while the structural equation delves into the interplay among endogenous
latent variables, exogenous latent variables, and covariates. Typically, the primary
focus of research lies within the structural equation. SEMs find wide application
across disciplines such as Psychology, Biology, and others, where latent variables are
prevalent. For further illustration, refer to Martens (2005), Lee and Zhu (2000), and Liu
et al. (2008).

Traditionally, SEMs assume linear relationships among latent variables in the struc-
tural equation. Kenny and Judd (1984) introduced a nonlinear SEM (NSEM) that
extended this methodology to include relationships such as interaction and quadratic
terms. Lee (2007) generalized NSEM to include a broader set of nonlinear relation-
ships. However, misspecification of the parametric form at the latent level, whether the
model is linear or nonlinear, can result in very poor estimation. Recently, some semipa-
rametric approaches have been developed. For example, Bauer (2005), Fahrmeir and
Raach (2007), and Guo et al. (2012) used basis expansions to approximate the non-
linear structural relationships using semiparametric SEM (SSEM). To achieve simul-
taneous estimation and model selection (Guo et al. 2012) applied the Bayesian Lasso
method to the SSEM. The Bayesian Lasso performs well in SSEM, howeyver, it ignores
correlation of the features which leads to inefficient parameter estimation and model
selection.

This is highly concerning when cubic splines are used, because they tend to be
highly correlated since each column is a transformed version of the same variables
(Keele 2008). This paper accesses this correlation by putting fused Lasso and elastic
net prior on the cubic spline coefficient parameters. The fused lasso is shown to be
a good method for multiple linear regression when the features have a natural order,
specifically when there is side by side correlation (Tibshirani et al. 2005). On the other
hand (Zou and Hastie 2005) proved that elastic net can often outperform a regular
Lasso in both real world data set and simulation studies with similar sparse representa-
tion. In addition, the elastic net encourages a grouping effect, where strongly correlated
predictors tend to be in or out of the model together.

The rest of this paper is organized as follows. In Sect. 2, we introduce our Bayes-
ian SSEM framework with its associated basis representation with Fused Lasso prior
and the Elastic Net prior. In this section we propose the Bayesian Fused Lasso and
Bayesian Elastic Net based methods to achieve simultaneous estimation and model
selection. In Sect. 4 we describe our MCMC algorithm to fit our models. To illustrate
our proposed methods we introduce two simulation studies in Sect. 5. Subsequently
in Sect. 6 we apply our Fused Lasso and Elastic Net based Bayesian SEMs to analyze
Monitoring the Future: A Continuing Study of American Youth (12th-Grade Survey)
data. Finally in Sect. 7 we discuss some related issues and possible extensions for
future work.
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2 Bayesian Semiparametric Structural Equation Models
2.1 Semiparametric Structural Equation Models

Semiparametric structural equation models consist of two parts, a measurement
equation and a structural equation part. For a random sample of n independent sub-
jects, the measurement equation defines the relationship between the observed p X 1
vector of manifest variables y; and the unobserved g X 1 vector of latent variables w;,
as follows:

y,=Ac;+Aw;+¢€;, i=12,...,n, (1)

where ¢; is an r X 1 vector of known functions of the s X 1 vector of fixed covariates
x;, A and A are unknown parameter matrices, €; is a p X 1 vector of measurement
errors.

The latent variable w; is written in two parts, a ¢, X 1 vector of endogenous latent
variables 7, and a g, X 1 vector of exogenous latent variables &;, i.e. w; = (r,l.T, :’,‘iT)T.
We have the following general model which defines the relationship between the
exogenous and endogenous latent variables,

ni=Hni+F(xi’§i)+Ci7 i=1,2,...,n, (2)

where ; is a vector of residuals and F(x;, &;) is a vector of unknown functions of the
covariates x; and exogenous latent variables &,.

For the model introduced in Egs. 1 and 2 model, we require the following
assumptions:

€; are independently distributed as N(0,¥,) with ¥, = diag(y,, Ve, ---» Ye,)-
w; and €, are independent, and w; are independently distributed.

¢; follows N(0,¥,) with ¥, = diag(y;;, Wy, ... Weg)-

&; and ¢, are independently distributed, and &; follows N(0, @)

[T, = I — 11 is nonsingular and |I1,| is independent of the elements of I1.

Theoretically, F(x;, £;) can be any linear or nonlinear function of of x; and &; with
or without interaction terms like &;;&,,. In this paper, we consider a nonparametric
structural equation similar to Guo et al. (2012) and we approximate the nonpara-
metric function F(x;, &;) using basis expansions. Using basis functions the structural
equation 2, in general case, can be represented as

n = l-‘["l +BH(x[9 5[) + Ci’ (3)

where H(x;, ;) is an Ny X 1 vector of basis functions, and B is the coefficient
parameter matrix associated with H(x;, &;).

To illustrate the structural equation with basis functions, consider a simple exam-
ple with IT = 0, one covariate, one endogenous and two exogenous latent variables.

Any function F(x;, ;) can be decomposed into two parts, functions with only one

4 XNy
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variable as f}, f, and f;, which could be constant, and functions with interactions as
fi2> f13 and f53, which must be functions of both two parameters, i.e.,

i = F(x;, 61, 60) + 6
=[i(5) + (&) +5(E0) + fia( &) + f13(x, €)
+/23(Gi1» 6i2) + 123 (i Sins $i0) + i
The above formulation indicates that for modeling f,, f, and f;, a linear basis expan-

sion can be used, such as piece-wise polynomials, natural cubic splines, etc. In such
cases,

Z Bin i (> J=1,2,3

77'[

where {h]m (.),m; =1,...,M;} are basis functions. For modeling f,, fi3 and fy, ten-

sor product ba51s expansion can be used as follows:

M, M,
Juls) = Z 2 r(rlzdm kmk( )hlm,() k,l=1,2,3.
m=1m=1

2.2 Bayesian Fused Lasso Semiparametric SEM (BFLSEM)

The unknown parameters in the measurement equation 1 are Ay =(A,A) and
¥.. On the other hand in structural equation 3, the unknown parameters are
» = L B), ‘I’c and ®. Some elements of Ay must be fixed for identifiability
purposes.
For the measurement equation 1, an index matrix M = (my;) x4 18 created as
follows (Lee and Zhu 2000),

1 if Ay, is unknown
0  otherwise

where A, is the kj-th element of A,. If there is an unknown parameter in k-th row of

A, fork=1,...,p, this means that Iyt Z;Jrf ;> 0. We denote A, as the r; X 1

vector of unknown parameters and specified a conjugate prior for {Ayk, Ve )

ASelWer ~ N, (g Wer ) )

vy ~ Gamma(@ge, Bocy) )

where ,u(”)‘yk, H; ,a., and B, are hyperparameters.

Oyk>
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For the structural equation 3, let A, be the A-th row of A, where h =1, ..., ¢q,.
As mentioned earlier, we assigned Bayesian fused Lasso priors for each A, and
assigned the inverse-Wishart prior for ®.

AWh lWC w TA,, OA,, ™ N, Ve hDAwh)’
wg_l ~ Gamma(aogh,ﬂogh),

q Ny 2
B 2 2
| | ﬂ/z/ I I il Blh ”lff I | - }"Bzh Bzh// 2
MIX ’
=1 j=1

E(DA ) X H MBZI BZh!/z,

P ~ IW(Ro,ﬂo),

where N, is the number of non-constant spline basis functions, and N, = N, + Ny,
where N, is the number of basis functions related x’s, and N; is the number of basis
functions related to exogenous latent variables. B), = (BlTh,BT )T, where B, are the
coefficients corresponding to the x’s and B,, are the coefficients corresponding to

the exogenous latent variables. 7, ~and v, are mutually independent, and the

covariance  matrix D/_\l, is a diagonal tridiagonal mixed matrix.
D I = dlag(Dq g, D12vi><1v s N XN, ), where D11 is a diagonal matrix with
main diagonal = {L] =1,....q }
7%
I,
D[2\,2 Ny is also a diagonal matrix with
. 1 .
main diagonal = {2—,] =1,... ,NX}
Ts .
By
Df\,3 N, is a tridiagonal matrix with
. 1 1 1
main diagonal = -+ +=—J= 1,...,Np
"Byi Byt UByj
off diagonals = { - D%,j =1,....,Np — 1}
BZIxj

All the A’s are tuning parameters with gamma priors.

The extended Bayesian Fused Lasso prior has additional parameters, however, with
the priors specified as above, it is straightforward to derive the full conditional distribu-
tion (Kyung et al. 2010). As a result we can use MCMC methods to generate samples
from the joint posterior distribution of parameters.

The model can be easily extended to the case where X’s has side by side correlation.
We only need to change Dzzvix N, O tridiagonal matrix with
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. 1 1 |
ma1nd1ag0na1={2—+ 5 +2—,]=1,...,Nx}

. U . U .
By, Byj—1 By,j

. 1 .
off diagonals = { - 02—,1= 1,...,Ny — 1}

By,j
Ny 2
B
E(DA ) & I I MBllx Bw I I 2 ”Bzh Bzh’/z,

It is easy to derive the full conditional distribution and use MCMC methods to gen-
erate samples from the joint posterior distribution of parameters for our Bayesian
Fused Lasso Semiparametric SEM (BFLSEM).

2.3 Bayesian Elastic Net Semiparametric SEM (BENSEM)

The measurement equation model with prior is exactly the same as in Sect. 2.2,
however, for the structural equation part we assign priors based on Elastic Net as
follows,

Ay |Wch’ TAu? 00 ™ N, Ve hDAwh)’
-1
Ve, ~ Gamma(aogh,ﬂoch)

H lB
77,'(TA )O( I I " e n, n,l;/ I I I I h lBhk B/kj/z

~ IW(RO, Po)

where X is reordered. Strongly correlated covariates are grouped together, so we
have N blocks of X’s, including one block for independent X’s if any exists. And
k=1,...,Ng. For block, k, N, is the total number of members in the block. D, is a
dlagonal matrix with diagonal elements. If X’s 1n the corresponding block k are cor-
related, the diagonal elements are (TBhkj + Athk) ; if X’s in the corresponding block

k are independent, the diagonal elements are 7223,1 e
similar to the Bayesian fused lasso, all the A’s have gamma priors. It is still straight-
forward to derive the full conditional distribution (Li and Lin 2010), and use MCMC
methods to generate samples from the joint posterior distribution of parameters from

our Bayesian Elastic Net Semiparametric SEM (BENSEM).

in other words 4,5 ; = 0. And

3 Posterior Distributions in Our Bayesian Semiparametric SEM
3.1 Posterior Distribution in the Measurement Equation

Using the conjugate prior for A;k and v, from 4 and 5, we can easily get the poste-
rior distributions as:
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* * * * #—1 -
A drest ~ N, (Hy(Hy it + Gy waHo +GLuGl)™) (6)

u/e_kl |rest ~ Gamma(oyy, + n/2, Poer

+ E(yk Yt ”()yk Oyk ”0>k vk yk M)

where G, = (CT,Q")T,C = {c,,....c,} and Q = {0, ..., ®,}.

3.2 Posterior Distribution in the Bayesian Structure Equation of Fused Lasso
(BFLSEM)

Let G, = (8,1 ---»8,n)> Where g,; = (n,H(x;,&)")". Full conditionals in the
structure equation for the i-th row of A is:

Awh|9’ Yens T/\w/x’ DAwh q +NH((GTG + D/_\ih)_lGi(nh - ﬁOhln)’

T - ®)
(GG, + D} )™,
where A, = (HZ,BZ)T. N,, is the number of non-constant spline basis functions,
and N, = N, + N;, where N, is the number of basis functions related x’s, and Ny is
the number of basis functions related to exogenous latent variables.

Let B, = (BT BT )T where B, are the coefficients corresponding to the x’s

1h?

and B,, are the coefﬁ01ents corresponding to the exogenous latent variables. Note

that 7, = (7 ,..., 7 »72 »---»Te  )!, and the full conditional distribution
wh hl hqy B)1 BNy

forz, are:

2
2°"B
(Blhj) 1h

/ Bllx |Blh’y/§h ~ IN \

2
’13% Ve o,
(By,j)? " B

/121//

¢h 2

1/02 1By wy ~ IN| ) ——221 )
B2 TR Bongery = Bu)?

1/712;%,132;” Wen ~ IN

forj=1,...,NT — 1.
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The full conditional of ), is:

n+q, +Ny+1
Venl Ay Gy ~ IG<aO§h + %, 14;1)
1 -
Whereﬁl{h = ﬁogh + 5[(’1}1 - ﬂOhln - GZ,Awh)T(nh - ﬁOhln - GZ)Awh) + AZ)th;lAwh]
Let the prior of A’s to be Gamma distribution and the full conditional distribu-

tions of them is:

q
2 2
ﬂn,,"nh ~ Gamma(ql + 7 E Tnhj/2 + 50n>

J=1

NX
2 2
AB”I T3, Gamma(NX + rop,s Z TB”J./Z + 5031>
J=1

NT
2 2
A3, |Tg,, ~ Gamma(NT + T'op,» E TBZIJ/Z + 5OBZ>
j=1

Np—1
2 2
Aylog, ~ Gamma(NT + 7op, — 1, 2 DBM./Z + 50322>
=1

3.3 Posterior Distribution in the Bayesian Structure Equation of Elastic Net
(BENSEM)

Full conditionals in the structure equation for the h-th row of A, is:
AnlQ v Ta, ~ Ny, (GG, + D )7 Gy = BoyL,).

v G G, + D3 )™,

1/TBhkj|Awh’W§h ~1G

for j=1,...,N,, where A, = A, when A, are the coefficients of the endog-
enous latent variables; and 4, ; = 4,5, when A, are the coefficients of the exog-

enous latent variables.
The full conditional of y, is:

n+gq; +Ny+1
VenlAyp G, ~ 1G<0‘ogh + — 5 ol
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1 _
where By, = Boep + E[("h = PonL, = GL Ay — By, — GLA ) + AL DA,
Let the prior of A’s to be Gamma distribution and the full conditional
distributions of them is:

q1
2 2
ﬂnhlrnh ~ Gamma(ql + 7o E Tnh]./Z + 50n>
=

N
2 2
Aip, 1T, Gamma(Nk +rip, Z T]Bhkj/Z + 51%)
j=1

Ny
2 1 2
AZBhk |B ~ Gamma <Nk * B, % 2:4 Awhkj + 523%)
=

where A, represent the A’s belong to the group k.

4 MCMC Algorithm to Fit Our Bayesian Semiparametric SEM

The parameters from the measurement equation are denoted as 01T = {A,, ¥}, while

the parameters from the structure equation are denoted as 02T ={A,, Té’ ®}. Let the
parameter of interest be 8 = (9], 67)”.
Here are the variables we use in MCMC Algorithm:

e Y={y,....,y,},and y,;is p X 1 vector of manifest variables.

e X={x,...,x,}, and x; is s X 1 vector of fixed covariates.

e C={cy,...,c,},and ¢, is r X 1 vector of known function of x;.
e O={w,...,0,}, and @, is ¢ X 1 vector of latent variables.
wherei=1,...,n

Q are unobservable latent variables, we can generate it from the full
conditional distribution p(Q|Y,X,C,0). Because the latent variables are
independent among the subjects, we can write the full conditional distribution as
pQIY.X,C,0) = [T, p(@,ly;, x;,¢c;, 0). Let g, = (c],®)". The full conditional
distribution of @, is:
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P(o;y;x;, ¢, 0) xp(y;|c;, @, 0)p(n;|x;, &, 0,)p(§;10,)
1 Ty-lp, _ %
OCCXP{ 20’1 Aygyi) \PE (.Yi Aygyi) 2&, q)i (I)i (9)
1 _
- 5('11' —bo - Awgwi)T\Pg ;= By = Nogun))

o; can be sampled using Metropolis Hastings (MH) algorithm with a proposal distri-
bution g(&}|c2) ~ N(wg’), 62%,), where @ is the proposed new value and a)g’) is the
value from previous step (jth step). From Guo et al. (2012),

(10)

-1 -1
2‘1=AT\I"1A+< nw;'m, ~ 7% 'BA, )

—AIQBTg\Pg‘HO o' + ALB"Y;'BA,

where Ay =0H(x;, &)/ 6§iT| g—-0- The proposed o can be accepted with the
o p(@ X, 0) o
probability min{1, ————  }. Q can be sampled using Gibbs sampler.
p@ |y, x;.c;. 0)
For 6,, sample A;fklrest and y, |rest from 6 and 7 respectively.
For 6,, the posterior distribution of the parameters are different between Bayesian
fused Lasso and Bayesian Elastic Net. We can sample the unknown parameters from

the posterior distribution we get on Sects. 3.2 and 3.3.

5 Simulation Study

To illustrate the use of our Fused Lasso and Elastic Net prior based SEMs we have
considered the case where the covariates have correlations. Under this framework it is
of interest to compare among our BFLSEM (based on Fused Lasso prior), BENSEM
(based on Bayesian Elastic Net prior) with Guo et al. (2012) (based on Bayesian stand-
ard Lasso prior or BSLSEM).

5.1 Simulation 1

We follow the simulation setup on Guo et al. (2012), setting n = 500, p =9, ¢, =1,
q, =2and A = diag (0%,0%,0%, py, ..., o), ¢; = (1, ..., DT,

1.0* Ay Ay, O 0% 0* 0* 0% O*
AT =[ 0" 0" 0" 1.0* A5, Agy O* 0* O* |,
0 0° 0* 0° 0° 0* 1.0* Ag Aog
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where py == pig = Ay = = dg3 = = .36 and {¢py}, Py, Py} = {1,.25,1}.
The function, F(Gi &) = /1) +2(Sn) +/12(Gi1» Ei)s where
fi&)) =sin(&il) — &1, fi(&) = exp(ép)/2.5 = 3.0 and f},(&;,&,) = 0, has been
used to define the underlying relationship between the endogenous and exogenous
latent variables. Also, this function is considered unknown and will be approximated
using natural cubic splines, i.e.,

K-2

FCED R~ Bl D Bimea (&) — di_1 (&)
m=1

K-2
FoCn &) » BUVE G + Y En(d,, (&) — di 1 (&)
m=1
K-2
+ ) & (dy,(En) — diy(G)
my=1
K-2 K-2

+ 0D (dy, (&) = di_1E)) (dy, (En) — di_1 ().

my=1my=1

with di(&;) = [(50 - &), = (&~ Kk)+] /(kx — k) where K is the number of knots

and (k;, k =1, ..., K) are the location of the knots. The knot locations are selected
using a truncated power series basis developed in Hastie et al. (2009). In general
cubic splines will be correlated, thus the use of the fused Lasso is appropriate.

We consider s = 35 with true parameter values

-

05  ifle{1,2,3)
—0.7 ifle{4,5)
085 ifle(6,...,15)

b; = 1 .
! 0.7 if | =32
0.5 if [ =33
0 otherwise
To induce correlation of the covariates x, ... , X3, X34, X35 are simulated from a mul-
tivariate standard normal distribution where corr (x;, x;) = Sl i#£je,...,15),

corr (xi,xj) =7, i—-j=1,i€(,2,3), corr (x,-,xj) =9, i#j€ 4,5 and all
other correlations equal to 0. The covariate of x3, ~2 Binomial (1,.5) and
X33 ~ N(=0.5,1).

Table 1 summarizes the parameter estimates from the 50 simulations using the
BFLSEM (based on fused Lasso prior),BENSEM (based on elastic net prior) and
BSLSEM (based on standard Lasso prior). The b; parameters which relate the covar-
iates to the endogenous latent variable are slightly closer to the true value when
BFLSEM is used, however for most of the parameters it is only a slight improve-
ment. The covariates with corr (x,»,xj) =.7,i#j€(1,2,3) have the most marked
improvement when BFLSEM is used instead of the BSLSEM or BENSEM. All
models are efficient at shrinking the insignificant parameters to 0. As several
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parameter true value are set to be zero we cannot calculate the relative bias, however

: i . _ _B-p
in Table 1 we include the RelativeChange = T

There is a fairly significant difference in the spline estimates between the
BSLSEM and our proposed two models (BFLSEM and BENSEM). For the spline
parameters that are not equal to zero it is not possible to determine which of the
models is better in terms of estimation. However, in many of these cases the standard
deviations of BSLSEM are significantly higher; while BFLSEM and BENSEM are
similar to each other. For the spline parameters that are equal to zero both BFLSEM
and BENSEM shrink the estimates nearer to zero than BSLSEM and many have
significantly lower standard deviations. Moreover, BENSEM is slightly better than
BFLSEM.

To measure the models efficiency at predicting the endogenous latent variable
using the covariates and exogenous latent variables, we consider three measures of
RMSE.

e RMSE(f) = \/ Yo (FEq. &) - f(gil,egiz))2 /n is a measure of the models abil-
ity to approximate the nonlinear relationship between the endogenous and exog-
enous latent variables,

. R 2
e RMSE(B) = \/ Y (XB - XB) /n is a measure of the models ability to relate

the covariates to the endogenous latent variables and

R 2
e RMSE = \/ >, <<XB + f(é,»l,cf,»z)) - (XB +f(§,»1,§,-2))) /n is a measure of
the models overall ability to predict the endogenous latent variable.

The most significant improvement in the BFLSEM and BENSEM appears to be
in the RMSE(f) which suggests that it is much better at defining the relationship

Fig. 1 Simulation 2: true surface
forn = F(x, &)

endogenous

exogenous 1
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Fig.2 Simulation 2: true surface
for simulated data

endogenous

gxogenous 2

exogenous 1

Fig.3 Simulation 2: estimated 321 0 1 2 3
surface via BSLSEM

endogenous

exogenous 1

Fig.4 Simulation 2: estimated
surface via BFLSEM

endogenous

exogenous 2

exogenous 1
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Fig.5 Simulation 2: estimated
surface via BENSEM

endogenous

exogenous 1

between the endogenous and exogenous latent variables. And RMSE(f) of BENSEM
is slightly lower than BFLSEM’s. A possible reason there was little impact from
on the covariate parameters is that it is very difficult to simulate complex correla-
tion structures. If more covariance structures are examined we believe the difference
could be significant.

5.2 Simulation 2

In order to compare the difference in defining the relationship between the endog-
enous and exogenous latent variables among the three competing model, we ran-
domly choose one of the simulation study and let the coefficient of the covariate
to be zeros and plot the surface of f(&;,&,,). Figure 1 shows the true relationship
between exogenous latent variables and endogenous latent variable based on func-
tion n = F(x, £); Fig. 2 shows the relationship between them based on the simulation
data, and some of the surface does not have data. Figures 3, 4, and 5 show the esti-
mated surface via original Lasso (BSLSEM), Fused Lasso (BFLSEM), and Elastic
Net (BENSEM). In Fig. 3, BSLSEM perform badly when 7, and #, both greater than
0. From Fig. 2, there are no data when both #, and #, are greater than 2.5. BFLSEM
and BENSEM perform similarly. In this simulation, BFLSEM performed marginally
better, when both #, and #, are less than 0.

6 Application in Monitoring the Future: A Continuing Study
of American Youth
We apply our BFLSEM and BENSEML to analyze Monitoring the Future: A

Continuing Study of American Youth (12th-Grade Survey). There are three exog-
enous latent variables of interests, cigarette morbidity, marijuana morbidity and

@ Springer
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Table2 Non-spline parameter

estimation using posterior Parameters BFLSEM BENSEM BSLSEM

means and posterior standard Mean  SD Mean  SD Mean  SD

deviations
Ary 0.8477 0.0356 0.8358 0.0348 0.836  0.0417
A3 0.5202 0.0405 0.5067 0.0397 0.5069 0.0396
Ay 0.4098 0.0271 0.3982 0.0245 0.3983 0.0301
As2 1.0505 0.0343 0.9976 0.0329 1.0470 0.0399
Ag3 1.2825 0.0417 1.2866 0.0442 1.2965 0.0408
Ao3 1.2088 0.0314 1.2127 0.0288 1.2219 0.0298
Aia 0.7485 0.0284 0.5973 0.0329 0.6634 0.0342
Aoy 0.3364 0.0119 0.4089 0.0238 0.3993 0.0266
Az 0.1659 0.0162 0.1558 0.0191 0.1583 0.0186
Ay 0.109  0.0274 0.1978 0.0251 0.1796 0.0247
Hs 3.133  0.3004 3.1667 0.3139 3.1099 0.2764
He 19161 0.3270 1.9526 0.3420 1.8925 0.3109
I 5.3888 0.4233 54149 0.3969 5.4285 0.4080
Hg 44709 0.4033 4.5048 0.3981 4.5217 0.4699
Hy 2.8753 0.2186 2.9067 0.2392 2.9222 0.2115
1,0 2.0841 0.1459 2.1565 0.1407 2.1203 0.1531
w1 1.7787 0.3488 1.8275 0.2960 1.8065 0.3250
42 39871 0.2796 4.0141 0.2934 3.999  0.3009
"3 3.1242 0.3645 3.1356 0.3511 3.1303 0.3731
4 3.5832 0.2609 3.5943 0.3645 3.5879 0.3829

behavior risk index; one endogenous latent variable, alcohol morbidity. We want
to analyze how cigarette morbidity, marijuana morbidity and behavior risk index
affect alcohol morbidity. We used the subset from the Monitoring the Future data:
1878 students who had drinking experience. More details about the data and all

descriptions can be obtained from https://monitoringthefuture.org/.

The endogenous latent variable, alcohol morbidity, is measured by the follow-

ing items:

e The occasions that students had alcoholic beverages to drink, more than just a

few sips in their lifetime.

e The occasions that students had alcoholic beverages to drink, more than just a

few sips last year.

e The occasions that students had alcoholic beverages to drink, more than just a

few sips last month.

e The number of times that the students had five or more drinks in a row in the

last two weeks.

The first exogenous latent variable, cigarette morbidity, is measure by the follow-

ing items:

e The occasions that students smoked cigarettes in their lifetime.

@ Springer
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Table 3 Spline parameter estimation using BFLSEM

Para Est Para Est Para Est Para Est

b, 0.1216* ﬁ}u) —0.0553 ﬁ{”) —0.0156 ﬁiz” —0.1149*

b, 0.0243 ;12) —0.008 ;13) 0.0073 ;23) —0.0056

by 0.0835 512) 0.0081 /3;13) 0.0179 ﬂ§23) 0.0246

by 0.0845 212) 0.0152 im 0.0248 5123) 0.0327

bs —0.0322 ﬂ;m 0.0258 213) 0.033 ﬂ§23> 0.0286

bo 5.8534% ﬁé”) 0.0063 ﬁé”) 0.007 ﬂém 0.0165

bia 0.2729* ;]2) —0.0045 ;‘3) —0.0041 523) 0.009

b3 0.0303 ﬂélz) —0.0044 ﬁé”) —0.0029 ﬁ;”) 0.0068

Pia —0.0037 ﬁé‘z) 0.0166 /;(;13) 0.0163 5523) 0.0113

(12) (13) — (23)

Bis 0.0067 By 0.0007 Ji 0.006 i 0.0002

b 0.1142° ﬁ§112) —0.0086 ﬁ3) —0.0139 ﬂﬁ3) —0.0047
a (12) — (13) — (23) —

b3 0.0654 S 0.0065 il 0.012 i 0.0066

(12) (13) (23) —

Poa 0.0382 B 0.0176 I 0.0048 B 0.002

Pos 0.0441 ﬁif) —0.0025 ﬁﬂf) —0.0273 ﬂi?) —0.0168

P 0.1745% ﬁg‘iz) -0.0151 ﬂfl:) —0.0529 ﬂg?) —0.0252
a (12) — (13) — (23) —

/25 0.0986 Bie 0.0217 Bie 0.0824 B 0.0314

Pas 0.0417

bss —0.0039

Para. = parameters; Est. = posterior estimates; *Marked values indicates 90% of the distribution is
greater than O or less than 0

e The occasions have students smoked cigarettes during the past 30 days.

The second exogenous latent variable, marijuana morbidity, is measure by the fol-
lowing items:

e The occasions that students smoked marijuana in their lifetime.
e The occasions that students smoked marijuana last year.
e The occasions that students smoked marijuana last month.

The third exogenous latent variable, behavior risk index, is measure by the following
items:

e During the last four weeks, the number of whole days of school students have
missed because they skipped.

e During the last four weeks, the number of whole days of school students have
missed because other reasons.

e During a typical week, the number of evenings students go out for fun and rec-
reation.
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Table 4 Spline parameter estimation using BENSEM

Para Est Para Est Para Est Para Est

b, 0.0169 ﬂi‘z) —0.0026 ﬂim —0.1193 ﬂim 0.0023
b, 0.0018 ;12) —0.0054 ;13) —0.4759 ﬂ;ﬂ) 0.0031
by 0.0035 ﬂ§12) —0.005 ﬂ§13) 0.462 ﬂ;”) 0.0039
by 0.004 ;12) —0.0045 il 3 2.5223% f3) 0.0046
bs —0.0042 ﬂglz) 0.0022 ﬂ§13> —0.3639 ﬂ;ZB) —0.0008
Bo 5.9121 ﬂélz) 0.0012 ﬂé”) —0.4635 /3223) 0.0015
bia —-0.0291 512) 0.0013 §‘3) —0.6698 §23) 0.0018
b3 —-0.0016 ﬂélz) 0.0011 ﬂ;m - 1.2979° péﬂ) 0.0027
Pia 0.0043 ﬂ;m 0.003 ﬁé”) —0.1049 ﬁéﬂ) —0.0011
Bis 0.0156 ﬂ%z) 0.0021 ﬁﬁf) —0.1743 ﬂ%ﬂ 0.0021
P —0.0002 ﬂfllz) 0.0022 ﬂﬁ}) -0.5128 ﬂﬁS) 0.0021
b3 —0.0026 ﬂ§122) 0.0022 512*) - 1.5011% ﬂ;?) 0.003
Poa —0.0025 ﬂgz) 0.0044 ﬂ§133> 1.0263% pg»“ —0.0011
Pos —0.0026 ﬁif) 0.0045 ﬂii 3 1.3305% ﬁﬁf) 0.0017
P 2.4961% ﬂgz) 0.0042 ﬂif’ 0.4733 ﬂi?) 0.0024
/25 18.3222° /3§162) 0.0041 ﬂ§163) -0.53 ﬂi?) 0.0031
Pas — 35.6403%

Pis 16.0324°

Para. = parameters; Est. = posterior estimates; *Indicates the estimates that did not converge

e On the average, how often students go out with a date.
e During an average week, how much students usually drive.

As a result, there are totally 14 manifest variables. The A in the measurement equa-
tion is given by:

1Ay 453440 000 000 0 0 0
Ar_|00 0 01400 000 0 0 0

oo 0 000 1452,0 0 0 0 o0 an
00 0 00000 0 1A, Aoy Aisg A

Let A = diag(0,...,0, us, ..., pyy) and ¢; =(1,..., T. In addition, we have five
covariates, which are gender, geographic area, living with siblings, father educa-
tion level and mother education level. Let x; = (x,;, ... , x5;) To study the interaction
between the exogenous latent variables and endogenous latent variable, we proposed
following structure equation model:

n: =xb” +£(E) + (&) +f3(E3)

12
FFiaEin B+ FsErinEx) + fos Eapn &) (12
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Table5 Spline parameter estimation using BSLSEM

Para Est Para Est Para Est Para Est
b, 0.0159 ﬁim —2.7382% ﬂ{“) 1.0451* ﬂiﬂ) 0.2214*
b, 0.0014 ;12) 8.284% ;13) 22.0392% £23) 0.3895%
b 0.0008 (12) — 3.644% /3“3) —3.7627° ﬁ(23’ 4.5003*
3 3 3 3
by 0.0074 in) —1.4991* im — 15.6498" 223) —2.7686"
bs —0.0038 ﬂ;m 9.7528* ﬂ;”) —7.5459* 223) 1.2014*
b 5.9608 ﬁé”) -5.0116* ﬁém —11.514% ﬁéﬂ) —17.5515%
bia —1.3933? ;]2) —3.7479* ;‘3) -10.617* ;23) — 18.5468*
b3 —9.2749* ﬂélz) - 1.6634° pé”) 4.8088* ﬁ;23) - 6.5395%
Pia 8.9574* ﬁé‘z) —17.53* l;;”) 2.7655* /;523) —4.1878*
Bis 0.6507* ﬁg(l)” —0.5455* ﬂﬁf) 0.9769* ﬁ%*) 3.9873*
b - 1.7371% ﬂ?‘l” 3.0895% /31(1]3) 0.6814* ﬁﬁ3) 4.1692%
b3 3.1955% §122) 5.5655% ﬂil;) 18.2107* i?) 34.5997*
Poa —1.5914* ﬂg” 0.4208* ﬂ;?) 3.3887% ﬁ;?) 2.5759*
Pos - 0.5296% ﬁ%f) -04141* ﬁﬂf) - 1.0071% ﬂif) 8.6044*
P 4.3805% ﬁflz) 1.5452% ﬂfl;) —2.2612% ﬁf?) —0.4574*
a (12) — a (13) — a (23) — a
/25 3.9027 Bie 1.8298 Bie 2.0676 Bz 21.5666
Pas —5.7997*
bss 1.9083%

Para. = parameters; Est. = posterior estimates; *Indicates the estimates that did not converge

where b = (b, ..., bs). Similar to simulation study, natural cubic splines are used in
function f(-) with 5 knots. MCMC chains of 100,000 iterations are generated and
the burnin is 30,000. We use both BFLSEM and BENSEM in this case, and com-
pare the result with the BSLSEM. Table 2 shows the estimates from measurement
equation. The estimates are very similar among all three methods.

The structure equation results for BFLSEM, BENSEM, and BSLSEM are pre-
sented in Tables 3, 4, and 5 respectively. We notice that some of the f’s in BENSEM
and BSLSEM did not converge completely. Comparing parameter estimates from
Tables 3, 4, and 5 we observe that BFLSEM performed best in this application, with
all the f’s properly converged. The result from BFLSEM Table 3 shows that there is
an interaction between marijuana morbidity and behavior risk index. The main effect
of cigarette morbidity is also significant. The graphs of the two-way interaction of
these three exogenous latent variables shows their relation with endogenous latent
variable. Figure 6 shows there a weak interaction between cigarette morbidity and
marijuana morbidity, but both main effects are highly significant. When cigarette
morbidity or/and marijuana morbidity increase, alcohol morbidity increases. Fig-
ure 7 shows similar pattern with cigarette morbidity and behavior risk index. Fig-
ure 8 shows the interaction between marijuana morbidity and behavior risk index.
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Alcohol Mo

Marijuana Morbidi

Cigarette Morbidity

Fig. 6 Estimated surface for cigarette morbidity and marijuana morbidity

When behavior risk index is in the higher level, as marijuana morbidity increases,
alcohol morbidity increases faster.

7 Discussion

In this paper we adapted Bayesian fused Lasso prior and Bayesian elastic net
prior for using in semiparametric structural equation models. Basis expansions
are used to approximate the nonparametric relationships between the endogenous
latent variables and the exogenous latent variables and covariates. When cubic
splines are used as the basis expansion, it is beneficial to use the fused Lasso or
the elastic net based priors (BFLSEM and BENSEM) to estimate the parameters
since cubic splines are correlated in general. In the simulation study, both our
BFLSEM and BENSEM reduce the standard deviations of the spline parameters

@ Springer
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Cigarette Morbidity

Fig. 7 Estimated surface for cigarette morbidity and marijuana morbidity

and shrink the estimates of the spline parameters closer to zero when the true
values of those parameters are equal to zero. More importantly, RMSE(f) of
BFLSEM and BENSEM is about half of RMSE(f) of the BSLSEM (which is
based on the standard Lasso prior, Guo et al. (2012)).

There are clear benefits to use the fused Lasso prior to estimate the coefficients
of the covariates, however, it is difficult to generate realistic correlation structures.
The usefulness of our methods will depend greatly on the type of the underlying
correlation structures. In our simulation study, the fused Lasso prior based SEM
(BFLSEM) has a remarkable improvement over the standard Lasso prior based SEM
(BSLSEM, Guo et al. (2012)) for the tridiagonal structure with correlation equal
to 0.70. However, it is difficult to simulate tridiagonal structures since we often get
negative eigenvalues. We believe that if a natural order are present in a real data set
our fused Lasso prior based SEM (BFLSEM) would lead to much better results.

@ Springer
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Cigarette Morbidity

Fig. 8 Estimated surface for cigarette morbidity and marijuana morbidity

In the application all of three methods BFLSEM, BENSEM and BSLSEM have
similar estimates for the measurement equations. However in terms of structural
equation parameters estimates our BFLSEM based on Bayesian fused Lasso
comes out to be the winner and indicates strong interaction between behavior risk
index and marijuana morbidity.

However, in real-world data if the Gaussian assumptions on the random compo-
nents €; and §; are not met, the model’s performance can be compromised, leading to
biased parameter estimates, incorrect inference, and poor predictive accuracy. How-
ever violations of the Gaussian assumptions can be fixed by adopting a contami-
nated Gaussian error structure on €; and §;. Another approach can be using standard
transformations like logarithmic, square root, or Box-Cox transformations on the
manifest variables and the endogeneous latent variables.

In all our two proposed models we include two way interaction of the exogenous
latent variables. It is straightforward to extend our model to three way interaction,
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when the problem has at least three exogenous latent variables. However, that will
increase the number of coefficients need to be estimated significantly, depending on
the number of knots. In our study, the options of the psychology survey are mostly
ordinal data. In some cases, the options might be dichotomous and that would vio-
late the continuous assumption of the manifest variable. Further research is needed
to extend the manifest variable to binary and nominal response. Also it is worth-
while to extend it to other basis expansion methods.
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