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Abstract
In contemporary times, high-dimensional datasets have become increasingly 
prevalent, owing to the expansion and complexity of data collection facilitated by 
advancements in computer science, biology, and related fields. Analyzing such 
high-dimensional data poses distinct challenges compared to traditional data anal-
ysis, particularly in the realm of variable selection. Structural Equation Modeling 
(SEM) serves as a pivotal tool for scrutinizing the relationships between observable 
(manifest) variables and underlying (latent) variables. Traditionally, SEM primarily 
focuses on elucidating these relationships among latent variables. This paper pro-
poses an extension of semiparametric structural equation modeling, which employs 
natural cubic splines to approximate nonlinear functional relationships. Moreover, 
we introduce priors based on Fused Lasso and Elastic Net to address correlations 
within both covariates and spline expansions. Through comprehensive simulation 
studies and real-world data analyses, we validate the efficacy of our approach. Our 
semiparametric structural equation models, enhanced with Bayesian fused Lasso 
and Bayesian elastic-net priors, consistently outperform conventional Bayesian 
Lasso models in both simulated and real-world datasets.

Keywords  Bayesian variable selection · Elastic net · Fused Lasso · Markov chain 
Monte Carlo · Natural cubic spline · Structural equation model

1  Introduction

Structural Equation Models (SEMs) represent a sophisticated statistical tool particularly 
suited for datasets featuring latent variables, which are not directly observable but 
are inferred from observed variables. Comprising two integral components, SEMs 
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include a measurement equation and a structural equation. The measurement equation 
explores the connections between unobserved latent variables and observable manifest 
variables, while the structural equation delves into the interplay among endogenous 
latent variables, exogenous latent variables, and covariates. Typically, the primary 
focus of research lies within the structural equation. SEMs find wide application 
across disciplines such as Psychology, Biology, and others, where latent variables are 
prevalent. For further illustration, refer to Martens (2005), Lee and Zhu (2000), and Liu 
et al. (2008).

Traditionally, SEMs assume linear relationships among latent variables in the struc-
tural equation. Kenny and Judd (1984) introduced a nonlinear SEM (NSEM) that 
extended this methodology to include relationships such as interaction and quadratic 
terms. Lee (2007) generalized NSEM to include a broader set of nonlinear relation-
ships. However, misspecification of the parametric form at the latent level, whether the 
model is linear or nonlinear, can result in very poor estimation. Recently, some semipa-
rametric approaches have been developed. For example, Bauer (2005), Fahrmeir and 
Raach (2007), and Guo et al. (2012) used basis expansions to approximate the non-
linear structural relationships using semiparametric SEM (SSEM). To achieve simul-
taneous estimation and model selection (Guo et al. 2012) applied the Bayesian Lasso 
method to the SSEM. The Bayesian Lasso performs well in SSEM, however, it ignores 
correlation of the features which leads to inefficient parameter estimation and model 
selection.

This is highly concerning when cubic splines are used, because they tend to be 
highly correlated since each column is a transformed version of the same variables 
(Keele 2008). This paper accesses this correlation by putting fused Lasso and elastic 
net prior on the cubic spline coefficient parameters. The fused lasso is shown to be 
a good method for multiple linear regression when the features have a natural order, 
specifically when there is side by side correlation (Tibshirani et al. 2005). On the other 
hand (Zou and Hastie 2005) proved that elastic net can often outperform a regular 
Lasso in both real world data set and simulation studies with similar sparse representa-
tion. In addition, the elastic net encourages a grouping effect, where strongly correlated 
predictors tend to be in or out of the model together.

The rest of this paper is organized as follows. In Sect. 2, we introduce our Bayes-
ian SSEM framework with its associated basis representation with Fused Lasso prior 
and the Elastic Net prior. In this section we propose the Bayesian Fused Lasso and 
Bayesian Elastic Net based methods to achieve simultaneous estimation and model 
selection. In Sect. 4 we describe our MCMC algorithm to fit our models. To illustrate 
our proposed methods we introduce two simulation studies in Sect. 5. Subsequently 
in Sect. 6 we apply our Fused Lasso and Elastic Net based Bayesian SEMs to analyze 
Monitoring the Future: A Continuing Study of American Youth (12th-Grade Survey) 
data. Finally in Sect. 7 we discuss some related issues and possible extensions for 
future work.
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2 � Bayesian Semiparametric Structural Equation Models

2.1 � Semiparametric Structural Equation Models

Semiparametric structural equation models consist of two parts, a measurement 
equation and a structural equation part. For a random sample of n independent sub-
jects, the measurement equation defines the relationship between the observed p × 1 
vector of manifest variables yi and the unobserved q × 1 vector of latent variables wi 
as follows:

where ci is an r × 1 vector of known functions of the s × 1 vector of fixed covariates 
xi , A and � are unknown parameter matrices, �i is a p × 1 vector of measurement 
errors.

The latent variable wi is written in two parts, a q1 × 1 vector of endogenous latent 
variables �i and a q2 × 1 vector of exogenous latent variables �i , i.e. wi = (�T

i
, �T

i
)T . 

We have the following general model which defines the relationship between the 
exogenous and endogenous latent variables,

where � i is a vector of residuals and F(xi, �i) is a vector of unknown functions of the 
covariates xi and exogenous latent variables �i.

For the model introduced in Eqs.  1 and  2 model, we require the following 
assumptions:

•	 �i are independently distributed as N(0,��) with �� = diag(��1,��2,… ,��p).
•	 wi and �i are independent, and wi are independently distributed.
•	 � i follows N(0,�� ) with �� = diag(��1,��2,… ,��q1

).
•	 �i and � i are independently distributed, and �i follows N(0,�)
•	 Π0 = I − Π is nonsingular and |Π0| is independent of the elements of Π.

Theoretically, F(xi, �i) can be any linear or nonlinear function of of xi and �i with 
or without interaction terms like �i1�i2 . In this paper, we consider a nonparametric 
structural equation similar to Guo et  al. (2012) and we approximate the nonpara-
metric function F(xi, �i) using basis expansions. Using basis functions the structural 
equation 2, in general case, can be represented as

where H(xi, �i) is an NH × 1 vector of basis functions, and Bqi×NH
 is the coefficient 

parameter matrix associated with H(xi, �i).
To illustrate the structural equation with basis functions, consider a simple exam-

ple with Π = 0 , one covariate, one endogenous and two exogenous latent variables. 
Any function F(xi, �i) can be decomposed into two parts, functions with only one 

(1)yi = Aci + �wi + �i, i = 1, 2,… , n,

(2)�i = ��i + F(xi, �i) + � i, i = 1, 2,… , n,

(3)�i = ��i + BH(xi, �i) + � i,
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variable as f1 , f2 and f3 , which could be constant, and functions with interactions as 
f12 , f13 and f23 , which must be functions of both two parameters, i.e.,

The above formulation indicates that for modeling f1 , f2 and f3 , a linear basis expan-
sion can be used, such as piece-wise polynomials, natural cubic splines, etc. In such 
cases,

where {hjmj
(.),mj = 1,… ,Mj} are basis functions. For modeling f12 , f13 and f23 , ten-

sor product basis expansion can be used as follows:

2.2 � Bayesian Fused Lasso Semiparametric SEM (BFLSEM)

The unknown parameters in the measurement equation  1 are �y = (A,�) and 
�� . On the other hand in structural equation  3, the unknown parameters are 
�w = (�,B) , �� and � . Some elements of �y must be fixed for identifiability 
purposes.

For the measurement equation 1, an index matrix M = (mkj)p×(r+q) is created as 
follows (Lee and Zhu 2000),

where �ykj is the kj-th element of �y . If there is an unknown parameter in k-th row of 
�y for k = 1,… , p , this means that ryk =

∑r+q

j=1
mkj > 0 . We denote �∗

yk
 as the ryk × 1 

vector of unknown parameters and specified a conjugate prior for {�∗
yk
,��k},

where �∗
0yk

 , H∗
0yk

 , �0�k and �0�k are hyperparameters.

�i = F(xi, �i1, �i2) + �i

= f1(xi) + f2(�i1) + f3(�i2) + f12(xi, �i1) + f13(xi, �i2)

+ f23(�i1, �i2) + f123(xi, �i1, �i2) + �i,

fj(.) =

Mj∑
mj=1

�jmj
hjmj

(.), j = 1, 2, 3

fkl(., .) =

Mk∑
mk=1

Ml∑
ml=1

�(kl)
mkml

hkmk
(.)hlml

(.), k, l = 1, 2, 3.

mkj =

{
1 if �ykj is unknown

0 otherwise

(4)𝚲
∗
yk
|��k ∼ Nryk

(�∗
0yk

,��kH
∗
0yk

)

(5)�−1
�k

∼ Gamma(�0�k, �0�k)
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For the structural equation 3, let Λwh be the h-th row of �w where h = 1,… , q1 . 
As mentioned earlier, we assigned Bayesian fused Lasso priors for each Λwh and 
assigned the inverse-Wishart prior for �.

where Nh is the number of non-constant spline basis functions, and Nh = Nx + NT , 
where Nx is the number of basis functions related x’s, and NT is the number of basis 
functions related to exogenous latent variables. Bh = (BT

1h
,BT

2h
)T , where B1h are the 

coefficients corresponding to the x’s and B2h are the coefficients corresponding to 
the exogenous latent variables. �Λwh

 and �Λwh
 are mutually independent, and the 

covariance matrix D−1
Λwh

 is a diagonal tridiagonal mixed matrix. 

D−1
Λwh

= diag(D11
q1×q1

,D22
NX×NX

,D33
NT×NT

) , where D11
q1×q1

 is a diagonal matrix with

D22
NX×NX

 is also a diagonal matrix with

D33
NT×NT

 is a tridiagonal matrix with

All the � ’s are tuning parameters with gamma priors.
The extended Bayesian Fused Lasso prior has additional parameters, however, with 

the priors specified as above, it is straightforward to derive the full conditional distribu-
tion (Kyung et al. 2010). As a result we can use MCMC methods to generate samples 
from the joint posterior distribution of parameters.

The model can be easily extended to the case where X’s has side by side correlation. 
We only need to change D22

NX×NX
 to tridiagonal matrix with

𝚲wh|��h, �Λwh
, �Λwh

∼ N(0,��hDΛwh
),

�−1
�h

∼ Gamma(�0�h, �0�h),

�(�2
Λwh

) ∝

q1∏
j=1

�2
Πh

2
e
−�2

Πh
�2
Πhj

∕2
NX∏
j=1

�2
B1h

2
e
−�2

B1h
�2
B1j j

∕2
NT∏
j=1

�2
B2h

2
e
−�2

B2h
�2
B2hj

∕2
,

�(�2
Λwh

) ∝

NT∏
j=1

�2
B2h

2
e
−�2

B2h
�2
B2hj

∕2
,

𝚽 ∼ IW(R0, �0),

main diagonal =
{

1

�2
Πhj

, j = 1,… , q1

}

main diagonal =
{

1

�2
B1hj

, j = 1,… ,NX

}

main diagonal =
{

1

�2
B2hj

+
1

�2
B2hj−1

+
1

�2
B2hj

, j = 1,… ,NT

}

off diagonals =
{
−

1

�2
B2hj

, j = 1,… ,NT − 1
}
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It is easy to derive the full conditional distribution and use MCMC methods to gen-
erate samples from the joint posterior distribution of parameters for our Bayesian 
Fused Lasso Semiparametric SEM (BFLSEM).

2.3 � Bayesian Elastic Net Semiparametric SEM (BENSEM)

The measurement equation model with prior is exactly the same as in Sect.  2.2, 
however, for the structural equation part we assign priors based on Elastic Net as 
follows,

where X is reordered. Strongly correlated covariates are grouped together, so we 
have NG blocks of X’s, including one block for independent X ’s if any exists. And 
k = 1,… ,NG . For block, k, Nk is the total number of members in the block. DΛwh

 is a 
diagonal matrix with diagonal elements. If X ’s in the corresponding block k are cor-
related, the diagonal elements are (�−2

Bhkj
+ �2Bhk

)−1 ; if X’s in the corresponding block 
k are independent, the diagonal elements are �2

2Bhkj
 , in other words �2Bhk

= 0 . And 
similar to the Bayesian fused lasso, all the � ’s have gamma priors. It is still straight-
forward to derive the full conditional distribution (Li and Lin 2010), and use MCMC 
methods to generate samples from the joint posterior distribution of parameters from 
our Bayesian Elastic Net Semiparametric SEM (BENSEM).

3 � Posterior Distributions in Our Bayesian Semiparametric SEM

3.1 � Posterior Distribution in the Measurement Equation

Using the conjugate prior for �∗
yk

 and ��k from 4 and 5, we can easily get the poste-
rior distributions as:

main diagonal =
{

1

�2
B1hj

+
1

�2
B1hj−1

+
1

�2
B1hj

, j = 1,… ,NX

}

off diagonals =
{
−

1

�2
B1hj

, j = 1,… ,NX − 1
}

�(�Λwh
) ∝

NX∏
j=1

�2
B1h

2
e
−�2

B1h
�2
B1hj

∕2
NT∏
j=1

�2
B2h

2
e
−�2

B2h
�2
B2hj

∕2
,

𝚲wh|��h, �Λwh
, �Λwh

∼ N(0,��hDΛwh
),

�−1
�h

∼ Gamma(�0�h, �0�h),

�(�Λwh
) ∝

q1∏
j=1

�2
Πh

2
e
−�2

Πh
�2
Πhj

∕2
NG∏
k=1

Nk∏
j=1

�2
1Bhk

2
e
−�2

1Bhk
�2
Bhkj

∕2

𝚽 ∼ IW(R0, �0),
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where Gy = (CT ,�T )T , C = {c1,… , cn} and � = {�1,… ,�n}.

3.2 � Posterior Distribution in the Bayesian Structure Equation of Fused Lasso 
(BFLSEM)

Let G� = (g�1,… , g�n) , where g�i = (�T
i
,H(xi, �i)

T )T . Full conditionals in the 
structure equation for the h-th row of �� is:

where ��h = (�T
h
,BT

h
)T . Nh is the number of non-constant spline basis functions, 

and Nh = Nx + NT , where Nx is the number of basis functions related x’s, and NT is 
the number of basis functions related to exogenous latent variables.

Let Bh = (BT
1h
,BT

2h
)T , where B1h are the coefficients corresponding to the x’s 

and B2h are the coefficients corresponding to the exogenous latent variables. Note 
that �Λ�h

= (�Π2
h1
,… , �Π2

hq1

, �Π2
Bh1
,… , �Π2

BhNH

)T , and the full conditional distribution 
for �Λ�h

 are:

for j = 1,… ,NT − 1.

(6)�
∗
yk
|rest ∼ Nryk

(Hyk(H
∗−1
0yk

�∗
0yk

+ Gyky
∗
k
),��k(H

∗−1
0yk

+ GykG
T
yk
)−1)

(7)
�−1
�k
|rest ∼ Gamma(�0�k + n∕2, �0�k

+
1

2
(y∗T

k
y∗
k
+ �∗T

0yk
H∗−1

0yk
�0yk − �T

yk
H−1

yk
bm�yk))

(8)
𝚲wh|𝛀,��h, �Λwh

, �Λwh
∼ Nq1+NH

((GT
�
G� + D−1

Λwh
)−1GT

�
(�h − �0h1n),

��h(G
TG� + D−1

Λwh
)−1),

1∕�2
Πhj

��h,��h ∼ IN

⎛
⎜⎜⎝

�����2
Πh
��h

Π2
hj

, �2
Πh

⎞
⎟⎟⎠

1∕�2
B1hj

�B1h,��h ∼ IN

⎛⎜⎜⎝

�����2
B1h

��h

(B1hj)
2
, �2

B1h

⎞⎟⎟⎠

1∕�2
B2hj

�B2h,��h ∼ IN

⎛⎜⎜⎜⎝

�����2
B2h

��h

(B2hj)
2
, �2

B2h

⎞⎟⎟⎟⎠

1∕�2
B2hj

�B2h,��h ∼ IN

⎛⎜⎜⎝

�
�2
4
��h

(B2h(j+1) − B2h(j))
2
, �2

4

⎞⎟⎟⎠
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The full conditional of ��h is:

where �1�h = �0�h +
1

2
[(�h − �0 h1n − GT

�
Λ�h)

T (�h − �0 h1n − GT
�
Λ�h) + �

T
�h
D−1

�h
��h]

Let the prior of � ’s to be Gamma distribution and the full conditional distribu-
tions of them is:

3.3 � Posterior Distribution in the Bayesian Structure Equation of Elastic Net 
(BENSEM)

Full conditionals in the structure equation for the h-th row of �� is:

for j = 1,… ,Nk , where �
1Λ

h
k
= �

1Π
h
k
 , when �whk are the coefficients of the endog-

enous latent variables; and �1Λhk
= �1Bhk

 , when �whk are the coefficients of the exog-
enous latent variables.

The full conditional of ��h is:

��h|�wh,G� ∼ IG

(
�0�h +

n + q1 + NH + 1

2
, �1�h

)

�2
Πh
|�Πh

∼ Gamma

(
q1 + r0�,

q1∑
j=1

�2
Πhj

∕2 + �0Π

)

�2
B1h

|�B1h
∼ Gamma

(
NX + r0B1

,

NX∑
j=1

�2
B1hj

∕2 + �0B1

)

�2
B2h

|�B2h
∼ Gamma

(
NT + r0B2

,

NT∑
j=1

�2
B2hj

∕2 + �0B2

)

�2
4
|�B2h

∼ Gamma

(
NT + r0B22

− 1,

NT−1∑
j=1

�2
B2hj

∕2 + �0B22

)

𝚲wh�𝛀,��h, �Λwh
,∼ Nq1+NH

((GT
�
G� + D−1

Λwh
)−1GT

�
(�h − �0h1n),

��h(G
TG� + D−1

Λwh
)−1),

1∕�Bhkj
�𝚲�h,��h ∼ IG

⎛⎜⎜⎝

�����2
1Λhk

��h

Λ2
�hkj

, �2
1Λhk

⎞⎟⎟⎠

��h|�wh,G� ∼ IG

(
�0�h +

n + q1 + NH + 1

2
, �1�h

)
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where �1�h = �0�h +
1

2
[(�h − �0 h1n − GT

�
Λ�h)

T (�h − �0 h1n − GT
�
Λ�h) + �

T
�h
D−1

�h
��h]

Let the prior of � ’s to be Gamma distribution and the full conditional 
distributions of them is:

where ��hk represent the Λ ’s belong to the group k.

4 � MCMC Algorithm to Fit Our Bayesian Semiparametric SEM

The parameters from the measurement equation are denoted as �T
1
= {Λy,Ψ�} , while 

the parameters from the structure equation are denoted as �T
2
= {Λ�,Ψ� ,Φ} . Let the 

parameter of interest be � = (�T
1
, �T

2
)T.

Here are the variables we use in MCMC Algorithm:

•	 Y = {y1,… , yn} , and yi is p × 1 vector of manifest variables.
•	 X = {x1,… , xn} , and xi is s × 1 vector of fixed covariates.
•	 C = {c1,… , cn} , and ci is r × 1 vector of known function of xi.
•	 � = {�1,… ,�n} , and �i is q × 1 vector of latent variables.

where i = 1,… , n

� are unobservable latent variables, we can generate it from the full 
conditional distribution p(�|Y,X,C,�) . Because the latent variables are 
independent among the subjects, we can write the full conditional distribution as 
p(��Y,X,C,�) = ∏n

i=1
p(�i�yi, xi, ci,�) . Let gyi = (cT

i
,�T

i
)T . The full conditional 

distribution of �i is:

�2
Πh
|�Πh

∼ Gamma

(
q1 + r0Π,

q1∑
j=1

�2
Πhj

∕2 + �0Π

)

�2
1Bhk

|�Λhk
∼ Gamma

(
Nk + r1Bhk

,

Nk∑
j=1

�2
1Bhkj

∕2 + �1Bhk

)

�2
2Bhk

|B ∼ Gamma

(
Nk + r2Bhk

,
1

2��h

Nk∑
j=1

Λ2
�hkj

+ �2Bhk

)
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�i can be sampled using Metropolis Hastings (MH) algorithm with a proposal distri-
bution q(�∗

i
|�2

�
) ∼ N(�

(j)

i
, �2

�
Σ�) , where �∗

i
 is the proposed new value and �(j)

i
 is the 

value from previous step (jth step). From Guo et al. (2012),

where ΔH = �H(xi, �i)∕��
T
i
|�i=0 . The proposed �∗

i
 can be accepted with the 

probability min{1,
p(�∗

i
|yi, xi, ci,�)

p(�
(j)

i
|yi, xi, ci,�)

} . � can be sampled using Gibbs sampler.

For �1 , sample �∗
yk
|rest and ��k|rest from 6 and 7 respectively.

For �2 , the posterior distribution of the parameters are different between Bayesian 
fused Lasso and Bayesian Elastic Net. We can sample the unknown parameters from 
the posterior distribution we get on Sects. 3.2 and 3.3.

5 � Simulation Study

To illustrate the use of our Fused Lasso and Elastic Net prior based SEMs we have 
considered the case where the covariates have correlations. Under this framework it is 
of interest to compare among our BFLSEM (based on Fused Lasso prior), BENSEM 
(based on Bayesian Elastic Net prior) with Guo et al. (2012) (based on Bayesian stand-
ard Lasso prior or BSLSEM).

5.1 � Simulation 1

We follow the simulation setup on Guo et al. (2012), setting n = 500 , p = 9 , q1 = 1 , 
q2 = 2 and A = diag (0∗, 0∗, 0∗,�4,… ,�9) , ci = (1,… , 1)T,

(9)

p(�i|yi, xi, ci,�) ∝p(yi|ci,�i, �1)p(�i|xi, �i, �2)p(�i|�2)
∝ exp{−

1

2
(yi − Λygyi)

T
�

−1
�
(yi − Λygyi) −

1

2
�T
i
�

−1
i
�i

−
1

2
(�i − �0 − Λ�g�i)

T
�

−1
�
(�i − �0 − Λ�g�i)}

(10)Σ−1
�

= ΛT
�

−1Λ +

(
ΠT

0
�

−1
�
Π0 − ΠT

0
�

−1
�
BΔH

−ΔT
H
BT

�
−1
�
Π0 �

−1 + ΔT
H
BT

�
−1
�
BΔH

)

�
T =

⎡⎢⎢⎣

1.0∗ �21 �31 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 1.0∗ �52 �62 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 1.0∗ �83 �93

⎤⎥⎥⎦
,
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where �4 = ⋯ = �9 = �21 = ⋯ = �93 = � = .36 and {�11,�12,�22} = {1, .25, 1} . 
The function, f (�i1, �i2) = f1(�i1) + f2(�i2) + f12(�i1, �i2) , where 
f1(�i1) = sin(�i1) − �i1 , f1(�i1) = exp(�i2)∕2.5 − 3.0 and f12(�i1, �i2) = 0 , has been 
used to define the underlying relationship between the endogenous and exogenous 
latent variables. Also, this function is considered unknown and will be approximated 
using natural cubic splines, i.e.,

with dk(�ij) =
[(
�ij − �k

)
+
−
(
�ij − �k

)
+

]
∕
(
�K − �k

)
 where K is the number of knots 

and (�k, k = 1,… ,K) are the location of the knots. The knot locations are selected 
using a truncated power series basis developed in Hastie et  al. (2009). In general 
cubic splines will be correlated, thus the use of the fused Lasso is appropriate.

We consider s = 35 with true parameter values

To induce correlation of the covariates x1,… , x31, x34, x35 are simulated from a mul-
tivariate standard normal distribution where corr (xi, xj) = .5|i−j| , i ≠ j ∈ (6,… , 15) , 
corr (xi, xj) = .7 , i − j = 1, i ∈ (1, 2, 3) , corr (xi, xj) = .9 , i ≠ j ∈ (4, 5) and all 
other correlations equal to 0. The covariate of x32 ∼ 2 Binomial (1, .5) and 
x33 ∼ N(− 0.5, 1).

Table 1 summarizes the parameter estimates from the 50 simulations using the 
BFLSEM (based on fused Lasso prior),BENSEM (based on elastic net prior) and 
BSLSEM (based on standard Lasso prior). The bi parameters which relate the covar-
iates to the endogenous latent variable are slightly closer to the true value when 
BFLSEM is used, however for most of the parameters it is only a slight improve-
ment. The covariates with corr (xi, xj) = .7 , i ≠ j ∈ (1, 2, 3) have the most marked 
improvement when BFLSEM is used instead of the BSLSEM or BENSEM. All 
models are efficient at shrinking the insignificant parameters to 0. As several 

fj(�ij) ≈ �j2�ij

K−2∑
m=1

�j,m+2
(
dm(�ij) − dK−1(�ij)

)

f12(�i1, �i2) ≈ �
(12)

12
�i1�i2 +

K−2∑
m1=1

�i2
(
dm1

(�i1) − dK−1(�i1)
)

+

K−2∑
m2=1

�i1
(
dm2

(�i2) − dK−1(�i2)
)

+

K−2∑
m1=1

K−2∑
m2=1

(
dm1

(�i1) − dK−1(�i1)
)(
dm2

(�i2) − dK−1(�i2)
)
,

bl =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0.5 if l ∈ {1, 2, 3}

−0.7 if l ∈ {4, 5}

0.85 if l ∈ {6,… , 15}

0.7 if l = 32

0.5 if l = 33

0 otherwise

.
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parameter true value are set to be zero we cannot calculate the relative bias, however 
in Table 1 we include the RelativeChange = (𝛽−𝛽)

(|𝛽|+|𝛽|)∕2.
There is a fairly significant difference in the spline estimates between the 

BSLSEM and our proposed two models (BFLSEM and BENSEM). For the spline 
parameters that are not equal to zero it is not possible to determine which of the 
models is better in terms of estimation. However, in many of these cases the standard 
deviations of BSLSEM are significantly higher; while BFLSEM and BENSEM are 
similar to each other. For the spline parameters that are equal to zero both BFLSEM 
and BENSEM shrink the estimates nearer to zero than BSLSEM and many have 
significantly lower standard deviations. Moreover, BENSEM is slightly better than 
BFLSEM.

To measure the models efficiency at predicting the endogenous latent variable 
using the covariates and exogenous latent variables, we consider three measures of 
RMSE.

•	 RMSE(f̂ ) =
�∑n

i=1

�
f̂ (𝜉i1, 𝜉i2) − f (𝜉i1, 𝜉i2)

�2
∕n is a measure of the models abil-

ity to approximate the nonlinear relationship between the endogenous and exog-
enous latent variables,

•	 RMSE(B̂) =
�∑n

i=1

�
XB̂ − XB

�2

∕n is a measure of the models ability to relate 
the covariates to the endogenous latent variables and

•	 RMSE =
�∑n

i=1

��
XB̂ + f̂ (𝜉i1, 𝜉i2)

�
−
�
XB + f (𝜉i1, 𝜉i2)

��2

∕n is a measure of 
the models overall ability to predict the endogenous latent variable.

The most significant improvement in the BFLSEM and BENSEM appears to be 
in the RMSE(f̂ ) which suggests that it is much better at defining the relationship 

Fig. 1   Simulation 2: true surface 
for � = F(x, �)
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Fig. 2   Simulation 2: true surface 
for simulated data

Fig. 3   Simulation 2: estimated 
surface via BSLSEM

Fig. 4   Simulation 2: estimated 
surface via BFLSEM
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between the endogenous and exogenous latent variables. And RMSE(f̂ ) of BENSEM 
is slightly lower than BFLSEM’s. A possible reason there was little impact from 
on the covariate parameters is that it is very difficult to simulate complex correla-
tion structures. If more covariance structures are examined we believe the difference 
could be significant.

5.2 � Simulation 2

In order to compare the difference in defining the relationship between the endog-
enous and exogenous latent variables among the three competing model, we ran-
domly choose one of the simulation study and let the coefficient of the covariate 
to be zeros and plot the surface of f (�i1, �i2) . Figure 1 shows the true relationship 
between exogenous latent variables and endogenous latent variable based on func-
tion � = F(x, �) ; Fig. 2 shows the relationship between them based on the simulation 
data, and some of the surface does not have data. Figures 3, 4, and 5 show the esti-
mated surface via original Lasso (BSLSEM), Fused Lasso (BFLSEM), and Elastic 
Net (BENSEM). In Fig. 3, BSLSEM perform badly when �1 and �2 both greater than 
0. From Fig. 2, there are no data when both �1 and �2 are greater than 2.5. BFLSEM 
and BENSEM perform similarly. In this simulation, BFLSEM performed marginally 
better, when both �1 and �2 are less than 0.

6 � Application in Monitoring the Future: A Continuing Study 
of American Youth

We apply our BFLSEM and BENSEML to analyze Monitoring the Future: A 
Continuing Study of American Youth (12th-Grade Survey). There are three exog-
enous latent variables of interests, cigarette morbidity, marijuana morbidity and 

Fig. 5   Simulation 2: estimated 
surface via BENSEM
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behavior risk index; one endogenous latent variable, alcohol morbidity. We want 
to analyze how cigarette morbidity, marijuana morbidity and behavior risk index 
affect alcohol morbidity. We used the subset from the Monitoring the Future data: 
1878 students who had drinking experience. More details about the data and all 
descriptions can be obtained from https://​monit​oring​thefu​ture.​org/.

The endogenous latent variable, alcohol morbidity, is measured by the follow-
ing items:

•	 The occasions that students had alcoholic beverages to drink, more than just a 
few sips in their lifetime.

•	 The occasions that students had alcoholic beverages to drink, more than just a 
few sips last year.

•	 The occasions that students had alcoholic beverages to drink, more than just a 
few sips last month.

•	 The number of times that the students had five or more drinks in a row in the 
last two weeks.

The first exogenous latent variable, cigarette morbidity, is measure by the follow-
ing items:

•	 The occasions that students smoked cigarettes in their lifetime.

Table 2   Non-spline parameter 
estimation using posterior 
means and posterior standard 
deviations

Parameters BFLSEM BENSEM BSLSEM

Mean SD Mean SD Mean SD

�
2,1

0.8477 0.0356 0.8358 0.0348 0.836 0.0417
�
3,1

0.5202 0.0405 0.5067 0.0397 0.5069 0.0396
�
4,1

0.4098 0.0271 0.3982 0.0245 0.3983 0.0301
�
6,2

1.0505 0.0343 0.9976 0.0329 1.0470 0.0399
�
8,3

1.2825 0.0417 1.2866 0.0442 1.2965 0.0408
�
9,3

1.2088 0.0314 1.2127 0.0288 1.2219 0.0298
�
11,4

0.7485 0.0284 0.5973 0.0329 0.6634 0.0342
�
12,4

0.3364 0.0119 0.4089 0.0238 0.3993 0.0266
�
13,4

0.1659 0.0162 0.1558 0.0191 0.1583 0.0186
�
14,4

0.109 0.0274 0.1978 0.0251 0.1796 0.0247
�
5

3.133 0.3004 3.1667 0.3139 3.1099 0.2764
�
6

1.9161 0.3270 1.9526 0.3420 1.8925 0.3109
�
7

5.3888 0.4233 5.4149 0.3969 5.4285 0.4080
�
8

4.4709 0.4033 4.5048 0.3981 4.5217 0.4699
�
9

2.8753 0.2186 2.9067 0.2392 2.9222 0.2115
�
1
0 2.0841 0.1459 2.1565 0.1407 2.1203 0.1531

�
1
1 1.7787 0.3488 1.8275 0.2960 1.8065 0.3250

�
1
2 3.9871 0.2796 4.0141 0.2934 3.999 0.3009

�
1
3 3.1242 0.3645 3.1356 0.3511 3.1303 0.3731

�
1
4 3.5832 0.2609 3.5943 0.3645 3.5879 0.3829

https://monitoringthefuture.org/
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•	 The occasions have students smoked cigarettes during the past 30 days.

The second exogenous latent variable, marijuana morbidity, is measure by the fol-
lowing items:

•	 The occasions that students smoked marijuana in their lifetime.
•	 The occasions that students smoked marijuana last year.
•	 The occasions that students smoked marijuana last month.

The third exogenous latent variable, behavior risk index, is measure by the following 
items:

•	 During the last four weeks, the number of whole days of school students have 
missed because they skipped.

•	 During the last four weeks, the number of whole days of school students have 
missed because other reasons.

•	 During a typical week, the number of evenings students go out for fun and rec-
reation.

Table 3   Spline parameter estimation using BFLSEM

Para. = parameters; Est. = posterior estimates; aMarked values indicates 90% of the distribution is 
greater than 0 or less than 0

Para Est Para Est Para Est Para Est

b
1

0.1216a
�
(12)

1
− 0.0553 �

(13)

1
− 0.0156 �

(23)

1
− 0.1149a

b
2

0.0243 �
(12)

2
− 0.008 �

(13)

2
0.0073 �

(23)

2
− 0.0056

b
3

0.0835 �
(12)

3
0.0081 �

(13)

3
0.0179 �

(23)

3
0.0246

b
4

0.0845 �
(12)

4
0.0152 �

(13)

4
0.0248 �

(23)

4
0.0327

b
5

− 0.0322 �
(12)

5
0.0258 �

(13)

5
0.033 �

(23)

5
0.0286

�
0

5.8534a
�
(12)

6
0.0063 �

(13)

6
0.007 �

(23)

6
0.0165

�
12

0.2729a
�
(12)

7
− 0.0045 �

(13)

7
− 0.0041 �

(23)

7
0.009

�
13

0.0303 �
(12)

8
− 0.0044 �

(13)

8
− 0.0029 �

(23)

8
0.0068

�
14

− 0.0037 �
(12)

9
0.0166 �

(13)

9
0.0163 �

(23)

9
0.0113

�
15

0.0067 �
(12)

10
0.0007 �

(13)

10
− 0.006 �

(23)

10
0.0002

�
22

0.1142a
�
(12)

11
− 0.0086 �

(13)

11
− 0.0139 �

(23)

11
− 0.0047

�
23

0.0654a
�
(12)

12
− 0.0065 �

(13)

12
− 0.012 �

(23)

12
− 0.0066

�
24

0.0382 �
(12)

13
0.0176 �

(13)

13
0.0048 �

(23)

13
− 0.002

�
25

0.0441 �
(12)

14
− 0.0025 �

(13)

14
− 0.0273 �

(23)

14
− 0.0168

�
32

0.1745a
�
(12)

15
− 0.0151 �

(13)

15
− 0.0529 �

(23)

15
− 0.0252

�
33

0.0986a
�
(12)

16
− 0.0217 �

(13)

16
− 0.0824 �

(23)

16
− 0.0314

�
34

0.0417
�
35

− 0.0039
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•	 On the average, how often students go out with a date.
•	 During an average week, how much students usually drive.

As a result, there are totally 14 manifest variables. The � in the measurement equa-
tion is given by:

Let A = diag(0,… , 0,�5,… ,�14) and ci = (1,… , 1)T . In addition, we have five 
covariates, which are gender, geographic area, living with siblings, father educa-
tion level and mother education level. Let xi = (x1i,… , x5i) To study the interaction 
between the exogenous latent variables and endogenous latent variable, we proposed 
following structure equation model:

(11)�
T =

⎛⎜⎜⎜⎝

1 �21 �31 �41 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 �62 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 �83 �93 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 �11,4 �12,4 �13,4 �14,4

⎞⎟⎟⎟⎠

(12)
�i =xib

T + f1(�1i) + f2(�2i) + f3(�3i)

+ f12(�1i, �2i) + f13(�1i, �3i) + f23(�2i, �3i)

Table 4   Spline parameter estimation using BENSEM

Para. = parameters; Est. = posterior estimates; aIndicates the estimates that did not converge

Para Est Para Est Para Est Para Est

b
1

0.0169 �
(12)

1
− 0.0026 �

(13)

1
− 0.1193 �

(23)

1
0.0023

b
2

0.0018 �
(12)

2
− 0.0054 �

(13)

2
− 0.4759 �

(23)

2
0.0031

b
3

0.0035 �
(12)

3
− 0.005 �

(13)

3
0.462 �

(23)

3
0.0039

b
4

0.004 �
(12)

4
− 0.0045 �

(13)

4
2.5223a

�
(23)

4
0.0046

b
5

− 0.0042 �
(12)

5
0.0022 �

(13)

5
− 0.3639 �

(23)

5
− 0.0008

�
0

5.9121 �
(12)

6
0.0012 �

(13)

6
− 0.4635 �

(23)

6
0.0015

�
12

− 0.0291 �
(12)

7
0.0013 �

(13)

7
− 0.6698 �

(23)

7
0.0018

�
13

− 0.0016 �
(12)

8
0.0011 �

(13)

8
− 1.2979a

�
(23)

8
0.0027

�
14

0.0043 �
(12)

9
0.003 �

(13)

9
− 0.1049 �

(23)

9
− 0.0011

�
15

0.0156 �
(12)

10
0.0021 �

(13)

10
− 0.1743 �

(23)

10
0.0021

�
22

− 0.0002 �
(12)

11
0.0022 �

(13)

11
− 0.5128 �

(23)

11
0.0021

�
23

− 0.0026 �
(12)

12
0.0022 �

(13)

12
− 1.5011a

�
(23)

12
0.003

�
24

− 0.0025 �
(12)

13
0.0044 �

(13)

13
1.0263a

�
(23)

13
− 0.0011

�
25

− 0.0026 �
(12)

14
0.0045 �

(13)

14
1.3305a

�
(23)

14
0.0017

�
32

2.4961a
�
(12)

15
0.0042 �

(13)

15
0.4733 �

(23)

15
0.0024

�
33

18.3222a
�
(12)

16
0.0041 �

(13)

16
− 0.53 �

(23)

16
0.0031

�
34

− 35.6403a

�
35

16.0324a
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where b = (b1,… , b5) . Similar to simulation study, natural cubic splines are used in 
function f (⋅) with 5 knots. MCMC chains of 100,000 iterations are generated and 
the burnin is 30,000. We use both BFLSEM and BENSEM in this case, and com-
pare the result with the BSLSEM. Table 2 shows the estimates from measurement 
equation. The estimates are very similar among all three methods.

The structure equation results for BFLSEM, BENSEM, and BSLSEM are pre-
sented in Tables 3, 4, and 5 respectively. We notice that some of the � ’s in BENSEM 
and BSLSEM did not converge completely. Comparing parameter estimates from 
Tables 3, 4, and 5 we observe that BFLSEM performed best in this application, with 
all the � ’s properly converged. The result from BFLSEM Table 3 shows that there is 
an interaction between marijuana morbidity and behavior risk index. The main effect 
of cigarette morbidity is also significant. The graphs of the two-way interaction of 
these three exogenous latent variables shows their relation with endogenous latent 
variable. Figure 6 shows there a weak interaction between cigarette morbidity and 
marijuana morbidity, but both main effects are highly significant. When cigarette 
morbidity or/and marijuana morbidity increase, alcohol morbidity increases. Fig-
ure 7 shows similar pattern with cigarette morbidity and behavior risk index. Fig-
ure 8 shows the interaction between marijuana morbidity and behavior risk index. 

Table 5   Spline parameter estimation using BSLSEM

Para. = parameters; Est. = posterior estimates; aIndicates the estimates that did not converge

Para Est Para Est Para Est Para Est

b
1

0.0159 �
(12)

1
− 2.7382a

�
(13)

1
1.0451a

�
(23)

1
0.2214a

b
2

0.0014 �
(12)

2
8.284a

�
(13)

2
22.0392a

�
(23)

2
0.3895a

b
3

0.0008 �
(12)

3
− 3.644a

�
(13)

3
− 3.7627a

�
(23)

3
4.5003a

b
4

0.0074 �
(12)

4
− 1.4991a

�
(13)

4
− 15.6498a

�
(23)

4
− 2.7686a

b
5

− 0.0038 �
(12)

5
9.7528a

�
(13)

5
− 7.5459a

�
(23)

5
1.2014a

�
0

5.9608 �
(12)

6
− 5.0116a

�
(13)

6
− 11.514a

�
(23)

6
− 7.5515a

�
12

− 1.3933a
�
(12)

7
− 3.7479a

�
(13)

7
− 10.617a

�
(23)

7
− 18.5468a

�
13

− 9.2749a
�
(12)

8
− 1.6634a

�
(13)

8
4.8088a

�
(23)

8
− 6.5395a

�
14

8.9574a
�
(12)

9
− 7.53a

�
(13)

9
2.7655a

�
(23)

9
− 4.1878a

�
15

0.6507a
�
(12)

10
− 0.5455a

�
(13)

10
0.9769a

�
(23)

10
3.9873a

�
22

− 1.7371a
�
(12)

11
3.0895a

�
(13)

11
0.6814a

�
(23)

11
4.1692a

�
23

3.1955a
�
(12)

12
5.5655a

�
(13)

12
18.2107a

�
(23)

12
34.5997a

�
24

− 1.5914a
�
(12)

13
0.4208a

�
(13)

13
3.3887a

�
(23)

13
2.5759a

�
25

− 0.5296a
�
(12)

14
− 0.4141a

�
(13)

14
− 1.0071a

�
(23)

14
8.6044a

�
32

4.3805a
�
(12)

15
1.5452a

�
(13)

15
− 2.2612a

�
(23)

15
− 0.4574a

�
33

3.9027a
�
(12)

16
− 1.8298a

�
(13)

16
− 2.0676a

�
(23)

16
− 21.5666a

�
34

− 5.7997a

�
35

1.9083a
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When behavior risk index is in the higher level, as marijuana morbidity increases, 
alcohol morbidity increases faster.

7 � Discussion

In this paper we adapted Bayesian fused Lasso prior and Bayesian elastic net 
prior for using in semiparametric structural equation models. Basis expansions 
are used to approximate the nonparametric relationships between the endogenous 
latent variables and the exogenous latent variables and covariates. When cubic 
splines are used as the basis expansion, it is beneficial to use the fused Lasso or 
the elastic net based priors (BFLSEM and BENSEM) to estimate the parameters 
since cubic splines are correlated in general. In the simulation study, both our 
BFLSEM and BENSEM reduce the standard deviations of the spline parameters 

Fig. 6   Estimated surface for cigarette morbidity and marijuana morbidity
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and shrink the estimates of the spline parameters closer to zero when the true 
values of those parameters are equal to zero. More importantly, RMSE(f̂ ) of 
BFLSEM and BENSEM is about half of RMSE(f̂ ) of the BSLSEM (which is 
based on the standard Lasso prior, Guo et al. (2012)).

There are clear benefits to use the fused Lasso prior to estimate the coefficients 
of the covariates, however, it is difficult to generate realistic correlation structures. 
The usefulness of our methods will depend greatly on the type of the underlying 
correlation structures. In our simulation study, the fused Lasso prior based SEM 
(BFLSEM) has a remarkable improvement over the standard Lasso prior based SEM 
(BSLSEM, Guo et  al. (2012)) for the tridiagonal structure with correlation equal 
to 0.70. However, it is difficult to simulate tridiagonal structures since we often get 
negative eigenvalues. We believe that if a natural order are present in a real data set 
our fused Lasso prior based SEM (BFLSEM) would lead to much better results.

Fig. 7   Estimated surface for cigarette morbidity and marijuana morbidity
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In the application all of three methods BFLSEM, BENSEM and BSLSEM have 
similar estimates for the measurement equations. However in terms of structural 
equation parameters estimates our BFLSEM based on Bayesian fused Lasso 
comes out to be the winner and indicates strong interaction between behavior risk 
index and marijuana morbidity.

However, in real-world data if the Gaussian assumptions on the random compo-
nents �i and � i are not met, the model’s performance can be compromised, leading to 
biased parameter estimates, incorrect inference, and poor predictive accuracy. How-
ever violations of the Gaussian assumptions can be fixed by adopting a contami-
nated Gaussian error structure on �i and � i . Another approach can be using standard 
transformations like logarithmic, square root, or Box-Cox transformations on the 
manifest variables and the endogeneous latent variables.

In all our two proposed models we include two way interaction of the exogenous 
latent variables. It is straightforward to extend our model to three way interaction, 

Fig. 8   Estimated surface for cigarette morbidity and marijuana morbidity
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when the problem has at least three exogenous latent variables. However, that will 
increase the number of coefficients need to be estimated significantly, depending on 
the number of knots. In our study, the options of the psychology survey are mostly 
ordinal data. In some cases, the options might be dichotomous and that would vio-
late the continuous assumption of the manifest variable. Further research is needed 
to extend the manifest variable to binary and nominal response. Also it is worth-
while to extend it to other basis expansion methods.
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