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Abstract

Compositional data (CD) is mostly analyzed using ratios of components and log-ratio
transformations to apply known multivariable statistical methods. Therefore, CD
where some components equal zero represents a problem. Furthermore, when the
data is measured longitudinally, and appear to come from different sub-populations,
the analysis becomes highly complex. Our objective is to build a statistical model
addressing structural zeros in longitudinal CD and apply it to the analysis of radia-
tion-induced lung damage (RILD) over time. We propose a two-part mixed-effects
model extended to the case where the non-zero components of the vector might come
from a two-component mixture population. Maximum likelihood estimates for fixed
effects and variance components were calculated by an approximate Fisher scoring
procedure base on sixth-order Laplace approximation. The expectation-maximization
(EM) algorithm estimates the mixture model’s probability. This model was used to
analyze the radiation therapy effect on tissue change in one patient with non-small
cell lung cancer (NSCLC), utilizing five CT scans over 24 months. Instead of using
voxel-level data, voxels were grouped into larger subvolumes called patches. Each
patch’s data is a CD vector showing proportions of dense, hazy, or normal tissue.
Proposed method performed reasonably for estimation of the fixed effects, and their
variability. However, the model produced biased estimates of the nuisance parame-
ters in the model.
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1 Introduction

Compositional data are vectors of non-negative real numbers that represent parts of
some whole. Therefore, a composition x = [x;,x2,...,xp] is subject to the constraint

Zf): Xi =k, with x; > 0. Usually, the parts of a composition are presented as
proportions or percentages (Aitchison, 1986). Common examples include the
proportion of different cell types in a patient’s blood, proportion of nutrients in a
patient’s diet, portions of the chemical elements in the air, the proportion of working
time spent on different activities, etc.

Compositional data have been commonly analyzed using multivariate data
analysis without any transformation. However, compositional data analysis using
traditional multivariate data analysis can lead to paradoxes and misinterpretations of
the results given the negative bias induced by the constant-sum constraint (Aitchison
et al., 2005; Pawlowsky-Glahn et al., 2015). Aitchison (1986) proposed the first
methodology with new geometry to analyze compositional data as relative data,
using ratios of components and the log transformation that are more amenable to
unrestricted multivariate statistical models. However, compositional data, where at
least one of the components equals zero, cannot be passed through these ratio
transformations. Some methods for handling this issue have been pro-
posed (Aitchison, 1986; Fry et al., 2000; Bacon-Shone, 2003; Martin-Fernandez
et al., 2003; Aitchison and Kay, 2003; Martin-Fernandez et al., 2012; Chen and Li,
2016). The modified Aitchison zero-replacement method is one of the most
frequently implemented method in the analysis of compositional data,(Fry et al.,
2000) and it works properly in the presence of rounding zeros or generated by
detection limits in the measurement. Nonetheless, in the presence of structural zeros
(true zeros), the idea of substituting them for a small amount does not seem entirely
adequate.

We address the issue in the context of zero inflated longitudinal compositional
data that naturally occurs in the lung tissue changes in early-stage lung cancer
patients receiving radiation treatment (RT) as captured through CT scans. Lung tissue
surrounding the tumor, observed as a composition of different levels of radiation
damage over time, poses a challenging modelling problem. Recent work on a similar
problem is addressed in Bear and Billheimer (2016), but the context is not
longitudinal. Templ et al. (2017) developed a method for outlier and extreme value
detection. Silverman et al. (2018) dealt with a very similar inference problem where
they used longitudinal compositional data for microbiota using a dynamic linear
model without any special accommodation for zero inflation. The context of lung
tissue composition we are dealing with is quite different from other scenarios, and the
abundance of zero values significantly restricts the direct application of standard
methods. Also, the added complexity in this model is the heterogeneity in the
longitudinal pattern depicting a split course of temporal change, possibly based on
tissue tolerability of radiation therapy. A two-part mixed-effects mixture model for
zero-inflated longitudinal compositional data is proposed to deal with abundance of
zeros and heterogeneous temporal changes. Modeling and analyzing these changes
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leads to our understanding of the responses of lung tissue to high dose radiotherapy,
which in turn leads to long term clinical outcomes.

Section 2 briefly outlines the proposed two-part mixed-effect mixture model for
zero-inflated longitudinal compositional data. In Section 3, we describe the
radiographic lung change process following lung cancer radiotherapy, which partly
motivated this research. Section 4 summarizes a simulation study to evaluate the
model performance based on data described in Section 3, and the application of the
method using the lung cancer data is presented in Section 5. Finally, an overall
discussion of the model, its results, usefulness, and areas for further research are
presented in Section 6.

2 Two-part Mixed Effects Mixture Model for Zero-Inflated
Longitudinal Compositional Data

Consider a compositional data vector of three parts p; = (di, hir,ni), Where
i=1,...,N(total number of observations), at ¢ (different time points), d;,, A;, and n;
represent the proportion of each of the three parts in the observation i at time ¢.
Further, 0 <d; <1and 0<h; <1, and n; = 1 — d;; — h;,. This vector is in the form
of compositional data measured over time. Now, let Y; = (d;/n;, hj/n;) be a
transformation of p;; = (dy, hir, niy). Also, assume that a large proportion of d;; and 4;
equal zero for most i and z. Hence, modeling this data necessitates a zero inflated
longitudinal distribution. Also, the change over time of these parts is rather
heterogeneous and thus requires a two-component mixture.

2.1 Model Formulation

Let Y;; a semicontinuous bivarite vector for the i-th (i = 1, ..., N) observation at time
tj (G =1,...,n;). Then, this outcome vector can be represented by two processes, an
occurrence variable Uy and an intensity vector V;;, where

g {1 if¥;£e
Y710 otherwise

and the intensity variable V; = log(¥;), when Y;; # 0. The log transformation has
been used to make V;; approximately normal with a observation-time-specific mean,
and at the same time, handle compositional data. The joint distribution is specified by
the distribution of the occurrence variable Uy;, and the conditional distribution of V.
Suppose Uj; follows a random effects logistic regression model:

logit{Pr(U; = 1l¢;)} = logit{m;]e;}
=1 (1)
= X;B + Zjc;

where Xj; is a 1 x p covariate vector for the fixed effects, p is a p x 1 fixed effects
regression coefficient vector, Z;; is a 1 x g covariate vector for the random effects,
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and ¢; is a g x 1 observation-level vector of random intercept and random effects.
The vector V;|¥; # 0 follows a bivariate linear mixed model:

Vil(di, Y5 #0) = Xy + Zid; + ¢; @

where Xi; and Z;; might have the same variables as X;; and Z; in (1), but this is not

required; y is the regression coefficient matrix (p* x 2) for the fixed effects; and d; is
the subject-level matrix with the random effects (¢* x 2). Additionally, the error term

2
oy, POy Oy
e,»j~N<0,2=< . ! ; )) (3)
POy, 0y, Oy,

The random effects vector (¢, 7d,-), where d; = vec(d,;), is distributed by a mixture of
2 multivariate normal distributions. Correlation between random effects in (1) and (2)
is allowed. Then,

2
Ci 0 \Pcc ‘l’c
b= ]~ o (= ()= (5 ) @
di] = u, Vi Ya
with 22 m, =1 and 3> m,u, = 0. Suppose A; = 1 if b; is sampled from the
first component in the mixture, and 0 otherwise. Then,

c,-NN(0, ‘“Pcc) (5)
and

dilci ~ [mN(uy + VoV i, H)N[(1 — mp)N(py + VoW, i, H)' ™Y (6)

where H = W — W4 ¥, ey, and p, = — T M-

2.2 The Likelihood

The estimation of the parameters in the model defined by (1) to (6) is based on the
maximization of the likelihood, defined as

N
L(XH/A.f(yi|ﬁ7}]7ci;diaz)f(civdi|m17.u]a‘l’)dcidi (7)
i=1J¢ Jdi

which, with the two-parts model and the conditional distribution of the random
effects, becomes

N n; _ _ _
L[] / jé [T = 7)™ 7 [ (Vily, d 2N f (il Weo)f (dilmy, py i, Yaa)desdd;
i=1 /e Jdi j=|

(8)

The double integral in (8) is intractable, which implies that the likelihood in the
equation cannot be maximized analytically. Using Olsen and Schafer (2001)
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approach with a sixth-order Laplace approximation, we obtained an approximate for
the log-likelihood. The complete derivation of the likelihood is shown in the
Appendix 2.

2.3 Model Estimation

First, the expectation-maximization (EM) algorithm is implemented. In the E-step,
the conditional expectation of the likelihood is obtained, and only the posterior
probability of belonging to the first component of the mixture for each i-th patch has
to be calculated as:

my(00) = exp(Si:)
O =S (s ©)

1

) ; ! L tgety ]
=—(n+2 2n) — Y| — —log|H| + = log|B;'| — = log|¥..
Sy == (n; +1 ) log(2m) — "L log|=| — S log|H]| + 5 logB;"| - 5 log ¥

1 ~ =~ == ~xT = S
—ATE - 37'Z BT Z SN A + AT 2B H ]

2
1 kT 1 - ~ 1 ~
*EmrﬂrTHilBiilZi*TEilZﬁ”r JrigiTr(‘l’;cl + D) 1gir +f(eir) +§Zog| - [f@)(cir)}
INC =@, o1 LN~ =0, 1,10
—|—log<1 —gzl:mw (ZijG,-rlZ;) —Rzl:mij, (Zl-jGirllg)
j= Jj=

15 /& T~(3) 1,1\ et S T~(3 —1 T
+ (D zinl2,6,'2)) 6, (2 2,G,'2})
j=1 j=1

(10)

In the M-step, the conditional expectation is maximized with respect of m,, the

probability of belonging to the first component of the mixture, which allow us to

obtain an updated estimate mgt“) as:

1 N
m{ = szh—((a“)) (11)
i=1

However, the other parameters in the model cannot be updated analytically. Hence an
approximate Fisher scoring numerical maximization procedure is implemented.
Score vectors were derived using the score vectors proposed in Olsen and Schafer
(2001), but ¢,., ¢y, and ¢ represent the vectorized upper triangles of .., H, and
2. Additionally, score vectors were extended to accommodate multivariate data.
Expressions for the components of the score vectors for the i-th patch are given in the
Appendix 3.
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At each iteration, the values of the new estimates for the variance and correlation
parameters are validated to assess whether the estimates are outside the parameter
space. When needed, a step-halving procedure is applied to return the estimates
within the parameter space. Also, a second step-halving procedure was implemented
for all parameters in the model to guarantee that the deviance of the new set of
estimates is lower than in the previous iteration.

Initial values for B, y, W.., and the diagonal in W¥,; are generated by logistic
regression for the occurrence variable and independent linear mixed model for each
variable in the intensity vector. Starting values for the off-diagonal elements in ¥4,
are set using the diagonal values and a correlation of 0.1. Initial values for X are set
as the variances and correlations of the variables in the intensity vector. For
simplicity, the starting values for m; and u, are set as 0.55 and (—0.05,0.05),
respectively.

Approximate empirical Bayes estimates by Pareto smoothed (Vehtari et al., 2015)

importance sampling for unnormalized densities are implemented for the random

effects. A thousand samples (c,m, . C(lOOO)) were taken from a multivariate ¢

distribution with 4 degrees of freedom, centered at the mode ¢; with covariance
matrix proportional to G; !, as proposed by Gelman et al. (1995) and implemented by
Olsen and Schafer (2001). Using the drawn sample for ¢;, estimated means for ¢; and
d; where calculated. All estimation procedures have been implemented in R version

3.4.4R Core Team (2019).

3 Motivating Example: Radiographic Lung Change Following
Radiotherapy of Lung Cancer

Radiation therapy (RT) is the standard treatment for medically inoperable patients in
the early stages of Non-Small Cell Lung Cancer (NSCLC) (Jain and Berman, 2018)
Stereotactic body radiotherapy (SBRT) is a RT approach that requires high spatial
accuracy to deliver high doses to the tumor (Linda et al., (2011). Treatment is
delivered over several fractions using beams from different angles to ensure the
tumor receives the prescribed dose while limiting exposure to surrounding normal
tissue (Matsuo et al., 2012). Nevertheless, healthy tissue near the tumor is exposed to
clinically relevant doses of RT, causing changes in the lung surrounding the tumor
(Dunne et al., 2018). Following RT, computed tomography (CT) scans are obtained
at regular time points to assess tumor control and healthy tissue damage which can be
classified according to whether consolidations (dense) or ground-glass opacities
(hazy) were observed.

Our preliminary data consists of five CT scans of one NSCLC patient obtained at
3,6, 12, 18, and 24 months following SBRT with a dose of 57 Gy. Voxels on each
CT scan were arranged into larger subvolumes, called patches. Each patch is defined
using isodose lines, combining voxels that received a uniform dose (Fig. 3a).
Boundaries were drawn at regular dose intervals of 0.2 Gy, and voxels with a
received treatment dose within the interval were combined on the same patch. Voxels
that did not receive any radiation therapy were combined on the same patch.
Figure 3b shows a transverse slice of the isodose-patch approach applied to this
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patient. The ocean-green region corresponds to voxels that did not receive any RT
dose, and the center of the image, where the smallest region is located (dark blue), is
the region with the highest received dose. Transition from voxels to the patches was
necessary as the temporal integrity of the voxels was very hard to assure, even after a
very rigorous registration process. Patients receiving different levels of radiation go
through a substantial amount of tumor shrinkage and tissue deformation over time.
Therefore, an aggregated approach, using patch level data, is deemed to be more
reliable than voxel-level data.

For this study, one physician manually contoured the area with RILD on the CT
scans using commercial contouring software (MIM Maestro v6.6, MIM Software,
Cleveland, OH). Even though in the CT scan the extent of radiographic injury is
observed in a continuous manner with the RT dose, voxels were classified according
to their radiographic findings into three-threshold based ordinal categories of
radiographic injury, namely, dense (representing areas of consolidation and fibrosis),
hazy (representing ground-glass changes) and normal (Linda et al., 2011; Trovo
et al., 2010). After RILD contouring, deformable image registration was performed
using a multi-pass b-spline for accounting for major changes in lung architecture
after RT. Follow-up CT scans were registered to the baseline treatment planning scan
using a commercial registration package (Velocity - Varian Medial Systems).

For this patient, there were 288 patches for analysis. Data for each patch is
summarized into a vector Pir = (dig, hig, i), where
i=1,...,N(total number of patches), t = 3,6, 12, 18,24 months, d; and A, repre-
sent the proportion of dense and hazy voxels in the patch i at time # months, and
ny = 1 —d; — hj. Further, 0 <d;; <1 and 0 <h; <1. This vector is in the form of
compositional data measured over time, where the unit of observation is a
composition within each patch. Even though some spatial autocorrelation is expected
in close patches, the proposed model ignored such a relationship to avoid yet more
complexity in the model specification.

As shown in Fig. 1, a notable feature of these data is that, at each time point, less
than 50% of the patches presented some tissue damage, meaning that d;, and %;, equal
zero for most of the patches. Also, as shown in Fig. 2, the distribution of the
transformed compositional data, for those patches with some tissue damage, seems
bimodal.

In Section 5, a two-part mixed-effects heterogeneous mixture model for analyzing
the aforementioned data is presented. The model was built as an extension of the
two-part mixed model proposed in Olsen and Schafer (2001) and adjusted to fit
compositional data, bimodality of the temporal change pattern and the mixture
distribution of the random effects.

4 Simulations
Simulations, to evaluate the performance of our proposed model, were conducted
using the same framework as the real data. Simulated values of the outcome of

interest, namely the composition (%Dense, %Hazy, %Normal) was generated in two
steps. (¥;), for the i-th (i = 1, ..., N) patch at time #; (f = 1, ..., n;) was transformed
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Fig. 1 Bar plot of the observed tissue damage after radiation therapy by follow-up time points
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Fig. 2 Violin plots of the kernel density for the proportion of dense and hazy tissue damage after the
additive log-ratio transformation (alf) by follow-up time points

from the simulated values of the bivariate intensity vector Vj, which is the alr
transformation of the composition, when ¥;; # 0, and the occurrence variable Uy was
generated using a Bernoulli distribution.

The simulation was carried out with three different number of observations
(N = 300,500, 1000). Also, three different numbers of follow-up measurements
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were considered (n; = 3,4,5). The received dose was simulated following a
logarithmic distribution. For both parts of the model (occurrence and intensity),
intercept, dose-effect, and time after radiotherapy in years (linear and quadratic) were
considered as fixed effects to build the data. Only a random intercept was used in
both model parts (¢; and d; for occurrence and intensity models respectively).

The true values for the parameters were chosen to mimic the parameters estimated
based on the real data set analyzed in Section 5. For simplicity, true values for the
mixture distribution of the random effects for the intensity vector, m; and u,, were set
as 0.6 and (—0.1,0.1), respectively. The simulations were repeated 1000 times
within each combination of sample size and follow-up time points.

The performance of the algorithm in the estimation of the regression coefficients
was assessed by the standardized bias (SB) (difference between the average estimate
and the true value as a percentage of the SD estimate), and the coverage rate of the
nominal 95% confidence interval (estimate + 1.96SE). Additionally, the square of the
correlation between the observed and predicted data, as well as the mean absolute
scaled error (MASE), were calculated for each simulation. As a comparison method,
the square of the correlation and MASE were calculated for the “naive” model, using
the initial values obtained by a mixed-effects logistic regression for the occurrence
variable and independent linear mixed model for each variable in the intensity vector
without correlation between the models.

Additionally, to assess the model’s false positive rate of the fixed effects, the same
simulation scenario described above was performed but with the coefficients of dose,
time, and time squared set equal to zero. Parameter estimates and respective standard
errors were calculated using the proposed model, and 95% confidence intervals were
obtained. Type I error was calculated as the proportion of intervals that did not
contain zero.

For all the simulation scenarios, the procedure failed to converge in less than 5
samples and for those that the procedure converged, the average number of iterations
for convergence was between 11 to 14 steps. The average time estimating fixed
effects was less than 10 min with 300 patches (N = 300), between 10 and 20 min
with N = 500, and between 35 min and 50 min with N = 1000. The estimation of
the random effects took longer, around 45 min with ¥ =300, 1 to 1.5 h with
N = 500, and around 2.5 h with N = 1000.

4.1 Estimation of Fixed Effects

For each scenario, Table 1 list the average and the standard deviation (SD) of the
point estimates, the average standard error (SE), the standardized bias (SB),the
coverage rate, and the type I error. In the occurrence model, the coefficients for the
intercept and dose are underestimated, particularly with N = 300. In the intensity
model, for both alr(Dense) and alr(Hazy), the estimation of the parameters went
quite good, even in small sample sizes. The number of time points seems to have a
substantial effect on the performance of the estimates in occurrence model, with
estimation bias decreasing as the number of time points increases.
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Summary of the standardized bias (SB) demonstrates that it is consistently lower
than 40% for all parameters, therefore bias impact on the efficiency, coverage and
error rate with the proposed model is minimal. However, in some scenarios, the SB is
larger than 20%, particularly for the estimation of the intercepts and the dose effect.
In most of the cases, the average SE is close to the SD of the estimate; however, with
N = 300, the average SE and the SD differ substantially. This might indicate that the
estimation of the standard errors generated by the proposed method may not
adequately represent the variation of the estimator in small sample sizes. Coverage
percentages were close to 90% or larger for all parameters but the dose coefficient.
Contrary to our common experience, relatively higher coverage rates were observed
with the smallest sample size (N = 300). This is due to large standard errors resulting
from small sample size, not better estimation performance.

The type I error rate for the coefficient associated with dose was equal or less than
0.05 for both model parts for all sample sizes (N) and the number of follow-up time
points (#;). The coefficient for time showed the highest type I error among the model
coefficients, particularly for the first part of the model (occurrence model). This issue
is a result of the underestimation of that coefficient, which gets worse as the sample
size (N) increases. For the coefficient associated with Time?, the type I error rate is
larger than 0.05 for most of the scenarios. Additionally, an increase in the error is
observed with larger sample sizes and number of time points; this is a result of higher
precision of the estimates with larger number of time points that led to smaller
confidence interval.

4.2 Estimation of Nuisance Parameters

In addition to the estimates of the fixed effects, the proposed model also performs the
estimation of the variance components (X and ) and the components associated
with the mixture model (m and u). The results obtained in the simulation for these
parameters are observed in the Table 2. All the variance components but Wy, are
underestimated and strongly biased. This bias is basically caused by the inclusion of
the step-halving procedure that forces a lower deviance in each iteration, not
allowing a large and faster change in some parameters. However, the step-halving
procedure is necessary and widely used to deal with common convergence problems
when using non-standard link functions, such as the log link binomial model used in
the occurrence model.

The model performance on the estimation of the parameters of the mixture model
was not satisfactory. The average percentage of membership to the most frequent part
of the mixture (m) has been shrunk towards 0.50, and the mean towards zero,
indicating a no mixture model. This is attributable to our assumed true model
parameters that leads to little difference between the two groups, however, it imitates
the real data. Even though the nuisance parameters are usually not the main interest
in research, they are used on the estimation of the random effects, and therefore will
affect the model’s predictions, and are also used on the hypothesis testing involving
these parameters to find a more parsimonious model.
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Table 2 Simulation results for estimated nuisance parameters

i Xy Corp ¥ Y2 Wiz W Wi Wa m I I

Population 1 0.5 02 1 007 02 05 1 0.07 06 —0.1 0.1

N=1000, t=5

Average 0.74 035 0.59 075 0.07 0.11 0.29 0.55 -0.07 0.51 0.00 0.00
estimate

SD estimate 0.19 0.14 030 0.72 0.05 0.06 0.12 0.13 0.09 0.01 0.01 0.02

N=1000, t=4

Average 0.74 035 0.62 071 0.07 0.11 0.27 0.55 -0.06 0.51 0.00 0.00
estimate

SD estimate 0.19 0.13 0.30 0.64 0.04 006 0.11 0.12 0.09 0.01 0.01 0.01

N=1000, t=3

Average 0.74 033 0.69 0.75 0.07 0.11 027 0.53 -0.05 0.51 0.00 0.00
estimate

SD estimate 0.19 0.12 027 081 0.04 006 0.11 0.11 0.08 0.01 0.01 0.01

N=500, t=5

Average 0.81 038 0.57 086 0.07 0.11 027 054 -0.05 0.51 -0.01 0.00
estimate

SD estimate 0.19 0.14 028 1.62 0.05 007 0.12 0.16 0.09 0.01 0.01 0.01

N=500, t=4

Average 0.80 037 0.58 0.83 0.07 0.11 027 0.53 -0.04 051 -0.01 0.00
estimate

SD estimate 020 0.14 028 1.03 0.06 0.08 0.13 0.14 0.09 0.01 0.01 0.01

N=500, t=3

Average 0.81 037 0.62 092 0.07 0.12 027 053 -0.04 0.51 -0.01 0.00
estimate

SD estimate 020 0.14 026 147 0.10 0.10 0.14 0.15 0.09 0.01 0.01 0.01

N=300, t=5

Average 0.86 0.40 0.61 1.27 0.08 0.11 0.27 053 -0.03 0.51 -0.01 0.01
estimate

SD estimate 020 0.14 024 7.02 0.14 0.19 0.13 0.15 0.09 0.01 0.01 0.01

N=300, t=4

Average 0.86 0.39 0.61 1.49 0.08 0.12 027 053 -0.03 0.51 -0.01 0.01
estimate

SD estimate 020 0.13 024 993 0.27 021 0.15 0.15 0.08 0.01 0.01 0.01

N=300, t=3

Average 0.88 040 0.64 291 0.08 0.14 027 0.53 -0.03 0.51 -0.01 0.01
estimate

SD estimate 021 0.14 024 213 0.18 032 0.16 0.17 0.08 0.01 0.01 0.01

The average squared correlation between observed and predicted values was at
least 0.70 for the proposed two-part model, and it was less than 0.40 in the naive
approach. Similarly, the two-part model also showed better performance than the
naive model when comparing the MASE, with an average MASE lower than 0.71
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and 0.58 for dense and hazy, respectively, in the two-part model, and larger than 0.90
in the naive model.

5 Application to Real Data

The two-part mixed-effects mixture model for zero-inflated longitudinal composi-
tional data was applied to patient’s data described in Section 3. As mentioned, the
RILD intensity on each patch was consolidated in the compositional vector p;; = (%
Dense, %Hazy, %Normal). Then, each patch was classified as without RILD
presence (%Normal=100), or with RILD presence (%Normal # 100).

For applying the proposed model, the outcome variable (¥ ;i = 1,. .., number of
patches; j=1,...,5) was the ratio of the vector p;, using the last component
(Normal) as denominator (¥;=(%Dense/%Normal, %Hazy/%Normal)). When the
whole patch presented RILD (%Normal=0), or when only one of the damage
components, dense or hazy, equals zero, the zero replacement method proposed by
Fry et al. (2000) whit 6 = 0.003 was applied before calculating the al/r transforma-
tion. Therefore, ¥;; = 0 represents no observed tissue damage after radiation in the
patch i at the time point j (%Dense=0,%Hazy=0,%Normal=100).

As commented on Section 3 (Fig. 1), there is a large proportion of zeros on these
data set. Hence, the occurrence variable is defined as

U — 1 If RILD is observed in the patch i at the time point j
Y710 otherwise

and the intensity variable V; = log(Y;;), when Y;; # 0. Then, V; is the alr trans-
formation of the compositional vector (%Dense, %Hazy, %Normal). Median patch
dose, time in years, and time squared were used as explanatory variables for mod-
eling the fixed effects for both outcomes (occurrence and intensity). To account for
the interdependence over time, a random intercept was used in both models. No other
factors were considered as random effects. Iterative estimation was performed until
convergence was attained (tolerance = 1e-8). Table 3 shows the estimates of the fixed
effects in the model.

5.1 Results

Images of this patient rendered 288 isodose patches, of which 58.48% present RILD
at some point after RT. The model converged after 6 iterations, which took 8.1 min to
a maximum relative parameter change of 1.2E-13. Also, the estimation of the random
effects took 30 min. The odds of RILD, for a particular patch, increased 26% for each
Gy increase in the dose (Table 3). Likewise, the odds of RILD increase until 17
months after RT, then the odds decrease over time. In the results for the intensity
vector, the estimated baseline composition was (Dense= 0, Hazy= 0, Normal= 1). An
increase of 1 Gy in the dose shifts the baseline composition by (0.35, 0.35, 0.30).
Consequently, the dose is positively correlated with both dense and hazy.
Furthermore, over time the changes in the compositions are characterized by an
increment in the proportion of dense. The estimated value of the parameter capturing
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Table 3 Parameter estimates and
standard errors of the fixed
effects for modeling RILD

Parameter Estimate S.E. exp(Estimate)  95%CI

Occurrence model

Intercept —-9.89 0.76

Median dose  0.23 0.02 1.26 (1.21, 1.31)
Years 2.35 0.90 10.48 (1.78, 61.58)
Years2 —0.84 0.44 0.43 (0.18, 1.01)
Intensity model

Dense/Normal

Intercept —13.02  1.8E-06

Median dose  0.16 3.2E-08 1.18 (1.18, 1.18)
Years 2.72 0.39 15.20 (7.11, 32.52)
Years2 —0.99 0.19 0.37 (0.26, 0.54)
Hazy/Normal

Intercept -9.82 0.25

Median dose  0.14 43E-03 1.15 (1.14, 1.16)
Years 0.50 0.28 1.65 (0.95, 2.85)
Years2 —0.16 0.14 0.85 (0.65, 1.11)

the correlation of the occurrence and intensity model, namely 1/ 4,=(0.44, 0.38). This
indicates positive dependence between the two components of our model, thus
enforcing a joint model for the two processes.

5.2 Assessing Model Adequacy

Assumptions and goodness of fit of the model were assessed and results are presented
on the Appendix 4. Apparent deviations of the normality assumption of the random
effects for the occurrence model (c;) are observed (Fig. 4a), where the tails
correspond to patches with RILD. The bivariate vector of random effects in the
intensity model is distributed by a mixture of normal distributions. A goodness-of-fit
test of a mixture of normal distributions using the Cramér-von Mises Garcia
Portugues (2020) can be implemented for this objective. However, these results are
not presented in the current work. However, as shown in Verbeke and Lesaffre
(1997), and in Butler and Louis (1992), the inference of the fixed effects might be
robust to the non-normality of random effects, but it can affect the predictions at the
patch level.

Figure 4b shows the g-q plots for the errors of the intensity model. There is also
evidence of a lack of normality in the residuals, and mainly patches that move further
from the straight line correspond to patches without RILD, which is expected given
that the intensity model is conditional on the presence of RILD. However, the
number of patches is larger than 250. Therefore, Central Limit Theorem should
assure some robustness, provided the model is asymptotically unbiased.

Figure 5 shows the scatter plot of the standardized residuals for dense and hazy
versus dose. In these plots, patches with no observed RILD at any occasion cluster
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along lines, and since the estimates of the random effects (d;) are set at the
population-level predictions, large standard errors for the random effects in these
patches are expected. Residuals in doses less than 20 Gy have zero variability
because those patches did not present RILD at any time point. After 20 Gy, the
residuals seem to have larger variability at larger doses of RT.

For assessing the assumption that the two models, occurrence and intensity, are
correlated, Fig. 6 shows the estimated log odds for each patch and the expected alr
(Dense) and alr(Hazy). As mentioned, the points cluster along lines representing the
patches that did not have RILD at any time point after RT. Patches with low
propensities to have RILD also tend to have lower RILD intensity. This provides
evidence of the correlation between the models and the importance of not ignoring
this relationship in the model specification.

Figure 7 shows the observed number of times that each patch presented RILD, and
the sum of the predicted probabilities at each time point (Z]’i] U,j). As observed, the
prediction in patches of normal tissue during the whole follow-up (Observed = 0) is
very good. However, some discrepancies in the fit of the occurrence pattern is

observed for patches with RILD at some point. The scaled residuals (U; —

U,) / (A],;(n,»f Ul) /n; were calculated, and outliers were identified as scaled

residuals with magnitude larger than 2.5. In this data set, only 1.0 % of the patches
were classified as outliers.

Figure 8 shows the scatter plots of predicted versus observed transformed dense
and hazy proportions. The predicted values from the intensity model are labeled as
“subpredicted” and are in the first column of this set of plots. The second column
shows the predictions from the first model multiplied by the estimated probability of
RILD for each patch. This shows the effect of the underestimated probabilities of
RILD from the occurrence model on the predicted values from the intensity model
adversely resulting in inferior predictions.

6 Discussion

Longitudinal compositional data, with a peak at zero, occur in many applications in
health sciences. Different sources of correlation in the data are observed between
subjects over time and between parts of the compositional vector. Additionally, the
presence of singular zero represents a particular challenge in the analysis of such
data. A new approach for the analysis of zero-inflated longitudinal compositional
data, which additionally shows bimodal distributions of the intensity component, is
proposed in this work. This model is fully parametric and uses asymptotic
approximations to estimate the parameters. The likelihood was approximated using a
sixth-order multivariate Laplace method, and even though a higher-order could have
been used, empirical evidence shows that it would not improve the accuracy
(Raudenbush et al., 2000). The EM algorithm was used to estimate the probability of
the mixture model, and the approximate Fisher scoring procedure was implemented
to estimate other parameters in the model. Finally, approximate empirical Bayes
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estimates by Pareto smoothed importance sampling were implemented for the
estimation of the random effects.

The simulation study showed mixed performance of the proposed method, with
reasonable estimates of the model’s fixed effects, but with highly biased estimates of
other parameters. The average time that the procedure takes for the estimation of the
fixed effects seems to be in the feasible range for statistical analysis.

Although the method seems to have good convergence, in future studies, it is
important to assess whether the implemented step-halving procedure is causing false
convergence. The implemented procedure is similar to the implemented “loop3* in
the R function gim,(Marschner, 2011) which invokes the step-halving until
convergence, until the difference in the relative deviance goes from one side of
the convergence region to the other, or until this process has been repeated a fixed
number of times. In this last situation, the new estimates can be very close to the
previous ones and fall inside the convergence region, which could be causing a false
convergence (Marschner, 2011). In this study, this step-halving procedure has
repeated a maximum of 50 times. The effects in the model performance on those
cases when convergence is attained after reaching the maximum number of
repetitions need to be assessed.

The proposed method seems to be making an adequate estimate of the variability
of the estimates through the SE. However, for N = 300 performance of the estimated
SEs was inadequate. Since it is very common to find studies with sample sizes
smaller than 300, it is advisable to use the method with caution in such cases. In our
application, increasing sample size requires more imaging follow up. This is very
difficult to achieve.

Estimation of nuisance parameters was somewhat unsatisfactory. As mentioned
above, “loop 3” is the most likely cause of poor model performance in estimating
variance components. By performing the step-halving procedure in each iteration, the
change of each parameter is reduced more and more with each time this loop runs.
Therefore, the changes in the estimates between iterations can be tiny for some
parameters. Improvements to the step-halving procedure, perhaps limiting it only to
fixed effects, could be implemented to mend this lack of performance.

The real data application of this model using the lung scans of a patient with
NSCLC shows positive association of RILD with RT dose. Also the results suggest a
positive correlation between the random effects of both models (occurrence and
intensity). The methodology proposed in this study considers this correlation in the
estimation process. Ignoring this relationship, by fitting the logit and the linear
models separately, would introduce substantial bias in the estimates of coefficients,
particularly in the coefficients of the intensity model.

It is important to consider that the estimated coefficients in the occurrence model
represent the effect of changes in the variables on a particular patch, not a population-
average effect. That is, the model responds to the probability of RILD for each patch,
not to the percentage of patches with RILD. Population-average estimates tend to
maintain the same direction as the mixed model estimates but with smaller
magnitude, as well as smaller standard errors. Some approaches to estimate the
population-averaged effects based on mixed model estimates have been discussed in
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the literature (Neuhaus et al., 1991), but were not implemented here since the main
interest was the effect of the variables in each patch and not the overall effect.

Lack of agreement with the normality assumption was observed, for both the
random effects and the error term in the intensity model. Exclusion or misspeci-
fication of the variables in the model might be one of the explanations of this finding.
In this particular example, the number of patches is larger than 250, Central Limit
Theorem should allow asymptotic approximation to a reasonable level. Therefore,
the inference of the fixed effects might be robust to the non-normality of random
effects (Butler and Louis, 1992; Verbeke and Lesaffre, 1997). Nevertheless, violation
of the homoscedasticity assumption of the residuals might have a negative impact on
the variance estimates of the parameters in the model.

Notably, the patches with no RILD at all time points represent an issue for both
parts of the model. First, in the occurrence model, these patches might have an actual
logit of probabilities of RILD of —oo (Olsen and Schafer, 2001). Also, even though
the intensity model can provide predictions on these patches, these predictions have
large standard errors (Olsen and Schafer, 2001). Therefore, these patches have a
substantial impact on the model assumptions and model performance. Furthermore,
most of the procedures for diagnosing lack of adequacy in this model are based on
the independent results or residuals of each of the parts (occurrence and intensity);
however, future research should involve methods for model adequacy assessment
using the residuals from the two-part model.

Additionally, the model presented in this section is a simplified version of the
radiographic lung change following radiotherapy of lung cancer, being able to predict
an average trajectory overtime for all patches, which moves higher as the received
dose increases, and starts at different points for each patch due to the random
intercept. However, this model does not allow us to identify different trajectories over
time. Therefore, future applications in this data should include more complex models
that better adjust the behavior of different patches over time, e.g. adding interactions
between time and received dose.

In conclusion, the two-part mixed-effects mixture model for zero-inflated
longitudinal compositional data has shown reasonable performance in estimating
fixed effects. However, the model would benefit from improvements in the
estimation of the nuisance parameters. Additionally, future research should study
the impact of the inclusion of other random effects that represent clustering, or
random slopes, as well as the effect of missing data.

Appendix 1: Isodose Patch Definition

See Fig. 3
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(a) Patch definition (b) Transverse slice of patch operational-
ization

Fig. 3 Isodose patch, as defined using the isodose lines with dose interval 0.2 Gy

Appendix 2: The Likelihood
N
L[] [ [ r0lbr.cds 2 e didms, . ¥y (12)
i=1Jei Jd;i

assuming Y; are i.i.d:

N n; _ _ _
= H/ % Hf@y|ﬁ73)7ci7diaz)f(ci7 di|m17”lvlll)dcidi
i=1 Je Jdi =

with the two-parts model and using conditional distribution for random effects:

N n; - ~ ~
= H/ % LI =) mP lr (Vily, di 2% x f (e Wee)f (dilmi, gy, 1, W aa)deidd;
i=1 ¢ Jdi j=]

re-expressing internal product:

N n; n;
_ Uy ~ A ~ ~
11 L1000 m) 0 L0l ds B ol il 1. W e
i=1 /¢ Jdi j=] j=1

using that exp(log(x)) = x:
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/Llj[’exp<log(ﬁ(1—ny)“ o 7)) ><exp(log(ﬂ[f(ijIﬁli,Z)]U”))

Jj=1 J=

Xf(¢i)|Wee)f (d |m|,y1,c,,‘l‘dd)dc,dd

/cﬁexp< , l/z‘f)lOg(l—nzy')Jr(fzleg(ny')))
xexp(ZUU

5 (Vo= (X 2z ‘(Vy—<x;y+z;df>)fl>

—log(2m) ——log(|2|)

Xf(ci| e f (dilmy, py ¢, W aa)deidd,

Let n} the number of non-zero vectors in y;

_H/j[ xexp( "' (U,,log<( )> + log(1 m,)))

X exp( —n}log(2m) — n?ilog(|2\)

1 > * * — * *
B EZ Uy (Vi = (Xjy + Zdy) T (Vy — Xy + Zifd"))T>
=1

X (€W (dilmy, o, ¢i, Yaa)de,dd,;

1/ Lo 35 (o v -))

J=1

X exp < — nilog(2m) — ,;—ilog(|2\)

1 < * * -1 * * T
- 521: Ui/’(Vi/' - (Xﬂ + Zijdf))z (Vij - (Xﬂ + Zg/di)) >
=
x f(eiWee)f (dilmy, py, ¢, Yaa)deidd;

% exp(ly,) x exp(ly,) ><f(c,-|‘Pcc)f(El-|m1 , 1y, €, ‘I’dd)dc,-dal-
d;

Il
=

I
=
~

exp(lu, )f (i ¥ee) (/‘; exp(ly, )f (difmy, py ‘l’dd)d";z) de;
(13)

Then, working with the inner integral in (13)
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jL exp(ly, )f (dilmy, py, ci, ¥ aa)dd;
d;

= /~ exp(ly,) [N (py + W ¥ e, H) Y [(1 — my)N (py + Yoo e, H)|' ™Y dd;
d;

=mp (1 —my)' ™ } exp(ly, )N (py + WV i, H)YMN (py + Yo ¥ ¢, H)' ™ dd;
d;

—A gt it . ny
= m (1 —m)' "% (2n) 7 |H]| Zj[exp("ilog@n)zlog(i)

1 < * * _ * *
- 52 Uy(Viy — Xy + Z5d) )27 (Vi — (Xjv + Zl.jd,-))T>
=
1~ ~

X exp( - Ai( —3 (di — (u; + ‘l’dc‘l’;lci))THﬂ (di — (u; + ‘l’dc‘l’;lci))))

1~ ~ -
X exp( —(1-A) < —5 (di — (ny + ‘Pdc‘l‘;clci))THil(di —(my + ‘l’dc‘l’;clci)))>ddi
_1

= m (1 —my) "4 Q2n) ™ (2m) 2 H

1 &
j=1

d;

X exp( — Ai( — % (2, —(py + ‘l’dc‘l’;c'c,-))TH’I (E, —(pu + ‘l’dc‘l’;c’c,-)))>
X exp( —(1=A) ( — % (ﬁ, —(puy+ ‘l’dc‘l’;clci))THfl (E, —(puy+ ‘l’dc‘l’;clci))))dﬁ,-
Let i* identify the group of observations y; # 0 in y;
= (1 = m)' )¢ 2
X /; exp ( - % (Vi —(Xi5+Z3d) S (Vi — (X257 + Z,tﬁ,g)
X exp( - Al-( - % (di — (u; + ‘l’dc‘l’;c’c,-))TH*’(Ei — (u; + lydc‘l’;clci))))

. N -
X exp( -(1-4) < ) (d" — (up + \Pdc\l’;clci)) "H! (di —(m t \Pdc\ll;clq))) >ddi

where V. = vec(Vi), 5 =vec(y), %l* =hy ® X5, ZF =hx ®Z., and
271 = 271 ®Ini*><n,-*

Let A; = 171-* - )?ji, fan=m + ‘l’dc‘l’;,lci, and f, = u, + ‘Pdc‘l’;,lc,». Then,
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— (1= m)' N @m) /~ eXP< e~ ZE)E (4 - Zi?’")
><exp<7A,-<7%(Ei7fil)TH’l(§[7f”)>>
><exp< —(1- A,-)(—%(E —f2) H (4 —f‘-z)>>dﬁ,
= m(1 ml)‘Ar(zn)q‘"7|z|"5|H|%jéexp<%(AT 4.7 (4, i?ﬁi))
><exp<fA,-<7%(2iT fl.Tl)(HlﬁiH‘f“)>>
p( - (-3 @ s H‘ffz))>dz-
= 1—m1> 2m) ) 2
( LISy - A5 F 0 TTETE e+ TTZTEZ)

—A dH 'd; 7d Hfy—fIH ', +fTH'f})

N

NI'—‘

~T ~ ~T ~ ~
(1= A)(d; H 'd; — d; H™\f , — fLH ' d; +fiT2Hlfi2)> dd;

A; 1Ay =+’ /R
m (1—m1) (2m) i) |H|™

< S (AT A — 24T Z0di+ d, 2, £ Z,dy)

—A dH Y —2f TH ", + fTH'f )

N

I\)I'—‘

(1= A)(d, H'd; — 2 LH'd; +f,.T2H1f,.2)>le,
=m{' (1 —my)' " @n) O _|H|7"

< 1 _ 1 _
x exp< G ATE S AFLH 3 (1~ AL lf,-z>

Xf””(”‘ S Zidi+ AfTH T+ (1 - A)FLH ',
d;

1 *
75(17A) dedeTz de—AdH d)
= (1 =)' A 2
1 orsa | QNS 1

X exp *EA,'XZ Ai**EAifilH filfi( 12H

" e ~ 1 ~
x/_exp((AfZlZ,.+AJiTIH1+(1A)fle Yd;—d dH'+Z3Z, )d>dd[

d,

i

Let B, =Z T2 71Z; + H!
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= m{ (1 —my)' = 2n) ") T H|
1 ~ 1 _ 1 _
X exp( —EA;Z 'A; _EAifz'TIH fa —5(1 — A)fLH 1f:-z)

. o o e
X /~ exp ((A}jzlz;; +AfFH + (1 - A)fLH ) d; — Ed,.TBid,-> dd;
Jd;

= m (1 —m)'" 4 2r) O T 2 (B

| Q. 1 1
x exp( - EA,-TxZ*lAi* - zAif[Tlelfn 5= Ai)fnglfn)
1 ~ o~
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" i 1 i 1 =
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(1= A) (o H ™ py + 2u H "W 0 W+ W W o H W W) c,))
X exp <% (ALS'ZiB 1 Z TS A + 2472 Z5 B T H (A + (1 — A )
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1
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Note that H' —H'B;'H™' =H'B;'Z:"¥7Z;
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Let ET = ATS'Z: B TH "W, ¥, , MT = Al + (1 — A,

and D, = Y'Y (H'B;'Z;TX7Z; )WY, Then,

= m{' (1 —my)' =™ (2n) " |27 |H||B; "

l:exp< ars- ilz;iB,.’Z;iTi’)Aﬁ>
X exp (A[C >'Z BT H M, — %A,-,;ITH*IB,TI?;T%’Z;”,
(1= AH B ZTE  Zpy + Bl
~MTH'B'ZTE 17,9, Y i — écT,-Dici>
Let G/ =El —MIH'B;'Z;"X7'Z; W, ¥,/
(1= ) = 2m) 2 w( - %Aﬁ E'- i-IZ:-aB;’Z:aTi"M'“)
X exp (A,.C S'ZiB'"H M, — 1A,-y,TH*’B;’Z;iTE*’Z;; p,

2

! ST 15 1
- E(l ~ AW H B ZTE T Z iy + Gl e - EcTiDic;>

Now, going back to the integral in (13):
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1
X / exp(lUl,)f(c,-\‘l’cc)exp(giTc[ - EcTiDici> de;
Ci
= (1 =)' 2m) D H B
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*5(1 —A)mH lBi IZi" z lZi*”Z)

i 1 1
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X exp *EAI'*(Z —-XZ.B'Z. X )A
=~ ~% 1 ~xT = ~%
X exp <A§Z‘Z,.*B,.1H'Mi - EA,-MTH*IB[?]Z,.*TE*'Z,*M
1 ~xT >~ ~%
_5(1 - Ai)ﬂzTHlBiIZiXTElZi*h)
1
X /exp (lU,, — ECIT(‘I’:LI +D,‘)Cl‘ + gI-TC[)dC[
— (1 — my) Ny s
1 i
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x exp< —AL(E - $1Z.B7'Z,' S A4, + ATS ' Z. B H '\ M,
AW H B Z S~ L0 — Al B 2757
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1 _
+5 0] (V! + D) 19-)
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X /exp (lU,, — E (C,‘ — (‘P:Ll +D,) IQ;)T(‘P;,I +D,‘)(C,' - (‘l’;l +D,) lg,‘))dt‘i
Ci
(15)

The integral in (15) is intractable, but it is similar to the likelihood in a mixed effects
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logistic regression where the random effects follow a normal distribution with dif-
ferent location and scale parameters. As discussed for different authors, several
strategies have been implemented to evaluate this integral. Using Olsen and Schafer
(2001) approach with a sixth-order Laplace approximation, we have that:

/exp(f(ci))dci
_ Lt py e T w1 D e — (W -t ) e
- exp(lUij S (e = (¥ +D)76) (¥ + D) e — (Y. + D) g,))dc,

~ exp(/ @) - [ @] (1 - Zm (256,120 Zm 2,621

15 i T~ 1T — T~ 1T
+—2(;Z[jm Z,G; Z) G; (Zz )'2,G;'z})

where:

- =Y + D+ ZIWZ) (2] W(U; - XiB) + G)
o« U= WU m)

« W, is a diagonal matrix with elements m;(1 — ;)

« Wi W', %, and 7, are evaluated at ¢; = ¢;

. fO@) =2'Wiz;+¥. +Di =G,

. Nij is the (k — 1)th derivative of m; with respect to 1;; evaluated at ¢

Now, going back to (15),
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m (=m0~ @n)” Y H B e
1 ~ ~ o~ o~ ~ o~
X exp( - EA,C (' -2 ZiB ' Z T A + AL ZE BT H M
1 1 I
ZA,ylH "B ZTY T Z oy, 2(1—A,-),;ZTH*’B;’Z;’E*’Z;”Z
1 -
+§giT('P;cI + D) lgi)
1 1 1\ T g1 -1 -1
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1 ~ ~ o~ o~ ~ o~
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+§giT(‘1';c1 + D)) lgi)
x exp(/(@))| - If® (@) \2(1——Zm (2;6;'25)° Zm (2;G;'7})’

T~ 1T T~ 1T
(Zz 3z7,G; Z,.j) (Zz 3z7,G; Z,.j)>

Then,

_1

g
i PWeel

L~ ﬁ m (1 —my)' =Y @2m) "D
X exp ( - %A,{(i—l —3'Z:B'ZTE A + ATX ' ZB T H M,
- EA,-,;{H”B;IZ;&’E*’Z;F, 75(1 —A)VWSH B Z TS 7,

AL +Di)lg,-)

x exp(f(€))| - [f? ]"\2(1 - —Zm (z;G;'z})’ - —Zm (z;G; 'z}
(izT V2,G;'7}) G;‘(Zzgrﬁg@zi,c;lzyf.))

j=1
(18)
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Finally, the approximate log-likelihood is:

N
1 1

Z Ajlog(my) — A)log(1 —my) — ( )log(Zn) log|2\ - Elog|H| + Elog|Bl.’]|

i=1

- Elog|‘l’cc| - EA,.T.(E*‘ ~3ZB'Z3 A, + AT Z B H '™,
L g1 s 15 1 Tyy-1p-1775-17*
*EAiMH B Z, X Z.p 75(1 —MN)mH B Z, X Z.p,
1 _ .1 . ~
+5gf(\r;; +D)'G +f(c,-)+§log|fv<2)( +log( ﬁzm“ 2,G;'z})

156 1,773 (3) 1\ 1 (NS 750y 1T
,%Zmij (2,G,'z]) (ZZ Z,G; Zi/.> G; (Zlﬁm[j 2,6z}
=

J=1

(19)
where
e Pi=1-30 (2,602 - ks ) (2,6, ZE)
+5 (o zinz,6; ‘ZUT.) (s zin 2,6, 7)
Appendix 3: The Score Vectors

Score vectors were derived using the proposed score vectors by Olsen and Schafer
(2001) and extended to accommodate multivariate data.

Sp, = X Wy(UF — Xiff — Z;é,) +Z ——m (2,620 (xT — xTWiz,G; ' z])

+— ZR* X - X/ Wz.G;'Z])

Sy‘. _ )E*Ti—l 17, _)?i*Ti—IZi*Bi—IZi*Ti—] I}l _ X;*Ti_l)?[*’)j
+ XS B 2T (21)
_ )ﬂ('i*TZh‘—IZ;kBi—lH—ILPdC\PC—Cléi + tlTElj
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1 2 re o areis
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2 (1 ml)

dvec(Z ) "
Sps = <@7¢£> (évec(Z))

~ T
dvec(Z71) 1 15 e =
+ <a¢§ yvee( = ZIB'ZiT — AiA] + 24,4] 37 21BN 2T

— ZB 2T AT 2B 2T —%vec(Z;B VH 7T
—Z,.*Bi’IH’lululTZ,-*Ti’lZi*B,’IZ;‘T) —%vec(fj‘B g1 Ly ,uTZ*T
~Z'B'H 1o 2" 2B 2T + PYTEy — % [(ZBy'H "W ¥ @ Z; WV,
—(ZB'H "W, Y, @ Z'B ' ZTL T ZE W 0 W, ) )| vec (G )
+%vec[2* BI'H "W Y el (Wa ¥, ) 2T 2B 2T

—Z'B]'H "W Y, eel (Wa V) 2T+ 248! (WY ) H B ZT
—27}B7\ 2Ty 1A,f{ (P 'H'B'ZT]

RS ST p - CINT (54T _ 5eT§—1 5w ] 4T\ o
+ {Zvec(ZiBi 'H WY, G 2] 2,6 (Ya Y, ) (2" — 27T 2B 2 ) Fy
iLi=1

15 o e s s
- ﬁvec(z,.*B;1171*1\11,,6\1';} GIKKI G (PPN (2T Z[*TZ’IZ;‘B,’IZ[*T))} )

(23)
dvec(W-H\" [ 1
Sd)“,’_ = (Ve;(prcc)) Evec(\Pcc - G;l — C~151T) + Dl*TElj
1 /&
TF (Zvec<GﬂZ§ZuG? E; (24)

J=1

15
- 72vec(GiIK,-KiTGil))
Sy, w1 = — (I, ® H) (vec(G;") + vec(éic])) + vec(H'B'Z"x7'4:¢T) + SITE;

2 & s —15T % 15 * v—1 T ~—1
—|—Fi<jz;vec(Hi G;'Z7;G; )Fy—%vec(H G 'KK!IG)

(25)

@ Springer



Journal of the Indian Society for Probability and Statistics

T
ovec(H™! 1 e s
Sty = (Veg(T )> <2((B,.IZ,.*T2'Z,.*‘P,1L.‘P683 ER 7R o)
by

— (B'H "W Y, @ BT ZTST 20 Y ) ) ) vee(G)
+%vec[H—Bi_ — B\ ZTE AT 2B -y B 2T 2 H B!
—mB'Z TS 2w + (1 = m)B TS Z T B!
—(l—m])Bi’]Z;‘Ti’]Zi*uzuz Y, P! | CiC (P, Y., )Z*TZ Z*B ! (26)
+2B7 TS el (P V) + B H T WY el (YY) 2T 2B
—2B; lZ*TZ 14; (P Y, ) N 1]'1'Ml-*TE[/

+5 {Zl:vec((lzq* —B'H )WY, G2 2,6 (WY, 2T 2B F

15
fﬁvec((lzq*folH VPV GTKK G (W Y 2T 2By )D

where
= (0&)/(dvec" (£71) = (VTG (Yae ¥, ) 227" 2B 2T
® G (W ¥ ) H BT ZT)
— (TG (PP N 2T 0 G (YY) H BT 2T (27)
- (AiTiilzi* i IZi*T ® Gi (q}dclljcc) H™ lBi lZi*T)
+ (A © G (Pa ) H B ZT)

—(V TG (Wa W Y 22T 2B @ G (P P
+ IS Z B @ G (P D)) (28)
—AIE'Z B 0 G (YY) H B
+ (TG (Ya ) 22 2B @ G (Wa Y ) TH B
D; =-(¥;"G G (29)
b= G (YY) H B TR (30)

S = (/27 ZB ' H @G ) - (G e TG HT) - (VTG @ G T
(31)

- L,
E;=E — (Y + D)é + Z ( z;6; IZUT.)+(U4»,»7r,-j)+f—,iRij>

(32)

@ Springer



Journal of the Indian Society for Probability and Statistics

H =Z"S7'Z B H "W, ) (33)
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Appendix 4: Assumptions and Goodness of Fit of the Model

See Figs. 4, 5, 6, 7 and 8.
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(a) Normal Q-Q plots for random effects in (b) Chi-Square Q-Q plots for bivariate resid-
the occurrence model (¢;) uals from the intensity model

Fig. 4 Q-Q plots for random effects in the occurrence and bivariate residuals from the intensity model
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Fig. 5 Standardized residuals of the intensity model versus median dose per patch
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Figure D.5: Observed vs. predicted alr(Dense) and alr(Hazy)

Fig. 8 Observed versus predicted alr(Dense) and alr(Hazy). Subpredicted values are the predictions of the
intensity model, the predicted values are the prediction of the two-part model (integration between
occurrence and intensity models)
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