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Abstract
We introduce a count distribution obtained as a discrete analogue of the continuous 
half-logistic distribution. It is derived by assigning to each non-negative integer 
value a probability proportional to the corresponding value of the density function of 
the parent model. The main features of this new distribution, in particular related to 
its shape, moments, and reliability properties, are described. Parameter estimation, 
which can be carried out resorting to different methods including maximum 
likelihood, is discussed, and a numerical comparison of their performances, 
based on Monte Carlo simulations, is presented. The applicability of the proposed 
distribution is proved on two real datasets, which have been already fitted by other 
well-established count distributions. In order to increase the flexibility of this 
counting model, a generalization is finally suggested, which is obtained by adding a 
shape parameter to the continuous one-parameter half-logistic and then applying the 
same discretization technique, based on the mimicking of the density function.

Keywords Count data · Discretization · Insurance claims · Logistic distribution · 
Survival analysis

1  The Univariate Half‑Logistic Distribution

The half-logistic distribution is a random distribution over the positive real half 
line obtained by folding the logistic distribution, which is defined over the whole 
real line  (Balakrishnan 1985), about the origin. Thus, if Y is a random variable 
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(rv) that follows the logistic distribution, the rv X = |Y| is said to follow the half-
logistic distribution. Its probability density functions is

its cumulative distribution function (cdf) is

and its survival function

The expressions for the expected value and variance are

Since the ratio between variance and expected value is 1
�

�2∕3−log2 4

log(4)
 , we have that the 

half-logistic distribution is overdispersed if 𝜃 < 𝜃0 =
𝜋2∕3−log2 4

log 4
≈ 0.9868439 ; it is 

underdispersed if 𝜃 > 𝜃0.
Fisher’s measure of skewness, i.e., the third standardized central moment 

�1 = �

(
X−�

�

)3

 is approximately 1.540, indicating that the distribution is highly 
positively skewed; whereas Fisher’s measure of kurtosis, i.e., the fourth standard-

ized central moment �2 = �

(
X−�

�

)4

 , is approximately 6.584, indicating that the 
half-logistic distribution is leptokurtic.

The ’naïve’ hazard rate function, defined as r(x) = f (x)∕S(x) has the following 
expression:

which is an increasing function in x with minimum value �∕2 , attained at zero, and 
supremum value � , attained asymptotically for x → +∞ . This means that the half-
logistic distribution belongs to the increasing failure rate (IFR) class  (Barlow and 
Proschan 1981). This represents one of the main attractions of this distribution in 
the context of reliability theory, a property shared by relatively few distributions that 
have support on the positive real half line.

A standard version of the half-logistic distribution, obtained by setting � 
equal to 1 in (1), was investigated in Balakrishnan (1985), who established some 
recurrence relations for the moments and product moments of order statistics, as 
well as modes and quantiles.

(1)f (x) =
2�e−�x

(1 + e−�x)2
, x ∈ ℝ

+, � ∈ ℝ
+,

(2)F(c)(x) = P(X ≤ x) =
2

1 + e−�x
− 1 =

2e�x

1 + e�x
− 1 =

e�x − 1

e�x + 1
, x ∈ ℝ

+,

S(x) = P(X ≥ x) =
2

1 + e�x
, x ∈ ℝ

+.

� = �(X) = log 4∕�, �2 =
(
�2∕3 − log2 4

)
∕�2.

r(x) =
�

1 + e−�x
=

�e�x

1 + e�x
,
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As occurs for the exponential distribution, an alternative parametrization of the 
half-logistic distribution, instead of considering the rate parameter � , uses the scale 
parameter � = 1∕� : the pdf becomes

When modeling lifetimes, such as the curing time of a particular disease, or the sur-
vival time of cancer patients, continuous random distributions are usually employed. 
However, one often comes across situations where lifetimes are actually measured on 
a discrete scale: for example, the curing time is measured in days, the survival time 
in months, etc. In these cases, using a discrete random variable would be much more 
appropriate. Developing a discrete version of continuous distributions has thus drawn 
attention of researchers in recent decades, and a large number of contributions deal-
ing with discrete distributions derived by discretizing continuous random variables 
have appeared in the statistics literature (Chakraborty 2015). Barbiero and Hitaj (2020, 
2024) introduced and discussed a discrete counterpart of the half-logistic distribution, 
based on the matching of the survival function at the integer values of its support.

In the next section, we will introduce and discuss an alternative discrete analogue 
of the continuous half-logistic distribution, which is defined by letting the probabil-
ity mass function (PMF) “mimick” the pdf, i.e., by retaining the expression of the 
pdf of the parent distribution. Its main properties, with particular regard to moments 
and reliability concepts, are described. Section 3 deals with parameter estimation: 
different estimators are proposed, which are assessed and compared also through a 
Monte Carlo simulation study. In Sect. 4 the distribution is fitted to two real datasets 
taken from the literature. Section 5 introduces a two-parameter generalization allow-
ing for a greater degree of flexibility. Final remarks are provided in the last section.

2  A Discrete Half‑Logistic Distribution

A discrete counterpart of a continuous random distribution with pdf f(x), which we 
assume to be supported over ℝ+ , can be constructed letting its PMF be equal to

with ℕ0 = {0, 1, 2,…} being the set of non-negative integers. If one considers an 
exponential rv with rate parameter � , it is well-known that its counterpart is the geo-
metric distribution with parameter 1 − e−� . If one considers a rv supported over the 
whole real line, then its discrete counterpart is supported on ℤ and its PMF is given 
by (3) for x ∈ ℤ , where the sum at the denominator is now extended over ℤ . The dis-
crete normal distribution (Kemp 1997) and the discrete Laplace distribution (Inusah 
and Kozubowski 2006) are examples of discrete distributions constructed according 
to this rationale.

f (x) =
2e−x∕�

�(1 + e−x∕�)2
, x ∈ ℝ

+, � ∈ ℝ
+.

(3)p(x) =
f (x)∑

k∈ℕ0
f (k)

, x ∈ ℕ0
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A discrete counterpart of the continuous model of Eq.  (1) can be therefore intro-
duced by defining its PMF as

The denominator acting as a normalizing constant in the last member of the equation 
above, C(�) =

∑
k∈ℕ e

−�k∕(1 + e−�k)2 , does not possess in general a closed analytic 
form, except for some very special cases; however, it can be expressed in terms of 
theta functions and their derivatives (see the “Appendix”).

In general, note that since f(x)  in  (1) is a strictly decreasing function with x, the 
following inequalities hold (see also Fig. 1):

which becomes

which can be rewritten as an inequality chain for C(�):

(4)

p(x) =
2�e−�x∕

�
1 + e−�x

�2
∑

k∈ℕ0
2�e−�k∕

�
1 + e−�k

�2 =
e−�x∕

�
1 + e−�x

�2
∑

k∈ℕ0
e−�k∕

�
1 + e−�k

�2 , x = 0, 1, 2,…

∞∑
i=1

f (i) < 1 = ∫
∞

0

f (x)dx <

∞∑
i=0

f (i),

2𝜃C(𝜃) − 𝜃∕2 < 1 < 2𝜃C(𝜃),

1

2𝜃
< C(𝜃) <

1

2𝜃
+

1

4
,
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Fig. 1  Genesis of the discrete half-logistic distribution. The solid line represents the pdf of the continu-
ous half-logistic distribution with parameter � ( = 1∕2 ), whose area subtended with the x-axis equals 1. 
The values of the pdf at each integer point, after being normalized, correspond to the values of the PMF 
of the discrete distribution. The area subtended by the red broken line equals 2�C(�) , the area subtended 
by the green-line histogram equals 2�C(�) − �∕2
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or for 2�C(�):

  
A plot of the function 2�C(�) versus � is reported in Fig. 2. We note that for high 

values of � , 2�C(�) can be approximated by �∕2 , or equivalently, lim�→∞ C(�) = 1∕4 . 
For small values of � , C(�) can be approximated by 1∕(2�) or, equivalently, 
lim�→∞ 2�C(�) = 1 . For values of � equal to 1/n, n integer, we have C(�) = 1∕8 + n∕2 . 
Then, for example, if � = 1 , since C(1) =

∑
k∈ℕ e

−k∕(1 + e−k)2 = 1∕4 + 3∕8 = 5∕8 , 
the PMF (4) becomes

The PMF (4) is obviously strictly decreasing with x, and thus the mode is always 0. 
Figure 3 displays its graph for four different values of � ; decreasing the value of � 
makes the distribution spread towards higher support values.

2.1  Cumulative Distribution Function

The cdf F(x) = P(X ≤ x) of the discrete half-logistic distribution can be written as

and thus is not available in a manageable closed form. However, if 𝜃 << 1 , for what 
we said in the previous section, we have that F(x;�) ≈ F(c)(x;�) for x = 0, 1, 2,… , 

1 < 2𝜃C(𝜃) < 1 + 𝜃∕2.

p(x) =
8

5

e−x

(1 + e−x)2
, x = 0, 1, 2,…

F(x) =

⎧
⎪⎨⎪⎩

0 x < 0∑⌊x⌋
y=0

e−𝜃y∕
�
1 + e−𝜃y

�2
C(𝜃)

x ≥ 0
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Fig. 2  Plot of 2�C(�) ; the dashed lines represent the theoretical lower and upper bounds for 2�C(�) , 
obtained by mathematical considerations
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and then the discrete half-logistic distribution can be seen as a discrete approxima-
tion to the continuous half-logistic distribution with the same parameter.

2.2  Ratio Between Successive Probabilities

The ratio between successive probabilities is given by

which is a strictly decreasing function with x, for any 𝜃 > 0 , and satisfies the 
following limit:

2.3  Log‑Concavity

A discrete distribution is said to be log-concave if

for each x ≥ 1 (Keilson and Gerber 1971). For the discrete half-logistic distribution

and

p(x + 1)

p(x)
=

2�e−�(x+1)(
1 + e−�(x+1)

)2
(
1 + e−�x

)2
2�e−�x

= e−�
(

1 + e−�x

1 + e−�(x+1)

)2

,

lim
x→∞

p(x + 1)

p(x)
= e−� .

p(x)2 ≥ p(x − 1) ⋅ p(x + 1)

p2(x) =
4�2e−2�x

(1 + e−�x)4

/
C2(�)
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Fig. 3  PMF of the discrete half-logistic distribution for different values of �
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then one has to check whether

which can be rewritten as

with 0 < w = e−𝜃 < 1 ; this inequality is easily proved for any x ∈ ℕ , and one can 
therefore state that the discrete half-logistic distribution is log-concave for any 𝜃 > 0

.

2.4  Failure Rate

The naïve failure rate function for a discrete rv can be defined as

thus for the discrete half-logistic distribution we have

since we know p(x) is log-concave, we can deduce that r(x) is strictly increasing for 
any value of � (see An 1997, Proposition 10).

2.5  Quantile Function and Pseudo‑random Simulation

As we have seen, the cdf of the discrete half-logistic distribution cannot be expressed 
in a closed-form, and this prevents from calculating the quantile function in a simple 
form either. Analogously, pseudo-random generation is not straightforward since the 
usual inverse transform sampling cannot be directly carried out. One can adopt the 
following naïve algorithm for determining the u-quantile of the discrete half-logistic 
distribution with parameter � : 

1. Set x = 0

2. While F(x;𝜃) < u , set x = x + 1

p(x − 1) ⋅ p(x + 1) = 4�2e−�(x−1)e−�(x+1)
(1 + e−�(x−1))2(1 + e−�(x+1))2

/

C2(�)

= 4�2e−2�x
(1 + e−�(x−1))2(1 + e−�(x+1))2

/

C2(�);

[
1 + e−�(x−1)

]2[
1 + e−�(x+1)

]2 ≥ (1 + e−�x)4,

(
1 + wx−1

)2(
1 + wx+1

)2 ≥ (1 + wx)4,

r(x) = p(x)∕
∑
y≥x

p(y);

r(x;�) =
f (x)∑
y≥x f (y)

=
e−�x∕(1 + e−�x)2∑
y≥x e−�y∕(1 + e−�y)2

;
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3. Return x, which is a pseudo-random value from the discrete half-logistic distribu-
tion with parameter �

A much less time-demanding algorithm can be conceived, which uses as a proxy 
for the u-quantile of the discrete distribution the (rounded) u-quantile of the parent 
continuous distribution, obtained as the mathematical inverse of the cdf in (2):

in this way, instead of starting the search for the u-quantile from 0, one can start 
from the possibly closer value q(c)

u
(�) , hence reducing the computational time: 

1. Set x = ⌊q(c)
u
(�)⌋

2. If F(x) < u

1. While F(x;𝜃) < u , set x = x + 1

2. Return x

   else 

1. While F(x;�) ≥ u , set x = x − 1

2. Return x + 1

As one can see from Table 1, which reports the quantiles for the continuous and 
the discrete half-logistic distributions for several combinations of � and u, the 
values for the discrete version always correspond to one of the two integers closer 
to the homologous quantile of the parent continuous distribution; we have that 
F(c)(h;𝜃) < F(h;𝜃) < F(c)(h + 1;𝜃) for any h ∈ ℕ0 . The algorithm above can be 
then further simplified: 

q(c)
u
(�) =

1

�
ln

1 + u

1 − u
;

Table 1  Quantiles of the 
continuous half-logistic and its 
discrete counterpart, for several 
combinations of the parameter � 
and of the probability level u 

� u q
(c)
u
(�) q

u
(�) � u q

(c)
u
(�) q

u
(�)

0.01 0.5 109.86 110 0.2 0.5 5.49 5
0.9 294.44 294 0.9 14.72 14
0.95 366.36 366 0.95 18.32 18

0.02 0.5 54.93 55 0.5 0.5 2.20 2
0.9 147.22 147 0.9 5.89 6
0.95 183.18 183 0.95 7.33 7

0.05 0.5 21.97 22 1 0.5 1.10 1
0.9 58.89 59 0.9 2.94 3
0.95 73.27 73 0.95 3.66 3

0.1 0.5 10.99 11 2 0.5 0.55 0
0.9 29.44 29 0.9 1.47 1
0.95 36.64 36 0.95 1.83 2
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1. Set x = ⌊q(c)
u
(�)⌋

2. If F(x) < u set x = x + 1 and return x else if F(x) ≥ u return x

Once we are able to compute the u-quantile of a discrete half-logistic distribution 
with parameter � , its pseudo-random simulation is simple: 

1. Simulate a pseudo-random value u from a standard uniform rv U ∼ Unif(0, 1)

2. Calculate x = qu(�)

2.6  Moments of the Distribution

The first moment of the distribution is computed as

it appears that the expression cannot be simplified significantly, even when resorting 
to the special functions mentioned in the Appendix. Numerical evidence suggests 
that it is a decreasing function with � , mirroring the behavior of the first moment of 
the continuous parent distribution, which equals log 4∕�.

Similarly to the expectation, the variance of the distribution can be computed 
numerically. Computations show that the variance is greater than the expectation, 
and thus the distribution is overdispersed, for 𝜃 < 𝜃∗ = 1.818 ; for 𝜃 > 𝜃∗ the 
distribution is underdispersed. Then, in this sense, the discrete half-logistic 
distribution exhibits a behavior similar to that of its parent distribution.

Also higher moments can be calculated numerically. It is of interest to evaluate 
the usual measures of skewness and kurtosis, �1 and �2 . We notice that differently 

�(X) =

∞∑
x=0

xp(x) =

∞∑
x=0

xe−�x

(1 + e−�x)2
∕C(�);
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Fig. 4  Graphs of the customary measures of skewness (left) and kurtosis (right) for the discrete half-
logistic distribution. Note that the scales on the y-axes are not the same across the two graphs
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from the parent distribution, the values of �1 and �2 are no longer constant with � : 
this occurs because � is no longer the reciprocal of a scale parameter for the discrete 
distribution. The plots of �1 and �2 as functions of the parameter � are displayed 
in Fig. 4; from it, we can state that the discrete half-logistic distribution is always 
positively skewed ( 𝛽1 > 0 ) and is always leptokurtic ( 𝛽2 > 3 ), properties that it has 
therefore inherited from its continuous parent.

Table 2 displays the values of expectation, variance, skewness, and kurtosis for 
several values of � . When 𝜃 << 1 , the moments of the continuous and discrete half-
logistic distributions with parameter � tend to coincide, as a consequence of the fact 
that the discrete analogue can be seen as an approximation to the continuous parent 
distribution, as underlined in Sect. 2.1.

Table 2  Moments of the 
discrete half-logistic distribution 
for several values of �

� � Var �
1

�
2

0.01 138.28 13694.37 1.54 6.58
0.02 68.97 3427.02 1.54 6.57
0.05 27.38 549.95 1.53 6.55
0.1 13.52 138.15 1.53 6.52
0.2 6.59 34.86 1.52 6.46
0.5 2.45 5.71 1.49 6.32
1 1.07 1.48 1.48 6.14
1.5 0.62 0.67 1.51 6.00
2 0.40 0.39 1.60 5.96
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Fig. 5  Graph of the ZMI as a function of �
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2.7  Zero‑Modification Index

An important index that can be calculated for a count distribution is the zero-modifi-
cation index (ZMI), given by ZMI = 1 + ln p(0)∕�(X) , which is defined based on the 
Poisson distribution (see, e.g., Bertoli et al. 2019). This measure can be easily inter-
preted since ZMI > 0 indicates zero-inflation, ZMI < 0 indicates zero-deflation, and 
ZMI = 0 indicates no zero-modification. For the distribution in question, the graph of 
this index as a function of the parameter � is displayed in Fig. 5, which shows that it is 
positive and decreasing down to zero for � between 0 and �∗ ≈ 1.708 ; it is negative and 
decreasing between �∗ and �∗∗ ≈ 2.540 ; it is negative and increasing, asymptotically 
tending to zero, after �∗∗.

2.8  Infinite Divisibility

We show that the discrete half-logistic distribution is in general non-
divisible. In fact, we know that a necessary condition for infinite divisibility 
of a discrete distribution is that p(1)2 ≤ 2p(0)p(2)  (see Steutel and Van Harn 
2003,  Eq. (4.11)), but if we set � = 2 , we obtain that p(1)2 = 0.07817741 and 
2p(0)p(2) = 2 ⋅ 0.6657603 ⋅ 0.04703651 = 0.06263008 , and the above inequality is 
not satisfied, so we conclude that the discrete half-logistic distribution is not a family of 
infinite divisible distributions.

2.9  Shannon Entropy

Shannon entropy is a measure of uncertainty of a rv. For a discrete rv X with support 
S , it is defined as H(X) = −

∑
x∈S p(x) log p(x) (Shannon 1951) and for the proposed 

distribution we can then write
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Fig. 6  Graph of Shannon entropy as a function of �



384 Journal of the Indian Society for Probability and Statistics (2024) 25:373–394

1 3

The graph of Shannon entropy as a function of the parameter � is displayed in Fig. 6; 
we notice that it is strictly decreasing with � , and that lim�→+∞ H(X;�) = 0 and 
lim�→0+ H(X;�) = +∞.

3  Estimation

We now focus on the problem of estimating the unknown parameter � , given an 
i.i.d. sample x1, x2,… , xn , which we assume to come from the discrete half-logistic 
distribution (4).

3.1  Method of Proportion

Since p(0) = 1∕(4C(�)) is the largest probability among the p(x)’s, one can equate it 
to the sample proportion of zeros p̂0 and solve (numerically) the non-linear equation 
C(𝜃) − 1∕(4p̂0) = 0 with respect to � ; we denote its unique root as �̂�P . The non-linear 
equation can be easily solved in the R environment (R Core Team 2023) by using the 
standard uniroot function. This technique always provides a feasible estimate of 
� , as long as p̂0 > 0.

Alternatively, exploiting the fact that the ratio of successive probabilities does not 
depend upon C(�) , one can compute the ratio p(0)∕p(1) = 1

4

(1+e−� )2

e−�
 and equate it to 

the corresponding sample quantity r̂ = p̂0∕p̂1 . The resulting equation is a second-
degree equation in q = e−� : q2 + q(2 − 4r̂) + 1 = 0 ; its unique feasible solution is 
q̂ = 2r̂ − 1 − 2

√
r̂(r̂ − 1) from which we derive �̂�∗

P
= − log q̂ . This technique works 

if and only if the value of r̂ is greater than 1, i.e., if the sample proportion of zeros is 
greater than the sample proportion of ones.

Both techniques are expected to provide not very efficient estimates of � (if 
compared to those provided by the methods we will discuss later), since they rely 
on only a piece of information contained in the sample, i.e., the sample proportion 
of zeros (and ones). However, these estimates may turn out to be useful if used as 
starting values for other estimation techniques based on some optimization routine 
as the maximum likelihood method.

3.2  Method of Moments

The unknown value of � can be estimated resorting to the method of moments, 
i.e., finding the value �̂�M that satisfies �(X;�̂�M) = x̄ . Since the relationship between 
the expectation and the parameter is one-to-one, the solution always exists and is 
unique. Due to the lack of a closed-form expression for �(X;�) , the estimate �̂�M 
can be obtained only numerically, yet quite easily. The following algorithm can be 

H(X;�) = −

∞∑
x=0

p(x;�) ⋅
[
− �x − 2 log

(
1 + e−�x

)
− logC(�)

]

= ��(X;�) + 2�
(
log

(
1 + e−�x

)
;�
)
+ logC(�).
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implemented, which relies on the fact that the expectation is a decreasing function 
of � : 

1. Choose an arbitrary small positive value � (say, � = 0.0001 ) to be used for 
ensuring convergence

2. Set t = 0 and �̂�(t)
M

= log 4∕x̄

3. While |�(X;�̂�(t)
M
) − x̄|∕x̄ > 𝜖 , 

1. Set �̂�(t+1)
M

= �̂�(t)
M
⋅ �(X;�̂�(t)

M
)∕x̄

2. Update the iteration index t: t ← t + 1

3. Return �̂�(t)
M

The algorithm can be easily implemented; alternatively, one can use existing root-
finding algorithms such as the one implemented by uniroot in the R environment.

Table 3 reports, in the second column, the method of moments’ estimate of � for a 
single observation x ( x = 1, 2,… , 10).

3.3  Maximum Likelihood Method

The log-likelihood function for the distribution in question is equal to

Taking its first order derivative with respect to � and equating it to zero, we obtain 
the equation

(5)

�(�;x1,… , x
n
) = log

n∏
i=1

p(x
i
;�) = log

n∏
i=1

[
e
−�x

i

(1 + e−�xi )2

/
C(�)

]

= −�

n∑
i=1

x
i
− 2

n∑
i=1

log(1 + e
−�x

i) − n logC(�).

Table 3  Method of moments’ 
and maximum likelihood 
estimates of � , rounded to the 
third decimal digit, for different 
sample values x 

x Method of moments Maximum 
likelihood

1 1.058 1.310
2 0.597 0.702
3 0.416 0.481
4 0.320 0.366
5 0.260 0.296
6 0.219 0.248
7 0.189 0.214
8 0.166 0.188
9 0.148 0.167
10 0.134 0.151
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with C�(�) =
∑∞

i=0

i⋅e−�i(e−�i−1)

(1+e−�i)3

�∑∞

i=0

e−�i

(1+e−�i)2
 . In order to find the maximum likeli-

hood estimate (MLE) of � , one can solve the normal equation (6) above. Clearly, this 
equation cannot be solved analytically, but can only be solved numerically quite eas-
ily, by using some numerical searching algorithm (in R, the function uniroot can 
be employed).

Obviously, an approximation needs to be introduced for handling the infinite 
sums in C�(�) ; once one truncates them, the normal equation becomes a polyno-
mial function in the variable q = e−� . For determining an appropriate upper bound 
xmax at which truncating the sum, one can consider the maximum observed value for 
the sample at hand, x(n) , and set xmax equal to a properly high value, say Kx(n) , with 
K > 10 ; alternatively, a more refined value for xmax can be obtained by considering 
a first rough estimate of � , 𝜃 , and recalling the expressions for expected value and 
variance for the continuous half-logistic distribution: after defining �̃� = log 4∕𝜃 and 
�̃� =

√
𝜋2∕3 − (log 4∕𝜃)2 , a reasonable choice for the upper bound is �̃� + K�̃�.

Instead of solving the normal equation (6), one can directly find the maximum 
of (5) numerically, for example by using the R functions optim or mle2, the lat-
ter contained in the package bbmle (Bolker 2022); an appropriate truncation of 
the infinite series sum appearing in the expression of the log-likelihood function 
is however still required.

Table  3 reports, in the last column, the MLEs of � for a single observation x 
( x = 1, 2,… , 10 ), obtained by using mle2. Note that the MLE does not exist if 
n = 1 and x = 0 (actually, the log-likelihood would tend to its supremum as � → ∞).

Along with the point estimate �̂�ML , one can construct also (approximate) 95% 
likelihood-based confidence intervals  (see, e.g., Venzon and Moolgavkar 1988) 
for � : this can be carried out numerically, for example by inverting a spline fit to 
the likelihood profile, which is the default option when using the confint func-
tion provided by the R package bbmle.

3.4  A Comparison Through Monte Carlo Simulation

Since the statistical properties (e.g., unbiasedness and relative efficiency) of 
the estimation methods described so far cannot be derived analytically, we 
resort to a Monte Carlo simulation study in order to assess such properties 
numerically. We considered a sufficiently wide array of parameter values 
( � ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2} ) and sample sizes ( n ∈ {20, 50, 100} ); 
we simulated for each combination of � and n a huge number, N = 10, 000 , of 
samples of size n from a discrete half-logistic distribution with parameter � ; we 
estimated the expected value and the root-mean-squared error of the estimators 
�̂�P , �̂�P∗ , �̂�M , �̂�ML , by computing the following two quantities

(6)�
�(𝜃;x1,… , xn) = −nx̄ + 2

n∑
i=1

xie
−𝜃xi

1 + e−𝜃xi
− nC�(𝜃) = 0,
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where �̂�(h) is the generic estimate computed on the h-th sample. Along with the point 
estimate, based on each pseudo-random sample we constructed also a 95% likeli-
hood-based confidence interval for � , and over all the N samples we computed their 
actual coverage (i.e., the proportion of samples containing the true value of � ) and 

⎧
⎪⎨⎪⎩

̂̄𝜃 =
1

N

∑N

h=1
�̂�(h)

�rmse(�̂�) =

�
1

N

∑N

h=1
(�̂�(h) − 𝜃)2

Table 4  Monte Carlo summary results: average value and root-mean-squared error for the three estima-
tors derived through the method of proportion (P), method of moments (M), and maximum likelihood 
method (ML); coverage probability and average length of 95% log-likelihood-based confidence intervals 
(CI)

� n Average RMSE 95% CI

P M ML P M ML Coverage Length

0.01 20 // 0.0104 0.0104 // 0.0021 0.0020 0.9493 0.0076
50 // 0.0101 0.0101 // 0.0012 0.0012 0.9530 0.0047
100 // 0.0101 0.0101 // 0.0009 0.0008 0.9499 0.0033

0.02 20 // 0.0207 0.0208 // 0.0041 0.0041 0.9496 0.0152
50 // 0.0203 0.0203 // 0.0024 0.0024 0.9531 0.0094
100 // 0.0201 0.0201 // 0.0017 0.0017 0.9500 0.0066

0.05 20 // 0.0518 0.0519 // 0.0103 0.0102 0.9494 0.0382
50 // 0.0506 0.0507 // 0.0061 0.0061 0.9526 0.0235
100 0.0552 0.0503 0.0503 0.0301 0.0043 0.0043 0.9502 0.0165

0.1 20 // 0.1036 0.1038 // 0.0207 0.0205 0.9495 0.0765
50 0.1107 0.1013 0.1014 0.0605 0.0122 0.0121 0.9532 0.0472
100 0.1017 0.1007 0.1007 0.0451 0.0086 0.0085 0.9499 0.0331

0.2 20 0.2387 0.2073 0.2078 0.1400 0.0417 0.0414 0.9482 0.1537
50 0.2034 0.2026 0.2028 0.0906 0.0246 0.0244 0.9532 0.0948
100 0.2013 0.2013 0.2014 0.0644 0.0173 0.0172 0.9503 0.0666

0.5 20 0.5154 0.5189 0.5204 0.2422 0.1072 0.1060 0.9492 0.3910
50 0.5049 0.5068 0.5073 0.1515 0.0630 0.0621 0.9523 0.2405
100 0.5037 0.5034 0.5036 0.1060 0.0441 0.0435 0.9499 0.1688

1 20 1.0196 1.0405 1.0449 0.3519 0.2215 0.2199 0.9476 0.8059
50 1.0075 1.0144 1.0159 0.2175 0.1300 0.1279 0.9516 0.4942
100 1.0046 1.0071 1.0076 0.1515 0.0906 0.0895 0.9509 0.3463

1.5 20 1.5319 1.5617 1.5697 0.4391 0.3401 0.3383 0.9499 1.2312
50 1.5107 1.5216 1.5245 0.2695 0.1995 0.1967 0.9507 0.7572
100 1.5057 1.5103 1.5115 0.1876 0.1386 0.1365 0.9519 0.5311

2 20 2.0554 2.0839 2.0925 0.5190 0.4529 0.4506 0.9428 1.6567
50 2.0191 2.0307 2.0342 0.3133 0.2665 0.2646 0.9530 1.0151
100 2.0090 2.0145 2.0162 0.2200 0.1875 0.1862 0.9499 0.7124
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their average length. We recall that the estimated variance of any estimator can be 
calculated as

where ̂̄𝜃 − 𝜃 represents its estimated bias.
Table  4 reports the values of the Monte Carlo average ̂̄𝜃 and the estimated 

root-mean-squared-error �rmse(�̂�) for all the combinations of � and n considered. 
Note that the results related to the estimator �̂�P∗ are not displayed in Table  4, 
since under each scenario, for a non-negligible proportion of samples, it cannot 
be applied, and when applicable, it provides results much worse than the other 
estimators. Furthermore, for some of the combinations (�, n) considered in this 
simulation study, the results related to the estimator �̂�P are not shown, because in 
those cases the percentage of samples that do not return a valid estimate was non-
negligible—larger than 25% (if � is small, the probability of not getting any zero 
in the sample becomes considerable, especially if n is small too)—thus making 
comparisons not sound.

From Table  4, it is quite evident that the estimators obtained through the 
method of moments and the maximum likelihood method show a similar perfor-
mance in terms of bias and root-mean-squared error under any setting; to be more 
precise, under each scenario, the method of moments shows a smaller bias in 
absolute value, but a larger rmse than the maximum likelihood method. Such dif-
ferences almost disappear when n = 100 . We notice that the bias of both estima-
tors is always positive, though negligible, especially when increasing the sample 
size. The method of proportion, although its bias in absolute value is often neg-
ligible, is characterized, as expected, by comparatively (much) larger values of 
root-mean-squared error, especially when � gets smaller; so its use is discouraged.

�Var(�̂�) = �rmse
2
(�̂�) − [ ̂̄𝜃 − 𝜃]2,
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As for the performance of interval estimators, their actual coverage is always 
very close to the nominal 95% level and, at least when � is smaller than 1, we 
observe that overall the coverage tends to get very close to 95% when n increases; 
some discrepancies and irregularities are noted when � ≥ 1 , i.e., when the 
probability mass tends to be concentrated over the first non-negative integers. As 
for the average length of confidence intervals, it is an increasing function of θ for 
any sample size n examined;  it is a decreasing function of n, for any value of � 
examined—roughly, it is of the order of 1∕

√
n.

Figure 7 displays the Monte Carlo joint and marginal distributions of the esti-
mators �̂�M and �̂�ML calculated on the N samples of size n = 100 drawn from the 
discrete half-logistic rv with � = 0.5 . Not only the marginal distributions of the 
two sample estimators are very similar, as one can note looking at the boxplots, 
but they also return, on each sample, two values very close to each other, since all 
the N points in the scatterplot lie very near to the first and third orthants’ bisector. 
Similar considerations can be made for the other settings examined.

4  Real Data Analysis

This section is devoted to illustrating the modeling capabilities of the proposed 
distribution. To show how it works in practice, we used two real datasets.

4.1  Count Data

We considered the dataset in Table 5, which reports the counts of number of claims 
of automobile liability policies and appeared in Gómez-Déniz et  al. (2008) and 
Gómez-Déniz et al. (2011, Table 4), among others. We fitted the discrete half-logis-
tic distribution on this data set, by first considering the methods of proportion, which 

Table 5  Distribution of a 
number of claims of automobile 
liability policies (Gómez-Déniz 
et al. 2011, Table 4)

Number of claims Observed frequency Expected 
frequency

0 99 85.88
1 65 76.84
2 57 56.27
3 35 35.51
4 20 20.38
5 10 11.07
6 4 5.83
7 0 3.03
8 3 1.56
9 4 0.80
10 0 0.41
11 1 0.43
Total 298 298
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provide �̂�P = 0.7968 and �̂�∗
P
= 1.343 . The method of moments yields �̂�M = 0.6833 . 

The MLE of � is equal to 0.6734; the maximum value of the log-likelihood function 
is �max = −529.7721 , the AIC = 2p − 2�max is 1061.544, being p = 1 the number of 
unknown parameters. The corresponding theoretical frequencies of the discrete half-
logistic model, with the parameter � set equal to �̂�ML , are reported in the third col-
umn in Table 5, next to the observed ones. It is apparent that there is some discrep-
ancy regarding the frequencies of the counts 0 and 1, which has been also suggested 
by the value �̂�∗

P
 which is quite different from the other estimates. We computed the 

value of the chi-squared statistic, defined as X2 =
∑K

i=1
(Oi − Ei)

2∕Ei , where Oi and 
Ei are the observed and expected frequencies of the i-th category, respectively. Here, 
i ranges from 1 to K = 8 , after pooling the last five categories (in order to have all 
the Ei greater than 5); X2 is equal to 5.045 and the corresponding p-value under 
the null hypothesis that the data follow the discrete half-logistic distribution with 
parameter �̂�ML is 0.538, indicating a more than satisfactory goodness-of-fit. Figure 8 
displays the graphs of the empirical and the fitted cdf for the dataset, which seems to 
confirm that the proposed distribution is able to model the data adequately.

The proposed distribution shows a performance slightly inferior (in terms of 
AIC) than the two-parameter distributions analysed in Gómez-Déniz et al. (2011): 
the negative binomial, the Poisson inverse Gaussian, and the distribution introduced 
by the same authors, which is unimodal with a zero vertex as ours; but it shows the 
best fit in terms of p -alue associated to the chi-squared goodness-of-fit test.

4.2  Discrete Failure Time Data

In order to check the fitting capability of the proposed distribution for discrete 
failure time data, we used the second dataset of Bakouch et  al. (2014). This 
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dataset consists of remission times in weeks for 20 leukemia patients randomly 
assigned to a certain treatment and is summarized as

Since there are no zeros in the sample, the method of proportion cannot be 
applied. If we estimate the unknown � through the method of moments, we 
obtain �̂�M = 0.06969 . Using the maximum likelihood method, we obtain 
�̂�ML = 0.070341 (a value very close to the previous one) and the 95% confidence 
interval (0.047571, 0.098868). The maximum value of the log-likelihood function 
is − 79.00915 and hence the value of the AIC is 160.0183 and that of the BIC is 
161.014. According to these two latter indicators, the discrete half-logistic distribu-
tion shows a better fit than the discrete Pareto, the discrete Weibull, the generalized 
Poisson, the discrete logistic, the discrete Lomax, and the discrete Burr distribu-
tion, which were all examined in Tyagi et  al. (2020). In Fig. 9, the empirical and 
the theoretical cdf’s, the latter obtained by setting � equal to its MLE, are plotted 
superimposed.

5  Generalization

The discrete analogue introduced here exhibits a unique mode at zero, making 
it particularly useful for fitting sample data where the most frequent value is 
zero, and can be regarded as a valid alternative to well-established count 
distributions, as demonstrated in Sect.  4. For the same reason, however, it 
turns out unsuitable for modeling count data with a mode other than zero. This 
limitation can be addressed by constructing a possible generalization, starting 
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with the generalized half-logistic distribution mentioned in Liu et  al. (2018), 
which accepts an additional shape parameter 𝛼 > 0 and whose pdf is

and survival function

if � = 1 , then the one-parameter half-logistic distribution of Eq.  (1) is obtained. 
The PMF of the discrete generalized half-logistic can be then defined as 
p(x) = f (x;�, �)∕

∑
k∈ℕ0

f (k;�, �) for any non-negative integer x. In this way, for 
any value of � , it is possible to calibrate the parameter � to ensure that the PMF is 
no longer decreasing with x, exhibiting a unique mode at 0, but rather follows an 
increasing-decreasing trend with a mode at some positive integer value.

6  Conclusion

We introduced a discrete analogue of the one-parameter half-logistic distribution 
by setting the probability of each non-negative integer value proportional to the 
corresponding value of the probability density function of the continuous model. 
Such a construction calls for the numerical computation of an infinite series sum, 
acting as a normalizing constant in the definition of the probabilities. Despite 
manifest complication, the widespread availability of statistical and mathematical 
software and the increased computational power facilitate its use.

The discrete distribution is log-concave, has a decreasing PMF with a unique 
mode at zero, and allows for both under- and over-dispersion, although under-
dispersion is achievable only when the probability mass is mostly concentrated 
on 0 and 1. It is positively skewed and leptokurtic; its failure rate function is 
shown to be always a strictly increasing function. These features make it suitable 
for modelling purposes in many fields (e.g., insurance and ecology). Simulation 
and inferential issues were discussed; despite the non-analytic expression of 
probabilities, the practical supplementary effort to be implemented for simulating 
or estimating the model is affordable under any statistical environment. The 
comparison among different parameter estimators pointed out that the method of 
moments and the maximum likelihood method have an almost equal performance. 
The application to two real data sets (one concerning pure counts, the other 
discrete failure times), where the proposed model was compared to other popular 
count distributions, shows that it provides an at least satisfactory fit in both cases, 
and therefore it can be deemed a valid candidate for the modeling of count data 
and can profitably join the class of existing discrete random distributions; a two-
parameter extension might however deserve attention in future research.

f (x) =
��(2e−�x)�

(1 + e−�x)�+1

S(x) =
(

2

1 + e�x

)�

;
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Appendix: Derivation of the Normalizing Constant

Letting q = e−� , with 𝜃 > 0 , which implies 0 < q < 1 , we can write the 
normalizing constant C(�) of the PMF (4) as:

where �i = �i(0, q) and ���
i
= d2�i(0, q)∕dq

2 (see chapter  20 Olver et  al. 2010). In 
fact, according to Equations (20.4.9) and (20.4.10) there reported,

and

from which it is easy to obtain (7).
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